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Abstract

Background: Anaesthesia and perioperative management contribute to long-term outcomes of patients with cancer,

including pancreatic ductal adenocarcinoma. We assessed the antitumour, anti-inflammatory, and analgesic effects of

midazolam on LSL-KrasG12D/þ;Trp53flox/flox;Pdx-1cre/þ transgenic mice with pancreatic ductal adenocarcinoma.

Methods: Six-week-old transgenic mice were administered midazolam 30 mg kg�1 day�1 p.o. (n¼13); midazolam 30 mg

kg�1 day�1 with 1-(2-chlorophenyl)-N-methyl-N(1-methylpropyl)-3-isoquinoline carboxamide (PK11195) 3 mg kg�1 day�1

i.p., a peripheral benzodiazepine receptor antagonist (n¼10); or vehicle (water; n¼14) until the humane endpoint. Cancer-

associated pain was evaluated using hunching score and mouse grimace scale. Tumour stage and immuno-

inflammatory status were determined histopathologically. Anti-proliferative and apoptotic potentials of midazolamwere

investigated using mouse pancreatic ductal adenocarcinoma cell lines.

Results: Midazolam significantly inhibited tumour size and proliferative index of Ki-67 and cyclins in pancreatic ductal

adenocarcinoma, which was blocked by administration of PK11195. Local myeloperoxidaseþ tumour-associated neu-

trophils, arginase-1þ M2-like tumour-associated macrophages, and CD11bþLy-6Gþ polymorphonuclear myeloid-derived

suppressor cells were reduced by midazolam, which was antagonised by administration of PK11195. Hunching and

mouse grimace scale were improved by midazolam, whereas the scores increased with midazolamþPK11195 treatment.

Plasma pro-inflammatory cytokines, such as interleukin-6 and CC chemokine ligand (CCL)2, CCL3, and CCL5, were

reduced by midazolam, whereas these cytokines increased with PK11195. Midazolam inhibited pancreatic ductal

adenocarcinoma proliferation through downregulation of cyclins and cyclin-dependent kinases and induced apoptosis

in vitro.

Conclusions: These results suggest that midazolam inhibits pancreatic ductal adenocarcinoma proliferation and local

infiltration of tumour-associated neutrophils, tumour-associated macrophages, and polymorphonuclear myeloid-

derived suppressor cells, thereby inhibiting pancreatic ductal adenocarcinoma progression.
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Editor’s key points

� Perioperative management has been implicated in

the outcomes from cancer surgery.

� Amousemodel of pancreatic ductal adenocarcinoma

and tumour cell lines were used to investigate the

antitumour, anti-inflammatory, and analgesic effects

of midazolam.

� Midazolam suppressed proliferation of pancreatic

ductal adenocarcinoma, cancer-associated fibro-

blasts and local infiltration of tumour-associated in-

flammatory cells, thereby inhibiting pancreatic

ductal adenocarcinoma progression.

� These preclinical findings provide a basis for further

study of the effects of midazolam and other periop-

erative drugs on long-term outcomes, such as

recurrence and disease-free survival after cancer-

related interventions.
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Surgical resection of the primary tumour is generally the first

treatment choice for patients with cancer, although recent

studies have shown that perioperative management affects

the long-term outcome of cancer patients.1 Several reports

have indicated that anaesthetics, including ketamine, propo-

fol, and morphine, suppress the immune system.1 Indeed,

anaesthetics, such as dexmedetomidine, can enhance prolif-

erative, invasive, and metastatic cancer activities.2,3 There-

fore, it is important to select appropriate anaesthetic drugs for

surgery in patients with cancer.

