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This thesis is based on the following article and additional results in terms of age estimation using dental pulp 

DNA methylation (Table. 1c, Fig. 6,7): 

Ogata A, Kondo M, Yoshikawa M, Okano M, Tsutsumi T, Aboshi H (2022) Dental age estimation based 

on DNA methylation using real-time methylation-specific PCR. Forensic Sci Int, 340:111445. 
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Abstract 

 

Age estimation is crucial for reconstructing the biological profiles of deceased victims in the forensic field. 

DNA methylation, which varies in an age-dependent manner in specific genes, is a candidate biomarker for 

estimating chronological age. DNA methylation-based models for estimating age have been developed using 

various technologies such as pyrosequencing. Recently the methylation levels of elongation of very long chain 

fatty acids protein 2 (ELOVL2) in teeth were quantified using real-time methylation-specific polymerase chain 

reaction (RT-MSP) to rapidly assess the methylation value of CpG sites within a CpG island. The methylation 

levels of ELOVL2 were moderately correlated with chronological age, suggesting the usefulness of RT-MSP 

for age estimation. In this study, eight and five new primer sets for ELOVL2 and ectodysplasin A receptor-

associated death domain (EDARADD), respectively, were designed, and the best primer set was selected. The 

DNA methylation level was analyzed in 59 tooth samples using the selected primer set. The ELOVL2 

methylation value positively correlated with age (R2 = 0.50), whereas the EDARADD methylation value 

negatively correlated with age (R2 = 0.44). A multiple regression model combining ELOVL2 and EDARADD 

showed high accuracy [mean absolute error (MAE) = 6.69], which was verified using 40 test samples (MAE = 

8.28). Additionally, the MAE of three age groups showed no significant difference. These results indicate that 

the multiple regression model based on the two genes is useful for accurate age estimation across the human 

lifespan. 

 

Keywords: age estimation, CpG island, DNA methylation, teeth, real-time PCR 
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Introduction 

 

Age estimation is fundamental for building the biological profile of unidentified human remains 

recovered from different forensic contexts and aiding in individual identification from a list of potential 

candidates. Several methods have been proposed for estimating age based on biochemical markers, such as 

racemization of aspartic acid in dentin [1], radiocarbon dating of tooth enamel [2], measurement of the telomere 

length [3], and determination of the number of mitochondrial DNA mutations [4,5]. However, most of these 

methods have not been widely used by the forensic science community because of their low accuracy, 

complicated techniques, and/or limited applicability. 

DNA methylation plays an essential role in various biological processes such as embryonic 

development, cellular differentiation, and gene expression regulation [6]. Cytosine methylation of CpG islands 

upstream of specific genes is developmentally regulated in a tissue-specific manner [7,8]. Over the last decade, 

several groups have independently evaluated the methylation levels of DNA extracted from blood and 

demonstrated a high correlation between DNA methylation levels and chronological age [9–16]. Some studies 

focused on the methylation of dental DNA to estimate age [10,17–21]. For example, Bekaert et al. [10] 

investigated the correlation between the methylation levels of seven CpGs in three genes [elongation of very 

long chain fatty acids protein 2 (ELOVL2), phosphodiesterase 4C (PDE4C), and ectodysplasin A receptor-

associated death domain (EDARADD)] and chronological age using DNA extracted from 29 dentin samples and 

developed an age estimation model (R2 = 0.74) with a mean absolute deviation (MAD) of 4.86 years between 

chronological and predicted ages. Similarly, using 65 tooth samples, Márquez-Ruiz et al. [18] developed an age 

estimation model based on analysis of DNA methylation of nine CpGs in two genes (ELOVL2 and PDE4C) 

with a mean absolute error (MAE) of 5.04 years. Recently, Zapico et al. [20] reported multivariate regression 

models for CpGs in ELOVL2, four and a half LIM domains 2 (FHL2), neuronal pentraxin 2 (NPTX2), Krüppel-

like factor 14 (KLF14), and secretagogin (SCGN) from 20 dental pulp samples of wisdom teeth with an MAE 

of 1.5–2.13 years. Dias et al. [21] reported an accurate age prediction model for CpGs in ELOVL2 and KLF14, 

explaining 76.4% of age variation with an MAD of 7.07 years. Overall, various combinations of genes have 

been used to develop an optimized age estimation model. Some specific genes including ELOVL2 that show a 

strong correlation with age estimation and wide range of changes in methylation during aging are promising 

marker candidates for age estimation. Thus, evaluation of DNA methylation has received considerable attention 

from forensic scientists as a novel method for age estimation [22]. 

