穀物アルブミンの食後血糖値上昇抑制効果と 物理化学的特性の評価に関する研究

日本大学大学院 生物資源科学研究科

二宮 和美

【目次】

笛	1	音	字 謚	 	 	 	 1
分う	1	早					· · · · 1

第2章 穀物アルブミンの食後血糖値上昇抑制効果および
その特性の比較
2-1 緒言8
2-2 実験材料と方法
2-2-1 穀物アルブミンの食後血糖値上昇抑制効果の評価10
2-2-1-1 実験試料の調製
(1) 実験試料
(2) 蕎麦タンパク質の分画10
(3) 蕎麦、小麦および米アルブミンの調製11
2-2-1-2 動物実験
(1) 実験動物15
(2) デンプン負荷試験(OSTT)およびグルコース負荷試験
(OGTT)15
2-2-1-3 穀物アルブミンのα-アミラーゼ阻害活性20
(1) α-アミラーゼ阻害活性測定
(2) 蕎麦および小麦アルブミンによる α-アミラーゼ阻害の
動力学的解析
2-2-2 穀物アルブミンの特性の評価
(1) In vitro における蕎麦、小麦および米アルブミンの
消化性の評価
(2)蕎麦アルブミン中の糖タンパク質の染色25
(3) 二次元電気泳動(2D-PAGE)
2-2-3 水溶性高分子へのグルコースの吸着挙動に関する検討 29

2-2-3-1 グルコース拡散実験
(1) 実験試料
(2) グルコース拡散実験
2-2-3-2 グルコース吸着量の解析法
(1) グルコース拡散モデル
(2)水溶性高分子無添加時の拡散係数 D の評価34
(3) 水溶性高分子の存在下での吸着量 m の算出34
(4) 水溶性高分子溶液の粘度
2-2-4 統計解析
2-3 結果
2-3-1 蕎麦タンパク質の分画
2-3-2 穀物アルブミンの食後血糖値上昇抑制効果37
(1) デンプン負荷試験(OSTT)およびグルコース負荷試験
(OGTT)
 (OGTT) ···································
 (OGTT)

2-4	考察…	 • • • • • • • • • •	 	

2-4-1 穀物アルブミンの食後血糖値上昇抑制効果 ………… 58

- 2-4-2 水溶性高分子へのグルコースの吸着挙動の解析 ……60

3-3-3 蕎麦および小麦アルブミン加水分解物のデンプン負荷

|--|

- 3-3-4 蕎麦アルブミン α-AI ペプチドの精製 …………81
- 3-3-5 蕎麦アルブミン α-AI ペプチドの分析 …………81

- 第4章 機能性食品素材としての蕎麦アルブミンの物理化学的

		性質の評価
4-1	緒言	93
4-2	実験	(材料と方法95
4-2	2-1	実験試料
4-2	2-2	蕎麦アルブミンの調製95
4-2	2-3	蕎麦アルブミンの熱安定性の評価95
4-2	2-4	示差走査熱量測定(DSC)による蕎麦アルブミンの
		変性温度測定
4-2	2-5	蕎麦アルブミンの溶解度測定97
4-2	2-6	酵素製剤による蕎麦アルブミンの加水分解 100
4-2	2-7	蕎麦アルブミンの加水分解度測定 100
4-2	2-8	α-アミラーゼ阻害活性
4-2	2-9	乳化性測定
4-2	2-10	起泡性測定
4-2	2-11	統計解析105
4-3	結果	
4-3	3-1	蕎麦アルブミンの熱安定性の評価 106
4-3	3-2	蕎麦アルブミンの変性温度
4-3	3-3	蕎麦アルブミンの溶解性

4-	3-4	蕎	麦	ア ,	ル	ブ	2		の	加。	水	分	解	度		•••		• • •		•••		• • •	•••	• • • •	110
4-	3-5	酵	素	製	剤(2	よど	るり	加 7	水	分)	解	後	の	蕎	麦	Γ.	ル	ブ	"	ン	の			
		α-	7	2	ラー		芝厚	11	手行	舌性	±٠	•••				•••		•••		•••		• • •	•••		110
4-	3-6	蕎	麦	ア	ル	ブ	23		<i>Ъ</i> ,	よ	V .	そ	の	加;	水	分	解	物	の	乳	化	性	••		110
4-	3-7	蕎	麦	<i>Р</i> ,	ル	ブ	3		Б,	よ	<i>V</i> .	そ	の	加;	水	分	解	物	の	起	泡	性	•••		115
4-4	考	察…	•••	•••	•••	•••	• • •			•••						•••		•••		•••	• • •	•••	•••		117
4-5	小	括…	•••	•••	•••	•••	• • •			•••						•••		•••		•••	• • •	•••	•••		122
第5	章	総	括	• • •	•••		• • •			•••				• • •		•••		• • •		•••			•••	• • • •	123
引用	文南	犬 • • •	•••	• • •	•••		• • •		•••	•••				• • •		•••		•••		•••	•••		• • •		129
謝辞	••••		•••	•••	•••	•••	•••	•••		•••		•••		•••		•••	•••	•••		•••	•••	•••	•••		147