Midazolam (MDZ), a benzodiazepine anaesthetic, is widely

used for induction of general anaesthesia, premedication, and

procedural and postoperative sedation.4,5 The primary clinical

effects of MDZ are mediated through central benzodiazepine

receptors within neuronal g-aminobutyric acid type A re-

ceptors, whereas MDZ has antitumour effects on lung cancer

and glioma cells through peripheral benzodiazepine receptors

(PBRs).2 Overexpression of PBRs, renamed translocator protein

(TSPO), is detected in various cancers, including pancreatic

cancer.6,7 However, the effects of MDZ on pancreatic ductal

adenocarcinoma (PDAC) remain unknown.

Pancreatic ductal adenocarcinoma has a high mortality

rate compared with another malignant tumours.8 The fre-

quency of surgical resection in patients with pancreatic cancer

is increasing because of developing preoperative neoadjuvant

chemotherapy. Patients with resectable PDAC who are un-

dergoing surgery need anaesthetics for preoperative and

postoperative management, whilst patients with unresectable

PDAC also need appropriate care, including inhibition of

cancer-associated pain. Midazolam inhibits macrophage and

neutrophilic functions in non-cancer pathogenesis.9 Infiltra-

tion of pro-inflammatory M2 tumour-associated macrophages

(TAMs) and tumour-associated neutrophils (TANs) is associ-

ated with cancer progression10,11 and cancer-associated in-

flammatory pain.12 We hypothesised that MDZ has

antitumour, anti-inflammatory, and analgesic effects in a

mouse model of PDAC.

We used a transgenic PDAC mouse model (LSL-KrasG12D/þ;
Trp53flox/flox;Pdx-1cre/þ [KPPC])13 to evaluate the effects of MDZ on
PDAC, tumour-associated inflammatory cells, and cancer-

associated pain.
Methods

Reagents

Midazolam (Maruishi Pharmaceutical Co., Ltd, Osaka, Japan;

Sandoz, Tokyo, Japan) and 1-(2-chlorophenyl)-N-methyl-N(1-

methylpropyl)-3-isoquinoline carboxamide (PK11195; Abcam

Japan, Tokyo, Japan) were diluted with distilled water or

dimethyl sulphoxide (DMSO), respectively.
Cell lines

Murine PDAC cell lines (#146, 147, and 244) were previously

established from LSL-KrasG12D/þ;Trp53flox/þ;Pdx-1cre/þ (KPCflox)

mice.14 Human pancreatic stellate cell (hPSC) lines (1, 5, and

14) were obtained from RIKEN BioResource Research Center

Cell Bank (Tsukuba, Ibaraki, Japan).13
Proliferation assay

Using an alamarBlue® proliferation assay (Thermo Fisher Sci-

entific, Waltham, MA, USA), cells (1 � 104) were cultured in 96-

well plates and treated with MDZ 1, 3, 10, 30, 100, or 300 mM for

24 h. Experiments were performed in triplicate and repeated at

least twice, as described.15
Cell-cycle analysis

Cells were treated with MDZ 40 or 400 mM for 24 h. After

staining with propidium iodide, cells were measured by flow

cytometer, and cell-cycle analysis was performed by FlowJo

software version 10 (Becton, Dickinson and Company,

Franklin Lakes, NJ, USA).
Immunoblotting of cell-cycle-associated molecules

Cells were cultured for 24 h in the presence of MDZ, PK11195,

or vehicle control (water or DMSO). The detailed protocol for

immunoblotting has been reported.15
Detection of apoptosis by annexin Vepropidium
iodide double-staining analysis

Apoptotic cells were detected with Alexa Fluor® 488 annexin

V/dead cell apoptosis kit (Life Technologies, Invitrogen,

Carlsbad, CA, USA), as described.15
Administration of midazolam and PK11195

LSL-KrasG12D/þ;Trp53flox/flox;Pdx-1cre/þ mice, which is a sponta-

neous PDAC mouse model under innate immuno-

inflammatory conditions,13 were separated into three groups.