Pyrosequencing is the most commonly used method in this field of investigation [23]. A major 

advantage of pyrosequencing is that quantitative DNA methylation data can be obtained with high accuracy 
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through direct sequencing of polymerase chain reaction (PCR) products [24]. However, this method has some 

limitations, such as the low penetration rate of the pyrosequencer and high costs. 

Methylation-specific PCR (MSP), which was developed by Herman et al. [25], is a cost-effective 

method for rapidly assessing the methylation status of CpG sites within a CpG island. In particular, MSP 

analysis can be performed using a conventional real-time PCR machine. 

Kondo et al. [26] recently used the real-time MSP (RT-MSP) method to quantify the methylation 

levels of three CpGs in ELOVL2 extracted from 29 tooth samples. The methylation levels of ELOVL2 showed 

a moderate correlation with chronological age, suggesting that RT-MSP can be applied in age estimation. The 

aim of the present study was to measure the methylation levels of two genes, ELOVL2 and EDARADD, using 

RT-MSP and to develop a multiple regression model for age estimation. 
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Materials and methods 

 

Sample selection 

One hundred twenty-one teeth were extracted from Japanese individuals (aged 20–85 years); these 

teeth had been stored in the laboratory and were used in this study after obtaining approval from the Ethics 

Committee of Nihon University School of Dentistry (approval #EP19D007).  

Of the 121 teeth, 99 were used for regression analysis using whole-tooth DNA. Fifty-nine of these 99 

teeth were selected as training samples, and the remaining 40 were used as test samples. The remaining 22 teeth 

were used for regression analysis using DNA derived from dental pulp. All of these teeth were used as training 

samples. The sample distribution according to age group is shown in Table 1. All samples were permanent teeth 

(109 molars, 7 premolars, and 5 anterior teeth) that had been stored in a paper bag under dry conditions following 

extraction and preserved in a container to avoid shrinkage due to changes in temperatures and humidity. Samples 

with large caries, metal prostheses, and root canal treatment, as well as split teeth, were excluded. 

 

DNA extraction and bisulfite conversion 

The tooth surface was cleaned with chlorine bleach to remove stains. Tartar and soft tissue were 

carefully removed using a probe or scaler. Further, DNA was extracted from the 99 teeth used for regression 

analysis using whole-tooth DNA (i.e., without isolating any part of the tooth, or splitting or grinding of the 

tooth) using a DNA extraction kit for hard tissue (TBONE EX Kit; DNA Chip Research Inc., Tokyo, Japan) 

according to the manufacturer’s protocol. The DNA was eluted with 50 µL of EB buffer (QIAamp DNA Mini 

Kit, Qiagen, Hilden, Germany). The dental pulp was collected from the remaining 22 teeth by splitting them 

under water using a diamond point. Genomic DNA was extracted from the dental pulp using the QIAamp DNA 

Investigator kit (Qiagen) or NucleoSpin® DNA Forensic kit (TAKARA Bio, Shiga, Japan). All of the DNA was 

quantified using a spectrophotometer (NanoDrop, Thermo Fisher Scientific, Waltham, MA, USA). The DNA 

extracts were bisulfite-converted using an EZ DNA Methylation kit (ZYMO Research, Irvine, CA, USA). The 

final concentration was adjusted to 20 ng/µL, and 50 µL of elution buffer from the kit was used for elution. 

