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1. Introduction ― Loewner evolution and dynamical systems 

The Loewner evolution is a model of curve growth on the complex plane originally studied in the 

field of complex analyses [1-4]. The model is based on the Loewner differential equation suggested 

by Loewner in 1920s [1]. Its connections to mathematical and nonlinear physics have been well-

developed since the discovery of stochastic Loewner evolution (SLE) by Schramm in 2000 [5, 6]. 

Combining the Loewner equation and methods of stochastic differential equation (SDE) yielded a one-

parameter family of the conformal maps in the complex plane, which expresses conformally invariant 

random curves describing the geometry of the 2D statistical physical models [6, 7]. The efficacy of 

the SLE to analyze the geometries in the critical phenomena has been investigated in many literatures, 

using the stochastic analyses [7]. However, the clarification about its connection to the self-

organization phenomena, e.g., diffusion-limited aggregation (DLA) [8-10], or Laplacian growth (LG) 

[10, 11], discussed in the field of nonlinear and non-equilibrium physics is still required. Here, I 

emphasize that the Loewner evolution is also discussed in the context of chaotic dynamical system 

theory because it is also considered as a dynamical evolution of time-dependent conformal map system. 

The purpose of this dissertation is to investigate the non-equilibrium physics of Loewner evolution, 

considering its chaotic properties and practical application methods. In this dissertation, I demonstrate 

the following results regarding the physical properties of Loewner evolution.  

1. The discrete Loewner evolution has chaotic dynamical systems properties.  

2. Practical applications of Loewner evolution to the 2D morphological data in the physical and 

biological systems.  

3. The concept of Loewner time to analyze the one-dimensional non-equilibrium dynamics.  

The remainder of this dissertation consists of the followings. In Sec. 1.1, I introduce the basic 

properties of chordal Loewner evolution, and in Sec. 1.2, I introduce the stochastic Loewner evolution 

(SLE) and its modified expressions that can be used in physics studies. In Sec 1.3, I introduce the 
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chaotic Loewner evolution as a possible generalization of the SLE and discuss its multifractal 

properties. Subsequently, in Sec. 2, I show the methods and results of the application of the discrete 

Loewner evolution to the 2D morphological data; the interfaces of the 2D Ising system (Sec. 2.1) and 

neurite morphology in in vitro cultured cells (Sec. 2.2). In Sec. 3, I discuss the concept of Loewner 

time, which is applicable to one-dimensional non-equilibrium dynamics for the future systematization 

of non-equilibrium physics of Loewner evolution. In Sec. 4, I remark the conclusions of the present 

work.  

 

1.1 Loewner differential equation  

In this subsection, I introduce the most familiar form of the Loewner differential equation, called 

the chordal Loenwer equation. The term chordal means that in this equation the curve takes a cord-

like form. Let us consider the upper half complex plane denoted as ℍ and the simple curve starting 

from the origin O parametrized by 𝑡 as 𝛾[0,𝑡]. The Riemann’s mapping theorem ensures that there 

exists the conformal map from ℍ ∖ 𝛾[0,𝑡] to ℍ. Let us denote the sequence of such time-dependent 

conformal maps as {𝑔𝑡}. The following Loewner equation determines a family of 𝑔𝑡(𝑧) (𝑧 ∈ ℍ) as 

[3-7]: 

𝜕𝑔𝑡(𝑧)

𝜕𝑡
=

2

𝑔𝑡(𝑧) − 𝜉𝑡
,    𝑔0(𝑧) = 𝑧 ∈ ℍ.                                         (1.1.1) 

Here, the term 𝜉𝑡 is a one-dimensional and real-valued time function called driving function. In this 

form, the conformal map 𝑔𝑡(𝑧) is hydrodynamically normalized such that [3],  

lim
𝑧→∞

𝑔𝑡(𝑧) − 𝑧 = 0.                                                          (1.1.2) 

In addition, 𝑔𝑡(𝑧) allows the power series expansion: 

𝑔𝑡(𝑧) = 𝑧 +
2𝑡

𝑧
+ 𝑂(|𝑧−2|),     as   𝑧 → ∞ .                                   (1.1.3) 

The relationship between the curve and driving function is expressed as  
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lim
𝑧→𝛾𝑡

𝑔𝑡(𝑧) = 𝜉𝑡 .                                                               (1.1.4) 

This relation is obtained by the fact that conformal map 𝑔𝑡(𝑧) is not analytic when 𝑧 = 𝛾𝑡 because 

the dominator of the right-hand side of Eq. (1.1.1) becomes zero. The relation in Eq. (1.1.4) ensures 

the one-to-one correspondence of the coordinates of the curve 𝛾[0,𝑡] and driving function 𝜉𝑡, and is 

therefore often referred as the encoding (See, FIG.1 for the illustration of the mapping). In a practical 

sense, the determination of {𝑔𝑡} for an arbitrary curve or driving function is a difficult work, and it 

requires specific algorithms, one of which I shall introduce in the later subsection.  

 

 

FIG. 1. Illustration of curve transformation of Loewner equation.  

 

1.1.1 Composition property  

In this subsection, I introduce the technical aspect of Loewner evolution based on Ref. 4. The 

sequence of {𝑔𝑡}  that I have introduced is called the Loewner chain [3-7]. One of the important 

properties of 𝑔𝑡 is the composition property. Let us consider the two conformal maps 𝑔𝑡𝐴
 and 𝑔𝑡𝐵

. 

Here, 𝑔𝑡𝐴
 and 𝑔𝑡𝐵

 are generated by the Loewner equation in Eq. (1.1.1) whose driving function are 

𝜉𝑡
𝐴 on the time interval [0, 𝑡𝐴] and 𝜉𝑡

𝐵 on [0, 𝑡𝐵], respectively. Then, let us define the following 

composite driving function [4] 

𝜉𝑡 = {
𝜉𝑡

𝐴                    for    0 < 𝑡 < 𝑡𝐴           

𝜉𝑡−𝑡𝐴

𝐵                 for   𝑡𝐴 < 𝑡 < 𝑡𝐴 + 𝑡𝐵 
.                                          (1.1.5) 

For the Loewner chain {𝑔𝑡}  the following composition rule can be applied. For the map 𝑔𝑡 
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generated by the composite driving function 𝜉𝑡 in Eq. (1.1.5), the following relation holds [4]. 

𝑔𝑡𝐴+𝑡𝐵
(𝑧) = 𝑔𝑡𝐵

(𝑔𝑡𝐴
(𝑧)).                                                       (1.1.6) 

This property and Eq. (1.1.3) indicate that the mapping region ℍ ∖ 𝛾[0,𝑡] gets smaller as the time 𝑡 

gets larger. It means that the region 𝛾[0,𝑡] is larger than 𝛾[0,𝑠] if 𝑡 > 𝑠 [4].  

 

1.1.2 Discretization of the Loewner evolution and calculation algorithm 

   The discretized form of the chordal Loewner evolution was suggested in Ref 12. This treatment is 

important to implement the algorithm enabling the transformation from arbitrary curve-like data to the 

driving function and vise visa. In this subsection, I introduce the method called “zipper algorithm” 

using the vertical slit map [13-15]. Let us consider the following conformal map.  

𝑔𝑡(𝑧) = 𝜉𝑡 + √(𝑧 − 𝜉𝑡)2 + 4𝑡, 𝑧 ∈ ℍ.                                     (1.1.7) 

This is a solution of the Loewner equation and has a singular point at 𝑧 = 𝜉𝑡 + 2𝑖√𝑡. One can find 

that the map in Eq. (1.1.7) maps the vertical slit from 𝑧 = 𝜉𝑡 to 𝑧 = 𝜉𝑡 + 2𝑖√𝑡 on ℍ into the real 

axis and the tip of the slit moves to 𝜉𝑡 [13-15] (See, FIG.2). To discretize the map 𝑔𝑡, we divide time 

𝑡 into the sequence of the reference point {𝑡𝑛} satisfying 𝑡0 = 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 < ⋯ < 𝑡𝑁. 

Similarly, we denote the discretized points on the curve 𝛾[0,𝑡] as {𝑧0 = 0, 𝑧1, 𝑧2, … , 𝑧𝑛, … , 𝑧𝑁}. Then, 

we consider the “increments” of 𝑔𝑡(𝑧) in Eq. (1.1.7) as: 

𝑔̃𝑛 ≔ 𝑔𝑡𝑛
∘ 𝑔𝑡𝑛−1

−1 .                                                     (1.1.8) 

For this definition and the composition property, 𝑔̃𝑛(𝑧) corresponds to each step of the map, which 

is divided from 𝑔𝑡𝑁
(𝑧).  

𝑔̃𝑛(𝑧) = ∆𝜉𝑡𝑛
+ √(𝑧 − ∆𝜉𝑡𝑛

)2 + 4∆𝑡𝑛 .                                     (1.1.9) 

Here, ∆𝜉𝑡𝑛
: = 𝜉𝑡𝑛

− 𝜉𝑡𝑛−1
, and ∆𝑡𝑛: = 𝑡𝑛 − 𝑡𝑛−1. Define the shifted map of 𝑔̃𝑛(𝑧) as; 

ℎ𝑛(𝑧) ≔ 𝑔̃𝑛(𝑧) − ∆𝜉𝑡𝑛
= √(𝑧 − ∆𝜉𝑡𝑛

)
2

+ 4∆𝑡𝑛.                             (1.1.10) 
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Subsequently, define the map; 

𝑔𝑛(𝑧): = 𝑔̃𝑛(𝑧 + 𝜉𝑡𝑛−1
) − 𝜉𝑡𝑛−1

.                                        (1.1.11) 

Here, 𝑔𝑛 is the solution of the Loewner equation with the driving function 𝜉𝑡𝑛−1+𝑡
− 𝜉𝑡𝑛−1

, where 𝑡 

is a sufficiently small time interval. From Eqs. (1.1.9) to (1.1.11), the following relation is derived: 

ℎ𝑛 ∘ ℎ𝑛−1 ∘ ⋯ ∘ ℎ1(𝑧𝑛) = 𝑔̃𝑛 ∘ ⋯ ∘ 𝑔̃1(𝑧𝑛) − 𝜉𝑡𝑛
= 𝑔𝑛(𝑧𝑛) − 𝜉𝑡𝑛

= 0.                  (1.1.12) 

If we stop the iterative transformation of ℎ𝑛 to 𝑧𝑛 at 𝑛 − 1, we obtain the small vertical segment 

whose coordinate of the tip is denoted as 𝑤𝑛. For the above-mentioned property of the vertical slit, 

one can find that 

𝑤𝑛 = ∆𝜉𝑡𝑛
+ 2𝑖√∆𝑡𝑛.                                                           (1.1.13) 

This relation means that if we obtain the sequence of {𝑤𝑛} , we can extract the spatial and time 

increments of the driving function from the real and imaginary parts of 𝑤𝑛. To obtain 𝑤𝑛, we consider 

the following relationship, 

𝑤𝑛 = ℎ𝑛−1 ∘ ℎ𝑛−2 ∘ ⋯ ∘ ℎ1(𝑧𝑛),          𝑤1 = 𝑧1.                              (1.1.14) 

By applying this relation to the coordinates of the curve from 𝑛 = 1 to 𝑛 = 𝑁, the sequences of 

{∆𝜉𝑡𝑛
}  and {∆𝑡𝑛}  are obtained. Then, summing up each sequence of the increments, the driving 

function is calculated from arbitrary discretized curve-like data [14]. In this dissertation, we use this 

algorithm to obtain the driving function corresponding to the real and theoretical data forming the 

curve-like morphology, e.g., interfaces of Ising system or neurite morphology.  