第1章 序論

糖尿病(Diabetes mellitus: DM)は世界中で深刻な疾病の一つだと いわれており、世界保健機関(World Health Organization: WHO)が 実施した最新の調査によると、2014 年の患者数は世界で 4 億 2200 万人と推定されている(World Health Organization, 2016)。DM は、 網膜症、腎症、神経障害、血管障害などの病変を突然発症するま で、患者が症状を認識しないことが多いため、"サイレントキラー" と呼ばれている(World Health Organization, 2016)。これらの合併症 は、失明、腎不全、および足潰瘍などを引き起こすことがあり、患 者の健康に関する生活の質(Quality of Life: QOL)に深刻な影響を 及ぼす。DM は原因が異なる I 型と II 型に大別される(Alberti and Zimmet, 1998)。DM 患者の約 90%以上を占める II 型 DM は、いくつ かの遺伝的要因に食生活や肥満、運動不足等の生活環境が複雑に関 係して発症する疾患であり、主に末梢組織のインスリン感受性低下 と膵臓のランゲルハンス島β細胞からのインスリン分泌量の低下の 二つが原因であるとされている。DM とその合併症の進行に、高血 糖そのものが大きく関わっていることが明らかになるにつれ、食後 を含めたより厳格な血糖管理の重要性が認識されるようになった。 DM とその合併症を予防する方法の1つは、適切な食事を摂取する ことによって食後の血糖値の上昇を抑制することである。食後の血 糖値の上昇を抑制する方法として、グルコース吸着能を有する成分 や多糖類の加水分解を阻害する成分の摂取が効果的といわれている $(Van de Laar et al., 2004)_{\circ}$

食物繊維 (Braaten et al., 1991; Nishimune et al., 1991; Liljeberg et al., 1996; Cavallero et al., 2002)、ポリフェノール (Hara and Honda,

1990; Matsui *et al.*, 2007)、タンパク質(Shainkin and Birk, 1970;
Silano *et al.*, 1973; Buonocore *et al.*, 1977; Blonco-Labra, 1981;
Weselake *et al.*, 1983b)およびペプチド(Yu *et al.*, 2012; Yan *et al.*, 2019)など、多くの食品素材に関して、食後の血糖値上昇を抑制する効果が報告されている。食物繊維は、グルコースを吸着し、排出を促進するが、ポリフェノール、タンパク質およびペプチドは、α-アミラーゼやα-グルコシダーゼなどの酵素を阻害し、グリコシド結合の加水分解とグルコース産生を遅らせることが知られている。

穀物中のタンパク質には食後の血糖値上昇を抑制する効果を有す るものがいくつか報告されている。穀物は、昆虫に対する生体防御 の役割でしばしば種子に高濃度の α -アミラーゼインヒビター (α -Amylase Inhibitor: α -AI) を含んでいる(Svensson *et al.*, 2004)。 α -AI はデンプン分解酵素である α -アミラーゼの活性を阻害するため、デ ンプンから還元糖への分解を抑制する。そのため、 α -AI は食後血糖 値上昇抑制作用を有することが報告されている(Figure 1-1)。タン パク質性の α -AI としてよく研究されている例として小麦(*Triticum aestivum*)(Silano *et al.*, 1973; O'Donnell and McGeeney, 1976; Petrucci *et al.*, 1976)、米(*Oryza sativa*)(Feng *et al.*, 1991)、大麦

(Hordeum vulgare) (Weselake et al., 1983a)、ライ麦 (Secale cereale) (Granum, 1978; Iulek et al., 2000)、トウモロコシ (Zea mays) (Blanco-Labra, 1981)、およびインゲン豆 (Phaseolus vulgaris) (Marshall et al., 1975) などの穀物由来のものがあるが、特に、小麦とインゲン豆の a-AI は哺乳類の a-アミラーゼを強力に 阻害し、デンプンから還元糖への加水分解を遅らせると報告されて いる (Tormo et al., 2004; Kodama et al., 2005; Tormo et al., 2006)。 タンパク質は、溶解する溶媒の種類によって、水溶性のアルブミ ン、塩溶性のグロブリン、希酸・希アルカリ可溶性のグルテリン、 アルコール可溶性のプロラミンに大別され、各タンパク質の含量 は、穀物種によって大きく異なる(Radovic *et al.*, 1999; Janssen *et al.*, 2016; Hoogenkamp *et al.*, 2016; Table 1-1)。小麦の α-AI は小麦タ ンパク質のアルブミン画分に存在する(Puls and Keup, 1973; Koike *et al.*, 1995; Lankisch *et al.*, 1998)。また、小麦アルブミンはペプシ ンやトリプシンによる消化に耐性を示し、熱安定性も有するため、 食品加工工程などにおける加熱後も α-アミラーゼ阻害活性を維持す ることが期待できる(Oneda *et al.*, 2004)。小麦アルブミンは、既に 日本の特定保健用食品(Food for Specified Health Uses: FoSHU)の 血糖値の上昇を抑制する機能性成分として使用されている(Arai *et al.*, 2008)。