 

Percentage of methylated reference measured using RT-MSP 

Methylation-specific primers were designed for CpG sites upstream of each target gene (ELOVL2 and 

EDARADD) by referring to the MethPrimer website (http://www.urogene.org/cgi-

bin/methprimer/methprimer.cgi); the primer sequences are listed in Table 2. The primers targeting ELOVL2 and 

EDARADD contained six CpG sites (ELOVL2: chr6:11044644, chr6:11044647, chr6:11044655, chr6:11044661, 

chr6:11044711, and chr6:11044727 of GRCh38/hg38; EDARADD: chr1:236348188, chr1:236348190, 

http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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chr1:236348193, chr1:236348272, chr1:236348276, and chr1:236348280 of GRCh38/hg38). The human Alu 

sequence was used as the reference primer [27,28]. The bisulfite-converted DNA was amplified using an 

EpiScope® MSP Kit (TAKARA Bio) and 0.3 µM primers. RT-MSP was performed as previously described 

[26]. Briefly, the mean Ct value for each sample was calculated using a standard curve. The standard solutions, 

100% methylated human DNA (EpiScope® Methylated HCT116 gDNA, TAKARA Bio), and 100% 

unmethylated human DNA (EpiScope® Unmethylated HCT116 DKO gDNA, EpiScope® Unmethylated 

HCT116 DKO gDNA, TAKARA Bio) were bisulfite-treated in the same manner as the sample, and the 

methylation rates were adjusted to 0%, 10%, 25%, 50%, 75%, 90%, and 100%. PCR was performed for 45 

cycles using a Thermal Cycler Dice Real Time System II (TP900; TAKARA Bio). The annealing temperatures 

were 55 ℃ for ELOVL2 and 60 ℃ for EDARADD. After the reaction, the percentage of methylated reference 

(PMR) was calculated from the fluorescence level (relative quantity) of each sample using the following 

equation: 

 

PMR (%) = {[(target gene†/Alu) mean value sample]/[(target gene†/Alu) mean value universal methylated 

human DNA]} × 100 

† represents target ELOVL2 or EDARADD. 

 

Statistical analysis 

The correlations between PMR and chronological age were examined using 59 teeth samples from the 

training samples, and regression equations were obtained (Microsoft Excel 2019, Microsoft, Redmond, WA, 

USA). To compare the residuals of the regression equations among age groups, the samples were divided into 

three age groups (young adults: 20–34 years; middle-aged adults: 35–54 years; and older adults: ≥55 years), 

and the MAE of each group was calculated and tested for significant differences between groups [one-way 

analysis of variance (ANOVA) with post-hoc Tukey–Kramer test in GraphPad Prism 9 software (GraphPad, 

Inc., San Diego, CA, USA). Multiple regression analysis was performed between chronological age and the 

PMR of ELOVL2 and EDARADD (Microsoft Excel 2019). The training samples were divided into men and 

women, and multiple regression equations were obtained for each sex. The significance of the difference 

between the correlation coefficients was analyzed using VassarStats (http://vassarstats.net/). Forty teeth were 

used to verify the accuracy of the multiple regression equations. To compare the test sample residuals from the 

multiple regression equation among age groups, the MAE of each age group was calculated, and a significance 

test among age groups was performed (one-way ANOVA with post-hoc Tukey–Kramer test, GraphPad Prism 

9). Statistical significance was set at p < 0.05. 
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Finally, 22 dental pulps were used to examine the correlation between PMR and age for the two genes

（ELOVL2 and EDARADD） and single or multiple regression equations were obtained. 
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Results 

 

Correlation between age and PMR of ELOVL2 and EDARADD derived from whole teeth 

The correlation between the PMR of the two genes (ELOVL2 and EDARADD) and chronological age 

was assessed for the 59 whole-tooth training samples (Fig. 1). The PMR of ELOVL2 was strongly positively 

correlated with age, whereas that of EDARADD was negatively correlated with age. A quadratic regression was 

a better fit for the relationship between age and PMR of ELOVL2 (R2 = 0.50) than a linear (R2 = 0.42) or 

logarithmic (R2 = 0.42) regression. For EDARADD, logarithmic regression was a better fit (R2 = 0.44) than 

linear (R2 = 0.40) or quadratic (R2 = 0.42) regression. The regression equations were as follows: Y = −0.0784X2 

+ 3.3587X + 23.529 for ELOVL2 and Y = −13.91ln(X) + 92.259 for EDARADD. 

 

Validation of regression equations using the training sample 

Each regression equation yielded MAEs of 9.59 years (ELOVL2) and 10.12 years (EDARADD) in the 

training sample. In the regression equations for the PMR of ELOVL2 and EDARADD, the residuals were biased 

toward positive values for individuals in their 20s and 30s and toward negative values for those in their 60s (Fig. 

2). 