   Conversely, to obtain the curve-like coordinates from given 1D data of the driving functions, the 

following algorithm is available based the above discretization [15]. We deal with the case, where the 

unit time interval is a sufficiently small constant 𝜏, satisfying 𝑡 = 𝑛𝜏. Then, the coordinate of the tip 

of the curve 𝑧𝑛 is expressed as 𝑧𝑛 = 𝑔𝑛
−1(𝜉𝑛). Dividing 𝑔𝑛

−1 into each step in a similar manner 

to that in Eq. (1.1.9), we obtain the following map [13],  

𝑔̃𝑛
−1(𝑧) = ∆𝜉𝑛 + √𝑧2 − 4𝜏 .                                              (1.1.15) 
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Considering the relation in Eq. (1.1.12), nth coordinate of the curve 𝑧𝑛 is expressed as, 

𝑧𝑛 = 𝑔𝑛
−1(𝜉𝑛) = 𝑔̃1

−1 ∘ ⋯ ∘ 𝑔̃𝑛
−1(0) .                                 (1.1.16) 

Using this relation, we can obtain the sequence of the coordinate of the curve {𝑧𝑛}𝑛=0,1…,𝑁, which 

comprises discretized points on the curve 𝛾[0,𝑡], from arbitrary time series {𝜉𝑛} [13]. We shall use 

this algorithm to simulate the curve from the various types of the driving function to discuss its 

physical properties.  

 

FIG. 2. Illustration of vertical slit map.  

 

1.2 Stochastic Loewner evolution  

   The stochastic Loewner evolution suggested by Schramm takes a form of the combination of the 

Loewner evolution and Wiener process (standard Brownian motion) parametrized by a single 

diffusivity parameter, which is expressed as [3-7]: 

𝜕𝑔𝑡(𝑧)

𝜕𝑡
=

2

𝑔𝑡(𝑧) − √𝜅𝐵𝑡

,         𝑔0(𝑧) = 𝑧.                                        (1.2.1) 

Here, 𝜅 is a diffusivity parameter and 𝐵𝑡 is a standard Brownian motion. The SLE is suggested to 

explain the continuum limit of the conformally invariant geometry appearing in the 2D statistical 

physics models. The conformal invariance and scale invariance of the SLE curve are inherited from 

those of the standard Brownian motion. Equation (1.2.1) determines the one-parameter family of the 

conformal map 𝑔𝑡(𝑧), and the geometrical properties of the SLE curve are singly governed by 𝜅. For 

example, the phases of the curve are determined depending on the diffusivity parameter 𝜅, expressed 
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as follows [3, 4, 6, 7]: 

・For 0 ≤ 𝜅 < 4, the SLE curve is a simple curve (i.e., it does not intersect itself).  

・For 4 < 𝜅 < 8, the SLE curve can intersect itself, but it is not space filling.  

・For 𝜅 ≥ 8, the SLE curve is a space filling curve.  

These facts are derived by considering the Bessel process corresponding to the SLE in Eq. (1.2.1) and 

performing stochastic analyses [3]. Particularly, 𝜅 = 4 is a critical dimension of the Bessel process 

corresponding to the SLE. Another important quantity on the geometrical property of the SLE is the 

fractal dimension. For the latter discussions, I introduce the derivation process of the relation, which 

is described by Cardy [16]. Before discussing this matter, in the next subsection, we demonstrate 

another expression of the time evolution of the tip of the SLE curve using Langevin and Fokker-Planck 

equations [17, 18], frequently used equations in the context of non-equilibrium physics.  

 

1.2.1 Fokker-Planck equation for SLE  

   Let us consider the backward flow of the chordal Loewner evolution, which is determined by the 

following equation (𝑤 ∈ ℍ) [6, 17, 18]. 

𝜕𝑓𝑡(𝑤)

𝜕𝑡
= −

2

𝑓𝑡(𝑤) − 𝜉𝑡
,                𝑓0(𝑤) = 𝑤.                               (1.2.2)  

It has been shown that 𝑓𝑡(𝑤) and 𝑔𝑡
−1(𝑤 − 𝜉𝑡) + 𝜉𝑡 have the same probability distribution (equal 

in distribution), if 𝜉𝑡 satisfies the time-symmetric property and considered as a stationary increments 

process, e.g., Wiener process or Levy process, etc. Subsequently, considering ℎ𝑡 ≔ 𝑔𝑡(𝑧) − 𝜉𝑡, it is 

found that the tip of the curve 𝛾𝑡 can be expressed as,  

𝛾𝑡 = lim
𝑤→0

ℎ𝑡
−1 (𝑤).                                                                    (1.2.3) 

Defining 𝑧̃𝑡 ≔ 𝑓𝑡(𝑤) − 𝜉𝑡, it is found that 𝑧̃𝑡 and ℎ𝑡
−1(𝑤) have the same probability distribution. 

We set 𝑤 = 0  such that the temporal behavior of 𝛾𝑡  has same probability distribution as that of 

ℎ𝑡
−1(𝑤). Then the differential equation that governs the behavior of 𝑧̃𝑡 is expressed as [17, 18] 
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𝜕𝑧̃𝑡

𝜕𝑡
= −

2

𝑧̃𝑡
−

𝜕𝜉𝑡

𝜕𝑡
.                                                                 (1.2.4) 

Separating 𝑧̃𝑡 = 𝑢𝑡 + 𝑖𝑣𝑡  into real and imaginary parts, we obtain the following 2-dimensional 

differential equation with random term. [17, 18] 

𝜕𝑢𝑡

𝜕𝑡
= −

2𝑢𝑡

𝑢𝑡
2 + 𝑣𝑡

2
−

𝜕𝜉𝑡

𝜕𝑡
  ,                                                         (1.2.5) 

 
𝜕𝑣𝑡

𝜕𝑡
=

2𝑣𝑡

𝑢𝑡
2 + 𝑣𝑡

2
 .                                                                          (1.2.6) 

To make Eqs. (1.2.5) and (1.2.6) describe the dynamics of the tip of the curve, the initial conditions 

are set as 𝑢0 = 0 and 𝑣0 = 𝜀, where 𝜀 is a positive infinitesimal constant. For the SLE case, we 

choose driving function as 𝜉𝑡 = √𝜅𝐵𝑡 . In this case, the generalized Fokker-Planck equation 

corresponding to Eqs. (1.2.5) and (1.2.6) is expressed as follows [17]: 

𝜕𝑝(𝑢, 𝑣, 𝑡)

𝜕𝑡
= (

𝜅

2

𝜕2

𝜕𝑢2
+

𝜕

𝜕𝑢

2𝑢

𝑢2 + 𝑣2
−

𝜕

𝜕𝑣

2𝑣

𝑢2 + 𝑣2
) 𝑝(𝑢, 𝑣, 𝑡).                 (1.2.7) 

where, 𝑝(𝑢, 𝑣, 𝑡)  is the probability distribution function of (𝑢𝑡 , 𝑣𝑡)  defined as 𝑝(𝑢, 𝑣, 𝑡): =

〈𝛿(𝑢𝑡 − 𝑢)𝛿(𝑣𝑡 − 𝑣)〉. These expressions facilitate the analyses of the dynamics of the SLE curve in 

the context of non-equilibrium physics, which will be demonstrated in Sec. 3.  

 

1.2.2 Fractal dimension  

   The fractal dimension 𝑑𝑓 of the SLE curve is expressed as:  

𝑑𝑓 = 1 +
𝜅

8
,       for     𝑑𝑓 ≤ 2.                                                     (1.2.8) 

Although there are several approaches to derive this relation, we introduce a method described by 

Cardy [16] for the latter discussions. The following definition of the fractal dimension is familiar to 

the physicists.  

𝑑𝑓 = − lim
𝜀→0

log 𝑁𝜀

log 𝜀
.                                                            (1.2.9) 

Here, ε is the radius of small discs centered at a point on the upper-half complex plane. 𝑁𝜀 denotes 
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the minimum number of small discs having radius ε required to cover the set of points comprising the 

SLE curve 𝛾[0,𝑡] . Hereafter, we alter the definition of 𝑑𝑓  in Eq. (1.2.9) into that involving the 

probability distribution function. First, we define 𝑝(𝑢, 𝑣, 𝜀) as the probability distribution that a given 

point 𝑢 + 𝑖𝑣  exists within the distance 𝜀  from the SLE curve 𝛾[0,𝑡] . It should be noted that if 

𝑝(𝑢, 𝑣, 𝜀) ~ 𝜀𝛽𝑝(𝑢, 𝑣, 𝜀) as 𝜀 → 0 for a constant parameter 𝛽, the relationship 𝛽 = 2 − 𝑑𝑓 holds 

true for the fractal dimension. Subsequently, let us consider the time evolution of 𝛾[0,𝑡]  for an 

infinitesimal time 𝑑𝑡. It indicates that the conformal map corresponding to 𝑑𝑡 is expressed as 𝑔𝑑𝑡. 

For the scale invariance of the SLE curves, we assume that the measure of the curve is not varied 

under 𝑔𝑑𝑡. It also means that 𝑝(𝑢, 𝑣, 𝜀) satisfies the following [16, 18]: 

𝑝(𝑢, 𝑣, 𝜀) = 𝑝(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣, 𝜀 + 𝑑𝜀).                                       (1.2.10) 

From Eq. (1.2.7), we obtain the relationships 𝑑𝑢 =
2𝑢

𝑢2+𝑣2 𝑑𝑡 and 𝑑𝑣 = −
2𝑣

𝑢2+𝑣2 𝑑𝑡. Further, it has 

been shown that the radius 𝜀  is transformed as 𝜀 → |𝑔′𝑑𝑡(𝑧)| ∼ [1 − 2𝑑𝑡Re(
1

𝑧2)] 𝜀  under 𝑔𝑑𝑡. 