ー方、米のアルブミン画分にもα-AI が含まれていることが知ら れているが、哺乳類のα-アミラーゼは阻害せず、昆虫由来のアミラ ーゼを阻害すると報告されている(Feng *et al.*, 1996; Ina *et al.*, 2016)。米アルブミンは、消化酵素による加水分解に強い耐性があ り、哺乳類のα-アミラーゼは阻害にも関わらず、ラットでのグルコ ース負荷時に血糖値の上昇を抑制した(Ina *et al.*, 2016)。Ina らは このメカニズムをグルコーストランスポーターの発現抑制とグルコ ースの吸着および排出促進だと推察しているが、グルコース吸着能 に関する定量的評価はできていない(Ina *et al.*, 2016; Ina *et al.*, 2020)。

蕎麦 (Fagpopyrum esculentum Moench) は、世界中でシリアル、パン、クッキーおよび麺などの様々な製品に使用されており、日本においても馴染み深い広義の穀物である。蕎麦種子のタンパク質含有量は 12-15%であり、総タンパク質の約 44%をアルブミンが占めて

いる (Gul and Yao, 2006)。蕎麦タンパク質は抗コレステロール活性 等を有する健康的な食品素材として注目されている (Kayashita *et al.*, 1997; Tomotake *et al.*, 2000; Wijngaard and Arend, 2006; Ma and Xiong, 2009; Yilmaz *et al.*, 2020)。蕎麦にもタンパク質性の α-AI (水 溶性のアルブミン画分)が含まれていると報告されているが (Ikeda *et al.*, 1993; Ikeda *et al.*, 1994)、蕎麦 α-AI の血糖値上昇抑制効果お よびそのメカニズムについてはは未だ明らかでない。

また、タンパク質を機能性食品素材として利用するには、熱安定 性に加えて、溶解性、乳化性、起泡性など、加工時に有用な特性を 有することが望ましい。

本研究では、蕎麦のアルブミン画分中に含まれる α-AI の食後血 糖値上昇抑制効果を小麦および米のアルブミンと比較し、その作用 メカニズムについて検討した。また、蕎麦アルブミンの物理化学的 特性、機能性についても検討した。

本論文の構成は以下の通りである。

第2章では、動物実験により、蕎麦アルブミンの食後血糖値上昇 抑制効果について検討し、小麦および米のアルブミンと比較した。 また *in vitro* で、蕎麦、米、小麦のアルブミンのα-アミラーゼの阻 害活性を測定し、酵素動力学的な解析を行った。また、アルブミン のグルコース吸着能について拡散モデルを構築し、定量的評価を行った。

第3章では、蕎麦アルブミンを消化酵素で加水分解し、蕎麦アル ブミン加水分解物の食後血糖値上昇抑制効果について検討し、この 機能に関与するペプチドの推定を行った。

第4章では、蕎麦アルブミンの食品素材としての応用のため、熱

安定性・水への溶解性・乳化性・起泡性といった物理化学的特性 を評価した。

Figure 1-1 Suppression of the postprandial blood glucose elevation by α -amylase inhibitor (α -AI).

	Buckwheat	Wheat	Rice
Albumin (Water-soluble)	18-32% ¹⁾	15% ²⁾	4-22% ³⁾
Globulin (Salt-soluble)	70% ¹⁾	7% ²)	5-13% ³⁾
Glutelin (Dilute acid/alkaline-soluble)	4-23% ²⁾	33% ²⁾	70-80% ³⁾
Prolamin (Aqueous alcohol-soluble)	1-5% ²⁾	46% ²⁾	1-5% ³⁾

Table 1-1 Content of albumin, globulin, glutelin, and prolamin in cereals

1) Radovic et al., J. Agric. Food Chem. (1999)

Janssen *et al.*, *Compr. Rev. Food Sci.* (2016)
 Hoogenkamp, Kumagai *et al.*, *Sustainable Protein Sources*, Elsevier (2016)

第2章 穀物アルブミンの食後血糖値上昇抑制効果およびその特性の比較(Ninomiya *et al.*, 2018; Ninomiya *et al.*, 2022a; Ninomiya *et al.*, 2022b)

2-1 緒言

第1章で述べたように、糖尿病(DM)を予防する方法の1つ は、適切な食事を摂取することによって食後の血糖値の上昇を抑制 することであり、食後の血糖値の上昇を抑制する方法として、グル コース吸着能を有する成分や多糖類の加水分解を阻害する成分の摂 取が効果的である(Van de Laar *et al.*, 2004)。