In the regression equations for ELOVL2, the largest residual was 12.67 years, which was observed in 

older adults (≥55 years), and the smallest residual was 8.02 years, which was observed in young adults (20–34 

years; Fig. 3a). In contrast, in the regression equations for EDARADD, the largest residual was 12.20 years, 

which was observed in older adults (≥55 years), and the smallest residual was 8.00 years, which was observed 

in middle-aged adults (35–54 years; Fig. 3b). There was no significant difference between any of the age groups 

for ELOVL2 and EDARADD (one-way ANOVA with post-hoc Tukey–Kramer test). 

 

Multiple regression analysis using the PMR of ELOVL2 and EDARADD and accuracy verification using a 

test sample 

PMR values for ELOVL2 and EDARADD were used in a multivariate regression model to obtain an 

age estimation formula. The multiple regression equation was as follows: Y = −0.041X1
2 + 2.243X1 – 

10.815ln(X2) + 66.538 (R2 = 0.74; X1: PMR of ELOVL2, X2: PMR of EDARADD). Age was estimated using 

the multiple regression equation (Fig. 4). The model produced an MAE between the estimated and chronological 

age of 6.69 years for the training samples (n = 59). The correlation between the PMR and chronological age did 

not significantly differ between men and women (two correlation coefficients test, Z = −1.18, P = 0.24, two-

tailed). In addition, the multiple regression equation was validated using a test sample (n = 40), yielding an 

MAE of 8.28 years. The MAE was 7.61 years for young adults (n = 14), 7.48 years for middle-aged adults (n = 
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15), and 10.21 years for older adults (n = 11) (Fig. 5). No significant differences were observed between any 

age of the groups (one-way ANOVA with post-hoc Tukey–Kramer test). 

 

Age estimation based on PMR of ELOVL2 and EDARADD derived from dental pulp 

The correlation between the PMR of two genes (ELOVL2 and EDARADD) and chronological age was 

assessed for the 22 dental pulp samples (Fig. 6). Similar to those observed in the whole tooth, the PMR of 

ELOVL2 showed strong positive correlation with age (Fig. 6a), whereas that of EDARADD showed weak 

negative correlation with age (Fig. 6b). The calculated regression equations were as follows: Y = −0.1709X2 + 

5.6239X + 14.8 (R2 = 0.64) for ELOVL2, and Y = −18.04ln(X) + 115.27 (R2 = 0.12) for EDARADD. The single 

regression analysis revealed that the PMR of dental pulp-derived ELOVL2 exhibited a stronger correlation with 

age than that of whole-tooth-derived ELVOL2. In contrast, the PMR of EDARADD exhibited a stronger 

correlation with chronological age in the whole teeth than in the dental pulp. The MAEs between estimated and 

chronological age were 6.42 years (for ELOVL2) and 11.42 years (for EDARADD) for the 22 dental pulp training 

samples. 

Based on the PMR of ELOVL2 and EDARADD, the multiple regression equation was calculated as 

follows: Y= −0.162(X1
2) + 5.351(X1) − 11.847ln (X2) + 64.701 (X1: PMR of ELOVL2, X2: PMR of EDARADD). 

The multiple regression equation showed high accuracy (R2 = 0.69), with an MAE between the estimated and 

chronological age of 5.86 years (Fig. 7). 
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Discussion 

 

Over the last three decades, various molecular markers for age estimation have been identified for use 

in the forensic field. Particularly, racemization of aspartic acid in a dental protein was tested for forensic 

applications [1]. However, aspartic acid racemization is affected by temperature, which is a limitation of this 

analysis. Alternatively, DNA methylation is relatively stable at different temperatures, suggesting that it can be 

used to estimate the chronological age of burnt remains. 

Epigenetic age estimation using pyrosequencing [10,11,20], EpiTyper [17,29], SNaPshot [19, 21, 

30,31], and methylation-sensitive high-resolution melting (MS-HRM) [13] have been tested for practical 

applications in the forensic field [32].MS-HRM, a PCR-based method, enables rapid and relatively inexpensive 

quantification of methylation levels. DNA methylation levels are estimated by comparing the melting profiles 

of an unknown PCR product with those of a PCR product derived from a standard material with a known 

methylation ratio [33]. Recently, Hamano et al. [13] used MS-HRM to quantify the methylation levels of 

ELOVL2 and FHL2 in blood-derived DNA and developed a multiple regression model with an MAD of 7.44 

years. 