Using 𝑑𝑢2 =
𝜅

2
 and performing Taylor expansion, we obtain the following [16, 18] 

 𝑝(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣, 𝜀 + 𝑑𝜀) 

       ≃ 𝑝(𝑢, 𝑣, 𝜀) + [
𝜅

2

𝜕2

𝜕𝑢2
+

2𝑢

𝑢2 + 𝑣2

𝜕

𝜕𝑢
−

2𝑣

𝑢2 + 𝑣2

𝜕

𝜕𝑣
− 2Re (

1

𝑧2
) 𝜀

𝜕

𝜕𝜀
] 𝑝(𝑢, 𝑣, 𝜀) .           (1.2.11) 

Using Eq. (1.2.10) and expanding Re (
1

𝑧2), Eq. (1.2.11) yields 

[
𝜅

2

𝜕2

𝜕𝑢2
+

2𝑢

𝑢2 + 𝑣2

𝜕

𝜕𝑢
−

2𝑣

𝑢2 + 𝑣2

𝜕

𝜕𝑣
−

2(𝑢2 − 𝑣2)

(𝑢2 + 𝑣2)2
𝜀

𝜕

𝜕𝜀
] 𝑝(𝑢, 𝑣, 𝜀) = 0 .             (1.2.12) 

Considering that 𝑝(𝑢, 𝑣, 𝜀) should have the form of 𝜀2−𝑑𝑓 × (a function of 𝑢 and 𝑣), an ansatz that 

satisfies Eq. (1.2.12) has the following form [16, 18]: 

𝑝(𝑢, 𝑣, 𝜀) = 𝜀2−𝑑𝑓𝑣𝐴(𝑢2 + 𝑣2)𝐵 .                                                   (1.2.13) 

Here, 𝐴 and 𝐵 are some constant parameters. Because 𝑝(𝑢, 𝑣, 𝜀) is dimensionless, we obtain the 

following relationship: 

𝐴 + 2𝐵 = 𝑑𝑓 − 2 .                                                                     (1.2.14) 
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Substituting Eq. (1.2.13) into Eq. (1.2.11), we obtain 

𝐴 =
(𝜅 − 8)2

8𝜅
,     𝐵 =

𝜅 − 8

2𝜅
.                                                          (1.2.15) 

From Eqs. (1.2.14) and (1.2.15), the fractal dimension 𝑑𝑓 is expressed as 

𝑑𝑓 = 1 +
𝜅

8
.                                                                        (1.2.16) 

This result is valid for 𝑑𝑓 ≤ 2 [16].  

   The fractal dimension is frequently used quantity of the geometrical objects in the real-world data, 

and mainly discussed in the context of the dynamical system theory. An important property of the SLE 

is that the fractal dimension 𝑑𝑓 is determined by the parameter 𝜅 of the driving function. It means 

that we can classify the complexity of SLE curve using a single parameter. However, most of the real-

world data is not quantified by a single fractal dimension. Particularly, multifractal structures are often 

reported in biological and self-organization system. In the next subsection, I propose a possible 

generalization of the SLE using chaotic dynamical system.  

 

1.3 Chaotic Loewner evolution  

    As a generalization of the SLE, I suggest the Loewner evolution driven by chaotic diffusion 

processes [18, 19]. Since 1990s, the Brownian motion driven by chaotic forcing has been studied by 

Shimizu, Beck, and Mackey [20-22]. Their studies were primary motivated by deterministic 

perspective for the random phenomena in physics based on the dynamical systems theory. One of the 

essential advantages for this perspective is the abundance of the chaotic dynamics, whose randomness 

is controlled by the bifurcation parameter. Using this property, I introduce the basic properties of the 

chaotic Loewner evolution and discuss its relation to the turbulent phenomena and self-organization 

systems.  
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1.3.1 Chaotic diffusion process as a driving function 

    As a driving function of the Loewner evolution, we construct a Wiener process-like diffusion 

process from a one-dimensional chaotic map. Let us consider the following logistic map [19];  

𝑥𝑖+1 = 1 − 𝑎𝑥𝑖
2,          𝑎 ∈ [0, 2].                                           (1.3.1) 

Depending on the bifurcation parameter 𝑎 the dynamics of {𝑥𝑖} qualitatively changes periodic one 

to chaotic random one. We here consider the chaotic region 𝑎 > 1.40115518909 …, where the central 

limit theorem is applicable in an approximate manner [23]. Let us define  

𝜂(𝑥𝑖) = 𝑥𝑖 − 𝑥̅𝑖 ,                                                           (1.3.2) 

where 𝑥̅𝑖 represents the time average calculated over all 𝑖. Subsequently, we consider the following 

diffusion process [19]:  

𝑉𝑡 = √
𝜏

𝜎∞
2

∑ 𝜂(𝑥𝑖)

𝑛

𝑖=1

,      𝑉0 = 0.                                             (1.3.3) 

Here, 𝜎∞
2 = lim

𝑛→∞
𝜎𝑡

2 , where 𝜎𝑡
2  is the variance of 1

√𝑛
∑ 𝜂(𝑥𝑖)𝑛

𝑖=1  . 𝜏  is a sufficiently small time 

interval satisfying 𝑡 = 𝑛𝜏. The variance 𝜎𝑡
2 is expressed by the following autocorrelation function 

𝜎𝑡
2 = 〈𝜂(𝑥0)2〉 +  2 ∑〈𝜂(𝑥0)𝜂(𝑥𝑖)〉

𝑛

𝑖=1

.                                          (1.3.4) 

For the central limit theorem for the mixing dynamical system, the correlation function (variance) in 

Eq. (1.3.4) converges in the limit of 𝑡 → ∞, that is 

lim
𝑡→∞

𝜎𝑡
2 = 𝜎∞

2(= 𝑐𝑜𝑛𝑠𝑡. ).                                               (1.3.5) 

For this fact, the diffusion process 𝑉𝑡 is similar to the Wiener process 𝐵𝑡 under the condition that 

the Markov approximation is valid. Then, we consider the chordal Loewner evolution driven by √𝜅𝑉𝑡 

as 

𝜕𝑔𝑡(𝑧)

𝜕𝑡
=

2

𝑔𝑡(𝑧) − √𝜅𝑉𝑡

,         𝑔0(𝑧) = 𝑧.                                    (1.3.6) 

This is a model that I propose as a possible generalization of the SLE based on the deterministic 
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perspective. There is an important difference between 𝑉𝑡 and 𝐵𝑡, which is derived from the essential 

property of the chaotic dynamics, that is, decay of correlation [24]. This property of the driving 

function 𝑉𝑡 drastically changes the morphology and time evolution of the curve generated by the 

Loewner equation. FIG. 3 shows the example of the numerically simulated curves for 𝑎 = 1.7 and 

usual SLE. Note that the driving function is the Wiener process parametrized by 𝜅 for the SLE, while  

𝜎𝑡
2 requires a certain length of time (denoted as 𝑡𝑐) to converges to a constant for the chaotic model 

with 𝑎 = 1.7 [18, 19].  

 

FIG. 3. Computed curve of SLE and chaotic Loewner evolution. Examples of (a) SLE for 𝜅 = 6.0. (b) 

chaotic Loewner evolution for 𝜅 = 6.0 and 𝑎 = 1.7. (Referenced from Ref. 19) 

 

1.3.2 Fokker-Planck equation for chaotic Loewner evolution  

Using the studies by Shimizu and Beck [20, 21], the time evolution of the chaotic Loewner 

evolution described above is expressed by the Fokker-Planck equation similarly to that of the SLE. 

Let us define 𝜅′: = 𝜅/𝜎∞
2, then the Fokker-Planck equation corresponding to the chaotic Loewner 

evolution in Eq. (1.3.6) is expressed as [18] 
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𝜕𝑝(𝑢, 𝑣, 𝑡)

𝜕𝑡
= {

𝜅′

2
[〈𝜂(𝑥0)2〉 +  2 ∑〈𝜂(𝑥0)𝜂(𝑥𝑖)〉

𝑛

𝑖=1

]
𝜕2

𝜕𝑢2
+

𝜕

𝜕𝑢

2𝑢

𝑢2 + 𝑣2
−

𝜕

𝜕𝑣

2𝑣

𝑢2 + 𝑣2
} 𝑝(𝑢, 𝑣, 𝑡). 

(1.3.7) 

The derivation process of this equation is similar to that described in Sec. 1.2.1. Practically, we shall 

use the Markov approximation of the chaotic dynamics to discuss its stochastic behavior.  

 

1.3.3 Fractal property of chaotic Loewner evolution  

The fractal dimension of chaotic Loewner evolution can be derived in a similar manner to that 

described in Sec. 1.2.2. We find that for a sufficiently long-time scale (𝑡 > 𝑡𝑐), the fractal dimension 

𝑑𝑓 is a constant value [18]: 

𝑑𝑓 = 1 +
𝜅′𝜎∞

2

8
 = 1 +

𝜅′

8
[〈𝜂(𝑥0)2〉 + 2 ∑〈𝜂(𝑥0)𝜂(𝑥𝑖)〉]

∞

𝑖=1

.          (1.3.8) 

This result shows that the fractal dimension 𝑑𝑓  of the curve can be expressed in terms of the 

correlation function of the employed chaotic maps of the driving function. It gives a slight but 

significant extension of the result of the SLE. If {𝜂(𝑥𝑖)} does not have any autocorrelation (𝑎 = 2.0), 

this result can be simplified as [18] 

𝑑𝑓 = 1 +
𝜅′〈𝜂(𝑥0)2〉

8
,                                                      (1.3.9) 

and it is a constant independent of the time. In this case, the geometrical property of the curve is almost 

same as the SLE curve. The relations in Eq. (1.3.8) and (1.3.9) hold in 𝑑𝑓 ≤ 2. 

 

1.3.4 As a model for self-organization and turbulence  

We observed that the geometrical properties of the curves produced by chaotic Loewner evolution 

governed by the bifurcation parameter 𝑎 of the logistic map. When the dynamics of the map satisfies 

is 𝛿-correlated, the probabilistic behaviour of the tips of the curve is the same as that of the SLE by 

substituting 𝜅 → 𝜅′𝜎𝑡
2. In contrast, when the bifurcation parameter is set so that the dynamics of the 
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map have weak autocorrelations, the scale invariance of the curves is broken in 𝑡 < 𝑡𝑐. In this situation, 

we observed the structure of the curves is locally aggregated, which is different from that of the SLE. 

This breaking of the fractality can be considered as an emergence of a kind of multi-fractal structure, 

which is known to be a common feature in self-organization. Consequently, we have shown that the 

time correlation in the driving force dominates such fractal properties of the curves, and it is related 

to the types and/or strength of the mixing property of the dynamics.  
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2. 2D morphological analyses 

The theoretical scheme of the discrete Loewner evolution described in Sec. 1.1.2 is used to quantify 

the geometrical properties of 2D morphology in physical and biological system. The procedure of the 

analyses is described as the following. Step 1) Set the 2D curve-like morphology on upper half-plane 

ℍ. Step2) Compute the Loewner driving process. Step3) Apply time series analyses to the Loewner 

driving process. Hereafter, we show the results of the application of the above procedure to the 

physical and biological system, the interface of Ising system and neurite morphology, respectively. As 

a study of physics, it is important that obtained results are discussed in terms of their physical meanings. 

In such discussions, the Langevin and Fokker-Planck expressions described in Sec. 1.2.1 are useful.  

 

2.1 Ising system 

The geometry of interfaces, i.e., phase separation lines of two distinct phases, in the Ising system 

is a fundamental problem in statistical mechanics [25-29]. It is related to the basic physical properties 

of the system, such as the Hamiltonian or the configuration probability. Their complexity increases as 

the temperature 𝑇 approaches the critical temperature 𝑇𝑐, and it has been indicated that the interface 

structures in the Ising system involve the local fluctuation explained by the central limit theorem (CLT).  

However, the exact mathematical description for these structures and its relation to the physical 

properties of the system itself have not been completely clarified.  