Six-week-old KPPC mice were administered MDZ 30 mg kg�1

day�1 p.o. (producing neither sedation nor hypoxaemia; n¼13)

or water vehicle (n¼14) every day until the humane endpoint

(when mice showed no activity, including grooming, food

intake of <1 g day�1, or >20% body weight loss over several

days). Another group of 6-week-old KPPCmice was injected i.p.

with PK11195 3 mg kg�1 day�1, a TSPO ligand, six times per

week with MDZ 30 mg kg�1 day�1 p.o. (n¼10) until the humane
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endpoint. Cre-negative control mice were obtained from the

same littermates. Data from vehicle-treated KPPC and normal

control mice13 were used to reduce experimental animal use

according to Animal Research: Reporting of In Vivo Experi-

ments (ARRIVE) guidelines.

All animals were kept in pathogen-free housing with

abundant food and water and killed by carbon dioxide at the

humane endpoint under ARRIVE and institutional guidelines

approved by the Nihon University School of Medicine Animal

Care and Use Committee (AP18MED074 and AP19MED034).
Pain analysis

Two blinded investigators assessed cancer-associated pain

using the hunching score, including exploratory behaviour

(score of 0e4) and themouse grimace scale (MGS) (score of 0e2

each; total score of 10), as reported.13
Autopsy

Autopsy was performed at the study endpoint. Total pancre-

atic weight was measured, and the tumour volumes were

calculated as width � length � height. All samples were

weighed and fixed in neutral buffered formalin 10%.
Immunohistochemistry

Immunostaining of pancreatic tumours, except for dead ani-

mals and tumours with ischaemic and massive central ne-

crosis, was performed, as described.16 Cases with unclear

staining of each internal control were excluded. We counted

the number of positive cells in at least three fields (200�) in a

representative specimen.
Cytokine antibody array of plasma

Murine plasma samples were obtained from the heart of

control mice and KPPC mice groups at the study endpoint. We

analysed cytokine concentrations of pooled plasma (n¼4

each), except for icteric and haemolytic samples, using a

RayBio® C-Series Mouse Cytokine Antibody Array 1000 (Ray-

Biotech, Inc., Norcross, GA, USA) according to the manufac-

turer’s instructions.17
Statistical analysis

For comparison of survival using KaplaneMeier analyses, we

used the log-rank test for univariate survival analyses.

Tumour volumes and histopathological analyses were per-

formed using parametric TukeyeKramer test or non-

parametric SteeleDwass test with EZR (Easy R) software

version 1.54.18 The significance of the differences in cumula-

tive cancer pain was analysed by post hoc Tukey test after one-

way analysis of variance using SPSS software version 25.0 (IBM

Corp., Armonk, NY, USA). P<0.05 was considered statistically

significant.
Results

Midazolam inhibited tumour proliferation by
downregulation of cyclins in vivo

To determine the effects of MDZ on a pancreatic cancer in vivo,

6-week-old KPPC mice were treated with MDZ, MDZ and

PK11195 (MDZþPK11195), or water vehicle (Fig. 1a). Solid
pancreatic tumour nodules were detected in the three KPPC

groups (Fig. 1b). Tumour size and frequency of direct invasion

of peripheral tissue/organ, but not distant metastasis, were

lower with administration of MDZ compared with vehicle-

treated mice, and MDZ-induced tumour size reduction was

reversed by treatment with PK11195 (Fig. 1c; Supplementary

Tables 1e3). The proliferative Ki-67 labelling index of epithe-

lial K-19þ PDAC component in KPPC mice was significantly

reduced by MDZ (16.5%) compared with vehicle-treated KPPC

mice (30.5%; Fig. 1d and e). In contrast, the reduced Ki-67

labelling index in PDAC was significantly elevated by treat-

ment with MDZþPK11195 (32.5%) compared with treatment

with MDZ alone. Cyclins D1, A2, and B1 decreased in the PDAC

component by administration of MDZ, whereas the inhibitory

effects of MDZ were antagonised by treatment with PK11195

(Fig. 1d and e). No significant difference in survival was

observed amongst the three groups of KPPC mice treated with

MDZ (mean survival time 63.5 days), MDZþPK11195 (62.7

days), or vehicle (61.1 days; Supplementary Fig. 1).
Midazolam inhibited local infiltration of inflammatory
cells