RT-MSP, a PCR-based methylation analysis similar to MS-HRM, has been widely used in medical 

sciences to diagnose cancer and some syndromes [25,34]. This method can also be used to rapidly assess the 

methylation values of virtually any group of CpG sites within a CpG island using methylation-specific primer 

sets for the sequence of interest. The greatest advantage of this method is that the analysis can be performed 

using a conventional real-time PCR machine, without requiring specific equipment such as a pyrosequencer. 

Therefore, this method can be used in primary screening for personal identification, such as following a large-

scale disaster, where a large number of cadavers must be analyzed immediately. This study showed that RT-

MSP can be used to quantify CpG methylation levels and estimate chronological age. 

The selection of appropriate genes is crucial for developing a highly accurate age estimation model. 

To date, at least 10 genes derived from teeth have been considered as targets for developing age estimation 

models [5,10,14,17–21]. ELOVL2 is the most promising gene for creating an age estimation model because its 

methylation values are strongly positively correlated with age [10–12,15]. In addition, this correlation is highly 

conserved in multiple tissues [35]. In contrast to ELOVL2 methylation, EDARADD methylation is negatively 

correlated with age [10,36,37]. EDARADD has also been used for methylation-based age estimation in tooth 

samples [10,19]. Therefore, ELOVL2 and EDARADD were used to develop an age estimation model. 

Eight and five sets of primers were designed for ELOVL2 and EDARADD, respectively. Each primer 

contained 2–4 CpGs of 161 (ELOVL2) and 136 (EDARADD) CpG sites on CpG islands, with each primer set 

consisting of forward and reverse primers, containing 4–8 CpGs with various combinations. The best primer set 
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for each gene was selected based on a single peak in the dissociation curve and correct calibration curve (R2 = 

0.89, ELOVL2; R2 = 0.89, EDARADD). 

The final primer sets for ELOVL2 and EDARADD each contained six CpGs. Single regression analyses 

of individual genes revealed moderate correlations (R2 = 0.50, ELOVL2; R2 = 0.44, EDARADD). Moreover, the 

final multiple regression model combining six CpGs in ELOVL2 and six CpGs in EDARADD (i.e., 12 CpGs in 

total) showed a high correlation (R2 = 0.74) and an MAE of 6.69 years. 

In the narrow ELOVL2 upstream region, dozens of consecutive CpG sites have been identified to be 

specifically correlated with age [11,38]. Interestingly, the CpG showing the highest correlation with age differed 

in each analysis, even when the same tissue (blood) and same method (pyrosequencing) were used. For example, 

Zbiec-Piekarska et al. [11] found that two of the seven CpGs (chr6:11,044,642 and chr6:11,044,634) were 

strongly correlated with chronological age; they also developed an age estimation model (R2 = 0.859, MAD = 

5.03) using blood samples. In contrast, Bekaert et al. [10] showed that three CpGs (chr6:11,044,661, 

chr6:11,044,640, and chr6:11,044,625) in ELOVL2 were correlated in their age estimation model, with chr6: 

11,044,640 as the most informative CpG in the blood sample. Park et al. [15] found a strong correlation between 

age and the CpG (chr 6: 11,044,894) in ELOVL2. Similar to the results observed in blood, CpG sites showing 

the best correlation with age differed in each model in teeth [10,18,21]. Bekaert et al. [10], Marquez-Ruiz et al. 

[18], and Dias et al. [21] used five CpGs (chr6:11,044,655, chr6:11,044,640, chr6:11,044,634, chr6:11,044,628, 

and chr6:11,044,625), six CpGs (chr6:11,044,617; chr6:11,044,631; chr6:11,044,642; chr6:11,044,644; 

chr6:11,044,649; chr6:11,044,661), and one CpG (chr6:11,044,628), respectively. The difference in the optimal 

CpG sites in each model may be attributed to the stochastic phenomenon of DNA methylation. In other words, 

the best CpG site may vary when samples are added to the analysis. Three (chr6:11,044,655, chr6:11,044,647, 

chr6:11,044,644) of the six CpGs contained in the primer set for ELOVL2 used in this study were previously 

used for age estimation analysis, suggesting the usefulness of the region containing nine CpGs. 