In the context of the studies of SLE, the interface of the 2D Ising system at 𝑇𝑐 is described by the 

SLE with 𝜅 = 3 in the continuum limit [30]. In the SLE theory, the local correlation and the scale 

invariance of the interfaces are explained using those of the Wiener process as a driving function. 

However, the SLE usually describes only the phenomena at 𝑇𝑐. wherein the system is conformally 

invariant. Therefore, it is necessary to extend the SLE framework using some approaches to describe 

those below 𝑇𝑐. While the SLE descriptions for such “off-critical” states have been investigated in 
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several studies [31-33], the common notion among them assumes that the off-critical states are induced 

by the autocorrelations in the driving forces of the Loewner evolution. It is also explained by the 

anomalous diffusion as a driving function [33].  

 

2.1.1 Interface in the 2D Ising system 

We consider the 2D ferromagnetic Ising model whose Hamiltonian is described as follows:  

𝐻 = − ∑ 𝜎𝑖𝜎𝑗

〈𝑖,𝑗〉

.                                                                      (2.1.1) 

Here, 𝜎𝑖  and 𝜎𝑗  are the nearest neighboring spins, which take the value of 𝜎𝑖 ∈ {−1, 1}  on the 

square lattice. At the critical temperature 𝑇𝑐(= 2/ log(1 + √2)) , the system undergoes a phase 

transition from an order to a disorder state. (Note that here 𝑇𝑐 is rescaled by the Boltzmann constant.) 

To obtain the interfaces of the Ising model described by Eq. (1), the numerical simulations were 

performed using the Metropolis algorithm [34]. We chose 10 different values of 𝑇 up to the critical 

temperature 𝑇𝑐 ; 𝑇 = 0.1 𝑇𝑐, 0.2 𝑇𝑐, … , 1.0 𝑇𝑐 . Each numerical simulation was performed over 

5 × 108  Monte Carlo steps, and we set the lattice size of 500 × 500  for all simulations. We 

employed a Dobrushin-type boundary condition; the nearest neighbors of the left half boundary were 

fixed as 𝜎𝑖 = 1, and those of the right half boundary as 𝜎𝑖 = −1. The interfaces that we shall analyze 

correspond to the lines passing between the center of the bottom side of the lattice (point A) and that 

of the upper side (point B) [FIG. 4(a)]. They can be uniquely defined so that they do not include any 

loops [28, 29]. The interfaces were extracted at the final states after 5 × 108 Monte Carlo steps. They 

were set on the upper half complex plane ℍ so that a segment of the lattice is regarded as a unit 

square and point A corresponds to the origin. This transformation converts the interfaces to the curves 

𝛾[0,𝑡] = {𝑧0 = 0, 𝑧1, 𝑧2, … , 𝑧𝑛, … , 𝑧𝑁}  analyzed by the discrete chordal Loewner evolution. FIG. 4 

shows an example of the spin configurations at 0.8 𝑇𝑐 after 5.0 × 108 Monte Carlo steps [FIG. 4(a)], 

and the extracted interface on ℍ [FIG. 4(b)].  
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FIG. 4. Simulation result of the 2D Ising system. (a) Example of the spin configurations of the Ising system 

for 𝑇 = 0.8 𝑇𝑐 after 5 × 108 Monte Carlo steps. The lattice size was set as 500 × 500. We employed a 

Dobrushin-type boundary condition; the nearest neighbors of the left half boundary were calculated as 𝜎𝑖 =

1, while those of the right half boundary as 𝜎𝑖 = −1. The yellow sites represent the spins of 𝜎𝑖 = 1, and 

the blue sites represent those of 𝜎𝑖 = −1. The center of the bottom side of the lattice and that of the upper 

side are denoted as points A and B, respectively. (b) Extracted interface for the spin configuration in (a). It 

was set on the upper half-plane ℍ so that a segment of the lattice is regard as a unit square and point A 

corresponds to the origin. The inset displays an enlarged view of the interface.  

 

2.1.2 Numerical calculation of Loewner driving function  

   The calculation of the Loewner driving function of the extracted curve 𝛾[0,𝑡] = {𝑧0 =

0, 𝑧1, 𝑧2, … , 𝑧𝑛, … , 𝑧𝑁} on ℍ is performed using the algorithm in Sec. 1.1.2. Furthermore, we define 

the following variable referred to as the Loewner driving force: 

𝑥𝑛 =
∆𝜉𝑡𝑛

√∆𝑡𝑛

,     𝑥0 = 0,                                                                  (2.1.2) 

which is the main quantity of our analysis. Then, we define a random walk from the time-normalized 

driving force as follows:  
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𝑦𝑛 = ∑ 𝑥𝑘

𝑛

𝑘=0

.                                                                          (2.1.3) 

For the SLE curves, the time series of {𝑥𝑛} should correspond to the white Gaussian noise, and {𝑦𝑛} 

should correspond to the Wiener process in the continuum limit.  

 

 

FIG. 5. Time series of the Loewner driving forces corresponding to the interfaces of the 2D Ising system. 

(a) Examples of the time series of {𝑥𝑛} for 𝑇 = 0.2 𝑇𝑐 , 0.6 𝑇𝑐 , and  1.0 𝑇𝑐  from the top to bottom, 

respectively. Note that the data length and 𝑥𝑛-range increase as  𝑇 ⟶ 𝑇𝑐 . (b) Time series of {𝑥𝑛} for 𝑇 =

0.2 𝑇𝑐 in an enlarged view. The red points and blue dotted lines display the data points and trajectories of 

the time series, respectively. 

 

2.1.3 Intermittency and deterministic dynamics 

We calculated the time series of {𝑥𝑛} corresponding to the Ising interfaces defined as 𝛾[0,𝑁] for 

10 different temperatures; 𝑇 = 0.1 𝑇𝑐, 0.2 𝑇𝑐, . . ., 1.0 𝑇𝑐. FIG. 5 shows examples of the time series 

for 𝑇 = 0.2 𝑇𝑐, 0.6 𝑇𝑐, and 1.0 𝑇𝑐 from the top to bottom. Although the time series of {𝑥𝑛} showed 

random behaviors for all temperatures, we observed the on-off intermittency of the dynamics, 
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particularly at low temperatures [see the enlarged view for 𝑇 = 0.2 𝑇𝑐 in FIG. 5(b)]. To evaluate this 

intermittency quantitatively, we employed the following algorithm modified from the interspike 

interval analysis [35, 36]: The indices of the time series of {𝑥𝑛} (𝑛 = 0,1, … , 𝑁) are divided into 0 ≤

𝐿0 < 𝑀0 < 𝐿1 < 𝑀1 ⋯ < 𝐿𝑘 < 𝑀𝑘 ⋯ < 𝐿𝑚 < 𝑀𝑚 ≤ 𝑁 − 1 , so that 𝐿𝑘  and 𝑀𝑘  are recursively 

determined to maximize 𝐼𝑘 = 𝑀𝑘 − 𝐿𝑘, satisfying the following:  

∑ |𝑥𝑛+1 − 𝑥𝑛|

𝑀𝑘

𝑛=𝐿𝑘

≤ Θ,                                                           (2.1.4) 

where Θ  is a constant threshold value. Here, we fixed 𝐿0 = 0  for the time series {𝑥𝑛}  because 

𝑥0 = 0 and 𝑥1 = 0 are valid for all of the time series that we analyze in this study. For this definition, 

𝐼𝑘 corresponds to the individual laminar phase length (off-state region), where the sum of the change 

in 𝑥𝑛 is bounded by a threshold Θ. Using this method, we examined the intermittency of the Loewner 

driving force by computing the following quantities; a) the average length of the individual laminar 

phase length denoted as 𝐼𝑘̅ (=
1

𝑚+1
∑ 𝐼𝑘

𝑚
𝑘=0 ), and b) the ratio of the total length of the laminar phase 

to the total length of the time series denoted as 𝑅(=
1

𝑁
∑ 𝐼𝑘

𝑚
𝑘=0 ). FIG. 6(a) and 6(b) show the plots of 

𝑇 / 𝑇𝑐 and 𝐼𝑘̅, and those of 𝑇 / 𝑇𝑐 and 𝑅, respectively. Here, we chose Θ = 0.5 and 1.0. In both 

figures, 𝐼𝑘̅ and 𝑅 take the largest value for 𝑇 = 0.2 𝑇𝑐, and then they decreased as 𝑇 ⟶ 𝑇𝑐. From 

these results, we found that the dynamics of the Loewner driving force has a temperature-dependent 

intermittency, which is most significant for 𝑇 ≃ 0.2 𝑇𝑐.  

As shown by Pommeau et al. [37], the intermittency of the dynamics is a crucial feature of the 

chaotic dynamical system. This implies that a deterministic mechanism underlies these dynamics. To 

confirm the existence of attractors for the dynamics of {𝑥𝑛}, we analyzed the Poincaré plots for them. 

FIG. 7(a)-(c) show the Poincaré plots of 𝑥𝑛 for 𝑇 = 0.2 𝑇𝑐, 0.6 𝑇𝑐, and 1.0 𝑇𝑐, respectively. From 

these plots, we found that the dynamics of {𝑥𝑛} arises from some deterministic law, which should be 

more complicated than simple unimodal maps. In addition, the observed attractors have a nested 
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structure: the attractor of the low temperature is a part of that of the high temperature. The region of 

the attractor expands as 𝑇 ⟶ 𝑇𝑐. It can be interpreted as a type of bifurcation.  

To investigate the properties of these attractors quantitatively, we estimated Lyapunov exponents 

for the 2D time-delay embedding space defined as follows [38, 39]. Letting the initial separation vector 

of 𝑋𝑛 = (𝑥𝑛, 𝑥𝑛+1) as 𝛿𝑋0, the Lyapunov exponents Λ = {𝜆1, 𝜆2} (𝜆1 > 𝜆2) can be defined as  

Λ = lim
𝑁→∞

1

𝑁
log|𝐷𝑋0

𝐹𝑁𝛿𝑋0|,                                                     (2.1.5) 

where 𝐷𝑋0
𝐹 represents the Jacobian matrix of the time evolution 𝐹 of the trajectory of the system. 

For the numerical estimation of Λ, we used the algorithm of Eckmann et al [39]. FIG. 8 shows the 

obtained Lyapunov exponents for each 𝑇 / 𝑇𝑐  (the upper for 𝜆1  and lower for 𝜆2 ). The largest 

exponent 𝜆1 for each temperature showed a positive value, which indicates the strong sensitivity to 

the initial conditions. Therefore, it was shown that the Loewner driving forces for all temperatures 

have a chaotic property. The qualitative change of their temporal behaviors is induced by expansion 

of the attractor, which depends on the temperature of the Ising system. From these results, we assume 

that the temperature-dependent route to chaos exists behind the Loewner driving forces of the 2D Ising 

interfaces.  