We determined the effects of MDZ on the immuno-

inflammatory micro-environment of PDAC. Local infiltration of

myeloperoxidaseþ (MPOþ) TANs, which are associated with

cancer progression,10 was reduced in MDZ-treated KPPC mice

(Fig. 2a and b). In contrast, MPOþ TANs were increased with

MDZþPK11195 compared with MDZ alone. There was no sig-

nificant difference in inducible nitric oxide synthaseþ anti-

tumour M1-like TAMs10 amongst the three groups. Meanwhile,

arginase-1þ pro-inflammatory M2-like TAMs10 were reduced by

administration of MDZ and MDZþPK11195. No significant dif-

ference in cytotoxic CD8þ T cells was observed between groups.

We studied local myeloid-derived suppressor cells because

they enhance PDAC progression and are correlatedwith a poor

prognosis clinically.19 Midazolam inhibited local infiltration of

CD11bþLy-6Gþ polymorphonuclear myeloid-derived suppres-

sor cells (PMN-MDSCs) in KPPC mice (Fig. 2c and d), whereas

PMN-MDSCs were increased by MDZþPK11195. Similar to the

results in pancreatic tumours, MPOþ granulocytic lineages in

bone marrow were reduced by MDZ, and this reduction was

antagonised by MDZþPK11195 (Supplementary Fig. 2).

We investigated MDZ effects on desmoplastic reactions

with proliferation of cancer-associated fibroblasts (CAFs) and

tumour angiogenesis. Masson’s trichrome stain indicated that

blue thickened collagen fibres surrounded the PDAC in

vehicle-treated KPPC mice (Fig. 3a), whereas thin fibres were

observed around PDAC nests in the mice administered MDZ

and MDZþPK11195. Similar to the results of Masson’s tri-

chrome staining, a-smooth muscle actin (a-SMA)þ CAFs16

were significantly reduced by treatment with MDZ or

MDZþPK11195 compared with vehicle-treated mice (Fig. 3a

and b). We observed no difference in the number of CD31þ

tumour blood vessels between the three groups. However,

CD31þ micro-vessel density increased in mice treated with

MDZþPK11195.
Midazolam reduced pain signs and inflammatory
cytokines in KPPC mice

We investigated the effect of MDZ on cancer-associated pain

in KPPC mice, which demonstrate signs of pain, including a

severe rounded-back posture (Fig. 4a).13 Midazolam-treated
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Fig 1. Inhibition of pancreatic ductal adenocarcinoma proliferation by MDZ in the mouse model LSL-KrasG12D/þ;Trp53flox/flox;Pdx-1cre/þ (KPPC).

(a) Experimental design. (b) Gross appearance (arrows, tumour nodules; Du, duodenum) and (c) volume of pancreatic tumour in KPPC mice

with administration of MDZ (n¼13), MDZþPK11195 (n¼10), or vehicle water (n¼14). Data are presented as mean (SD). P¼0.040, MDZ (n¼13)

vs vehicle (n¼14); P¼0.030, MDZ (n¼13) vs MDZþPK11195 (n¼10); P¼0.977, MDZþPK11195 (n¼10) vs vehicle (n¼14) by non-parametric

SteeleDwass test. (d) Histopathological features, including staining for Ki-67 in K-19þ PDAC cells and cyclins D1, A2, and B1 (200�). In-

sets, 400� original magnification. Scale bars, 100 mm. (e) Quantification of the staining in (d). Data are presented as mean (SD) (normality

data) or median values (non-normality data). Ki-67; P¼0.021, MDZ (n¼8) vs vehicle (n¼7); P¼0.003, MDZ (n¼8) vs MDZþPK11195 (n¼7);