In contrast, a minimum of six CpGs in EDARADD has been used to develop epigenetic age estimation 

models [10,36,37]. To the best of my knowledge, the six CpGs in my EDARADD primers have not been 

previously used for age estimation analyses. 

Blood is relatively easy to obtain and has been used for DNA methylation-based age estimation [5]. 

Compared with blood, teeth are a stable source of DNA, even in severely damaged cadavers (e.g., highly 

decomposed corpses, burned corpses, and white skeletons). The molars are the most protected teeth in the jaw, 

and thus are useful for assessing age by analyzing their methylation levels. 

In this study, teeth that had not been crushed or split were used to extract DNA, which is required for 

rapid processing in the forensic field. Therefore, the origin of the DNA is expected to be from dentin 
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(odontoblasts), dental pulp (odontoblasts, fibroblasts, defense cells, and undifferentiated mesenchymal cells), 

and cementum (cementocytes) [39]. 

Giuliani et al. [17] divided the tooth into three parts, dentin, pulp, and cementum, and built an age 

estimation model for each. The MAD between the estimated age and chronological age was better in the model 

from the pulp (MAD = 2.25) or cementum (MAD = 2.45) compared to that from the dentin (MAD = 7.07). 

Recently, Zapico et al. [20] developed excellent multiple regression models (MAE = 1.5−2.13 years) by 

quantifying DNA methylation in dental pulp. The results suggested that using dental pulp can provide the most 

accurate estimate of age.  

To validate the results, a regression model based on altering the methylation of dental pulp-derived 

DNA (ELOVL2 and EDARADD) was also developed by measuring methylation using the RT-MSP method. 

Consistent with previous reports, the age estimation model based on dental pulp-derived ELOVL2 methylation 

levels showed higher accuracy compared with that based on whole-tooth-derived ELOVL2 methylation levels. 

However, the accuracy of the age estimation model based on the EDARADD methylation level was in conflict 

with that of ELOVL2.  

The use of dental pulp as an origin of DNA to develop multiple regression models was only slight 

improvement compared with the use of whole teeth. In the multiple regression analysis based on the PMR of 

the two genes from dental pulp, the MAE was slightly smaller than that from whole teeth, but the coefficient of 

determination was lower. Therefore, it was difficult to determine whether limiting the DNA source to dental 

pulp would improve the accuracy of age estimation. 

In contrast, when collecting DNA, a certain amount of time is required to divide the teeth. Given the 

rapid processing needs in the forensic field, such as following large-scale disasters, DNA extraction from the 

whole tooth is a suitable method. In addition, as the small amount of DNA commonly found in forensic cases 

increases the margin of error when determining DNA methylation levels, extracting DNA from the whole tooth 

may increase the total amount of DNA collected. Thus, the use of whole tooth-derived DNA for age estimation 

has many advantages in forensic practice. 

Furthermore, to develop a highly accurate regression model, it is important to consider a sufficient 

sample size or population variability in each age group. However, in most previously reported experiments, the 

number of tooth samples used was only 20–30, and the sample distribution in each age group was not always 

uniform. In contrast, I used 99 samples (59 training samples and 40 test samples) and observed a low level of 

sample variability in each age group, indicating that my experimental conditions are suited for developing an 

age estimation model. 

Both highly accurate age estimation models and homogeneous estimation accuracy across generations 

are important in the forensic field. Previous studies showed that age estimation accuracy decreases in an age-
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dependent manner [10,18]. In the present study, no statistically significant difference was observed in the MAE 

of each age group using the multiple regression model for age estimation (Fig. 5). These results suggest that my 

model is stable across the human lifespan. Therefore, this method may be useful for identifying missing people 

(e.g., in criminal cases), which mostly includes adults and the elderly. 