 

FIG. 6. Quantification of the intermittency of the Loewner driving force by the modified interspike 

interval analysis. (a) Plots of 𝑇 / 𝑇𝑐 and 𝐼𝑘̅ (the average length of the individual laminar phase length), 

(b) Plots of 𝑇 / 𝑇𝑐 and 𝑅 (the ratio of the total length of the laminar phase to the total length of the time 
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series). The black and red plots show those for Θ = 0.5 and Θ = 1.0, respectively. The markers in the 

plots show the average values calculated from 10 ensembles, and the error bars represent the standard 

deviations. In both figures, the intermittency of the dynamics of {𝑥𝑛} is found to be most remarkable for 

𝑇 = 0.2 𝑇𝑐, and decreases as 𝑇 ⟶ 𝑇𝑐. 

 

FIG. 7. Poincaré plots of Loewner driving force 𝑥𝑛, corresponding to the interfaces of the 2D Ising 

system. (a) 𝑇 = 0.2 𝑇𝑐, (b) 𝑇 = 0.6 𝑇𝑐, and (c) 𝑇 = 1.0 𝑇𝑐. The attractors have a nested structure: the 

attractor of the low temperature is a part of that of the high temperature, and the region of the attractor 

expands as 𝑇 → 𝑇𝑐 [Compare the red squares in (b) and (c) with the attractor in (a)]. 

 
FIG. 8. Plots of 𝑇 / 𝑇𝑐 and the estimated Lyapunov exponents for the 2D time-delay embedding space of 

𝑋𝑛 = (𝑥𝑛, 𝑥𝑛+1) (the upper for 𝜆1 and lower for 𝜆2). The markers in the plots show the average values 

calculated from 10 ensembles, and the error bars represent the standard deviations. The largest exponent 
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𝜆1 for each temperature showed a positive value, which indicates the strong sensitivity to the initial 

conditions. 

 

2.1.4 Power spectral density  

We have shown that the intermittent chaotic behaviors of {𝑥𝑛} depend on the temperature of the 

Ising system. To verify this route to chaos in more detail, however, we need to elucidate whether the 

dynamics of {𝑥𝑛}  contains the specific periodic or quasiperiodic components. We examined the 

power spectral density (PSD) defined as 

PSD(𝜔, 𝑥𝑛) =
Δ𝑡

𝑁
|∑ 𝑒−𝑖𝑛𝜔𝑥𝑛

𝑁−1

𝑛=0

|

2

,   − 1/2Δ𝑡 < 𝜔 ≤ 1/2Δ𝑡,                    (2.1.6) 

where 𝜔 is a frequency and  Δ𝑡 is a sampling time interval, where we set Δ𝑡 = 1. For the estimation 

of the PSD, we used the MATLAB signal processing toolbox pwelch function. FIG. 9(a) shows the 

plots of the calculated PSD(𝜔, 𝑥𝑛)  for 𝑇 = 0.2 𝑇𝑐 , 0.6 𝑇𝑐 , and 1.0 𝑇𝑐  from the top to bottom, 

respectively. For 𝑇 = 0.2 𝑇𝑐, where the dynamics has a significant intermittency as mentioned above, 

the PSD(𝜔, 𝑥𝑛) includes several peaks although we cannot find any valid relationships, such as the 

period-doubling, among them. Contrarily, the spectra were broadened for 𝑇 = 0.6 𝑇𝑐  and 1.0 𝑇𝑐 . 

These results indicate that the dynamics of {𝑥𝑛} becomes complicated as the system approaches the 

critical state although it may not correspond to the well-known routes to chaos. In addition, it was 

observed that the high-PSD part shifted from the high-frequency region to low-frequency region as 

𝑇 → 𝑇𝑐. This suggests that the autocorrelation of {𝑥𝑛} also changes depending on the temperature of 

the system.  

Subsequently, we examined the types of autocorrelations and scaling properties of the dynamics 

of the driving function, applying the PSD to {𝑦𝑛} . FIG. 9(b) shows the log-log plots of 𝜔  and 

PSD(𝜔, 𝑦𝑛) for 𝑇 = 0.2 𝑇𝑐, 0.6 𝑇𝑐, and 1.0 𝑇𝑐. The linear decays of these plots indicate that the PSD 



 26 

is scaled as PSD(𝜔, 𝑦𝑛) ~ 𝜔−𝛽, where 𝛽 is a positive constant. It is known that 𝛽 = 2 indicates 

that {𝑦𝑛} is an uncorrelated random walk, similar to the Wiener process [40, 41]. Although the log-

log plots for the system below 𝑇𝑐 showed slightly different scaling laws between the low- and high-

frequency ranges, a good linearity was seen in the whole frequency range for 𝑇 = 1.0 𝑇𝑐. This means 

that the scale invariance is the most valid for the critical temperature. FIG. 9(c) shows the relationship 

between 𝑇 / 𝑇𝑐  and 𝛽  approximated in the whole frequency range. We found that 𝛽  becomes 

larger as 𝑇 →  𝑇𝑐 , and they are ranged from 𝛽 = 1.38 ± 0.07  to 2.27 ± 0.02  (mean  ±  SD). 

Considering that 𝛽 = 1 implies 1/𝑓 fluctuation, which is often caused by intermittent chaos [41], 

our numerical results suggest that {𝑦𝑛} is closer to 1/𝑓 noise at the lower temperatures. In addition, 

we obtained 𝛽 = 2.03 ± 0.05  for 𝑇 = 0.8 𝑇𝑐 , which indicates that {𝑦𝑛}  is the closest to the 

uncorrelated random walk. It also means that the dynamics of {𝑥𝑛} below and above 𝑇 ≃ 0.8 𝑇𝑐 

have positive and negative autocorrelations, respectively. Thus, our results show that {𝑥𝑛} has some 

amount of autocorrelation even at 𝑇 = 1.0 𝑇𝑐; in our numerical settings, the scaling of PSD indicates 

that the interface at 𝑇 ≃ 0.8 𝑇𝑐 is closer to the SLE curve rather than that at 𝑇 = 1.0 𝑇𝑐 . Although 

this seems to contradict the theoretical results of the SLE, the same type of excessive correlation in 

the driving function has been also reported in Ref. 42, in which a similar numerical approach was 

adopted and it was interpreted as an effect of the finite size discretization.  
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FIG. 9. Power spectral density (PSD) for the time series of {𝑥𝑛} and {𝑦𝑛}. (a) PSD(𝜔, 𝑥𝑛) for 𝑇 =

0.2 𝑇𝑐, 0.6 𝑇𝑐, and 1.0 𝑇𝑐  from the top to bottom, respectively. (b) Log-log plots of 𝜔 and PSD(𝜔, 𝑦𝑛) 

for 𝑇 = 0.2 𝑇𝑐, 0.6 𝑇𝑐, and 1.0 𝑇𝑐. The approximated linear decays of these plots indicate that the PSD 

is scaled as PSD(𝜔, 𝑦𝑛) ~ 𝜔−𝛽, where 𝛽 is a positive constant. (c) The relation between 𝑇 / 𝑇𝑐 and the 

average value of 𝛽 approximated in the whole frequency range, calculated from 10 ensembles. The error 

bars represent the standard deviation. 𝛽 becomes larger as 𝑇 → 𝑇𝑐 , and ranges from 𝛽 = 1.38 ± 0.07 

to 2.27 ± 0.02 (mean ± SD). In particular, we obtained 𝛽 = 2.03 ± 0.05 for 𝑇 = 0.8 𝑇𝑐 , which 

indicates that {𝑦𝑛} is close to the uncorrelated random walk. 

 

2.1.5 Gaussian-type probability distributions  

In the general arguments of the dynamical system theory, if the dynamics is chaotic, it should have 

invariant probability distribution determined by the invariant measure of the maps [38]. For the 

numerically calculated Loewner driving forces, the Gaussian-type probability distributions were 
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obtained. The probability distributions for {𝑥𝑛} were estimated using the MATLAB distribution fitter. 

FIG. 10(a) shows examples of the estimated probability distributions 𝑃(𝑥𝑛)  for 𝑇 = 0.2 𝑇𝑐 , 

0.4 𝑇𝑐, 0.6 𝑇𝑐 , 0.8 𝑇𝑐, and 1.0 𝑇𝑐. The red lines in the plots show the fitted Gaussian curves. Although 

the chaotic maps that have Gaussian-type distribution have been reported in some literatures [43], it 

was found to be a notable character of the Loewner driving forces. In addition, it was observed that 

the variance 𝜅 of these distributions increased as 𝑇 ⟶ 𝑇𝑐 [FIG. 10(b)]. Particularly, we obtained 

𝜅 = 6.36 ± 0.53 (mean ± SD) for 𝑇 = 1.0 𝑇𝑐, which is consistent with the theoretical value of the 

percolation cluster [33, 42]. In addition, we obtained 𝜅 = 2.96 ± 0.31 for 𝑇 = 0.8 𝑇𝑐, which is the 

closest to theoretical value for the Ising system at the critical temperature [30]. The fitness to the 

Gaussian sharply decreased for 𝑇 = 0.9 𝑇𝑐   and 1.0 𝑇𝑐 [see, FIG. 10(c) for the log-likelihoods of the 

Gaussian fittings], which shows that the observed Gaussian distribution becomes distorted as 𝑇 ⟶

𝑇𝑐.  
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FIG. 10. Gaussian-type probability distributions of the Loewner driving forces. (a) Estimated probability 

distributions 𝑃(𝑥𝑛) of {𝑥𝑛} for 𝑇 = 0.2 𝑇𝑐 , 0.4 𝑇𝑐 , 0.6 𝑇𝑐 , 0.8 𝑇𝑐 , and  1.0 𝑇𝑐 . The red lines show the 

fitted Gaussian distributions. (b) Plot of 𝑇 / 𝑇𝑐  and variance 𝜅 for 𝑃(𝑥𝑛), and (c) plot of 𝑇 / 𝑇𝑐  and 

Log-likelihood of the Gaussian fitting. The markers in the plot show the average values calculated from 10 

ensembles, and the error bars represent the standard deviation. At the critical temperature 𝑇𝑐, the variance 

takes 𝜅 = 6.36 ± 0.53, which is consistent with the theoretical value of the percolation cluster. The fitness 

to the Gaussian sharply decreased for 𝑇 = 0.9 𝑇𝑐 and 1.0 𝑇𝑐. 