P¼0.372, MDZþPK11195 (n¼7) vs vehicle (n¼7) by SteeleDwass test (#). Cyclin D1; P¼0.014, 95% CI [5.1; 45.0], MDZ (n¼7) vs vehicle (n¼4);
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adenocarcinoma; PK11195, 1-(2-chlorophenyl)-N-methyl-N(1-methylpropyl)-3-isoquinoline carboxamide; SD, standard deviation.
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myeloid-derived suppressor cell; TAM, tumour-associated macrophage; TAN, tumour-associated neutrophil.
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KPPC mice showed a mild rounded-back posture, whereas the

rounded-back posture progressed with MDZþPK11195. The

hunching scores decreased significantly with MDZ treatment

during 0e26 premortal days (pmd) compared with vehicle-

treated mice (Fig. 4b; Supplementary Fig. 2). Likewise, MGS

scores were improved during 0e21 pmd in MDZ-treated KPPC

mice compared with vehicle-treated mice (Fig. 4c;

Supplementary Fig. 3). The effects of MDZ on hunching and

MGS scores were reversed with MDZþPK11195. In control

mice, the hunching and MGS scores remained low during the

observation period (Supplementary Fig. 4).
To elucidate the mechanism of pain relief by MDZ in the

KPPC model, we investigated plasma cytokine concentrations

(Fig. 4d; Supplementary Figs. 5e14). Cytokine antibody array

using pooled plasma revealed that the major pain-associated

cytokines tumour necrosis factor (TNF)-a, interleukin (IL)-6,

and IL-1a13 increased inKPPCmice comparedwith controlmice

(Fig. 4d). These cytokines decreased in MDZ-treated mice,

whereas IL-1a and IL-6 increased in mice administered

MDZþPK11195 comparedwithMDZ-treatedmice.Weanalysed

the plasma concentrations of TAN- and MDSC-related cyto-

kines.MDZ, but notMDZþPK11195, reduced local infiltration of
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Fig 4. Modulation of inflammatory cytokines and cancer-associated pain by midazolam. (a) Representative vehicle-treated KPPC mouse

showing signs of pain, including severe rounded-back posture (hunching score 4) and moderate nose-and-cheek bulge (MGS 10). MDZ-

treated KPPC mouse (hunching score 3 and MGS 6). KPPC mouse treated with MDZþPK11195 (hunching score 4 and MGS 8). No sign of

pain in normal control mouse. (b) Mean scores of hunching and (c) MGS in KPPC mice treated with MDZ (n¼11), MDZþPK11195 (n¼10), and

vehicle water (n¼11). (d) Pooled plasma concentrations (n¼4 each) of cytokines in normal control (N) and KPPC mice with administration of

MDZ (M), MDZþPK11195 (MþP), or water vehicle (V). Data are presented as mean of two array spots. CCL, CC chemokine ligand; CXCL, C-X-

C motif ligand; G-CSF, granulocyte-colony stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; IFN-g, inter-

feron-g; IL, interleukin; MDZ, midazolam; MGS, mouse grimace scale; PK11195, 1-(2-chlorophenyl)-N-methyl-N(1-methylpropyl)-3-

isoquinoline carboxamide; TNF, tumour necrosis factor.
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TANs and PMN-MDSCs. Granulocyte colony-stimulating factor

(G-CSF), granulocyte macrophage colony-stimulating factor

(GM-CSF), IL-3, and IL-6, which are closely related to gran-

ulocyte differentiation in bone marrow, were reduced by

treatment with MDZ, which was antagonised by treatment

with MDZþPK11195. Midazolam also reduced TNF-a, IL-17, C-
X-C motif ligand (CXCL)1, CXCL5, and interferon-g, which

enhance TAN recruitment and activation,20 and TAN-derived

cytokines CXCL1, CC chemokine ligand (CCL)3, and CCL5,

whereas these cytokines increased in mice treated with

MDZþPK11195. Moreover, CCL2, CCL3, CCL21, and CXCL13,

whichare associatedwith chronic pain in thedorsal hornof the

spinal cord and the peripheral nervous system,21 increased in

mice treated with MDZþPK11195 compared with MDZ alone.
Midazolam inhibited proliferation of PDAC cell lines