小麦のアルブミン画分に含まれる α-AI は昆虫と哺乳類の両方の α-アミラーゼを阻害し、ラット、犬、ヒトの血糖値の上昇を抑制す ることが報告されている (Puls and Keup, 1973; Koike *et al.*, 1995; Lankisch *et al.*, 1998)。

ー部の食物繊維は、デンプンまたはグルコースと一緒に摂取する と食後の血糖値上昇を抑制することが知られている(Braaten *et al.*, 1991; Nishimune *et al.*,1991; Liljeberg *et al.*,1996; Chandalia *et al.*, 2003)。食物繊維が血糖値の上昇を抑制する主なメカニズムとして は4つが提唱されている。(1)粘度を上げることによってグルコー スの拡散を妨げる、(2)胃内容排出を遅らせる、(3)グルコースを 吸着し、その排泄を促進することにより、グルコース濃度を下げ る、(4)デンプンと酵素をカプセル化することによってα-アミラー ゼ作用を遅らせる(Blackburn *et al.*, 1984; Moron *et al.*,1989; Flourie, 1992; Gourgue *et al.*, 1992; Ou *et al.*, 2001)。血糖値の上昇に対する 食物繊維の抑制効果は、部分的なグルコースの吸着によるものであ るため、食物繊維へのグルコース吸着特性を解明することは重要で

ある。

米アルブミンは消化酵素による加水分解に強い耐性があり、哺乳 類のα-アミラーゼは阻害しないにも関わらず、ラットでのグルコー ス負荷後も血糖値の上昇を抑制した(Ina *et al.*, 2016)。Ina ら

(2016)はこのメカニズムをグルコーストランスポーターの発現抑制とグルコースの吸着および排出促進だと推察しているが、グルコース吸着能の量的評価はできていない(Ina *et al.*, 2016)。

蕎麦(Fagpopyrum esculentum Moench)にもアルブミン画分中に α-AIが含まれていると報告されているが、蕎麦のα-AIの血糖値上 昇抑制効果およびそのメカニズムについてははまだ明らかでない

(Ikeda *et al.*, 1993; Ikeda *et al.*, 1994)。そこで本章では、動物実験 により、蕎麦アルブミンの食後血糖値上昇抑制効果について検討 し、小麦および米のアルブミンと比較した。また *in vitro* で、蕎 麦、米、小麦のアルブミンの α-アミラーゼの阻害活性を測定し、酵 素動力学的な解析を行った。また、アルブミンのグルコース吸着能 について拡散モデルを構築し、定量的評価を行った。

2-2 実験材料と方法

2-2-1 穀物アルブミンの食後血糖値上昇抑制効果の評価

2-2-1-1 実験試料の調製

(1) 実験試料

蕎麦粉(北海道産そば粉(石臼一本挽),富澤商店株式会社,東 京、日本)、小麦粉(日清フラワー(薄力小麦粉),日清製粉株式会 社、東京、日本)、精白米(日本晴,2012年度産,滋賀)およびミ ールワーム(*Tenebrio molitor*)は市販品を購入した。ヒト唾液、膵 臓、ブタ膵臓 α-アミラーゼは、Sigma-Aldrich (St. Louis, State of Missouri, USA)から、α-アミラーゼの基質である 2-chloro-4nitrophenyl-α-D-maltotrioside (G3-CNP)は、オリエンタル酵母(東 京,日本)から入手した。ミールワーム由来のα-アミラーゼの調製 は、Buonocore and Poerio (1975)の方法に修正を加えて行った

(Buonocore and Poerio, 1975)。ペプシン(ブタ胃由来)およびトリ プシン(ウシ膵臓由来)は和光純薬工業(大阪,日本)から入手し た。他の化学薬品はすべて特級試薬を使用した。

(2) 蕎麦タンパク質の分画

蕎麦粉に5倍量の25 mM HEPES buffer (pH 6.9) を加え、4℃で3 時間以上撹拌した。その後、高速冷却遠心機(himac CR-21G II,株 式会社日立ハイテクノロジーズ,東京)にて遠心分離(15,000×g、 15 min、4℃)し、上清を回収した。得られた上清に100%飽和とな るように硫酸アンモニウムを加え、4℃で一晩撹拌した。その後、 高速冷却遠心機にて遠心分離(15,000×g,60 min,4℃)し、沈殿を 回収した。沈殿は、少量の純水に溶解し、純水に対して透析を行っ た。透析後、透析チューブ内の溶液を微量高速冷却遠心機(MX- 300、株式会社トミー精工、東京)にて遠心分離(15,000×g, 15 min, 4℃)し、得られた上清(アルブミン)と沈殿(グロブリン)をそれぞれ凍結乾燥(FDU-2000、東京理化器機株式会社、東京)し、使用するまで-20℃で保存した。

SDS-PAGE に使用するサンプルは、タンパク質当量で1 mg/mL と なるよう純水に溶解し、等量の 2×SDS sample buffer と混合し5分間 煮沸し調製した。 α -アミラーゼ阻害活性測定に使用するサンプル は、各試料粉末を5 mg/mL となるよう α -アミラーゼ阻害活性測定用 buffer に溶解し、2-2-1-3(1)の方法で α -アミラーゼ阻害活性を測 定した。