 

 

2.1.6 Energy of the system and entropy of Loewner driving force 

The entropy of the Loewner driving force works as a complexity measure for the geometry of the 

2D Ising system. Let us define the following information entropy 𝑆(𝑥𝑛) for the Loewner driving 
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force 𝑥𝑛: 

𝑆(𝑥𝑛) = − ∑ 𝑝(𝑥𝑛) log 𝑝(𝑥𝑛)

𝑥𝑛

.                                                    (2.1.7) 

Here, 𝑝(𝑥𝑛) denotes the probability density function for 𝑥𝑛. In this subsection, we demonstrate a 

valid relationship between the above-defined Loewner entropy and the Hamiltonian 𝐻 of the Ising 

system. The analog of the entropy in Eq. (2.1.7) for the time series {𝑥𝑛} was calculated using the 

permutation entropy method with 3! permutations (See Refs. 44 and 45 for details.) We refer to this 

entropy as permutation-Loewner entropy (PLE). FIG. 11 shows multiple plots of PLE and the mean 

energy per site 𝐻𝑚𝑒𝑎𝑛 , for 𝑇/ 𝑇𝑐 =  0.05, 0.1, 0.15, … , 1.0 . We observed that PLE and 𝐻𝑚𝑒𝑎𝑛 

exhibited an exponential relation. In the low-PLE region, we found that multiple temperatures were 

mixed to form a loosely rising curve. This indicates that the relationship between PLE and 𝐻𝑚𝑒𝑎𝑛 is 

independent of the temperature of the system. We estimated the function describing this relation using 

the curve-fitting toolbox in MATLAB [FIG. 11(b)]. The line plot in the FIG. 11(b) shows the function 

𝑦 = 𝑎𝑒𝑏𝑥 + 𝑐𝑒𝑑𝑥 ,   where 𝑎 = 0.00003014, 𝑏 = 9.701, 𝑐 = −1.971,  and 𝑑 = −0.002808 . From 

this result, we conjecture that the Hamiltonian of the 2D Ising system can be expressed as a function 

of the information entropy 𝑆(𝑥𝑛) of the Loewner driving force, that is,  

𝐻 = ∑ 𝑎𝑘exp [𝑏𝑘𝑆(𝑥𝑛)] 

𝑚

𝑘=1

,                                                 (2.1.8) 

where 𝑎𝑘, 𝑏𝑘 and 𝑚 are suitable constants.  
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FIG. 11. Energy of the Ising system as a function of PLE. (a) Multiple plots of the PLE and mean energy 

per site 𝐻𝑚𝑒𝑎𝑛 , for 𝑇/ 𝑇𝑐 =  0.05, 0.1, 0.15, … , 1.0. (b) Result of the exponential fitting for the plot in (a) 

approximated by the function 𝑦 = 𝑎𝑒𝑏𝑥 + 𝑐𝑒𝑑𝑥,  where 𝑎 = 0.00003014, 𝑏 = 9.701, 𝑐 = −1.971, and 

𝑑 = −0.002808.  

 

2.1.7 Discussion  

From the results of the numerical analyses, the following conjectures about the Ising system and 

the Loewner driving forces can be made. 1) The Loewner driving forces, the normalized increments 
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of the driving functions, of the interfaces of the 2D Ising system each had a positive largest Lyapunov 

exponent and an attractor in the 2D time-delay embedding space. Therefore, the Ising interfaces are 

images of the chaotic random walks under the conformal transformations determined by discrete 

Loewner evolution. 2) The significant intermittency was observed in the dynamics of the Loewner 

driving forces of the Ising interfaces at the lower temperatures. This fact suggests that the 

autocorrelation in the Loewner driving forces in the 2D Ising system below 𝑇𝑐 is induced by the 

intermittent chaotic property of the dynamics. 3) The qualitative change of the dynamics of the 

Loewner driving forces depended on the temperature of the 2D Ising system. Therefore, the bifurcation 

of the dynamics is dominated by the temperature of the system. 4) The probability distributions of the 

Loewner driving forces indicate that they are examples of Gaussian chaos. They become the closest 

to the white Gaussian noise at 𝑇 ≃ 0.8 𝑇𝑐 , but are deterministic. 5) In the framework of discrete 

Loewner evolution, the interfaces of the 2D Ising system at 𝑇 ≃ 0.8 𝑇𝑐 have the statistical properties 

closest to those of the SLE curves. 6) The entropy of Loewner driving force determines the energy of 

the Ising system with an exponential function-type relation. It indicates that we can estimate 

fundamental physical property of the Ising system by the complexity of the 2D geometry. 

Although we showed these properties of the Loewner driving forces by the numerical approach, 

we must remember that our analyses were based on a discrete-time version of the Loewner evolution. 

Therefore, we have to clarify how the observed chaotic scenario will behave in the continuum limit. 

However, based on the present results, an approach using chaotic dynamical systems to extend the 

SLE framework can be shown. A similar perspective to extend the SLE was suggested by the present 

authors before [18], in which the CLT for the chaotic driving dynamical systems [23] has a key factor 

of the behaviors of the systems. We expect that the previously indicated CLT [28, 29] for the interfaces 

of the 2D Ising system can be replaced by that for the chaotic driving forces, although this requires 

further investigations.  
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2.2 Neurite morphology  

The variety of the morphology of individual neurons is one of the essential features of nervous 

systems, closely related to their functions and developments [46, 47]. Specifically, the morphological 

disorder of the neurites is a hallmark of the pathology of various neurodegenerative diseases. 

Alzheimer’s disease (AD) is a typical example, in which the degeneration of neurites is considered as 

a key factor of its pathology. The main characteristics representing the abnormality in the AD neurons 

are dystrophic neurites (DNs) and neurofibrillary tangles (NFTs) [48-53]. The DNs exhibit disorders 

of the shapes of the axon and dendrite, having swollen and shrinking appearances induced by 

extracellular deposits of fibrillar β-amyloid (Aβ) called the plagues [49, 51, 52]. 

   In most of the biological studies, however, the quantification method of the neurite morphology 

(including its disorder) has not been so valid, and the disorders such as DNs and NFTs are mainly 

evaluated by visual observations [49, 51, 52]. This fact means that there remains the ambiguity of the 

morphological definition of the neurite dystrophy, and diagnosing the neurodegenerative diseases 

solely based on morphological characteristics is still a difficult work for biological research. Although 

several mathematical and physical methods have been suggested to quantify the neurite morphology 

or neurite outgrowth (e.g., fractal dimensions [54], stochastic methods [55] or differential equations 

[56, 57]), quantifying the pathological state of the neurite morphology requires further improvements 

or alternatives of these models. Therefore, a systematic and theoretically plausible method to examine 

the degree of the morphological abnormality is needed to discuss the disordered state of morphology 

of nervous systems. This problem leads to the question about the physical interpretation of the neurite 

morphology and neurodegenerative disease. We approach this biological problem using the 2D 

morphological analyses using the Loewner evolution.  
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2.2.1 Culture of human induced pluripotent stem cell (iPSC)-derived neurons 

The neural precursor cells derived from iPSC of the healthy person and AD patient were purchased 

from ReproCELL, Japan, ReproNeuro and ReproNeuro AD-patient-1, respectively. ReproNeuro AD-

patient-1 was made from the AD patient whose Presenilin2 (PS2) gene includes the mutation (R62H). 

We performed the following procedure according to the protocol of ReproCELL. Before seeding, the 

culture dishes were first coated with the triple diluted 0.01% poly-l-lysine (PLL) solution for 2 hours, 

and subsequently coated with the coating solution diluted from ReproNeuro Coat (ReproCELL, Japan) 

overnight in the CO2 incubator (37℃, 5%). The cells were seeded in the 12well culture plates with the 

density of 0.12×10５cells/cm2 (the day in vitro 0 (DIV0)) and cultured in the CO2 incubator at 37℃ 

and 5% CO2. The medium replacements were performed in DIV3 and DIV7. The culture medium 

(ReproNeuro Culture Medium, ReproCELL, Japan) for seeding and medium replacement was mixed 

with Additive A (ReproCELL, Japan), which promotes the differentiation of the cells to neurons. Thus, 

the iPSC-derived neural precursor cells have an ability to differentiate into neurons within 2 weeks. 

The cells have not completely differentiated in the earlier stages; however, we here refer to the cells 

as neurons.  

 

2.2.2 Microscopic imaging and neurite tracing  

The microscopic images of the iPSC-derived neurons were shot on DIV3, DIV5, DIV7, DIV10 and 

DIV14 with a phase-contrast microscope (CKX53, OLYMPUS). The digital images are obtained in 

40 magnifications (FIG.12(a)). From the obtained images, we semi-automatically extracted the x-y 

coordinates of the neurites using Neuron J (a plugin for Image J), whose algorism is based on the 

second-order image derivative [58]. The parameters for the neurite tracing were set as follows; Hessian 

smoothing scale: 1.3, cost weight factor: 1.0, tracing smoothing range: 1, tracing subsampling factor:1 

line width: 1. For this method, each neurite morphology was reduced to a set of the discretized points, 
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where 1 pixel of the digital image has length 1.0. The obtained neurite trace data were transformed 

into the upper half complex plane ℍ so that the starting points of the neurite growth correspond to 

the origin O, and the coordinates of the real axis of the tips of the neurites is 0 (See, FIG.12(b)). We 

analyzed only neurites having forms of simple curves on ℍ, which do not intersect themselves and 

not extending beyond ℍ. As for the neurite having some branches, we choose only one path from the 

origin to tip per one cell to avoid the overlapping of the data. The number of neurite trace data we 

analyzed for each DIV was ranged from 534 to 834. The total number of neurites we analyzed through 

every DIV was 3055 for the healthy neurites and 4004 for the AD neurites, respectively.  

 

 

FIG. 12. The analytical procedure used in this study. (a) Examples of digital images of neurites taken on 

DIV5. The left image shows a healthy neurite (neurite A), and the right image shows an AD neurite (neurite 

B). (b) Neurite traces on the upper half complex plane ℍ (left panel, neurite A; right panel, neurite B). The 

real (horizontal) and imaginary (vertical) axes are shown by “Re” and “Im”, respectively. Each black dashed 

line shows the imaginary axis, which corresponds to the red dashed line in (a). One pixel of the digital 

image has a length of 1.0. 
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2.2.3 Detrended fluctuation analysis (DFA) 

   The time series of the Loewner driving force {𝑥𝑛} was numerically calculated for the neurite trace 

data. FIG. 13 (a) and (b) shows the Loewner driving force {𝑥𝑛} corresponding to neurite A and B, 

respectively. To examine the autocorrelations and scaling properties of the obtained time series of 

{𝑥𝑛}, we performed the detrended fluctuation analysis (DFA) described as follows [59, 60]. Let us 

consider the following random walk-like path determined by 𝑥𝑛:  

𝑦(𝑘) = ∑(𝑥𝑛 − 𝑥ave

𝑘

𝑛=0

).                                                         (2.2.1) 

Here, 𝑥ave is the time average of 𝑥𝑛 over all 𝑛 of the time series. Dividing the time series of {𝑦(𝑘)} 

into the boxes of equal length 𝑠, we calculate the box size-dependent trend of {𝑦(𝑘)} by calculating 

a linearly fitted segment line for the time series in each box. Let us denote 𝑦𝑠(𝑘) as the 𝑦-coordinate 

of the linearly fitted segment line, which represents the local trend. For the paths of 𝑦(𝑘), we can 

calculate the detrended fluctuation 𝐹(𝑠) as follows [59, 60]:  

𝐹(𝑠) = √
1

𝑁
∑[𝑦(𝑘) − 𝑦𝑠(𝑘)]2

𝑁

𝑘=1

.                                                   (2.2.2) 

Then, the autocorrelation and scaling property of the original time series {𝑥𝑛} can be examined by 

considering the following relationship:  