Proliferation of PDAC derived cell lines in vitro was inhibited

in the presence of MDZ or PK11195 in vitro (Fig. 5a). To un-

derstand the anti-proliferative mechanism of MDZ, we

determined the expression of cyclins and cyclin-dependent

kinases (CDKs). Midazolam and PK11195 inhibited cyclin B1

concentrations in the murine PDAC cell lines (Fig. 5b and c;

Supplementary Fig. 15). Expression of cyclin D1 and A2 was

inhibited by MDZ and PK11195 in one PDAC cell line (147), but

the effect was uncertain in other cell lines (146 and 244).

Midazolam reduced expression of CDK1 and CDK4 in the

three PDAC cell lines, whereas CDK2 expression was reduced

byMDZ in a PDAC cell (244). Flow cytometer analysis revealed

MDZ induced G2/M arrest in murine PDAC cell lines (146 and

147) (Supplementary Figs. 16e18), whereas G0/G1 arrest

increased in one cell line (244). Midazolam induced early

apoptotic cells slightly and late apoptotic/necrotic cells more

significantly (Supplementary Fig. 19). Proliferation of

pancreatic stellate cells (PSCs), which are sources of activated

a-SMAþ CAFs, was inhibited by MDZ in a concentration-

dependent manner in vitro (Fig. 5d).
Discussion

Genetically engineered mouse models, which maintain the

innate immuno-inflammatory system, canmodel cancermore

accurately than transplant models using immunodeficient

mice.22 To investigate the effects of MDZ on not only PDAC

cells but also stroma cells, including CAFs and immuno-

inflammatory cells, we used the KPPC genetic model.13 Alter-

ation of the tumor-stromal microenvironments are summar-

ised in Fig. 6a

We demonstrated downregulation of cyclins/CDKs and cell-

cycle arrest and sequential induction of cell death in PDAC by

MDZ. Previous reports indicate that MDZ induces down-

regulation of cyclins D and A, resulting in G0/G1 arrest and

apoptosis in non-PDAC cell lines.2,23 Induction of non-apoptotic

cell death can result from p53-hetero-knockout in PDAC cell

lines.14Althoughrecentstudies indicate thatMDZmodulatesnot

only the cell cycle but also the mitochondrial caspase pathway,

endoplasmic reticulum stress, and autophagy to induce

apoptosis,24 downregulation of cyclins/CDKs and the sequential

cell-cycle arrest and induction of apoptotic and non-apoptotic

cell death could be keymechanisms of MDZ in PDAC cells.

The inhibitory potential on proliferation by PK11195 may

result as an agonist rather than antagonist of peripheral TSPO.

PK11195 shows anti-proliferative and pro-apoptotic reactions

in glioblastoma cell lines in vitro and in vivo.25 We showed an
anti-proliferative potential of MDZ and PK11195 for PDAC and

PSC lines in vitro. Pancreatic ductal adenocarcinoma cells and

PSCs/CAFs secrete several cytokines and stimulate each

other’s proliferative potential.16 Nonetheless, the proliferation

of PDAC increased in mice treated with MDZþPK11195, indi-

cating that increased proliferative potential by PK11195 does

not result from PDAC- and CAF-mediated factors.

Tumour-associated inflammatory cells play an important

role in the development and progression of PDAC.10 Previous

reports showed that MDZ inhibits activation of neutrophils

and macrophages in non-cancer lesions,9 whereas PK11195

antagonises these functions. Similarly, we observed MDZ-

induced inhibition of local infiltration of TANs, M2-like

TAMs, and PMN-MDSCs. It is difficult to distinguish anti-

tumour N1 and tumour-promoting N2 TANs clearly by

immunohistochemistry, but our results suggest that the

function of N2 TANs might be inhibited by MDZ.11 In addition,

decreased soluble vascular cell adhesion molecule-1, inter-

cellular adhesion molecule-1, and P-selectin, which are

expressed on activated endothelium and related to

leucocyteeendothelial interactions,26,27 might also reduce

leucocyte migration from blood vessels to local lesions.