(3) 蕎麦、小麦および米アルブミンの調製

2-2-1-1(2)から蕎麦のアルブミン画分を抽出し、既に報告され ている小麦および米アルブミンの抽出・精製を行った。

蕎麦及び小麦アルブミンの調製は、Fengら(1991)の方法(Feng et al., 1991)に一部修正を加えて行った(Figure 2-1)。

(Fagopyrum esculentum Moench,株式会社富澤商店,東京)あるい は小麦粉 (Triticum aestivum,日清製粉株式会社,東京)に5倍量 (w/v)の25 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer (pH 6.9)を加え、4℃で3時間撹拌した後、遠心分 離 (15,000×g,15 min,4℃)した。得られた上清を80℃で20分間 加熱処理し、夾雑タンパク質を熱変性させ、遠心分離 (15,000×g、 15 min、4℃)することで除去した。得られた上清に40%飽和とな るように硫酸アンモニウムを加え、4℃で一晩撹拌し、遠心分離

(15,000×g、60 min、4℃) して沈殿を回収した。沈殿は、少量の 純水に溶解した後、純水に対して透析(MWCO 3,500, 21-152-9, Thermo Fisher Scientific, USA) を行った。透析内液を遠心分離

(15,000×g, 15 min, 4℃)し、上清を凍結乾燥して、粗アルブミン 粉末を得た。

粗アルブミン粉末を 15 mg/mL となるように 20 mL の純水に溶解 し、ろ過フィルター (25CS045AS, アドバンテック東洋株式会社, 東京) で滅菌後、Sephadex G-50 column (ϕ 2.5 × 100 cm) (GE Healthcare UK Ltd., Buckinghamshire, UK) にアプライし、流速 0.2 mL/min、5 mL フラクション、4℃の条件で分離した。各フラクショ ンは、280 nm における吸光度を分光光度計 (UV mini 1240, 島津株 式会社, 京都) を用いて測定した。さらに、各フラクションのブタ 膵臓由来 α -アミラーゼに対する阻害活性の測定を 2-2-1-3 (1) の方 法を用いて測定した。 α -アミラーゼ阻害活性 90%以上のフラクショ ンを凍結乾燥し、蕎麦 α -AI を得た。試料は、使用するまで-20℃で 保存した。

米アルブミンの調製は、Inaら(2016)の方法(Ina et al., 2016) に一部修正を加えて行った(Figure 2-2)。精白米を小型製粉機(ミ クロパウダー・MPW-G008, 槇野産業株式会社,東京)で破砕し、 粉状にした。この米粉末 600gに5倍量(w/v)の100mM クエン 酸 buffer(pH 6.0)を加え、4℃で一晩撹拌した。その後は、蕎麦お よび小麦アルブミンの調製と同様の操作を行い、米アルブミンを得 た。

タンパク純度は、BCA Protein Assay Kit (23250、Thermo Fisher Scientific)を使用して、BCA法 (Smith *et al.*, 1985)により測定さ れたウシ血清アルブミン (BSA)の標準曲線を元に算出した。

SDS-PAGE に使用するサンプルは、タンパク質当量で 1 mg/mL と なるよう純水に溶解し、等量の 2×SDS sample buffer と混合し 5 分間

Figure 2-1 Extraction of buckwheat and wheat albumin.

Figure 2-2 Extraction of rice albumin.

煮沸し調製した。

2-2-1-2 動物実験

(1) 実験動物

Wistar 系ラット(SPF, 7週齢, オス)は日本 SLC 株式会社(静岡)から購入し、環境への馴化のため、1週間予備飼育を行った。 飼育は、5連ゲージにラットを1頭ずつ入れ、予備飼育およびその 後の研究期間を通して、23℃および 55%の湿度に制御された環境 で、8:00から 20:00までの 12時間の明/暗サイクル下の飼育室で 行った。飲料水としては滅菌水を与え、飼料の CE-2(マウス・ラッ ト・ハムスター用飼育繁殖固形飼料(CE-2),日本クレア株式会 社,東京)は自由摂取させた。すべての動物実験は、日本大学動物 実験運営内規に則り行った(承認番号:AP11B012)。

(2) デンプン負荷試験(OSTT)およびグルコース負荷試験

(OGTT)における蕎麦アルブミンの食後血糖値および血漿インス リン値上昇抑制効果の検討

デンプン負荷試験(Oral Starch Tolerance Test: OSTT)およびグ
ルコース負荷試験(Oral Glucose Tolerance Test: OGTT)は Ina 6
(2016)の方法(Ina *et al.*, 2016)に一部改変して行った(Figures
2-3, 2-4)。予備飼育後のラットは、ランダムに以下の6群に分けた(n=7/群):可溶性デンプン(9005-25-8,富士フイルム和光純薬株式会社)投与群、可溶性デンプン+蕎麦アルブミン 300 mg/kg体重
投与群、可溶性デンプン+小麦アルブミン 300 mg/kg体重投与群、
グルコース(50-99-7,富士フイルム和光純薬株式会社)投与群、グ
ルコース+蕎麦アルブミン 300 mg/kg体重投与群、グルコース+小麦