𝐹(𝑠) ∝  𝑠𝛼  ,                                                                     (2.2.3) 

where 𝛼 is the scaling exponent that determines the self-similarity of the time series. Practically, the 

slopes of the log-log plots of 𝑠 and 𝐹(𝑠) were calculated to estimate the values of 𝛼. It has been 

shown that the time series are categorized into those having several types of autocorrelations 

depending on the values of 𝛼. For 𝛼 ≃ 0.5, {𝑥𝑛} is uncorrelated time series like the white Gaussian 

noise. For 𝛼 > 0.5 , {𝑥𝑛}  has a positive autocorrelation, and the correlation becomes larger as 𝛼 

gets apart from 0.5 . Particularly, 𝛼 ≃ 1.0  indicates the well-known 1/𝑓  fluctuation. Contrarily, 

𝛼 < 0.5 means an anti-correlation which also becomes larger as 𝛼 gets apart from 0.5.  
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   We performed the above-described DFA analysis to the time series {𝑥𝑛} corresponding to the 

neurite morphologies of the cultured neurons. FIG. 13(c) and 13(d) show the log-log plots of 𝑠 and 

𝐹(𝑠) for neurite A and neurite B, respectively. When the time series is short data set [61, 62], most of 

the obtained scaling exponents were different between the short-time and long-time ranges. This 

behavior is sometimes called the crossover phenomena [59]. We systematically estimate these two 

types of the scaling exponents by considering the local exponent 𝛼𝐿(𝑠) defined as follows [61]:  

𝛼𝐿(𝑠) =
log 𝐹(𝑠 + 1) − log 𝐹(𝑠)

log (𝑠 + 1) − log 𝑠
 .                                                      (2.2.4) 

Subsequently, using MATLAB ‘findchangepts’ function, we detected one 𝑠-coordinate denoted as 𝑠𝑐, 

where the local exponent 𝛼𝐿(𝑠) changes most drastically. The detections of the change point of the 

scaling exponent were performed in the range from 𝑠 = 10 to 𝑠 = 100, which was selected to be 

suitable for the data length of {𝑥𝑛}. Then, we estimated the short-range and long-range exponents, 𝛼1 

and 𝛼2, obtained by linear fittings for the ranges of  𝑠 = 3 to 𝑠 = 𝑠𝑐 and 𝑠 = 𝑠𝑐 + 1 to 𝑠 = 𝑁 −

1, respectively. The total scaling exponent, 𝛼𝑡𝑜𝑡, for the total range (𝑠 = 3 to 𝑠 = 𝑁 − 1) was also 

calculated to observe overall tendency of the fluctuation. For the scaling exponents 𝛼𝑡𝑜𝑡, 𝛼1 and 𝛼2, 

we examined their DIV-dependent behaviors (FIG. 14).  
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FIG. 13. Example of DFA. (a, b) Time series of the Loewner driving forces corresponding to (a) neurite A 

and (b) neurite B. (c, d) Log-log plots of 𝑠 and 𝐹(𝑠) for (c) neurite A and (d) neurite B. The total, short-

range, and long-range scaling exponents (𝛼𝑡𝑜𝑡, 𝛼1, and 𝛼2) are indicated in each graph. The corresponding 

values are 𝛼𝑡𝑜𝑡 = 0.63, 𝛼1 = 0.37, and 𝛼2 = 0.64 for neurite A and 𝛼𝑡𝑜𝑡 = 0.67, 𝛼1 = 0.55, and 𝛼2 =

0.66 for neurite B.  

 

2.2.4 Statistical analysis  

All data are expressed as means  S.E.M (standard errors of means). For the scaling exponents 

obtained from 7059 samples of the neurite trace data (3055 for the healthy neurites and 4004 for the 



 39 

AD neurites), we performed the two-way ANOVA (analysis of variance) to estimate the interactions 

of the factors of the cell type (healthy or AD) and DIV. After the ANOVA test, the post-hoc multiple 

comparison analyses were performed using Shaffer's modified sequentially rejective Bonferroni 

procedure to estimate the simple effect of the cell type on each DIV. These statistical analyses were 

performed with R software ver. 4.0.3. The significant difference of the ratio of each neurite type 

characterized by 𝛼1 and 𝛼2 between the healthy neurites and AD ones was verified by the 𝜒2-test. 

The critical p-value was set as 0.05 in these procedures. 

 

2.2.5 Day in vitro (DIV)-dependent behavior of scaling exponents  

We investigated the statistical properties of the quantified scaling exponents for each DIV and 

observed their DIV-dependent behaviors. FIG. 14(a)−(c) show 𝛼𝑡𝑜𝑡, 𝛼1 and 𝛼2 at each DIV, where 

those for the healthy and AD neurites are shown as the blue and red plots, respectively. Evaluating by 

the differences from 𝛼 = 0.5, the DIV-dependent changes in 𝛼𝑡𝑜𝑡 and 𝛼2 indicated that the healthy 

neurites have higher positive autocorrelations than the AD neurites during the earlier stages (DIV3−10), 

and these differences diminished as DIV increased. In contrast, the short-range exponent 𝛼1 revealed 

the anti-correlations for both healthy and AD neurites at most DIV time points, where the correlations 

of the healthy neurites were higher than those of the AD neurites. In general terms, these results 

indicate that the healthy neurites have higher autocorrelations, that is, memory effects, than the AD 

neurites especially in the earlier stages (DIV3−10).  

For 𝛼𝑡𝑜𝑡 and 𝛼1, a two-way ANOVA showed that the interactions between the cell type and DIV 

has significant effects (F(4,7049) = 10.3465 , 𝑝 < 0.001  for 𝛼𝑡𝑜𝑡 ; F(4,7049) = 5.6778 , 𝑝 < 0.001 

for 𝛼1). Post-hoc analyses revealed a significant simple effect of the cell type at each DIV, as shown 

in FIG. 14(a) and 14(b). Similarly, for 𝛼2, a two-way ANOVA showed that the interaction between 

the cell type and DIV has a significant effect (F(4,7049) = 3.5395 ,  𝑝 < 0.01 ). Post-hoc analyses 
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revealed a significant effect of the cell type only from DIV3 to DIV10, as shown in FIG. 14(c). From 

these results, significant differences in the scaling exponents between the healthy neurites and AD 

neurites were identified, providing the statistical evidence that the healthy and AD neurites have 

different autocorrelative properties, particularly during the earlier stages of development (DIV3−10).  

 

 
FIG. 14. Day in vitro (DIV)-dependent behaviors of the scaling exponents. (a) Plots of DIV versus the total 

scaling exponent 𝛼𝑡𝑜𝑡 for healthy (blue) and AD (red) neurites. (b) Plots of DIV versus the short-range 

scaling exponent 𝛼1 for healthy (blue) and AD (red) neurites. (c) Plots of DIV versus the long-range 

scaling exponent 𝛼2 for healthy (blue) and AD (red) neurites. Significant differences for each cell type 

(healthy or AD) on each DIV are indicated (*p < 0.05, **p < 0.01, ***p < 0.001). The data are expressed 

as the mean  SEM. 

 

2.2.6 Discussions 

We investigated the early developments of the neurites of two types of iPSC-derived neurons, the 

healthy neuron and AD neuron, in terms of the scaling exponents for the corresponding Loewner 

driving forces. The differences in the scaling exponents between the healthy neurites and AD ones 

were significantly observed from DIV3. Especially, the long-range correlations in the morphology of 

the healthy neurites were higher than those of the AD ones in the earlier stages (DIV3-10). These 
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results can be interpreted that the AD neurites have a tendency of more random property than the 

healthy ones, and thus the AD neurites can be identified with loss of correlations, particularly for the 

long-range.  

It is well-known that the meaning of the shapes in biology has been discussed by several theoretical 

biologist for decades [63-65]. Our method gives a physical interpretation for the biological 

morphology to answer the question; how much information a given biological shape has? In this view, 

our results lead to a physical hypothesis that the neurodegenerative disease can be characterized by 

the neurite morphology having less information than that of the healthy state. Further experimental 

verifications are required to validate this hypothesis.  
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3. Loewner time  

3.1 Concept of Loewner time 

   The applications of the Loewner evolution described in the previous sections are intended to 

analyze the static 2D morphology of the physical and biological systems. In the analyses, the sequence 

of the time parameter of the Loewner driving force is obtained; however, physically it seems to have 

a dimension of space and its physical meaning is unclear. Mathematically, the time in the Loewner 

equation is defined as half plane capacity of the curve [3], and it is often referred to as the Loewner 

time. Therefore, to investigate the dynamical properties of Loewner evolution, which is important for 

the applications to the non-equilibrium physics [19, 66], we should clarify the relationship between 

the Loewner time and physical time in usual sense. A strategy that I suggest here is conversion method 

between Loewner time and physical time. The main idea described below is to regard the dynamics of 

Loewner evolution on the imaginary axis on the upper half-plane as physical time. I introduce an 

example of the applications to the anomalous diffusion process. Hereafter, we denote Loewner time 

as s and physical time t.  

 

3.1.1 Time conversion to the anomalous diffusion 

Consider the position of the particle 𝑥(𝑡) in a viscous fluid with a time evolution determined by 

the following nonlinear Langevin equation with a memory effect:  

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐹(𝜉, 𝑡)

𝑑𝜉(𝑡)

𝑑𝑡
,                                                             (3.1.1) 

where 𝜉(𝑡)  denotes the position of the particle without memory effects, and its dynamics are 

determined by 

𝑑𝜉(𝑡)

𝑑𝑡
= −𝛾

𝜕𝑉[𝜉(𝑡)]

𝜕𝜉
+ √2𝐷𝜂(𝑡).                                                   (3.1.2) 

Here, 𝑉[𝜉(𝑡)]  is a potential function of 𝜉(𝑡) , 𝛾  is a damping constant, and 𝐷  is the diffusion 
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constant. In Eq. (3.1.1), 𝜂(𝑡) is the white Gaussian noise with mean 0 and variance 1, which satisfies 

〈𝜂(𝑡)𝜂(𝑡′)〉 = 𝛿(𝑡 − 𝑡′), where the brackets represent the ensemble average. 𝐹(𝜉, 𝑡) is a memory 

kernel expressed as  

𝐹(𝜉, 𝑡) = 𝑓
𝜉(𝑡)2 + 𝑡2

𝑡
,                                                               (3.1.3) 

where 𝑓  is a constant parameter. Mathematically, Eqs. (3.1.1) and (3.1.2) belong to the class of 

stochastic differential equations (SDEs) describing the Ito diffusion [67]. For the effect of 𝐹(𝜉, 𝑡), the 

dynamics of 𝑥(𝑡) become non-Markovian and out-of-equilibrium. Specifically, this type of Langevin 

dynamics is considered to be equipped with multiplicative noise [68, 69] and a time-dependent drift 

term [69, 70]. [FIG. 15 shows the numerical simulation of an example of the dynamics of 𝑥(𝑡).]  