Inflammatory cytokines secreted from PDAC, CAFs,16 and

inflammatory cells are involved in the mechanism of inflam-

matory pain.12 Involvement of MDZ in inflammatory cells and

the related cytokines are shown in Fig. 6b. We observed

reduced inflammatory cytokines by MDZ, including IL-6. A

recent study indicates that PSC/CAF-derived IL-6 promotes

myeloid-derived suppressor cell differentiation and expansion

from peripheral blood monocytes.28 Myeloid-derived sup-

pressor cells serve as a source of IL-6 in tumour-bearing

mice,29 whereas depletion of IL-6 in a KRAS-induced PDAC

mouse model revealed a decrease in intra-tumour myeloid-

derived suppressor cells.30 Recruitment and expansion of

myeloid-derived suppressor cells31 are mediated by many in-

flammatory factors, such as IL-6, IL-10, GM-CSF, G-CSF, CCL2,

and CCL5.32 These cytokines were reduced in our pancreatic

cancer model mice by MDZ. Increased CCL5 promotes in-

flammatory and nociceptive pain in bone cancer metastasis.33

The CCL5/CCR5 axis of myeloid-derived suppressor cells plays

an important role in their recruitment and activation.34

Although the direct mechanism remains unclear, inhibition

of local infiltration of myeloid-derived suppressor cells by

MDZ could improve inflammatory pain via inhibition of IL-6

and CCL5 concentrations.

Daily intraperitoneal injection of PK11195 cannot be ruled

out for the increase in pain signs. Indeed, an increase in

plasma chemokines, such as CCL2, CCL3, CCL5, CCL21, CXCL1,

and CXCL13, by PK11195 treatment might enhance inflam-

matory pain through the dorsal horn of the spinal cord and the

peripheral nervous system.21,35,36

It is important to study the effects of MDZ on long-term

outcomes, such as recurrence and disease-free survival after

perioperative interventions, but operations, including surgical

resection of cancer, are never managed with MDZ only. It is a

limitation to investigate the effect of MDZ alone, but our

findings provide useful information for anaesthesiologists and

patients with PDAC.

In summary, midazolam suppresses the proliferation of

pancreatic ductal adenocarcinoma and cancer-associated fi-

broblasts and the local infiltration of tumour-associated neu-

tophils, M2-like tumour-associated macrophages, and

polymorphonuclear myeloid-derived suppressor cells, thereby

inhibiting pancreatic ductal adenocarcinoma progression.
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Fig 5. Anti-proliferative effects of midazolam in mouse PDAC and human pancreatic stellate cell lines. (a) Proliferation of mouse pancreatic

ductal adenocarcinoma cell lines (#146, 147, and 244) was inhibited by MDZ and PK11195. Data are presented as mean (SD). (b) Immuno-

blotting of cyclins D1, A2, B1, CDK4, CDK2, and CDK1 in a pancreatic ductal adenocarcinoma cells (#147; Cont, water control for MDZ;

DMSO control for PK). (c) Quantification of the data in (b). (d) Proliferation of human pancreatic stellate cells (hPSC-1, 5, and 14) was

inhibited by MDZ and PK11195. Data are presented as mean (SD). CDK, cyclin-dependent kinase; DMSO, dimethyl sulphoxide; hPSC, human

pancreatic stellate cell; MDZ, midazolam; PDAC, pancreatic ductal adenocarcinoma.
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reduces infiltration of TANs, M2-like TAMs, and PMN-MDSCs into pancreatic tumours and also reduces plasma cytokines related to dif-
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主論文の和文の要約 