アルブミン 300 mg/kg 体重投与群。試験前に 14 時間絶食させ、試験 直前に尾静脈採血を行い、デキスターZⅡ(バイエル薬品株式会 社、ドイツ)にて空腹時初期血糖値を測定した。採血後、15分間の 間隔をあけ、5mL/kg体重のPBS(05913,日水製薬株式会社,東 京)に溶解した1g/kg体重の可溶性デンプンまたはグルコースと蕎 麦アルブミンまたは小麦アルブミンを無麻酔下でゾンデ(CL-4596,日本クレア株式会社)によって経口胃内投与した。なお、可 溶性デンプンあるいはグルコースのみを 1 g/kg となるように PBS で 調製したものを投与した群をコントロール群とした。試料を投与し た時間を0分とし、投与後0、15、30、45、90分に尾静脈よりヘパ リン処理されたヘマトクリット採血管(22-362-566, Thermo Fisher Scientific)を用いて約70 uL 採血するとともに Dexter-ZII (バイエ ル薬品株式会社、ドイツ)を用いて血糖値を測定した。採取した血 液は 0.6 mL チューブに移し、遠心分離(3,000×g, 10 min, 4℃) し、血漿を得た。得られた血漿は測定するまで-80℃で保存した。 血漿インスリン値はインスリンキット(AKRIN-010, Rat Insulin ELISA Kit (U-E type),株式会社シバヤギ,群馬)を用いて測定し た。糖質投与後90分間での血中総取込みグルコース量を示す曲線 下面積 (グルコース A U C: Area Under the Curve) および血漿中総 分泌インスリン量を示す曲線下面積(インスリン AUC)を Wolever and Jenkins (1986) の方法を用いて算出した (Wolever and Jenkins, 1986) (Figure 2-5)_o

Figure 2-3 Experimental design for oral soluble starch tolerance test

(OSTT) in normal rats.

Figure 2-4 Experimental design for oral glucose tolerance test (OGTT) in normal rats.

Woleveret al., American Journal of Clinical Nutrition, 43(1), 167-172 (1986)

Figure 2-5 Method of calculation of area under the curve.

2-2-1-3 穀物アルブミンのα-アミラーゼ阻害活性

(1) α-アミラーゼ阻害活性測定

α-アミラーゼ阻害活性は Foo and Bais (1998) の方法 (Foo and Bais, 1998) に一部修正を加えて行った。ブタ膵臓由来 α-アミラー ゼ (a-Amylase from Porcine Pancreas (1325 U/mg protein), A6255-10MG)、ヒト唾液 α-アミラーゼ (α-Amylase from Human Saliva (210 U/mg solid), A0521-500UN) およびヒト膵液由来-アミラーゼ (α-Amylase from Human Pancreas, A9972) は、Sigma-Aldrich (USA) から購入した。ミールワーム由来 α -アミラーゼは、Buonocore and Poerio の方法で抽出した (Buonocore and Poerio, 1975)。哺乳類の α -アミラーゼ阻害活性測定には、50 M NaCl 3 mM CaCl₂含有 20 mM HEPES buffer (pH 6.9) を、ミールワームの α-アミラーゼ阻害活性 測定には、100 mM NaCl 含有 20 mM 酢酸 Na buffer (pH 5.4) を活性 測定用 buffer として用いた。α-アミラーゼの基質として、2-chloro-4-nitrophenyl-α-D-maltotrioside (G3-CNP; 45607000, オリエンタル 酵母工業株式会社,東京)を2mMとなるよう活性測定用 buffer に 溶解して使用した。哺乳類由来の α-アミラーゼ阻害活性は、α-AI 添 加時あるいは無添加時に G3-CNP が α-アミラーゼによって分解され 生じる 2-chloro-nitrophenol (CNP)の吸収波長である 405 nm における 吸光度を測定することにより求めた(Figure 2-6)。

α-アミラーゼ阻害活性は、マイクロプレート(Nuncイムノモジュ ール+フレーム,サーモフィッシャーサイエンティフィック株式会 社,東京)に、25 μLの酵素溶液と25 μLのサンプル溶液を混合 し、37℃で30 分間インキュベートした。哺乳類 α-アミラーゼにお ける1アミラーゼ単位(U)は、デンプンとの反応(pH 6.9, 3 min, 20℃)で、1 mgのマルトースを遊離する酵素量として定義し

(2-Chloro-4-nitrophenyl-α-D-maltotrioside)

Foo et al. Clinica Chimica Acta, 272(2),137-147(1998)

Figure 2-6 Hydrolysis of G3-CNP by α -amylase.