Subsequently, let us consider the chordal Loewner evolution driven by 𝜉(𝑠) on the upper half-

plane ℍ, which is expressed as [66] 

𝜕𝑔𝑠(𝑧)

𝜕𝑠
=

2

𝑔𝑠(𝑧) − [𝜉(𝑠) − 𝜉(0)]
,             𝑔0(𝑧) = 𝑧 ∈ ℍ,                    (3.1.4) 

where 𝑔𝑠(𝑧) is the Loewner map satisfying 𝑔𝑠(𝑧) = 𝑧 +
2𝑠

𝑧
+ 𝑂(𝑧−2), which transforms the region 

ℍ ∖ 𝜆[0,𝑠] into ℍ. The Loewner equation in Eq. (3.1.4) describes the time evolution of the curve 𝜆[0,𝑠] 

starting at the origin. We impose the stationary condition from the initial state of the driving function 

𝜉(𝑠). The formalism using the backward Loewner evolution shows that the time evolution of the tip 

of the curve 𝜆𝑠 = Re𝜆(𝑠) + 𝑖Im𝜆(𝑠)  has the same probability distribution as 𝑧𝑠 ≔ 𝑢(𝑠) + 𝑖𝑣(𝑠) 

described by the two-dimensional Langevin equation: 𝑑𝑢(𝑠)

𝑑𝑠
= −

2𝑢(𝑠)

𝑢(𝑠)2+𝑣(𝑠)2 −
𝑑𝜉(𝑠)

𝑑𝑠
  and 𝑑𝑣(𝑠)

𝑑𝑠
=

2𝑣(𝑠)

𝑢(𝑠)2+𝑣(𝑠)2 [19, 66]. Here, the initial conditions are set as 𝑢(0) = 0  and 𝑣(0) = 𝜀 , where 𝜀  is a 

positive infinitesimal constant [19, 66]. Since 𝑣(𝑠)  increases monotonically, we suppose that the 

imaginary part of the curve coordinate corresponds to time 𝑡. Through the transformation 𝑣 → 𝑡, the 

relationship between the time 𝑡 and Loewner time 𝑠 is expressed as 
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𝑑𝑡(𝑠)

𝑑𝑠
=

2𝑡(𝑠)

𝑢(𝑠)2 + 𝑡(𝑠)2
,                                                          (3.1.5) 

where 

𝑑𝑢(𝑠)

𝑑𝑠
= −

2𝑢(𝑠)

𝑢(𝑠)2 + 𝑡(𝑠)2
−

𝑑𝜉(𝑠)

𝑑𝑠
.                                             (3.1.6) 

For the above operation, 𝑡(𝑠) is transformed into a randomized time if we assume that 𝑠 is a linearly 

increasing time variable. Using the Eqs. (3.1.1), (3.1.2), and (3.1.5), we found that the dynamics of 

𝑥(𝑠) are governed by the following differential equation: 

𝑑𝑥(𝑠)

𝑑𝑠
=

𝑑𝑥(𝑡)

𝑑𝑡

2𝑡(𝑠)

𝑢(𝑠)2 + 𝑡(𝑠)2
                                                                                                                

= 𝑓
𝜉2 + 𝑡2

𝑡

2𝑡

𝑢(𝑠)2 + 𝑡2
{−𝛾

𝜕𝑉[𝜉(𝑡(𝑠))]

𝜕𝜉
+ √2𝐷𝜂(𝑡(𝑠))}.                               (3.1.7) 

In the limit of 𝑠 → ∞, the first term on the right-hand side of Eq. (3.1.6) vanishes and we obtain 

𝑑𝑢(𝑠)

𝑑𝑠
⋍ −

𝑑𝜉(𝑠)

𝑑𝑠
. Using the integral of this relation, Eq. (3.1.7) leads to 

𝑑𝑥(𝑠)

𝑑𝑠
= −2𝑓 {𝛾

𝜕𝑉[𝑥(𝑠)]

𝜕𝑥
− √2𝐷𝜂(𝑠)} ,               𝑠 → ∞.                  (3.1.8) 

Consequently, we obtain a linear Langevin equation rescaled by the Loewner time 𝑠. It should be 

noted that the dynamics of 𝑥(𝑡) are converted into 𝑥(𝑠), which corresponds to those of the real part 

of the curve 𝜆[0,𝑠]. This also means that the dynamics of 𝑥(𝑠) are similar to those of the driving 

function 𝜉(𝑠) in the long-time limit.  
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FIG. 15. Numerical simulation of the dynamics of 𝑥(𝑡). The potential function and parameters are chosen 

as 𝑉[𝜉(𝑡)] =
1

2
𝜉(𝑡)2, 𝛾 = 1.5, 𝐷 = 2.0, and 𝑓 = 1.0. The time 𝑡 is discretized as 𝑡 = 𝑛𝜏, where 𝜏 =

0.0001. 

 

3.2 Fluctuation-dissipation relation  

The fluctuation-dissipation theorem can be immediately applied to 𝑥(𝑠) [or equivalently 𝜉(𝑠)] 

in the following manner. (See, Ref. 71 for details.) Consider the correlation function 𝐶(𝑠, 𝑠′) =

〈𝑥(𝑠)𝑥(𝑠′)〉, where 𝑠 > 𝑠′. For the linear Langevin equation in Eq. (3.1.8), we obtain the following 

relationship: 𝜕𝐶(𝑠,𝑠′)

𝜕𝑠
−

𝜕𝐶(𝑠,𝑠′)

𝜕𝑠′ = −4𝑓𝐷𝜙(𝑠, 𝑠′) [71]. Assuming the equilibrium condition, the time-

symmetric property of 𝑥(𝑠) yields 𝜕𝐶(𝑠,𝑠′)

𝜕𝑠
= −

𝜕𝐶(𝑠,𝑠′)

𝜕𝑠′ . Using these, we obtain the following linear 

response function:  

𝜙(𝑠, 𝑠′) =
1

2𝑓𝐷
𝜃(𝑠 − 𝑠′)

𝜕𝐶(𝑠, 𝑠′)

𝜕𝑠′
,                                               (3.2.1) 

where 𝜃(𝑠 − 𝑠′) is the Heaviside step function [71]. Consequently, we demonstrated that the time 

coordinate change using the Loewner evolution enables us to analyze the response function 𝜙(𝑡, 𝑡′) 

of the nonlinear Langevin equation in terms of the linear response function 𝜙(𝑠, 𝑠′) . The above 

formulation also holds for the class of nonlinear Langevin equations with 𝐹(𝜉, 𝑡) = 𝑓𝑡 + ∑ 𝑓𝑛𝑡−𝑛𝑚
𝑛=0 , 

where 𝑓𝑛 is the n-dependent coefficient, in the limit of 𝑠 → ∞ if the limit exists.  
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3.2.1 Estimation of nonlinear response  

   One of the advantages of the present approach is that it simplifies the mathematical expression of 

the nonlinear response function for the non-equilibrium dynamics. If the Loewner time coordinate 

change is successfully applied to non-equilibrium dynamics, the term describing the nonlinear 

response vanishes in 𝜙(𝑠, 𝑠′)  to be formalized by an equilibrium FDT. Furthermore, a new 

expression of nonlinear response function 𝜙(𝑡, 𝑡′)  is obtained by considering the transformation 

𝜙(𝑠, 𝑠′) → 𝜙(𝑡, 𝑡′). For example, Eq. (3.2.1) is expressed as a nonlinear response function; 

𝜙(𝑡, 𝑡′) =
1

2𝑓𝐷
𝜃(𝑡 − 𝑡′) ⟨

2𝑡′

𝑢2 + 𝑡′2 𝑥(𝑠(𝑡))
𝑑

𝑑𝑡′
𝑥(𝑠′(𝑡′))⟩.                      (3.2.2) 

The capability of inverse transformation of time coordinate is guaranteed by the one-to-one 

correspondence between the curve and the driving function, including their distributions. It also 

implies that estimating the nonlinear response of non-equilibrium dynamics (in physical time) from 

the FDT in Loewner time is theoretically possible. 

 

3.3 Application method  

The time coordinate change using the Loewner time is expected to be applicable to experimentally 

obtained non-stationary dynamics. The key point of application method is that the sequence of the 

randomized time increments 𝑑𝑡(𝑠)

𝑑𝑠
∝ 1/∆𝑠𝑛  can be numerically obtained by the algorithm in Sec. 

1.1.3. The practical application procedure of the proposed method to arbitrary non-equilibrium 

dynamics is described as follows: Step 1) For a given one-dimensional dynamics {𝑥𝑛}, compose a 

sequence of complex-valued points {𝑧𝑛} on the curve 𝜆[0,𝑠] on ℍ, using the transformation 𝑧𝑛 =

𝑥𝑛 + 𝑖𝑛 . (𝑛 ≥ 0, 𝑥0 ≡ 0 ). Step 2) Compute the sequence of the time increments {∆𝑠𝑛}  of the 

Loewner driving function 𝜉𝑠. Step 3) Multiply ∆𝑥𝑛 ≔ 𝑥𝑛 − 𝑥𝑛−1 and 1/∆𝑠𝑛 and integrate them to 
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obtain new dynamics {𝑥𝑠}. Step 4) Estimate the probability distribution function (PDF) of {𝑥𝑠}. If 

the PDF of {𝑥𝑠} converges to an invariant distribution and is close to that of the driving function {𝜉𝑠}, 

it shows that the linear FDT with respect to the Loewner time 𝑠 is valid. [See, FIG. 16(a) and (b) for 

the dynamics of 𝑥𝑠 and ∆𝑠𝑛 corresponding to 𝑥(𝑡) in FIG. 15, respectively. The estimated PDF of 

𝑥𝑠 is shown in FIG. 16(c)]. It also indicates that the laws in non-equilibrium dynamics 𝑥𝑛 can be 

converted to those of the equilibrium driving function 𝜉𝑠. In Ref. 31, it was conjectured, under a 

certain condition, that if a random curve is described by a Loewner evolution, the driving function has 

the form of drift Brownian motion. Therefore, it should be emphasized that the validity of the Loewner 

time transformation in non-equilibrium systems is expected to be universal and reliable although 

further numerical and experimental examinations are required to be performed.  

 

 

FIG. 16. Numerical results of the transformation using Loewner time. (a) Dynamics of 𝑥𝑠 and (b) that of 

∆𝑠𝑛, corresponding to 𝑥(𝑡) in FIG. 15. (c) Estimated PDF of 𝑥𝑠 at 𝑛 = 1.0 × 105. The red-solid line 

shows the fitting line according to the Gaussian distribution.  
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4. Conclusions  

   We investigated the theory of the Loewner evolution in the context of chaotic dynamical system 

and non-equilibrium statistical physics. The dynamical laws in the Loewner evolution and SLE can be 

considered as a time (domain) -dependent conformal map system, which is different from the ordinary 

dynamical system. We demonstrated that the relationship between the curve on the complex plane and 

real-valued driving function is worth considering for both theoretical and application levels, indicating 

that it provides a novel perspective on the non-equilibrium physics. In this work, we focus on the 

phenomena that are not completely scale invariant (thus not conformally invariant), by expanding the 

SLE from a dynamical system point of view, which is not discussed enough in the previous studies. 

Especially, I remark that the theoretical scheme of the Loewner evolution also can be discussed with 

the contemporary information system theory, such as autopoietic theory [72]. Although the results of 

the present study should be updated such that it affords the systematization of the theory of non-

equilibrium phenomena, its strategy will be based on the concept of the Loewner time transformation 

we discussed in Sec. 3. I hope that our results will provide an effective method to systematize non-

equilibrium physics.  
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