ミダゾラムの膵癌自然発症マウスにおける抗腫瘍・抗炎症効果と癌性疼痛の改善効果 

外科系麻酔科学専攻 大島雪乃 

【背景】近年，手術中の麻酔・周術期管理が患者の長期予後に影響することが報告され，鎮痛・

鎮静薬のなかには細胞性免疫を抑制することが知られているが，膵癌におけるミダゾラムの効果

は未だに不明である。今回，ミダゾラムの膵癌に対する抗腫瘍・抗炎症効果ならびに癌性疼痛へ

の影響を明らかにするため，膵癌の自然発症モデルである KPPC マウス（ LSL-

KrasG12D/+;Trp53flox/flox;Pdx-1cre/+マウス）を用いて検討を行った。 

 

【方法】遺伝子組換え委員会と動物実験委員会の承認を得た後，６週齢の KPPCマウスを 3群に

分け，① 30 ㎎/kg/day のミダゾラム（MDZ）投与群 (n=13)，② 30 ㎎/kg/day の MDZ と 3 ㎎

/kg/day の末梢性ベンゾジアゼピン受容体拮抗薬である PK11195 (PK) の MDZ＋PK 投与群

（n=10)，③ 飲水のみのコントロール群(n=14)とした。生存曲線をKaplan–Meier法により求め，

統計学的に Log-rank検定を行った。癌性疼痛はHunchingとmouse grimace scale (MGS)でス

コアリングし，one-way ANOVA後の Tukey検定を行った。エンドポイント時には膵腫瘍と全身

諸臓器をサンプリングし，免疫組織化学的解析を行い，Tukey-Kramer検定もしくは Steel-Dwass

検定を行った。各検定の p < 0.05で有意差ありとした。血漿サイトカインの動態をサイトカイン

抗体アレイにより半網羅的に解析した。MDZ の膵癌細胞株の増殖への影響を AlamarBlue 法に

て検討し，細胞周期関連分子の発現をウェスタンブロッティング，アポトーシスの誘導に関して

はフローサイトメーターにて解析した。 

 

【結果ならびに考察】MDZ群の膵管癌においては細胞増殖に関わる Ki-67，サイクリン D1, A2, 

B1の陽性率はコントロール群と比較して有意に低下し，腫瘍体積が有意に縮小した。生存期間で

は有意差が得られなかった。また，MDZ 群では癌関連線維芽細胞 (CAF)の増殖を抑制し，腫瘍

関連好中球（TAN）や M2 様腫瘍関連マクロファージ (TAM) ，多形核骨髄由来免疫抑制細胞 

(PMN-MDSC)の局所浸潤を抑制した。一方，MDZ+PK群においては CAFの増殖とM2様 TAM

の浸潤は抑制されたが，TANと PMN-MDSCの浸潤はMDZ群と比較して増加した。疼痛評価に

おいてもMDZ群で HunchingとMGSスコアの低下を認めたのに対し，MDZ+PK群ではコント

ロール群よりも両スコアが増加した。MDZ群の血漿 TNFα, IL-1α, IL-6, CCL2, CCL3, CCL5, 

CXCL1 はコントロール群と比較して減少し，MDZ+PK 群で TNFαを除くサイトカインの増加

を認めた。In vitro解析においてはMDZが膵癌細胞株のサイクリンや CDKを低下させ，増殖を

抑制し，後期アポトーシスを誘導した。これらの結果から，MDZは膵癌マウスモデルにおいて膵

癌細胞と CAFの増殖を抑制し，さらに TANやM2様 TAM，PMN-MDSCの局所浸潤を抑制す

ることで炎症性サイトカインを低下させ，炎症性疼痛の軽減に寄与したことが考えられた。 

 

【結語】MDZは膵癌に対して抗腫瘍・抗炎症効果ならびに疼痛緩和効果を示す。 
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