Age estimation, which is based on various biological or molecular characteristics including DNA 

methylation, is a scoring method used as part of individual identification. The final personal identification is 

performed by comparing postmortem and ante mortem dental charts and/or through DNA identification. In this 

study, the multiple regression model for age estimation was developed using RT-MSP to evaluate DNA 

methylation in tooth samples. This model showed a slightly higher MAE and was less accurate than other age 

estimation methods. However, as described above, the method can be easily performed at low costs using 

conventional real-time PCR. Therefore, this method can be used in primary screening for personal identification 

in situations such as large-scale disasters, where large numbers of cadavers must be analyzed immediately. 
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Conclusions 

 

I assessed the methylation of ELOVL2 and EDARADD in 59 tooth samples using RT-MSP and 

developed a multiple regression model, the MAE value of which was 6.69 years. The accuracy of the age 

estimation model was verified using an additional 40 extracted teeth; the obtained MAE value was 8.28 years, 

which was close to that obtained for the training samples. This result indicates that my multiple regression 

model can be used for dental age estimation. 
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Table 1. Number of samples and sex distribution per age group. 

a 

Age (years) Frequency Men Women 

20–29 14 6 8 

30–39 12 6 6 

40–49 12 8 4 

50–59 8 7 1 

60–69 7 5 2 

≥70 6* 1 4 

Total 59 33 25 

 

b 

Age (years) Frequency Men Women 

20–29 8 3 5 

30–39 9 4 5 

40–49 8 7 1 

50–59 6 3 3 

60–69 5 4 1 

≥70 4 3 1 

Total 40 24 16 

 

c 

Age (years) Frequency Men Women 

20–29 6 4 2 

30–39 4 1 3 

40–49 5 3 2 

50–59 4 1 3 

60–69 3 1 2 

≥70 0 0 0 

Total 22 10 12 

 

 

a: training samples of whole teeth (n = 59). b: test samples of whole teeth (n = 40). c: training samples of dental 

pulp (n = 22) *One sample in the ≥70 group was of unknown sex. 
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Table 2. Sequences of methylation-specific and reference primers used in methylation-specific polymerase chain 

reaction. 

 

Target Primer Sequence (5′-3′) 

ELOVL2 ELOVL2-F GCGGCGGTTTAACGTTTAC 

 ELOVL2-R CACGATACTACTTCTCCCCG 

EDARADD EDARADD-F GTAGATGTTAGGCGCGGC 

 EDARADD-R CCCTACCTTACGATCGTCCG 

Alu ALU-F GGTTAGGTATAGTGGTTTATATTTGTAATTTTAGTA 

 ALU-R ATTAACTAAACTAATCTTAAACTCCTAACCTCA 

 

*Methylation specific primers: ELOVL2-F, ELOVL2-R, EDARADD-F, and EDARADD-R; reference primers: ALU-

F and ALU-R. 

†ELOVL2, elongation of very long-chain fatty acids protein 2; EDARADD, ectodysplasin A receptor-associated 

death domain. 
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Fig. 1. Correlation between the percentage of methylated reference (PMR) and chronological age in the training 

samples (n = 59). 

a: PMR of ELOVL2 positively correlated with age. b: PMR of EDARADD negatively correlated with age. 
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Fig. 2. Residuals of the training sample (n = 59) using a simple regression equation. 

a: Mean absolute deviation (MAE) was 9.59 years. b: MAE was 10.12 years. 
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Fig. 3. Mean absolute deviation (MAE) per age group for the training sample (n = 59) using the simple regression 

equation (young adults, middle-aged adults, and older adults; n = 22, 21, and 16, respectively). 

a: No significant difference was observed in ELOVL2 between any age groups. b: No significant difference was 

observed in EDARADD between any age groups. 
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Fig. 4. Relationship between estimated and chronological age of the training and test samples using multiple 

regression equations. 

In the training sample (n = 59), the mean absolute deviation (MAE) was 6.69 years. In the test sample (n = 40), the 

MAE was 8.28 years. 
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Fig. 5. Mean absolute deviation (MAE) per age group for the test sample (n = 40) using a multiple regression equation. 

No statistically significant difference was observed between any age groups (young adults, middle-aged adults, and 

older adults; n = 14, 15, and 11, respectively). 
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Fig. 6. Correlation between the percentage of methylated reference (PMR) and chronological age in the training 

samples of dental pulp (n = 22). 

Red markers: dental pulp results, Gray markers: whole teeth results. a: PMR of ELOVL2 positively correlated with 

age. b: PMR of EDARADD negatively correlated with age. 
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Fig. 7. Relationship between estimated and chronological age of the samples of dental pulp using multiple regression 

equations. 

In the sample (n = 22), the mean absolute deviation (MAE) was 5.86 years. 