た。次に、50 µL の基質溶液を加えて、37℃で 10 分間酵素反応を行った。さらに、0%(w/v) Tris 溶液(pH 10.5)を 100 µL 加え、酵素反応を停止した。酵素反応により生成した CNP の 405 nm における吸光度を、イムノミニ(NJ-2300,バイオテック株式会社,東京)を用いて測定した。

α-アミラーゼ阻害率は、以下の式を用いて算出した。

阻害率(%) = (Ac - Ai)/Ac × 100 (1)

Ac: 試料無添加時 (OD 405 nm)

Ai: 試料添加時 (OD 405 nm)

(2) 蕎麦および小麦アルブミンによる α-アミラーゼ阻害の動力学
 的解析

蕎麦および小麦アルブミンのブタ膵臓由来 α-アミラーゼに対する
α-アミラーゼ阻害活性測定は Seri ら (1996)の方法 (Seri *et al.*,
1996)を一部改変して行った。蕎麦および小麦アルブミン濃度を
0.05、0.15、0.25、0.35 mg/mL、基質濃度を 0.5、1.0、1.5、2.0
mM、0.2 U/well のブタ膵臓由来 α-アミラーゼを酵素とし、2-2-1-3
(1)と同様の操作を行った。測定データは、Lineweaver and Burk
(1934)の方法 (Lineweaver and Burk, 1934)でプロットした。

2-2-2 穀物アルブミンの特性の評価

 (1) In vitro における蕎麦アルブミンの消化性の評価 Iwami ら(1986)と Ma and Xiong(2009)の方法(Iwami et al.,
 1986; Ma and Xiong, 2009)を参考に、一部修正を加えて行った (Figure 2-7)。蕎麦または小麦アルブミン 10 mg にブタ胃由来ペプシン (165-18711, 富士フイルム和光純薬株式会社)を 0.1 mg/mL となるように HC1 に溶解したペプシン溶液 (pH 2.0)を 1 mL 加えて37℃で 2 時間インキュベートした。その後、4% (w/v) NaHCO3を 1 mL 加えて酵素反応を停止した。さらに、1 mg/mL となるように 50 mM Tricine buffer (pH 8.0) に溶解したウシ膵臓由来トリプシン

(208-13954, 富士フイルム和光純薬株式会社)を1mL加え、37°C で2,4,6時間インキュベートした。酵素反応は100℃で5分間煮 沸することにより停止した。加水分解の程度は sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)にて評価し た。SDS-PAGE には、各加水分解物 20 μL を等量の 2×SDS sample buffer [65 mM Tris-HC1 (pH 6.8), 2% (w/v) SDS, 10% (v/v) グリ セロール, 0.0025% (w/v) ブロモフェノールブルー, 5% 2-メルカ プトエタノール, 20 mM ジチオスレイトール (DTT), 全て富士フ イルム和光純薬株式会社]と混合し5分間煮沸したものを供した。 SDS-PAGE は Laemmli (1970)の方法(Laemmli, 1970)を参考に行 った。アクリルアミド濃度14%(w/v)の分離ゲルの使用し、各ウ ェルに SDS sample buffer と混合した試料を 10 µL と分子質量マーカ ー(03-064, テフコ株式会社, 東京)5 µL をそれぞれアプライし た。電気泳動は、AE-6530P/M 型ラピダス・ミニスラブ電気泳動槽 (アトー株式会社, 東京) に泳動用 buffer [25 mM Tris, 192 mM グリシン、0.1% (w/v) SDS] を満たし、100 mA、50 V の定電圧で 30 分間行った後、100 mA、150 V の定電圧で約 70 分間行った。電 気泳動後、ゲルを取り外し、 固定液 [50% (v/v) メタノール, 10% (v/v) 酢酸]に 40 分間浸漬してタンパク質を固定した後、 CBB 染色液 [0.025% (w/v) Coomassie Brilliant Blue R-250, 5%

Figure 2-7 Hydrolysis of cereal albumin.

(v/v) メタノール, 10% (v/v) 酢酸] で一晩染色し、脱色液 [12%
 (v/v) メタノール, 7% (v/v) 酢酸] で周辺が透明になるまで脱色
 した。

(2) 蕎麦アルブミン中の糖タンパク質の染色

電気泳動後、分画したタンパク質を polyvinylidene fluoride (PVDF) membrane (ProBlott, Applied Biosystem, Foster City, CA, USA) に転写した。泳動後のゲルをブロッティング B 液 (25 mM Tris, 5%メタノール)に5分間浸漬させ、セミドライブロッティン グ装置(モデル AE-6677, アトー株式会社, 東京)の陽極側からブ ロッティング A 液 (300 mM Tris, 5% メタノール)を染み込ませた ろ紙 (3030-909, GE Health care) 2 枚、B 液を染み込ませたろ紙 1 枚、メタノールに 30 秒間浸した後, B 液に 30 分以上浸した PVDF 膜(WSE-4052, アトー株式会社)、泳動ゲル, C液(25 mM Tris, 40 mM 6-アミノカプロン酸, 5%メタノール)を染み込ませたろ紙3 枚の順に重ね 50 V、1 cm² 当たり 2 mA の定電流で 40 分間転写を行 った。転写後の膜は、TPBS (phosphate-buffered saline containing 0.05% Tween 20) で 10 分毎に 3 回洗浄し、0.05% (v/v) 過ヨウ素酸 となるように TPBS に溶解した過ヨウ素酸溶液に浸漬させ、10分間 緩く撹拌した(Figure 2-8)。その後、PVDF 膜を TPBS で 10 分毎に 3回洗浄し、25µg/mLとなるように、ビオチンヒドラジド((+)-Biotin hydrazide, B7639, SIGMA-ALDRICH, USA) を dimethyl sulfoxide (DMSO) に溶解し、NaOH で 40 倍希釈したビオチンヒド ラジド溶液に浸漬し、30分間緩く撹拌した。撹拌後、PVDF 膜を TPBS で 10 分毎に 3 回洗浄し、HRP-ストレプトアビジン(HRPconjugated streptavidin, フナコシ株式会社, 東京)を TPBS で 500

Figure 2-8 Principle of non-reducing sugar hexose oxidation by NaIO₄.

倍希釈した HRP 標識アビジン溶液に浸漬させ、15 分間緩く撹拌した。
 さらに、PVDF 膜を TPBS で 10 分毎 3 回洗浄し、ECL キット

(Amersham[™] ECL[™] Western Blotting Analysis System, RPN2109,
GE Healthcare, UK) を用いて化学発光させ gel imaging system
(ChemiDoc MP, BioRad, Hercules, CA, USA)で検出した (Figure 29)。なお、HRP-ストレプトアビジンおよび ECL キットは使用直前に調製した。

Figure 2-9 Method of saccharide chain detection.

(3) 二次元電気泳動(2D-PAGE)

二次元電気泳動は Westermeier ら (2011) の方法を一部修正して 行った (Westermeier *et al.*, 2011)。蕎麦アルブミンまたは小麦アル ブミンを immobilized pH gradient (IPG) strips (pH 3-10 non-linear)に 流した。等電点電気泳動 (IEF) は、以下の条件で行った:一次元 目では、175 V で 20 分間維持し、次にアルブミンを 175 V で 45 分 間、2000V で 1 時間流した。 IEF 後、ストリップゲルを SDS 平衡 化 buffer (3 M Urea, 10%グリセロール, 1%SDS および 0.02%ブロ モフェノールブルーを含む 18.66 mM Tris pH 8.8) に溶解した 50 mM ジチオスレイトール (DTT) および SDS 平衡化 buffer に溶解し た 50mM アクリルアミドに 15 分間浸漬した。次に、ストリップゲ ルを NuPAGE 4-12% Bis-Tris ZOOM ゲル、1.0 mm、IPG ウェル

(NP0330BOX, Life Technologies Japan Ltd., 東京) に乗せ、XCell SureLockMini-Cell および SDS-PAGE を 200 V で 45 分間行った。電 気泳動後、ゲルを 0.025% Coomassie Brilliant Blue R-250 溶液(和光 純薬工業,大阪,日本)で染色した。

2-2-3 水溶性高分子へのグルコース吸着挙動に関する検討

2-2-3-1 グルコース拡散実験

(1) 実験試料

CMC (C 4888)、グアーガム (G 4129)、およびキサンタンガム (G 1253) は Sigma-Aldrich (St. Louis, State of Missouri, USA) か ら入手し、水溶性高分子として使用した。米アルブミンは 2-2-1-1 (3) の方法で調製した。

(2) グルコース拡散実験

グルコースの水溶性高分子(食物繊維や米アルブミンなど)への 吸着を評価するための、グルコース拡散実験は、Inaら(2016)が 米アルブミンの検討に用いた方法で行った(Ina *et al.*, 2016)。 Figure 2-10 は、本実験で使用された透析システムを示している。分 子量 3,500 以下の分子のみ透過する Slide-A-Lyzer MINI 透析ユニッ ト(Thermo Fisher Scientific)を使用した。50、100、あるいは 200 mmol/Lのグルコースと 2 mg/mLの水溶性高分子を含む溶液(250 µL)を透析ユニットの上部コンテナに添加し、2 mLの脱イオン水 を下部チャンバーに充填した。37°C の振とう恒温槽(BT-300, ヤマ トサイエンティフィック株式会社,東京,日本)で100 cycle/minで 振とうさせた。拡散モデルのパラメータの値は次のとおりである。

透析膜面積 A = 3.266×10⁻⁵ m²

透析膜厚み L = 2.8×10⁻⁵ m

上部チャンバーの溶液体積 V1 = 2.50×10⁻⁷ m³

下部チャンバーの溶液体積 V2=2.00×10⁻⁶ m³

振とう後 30、60、90、120、および 150 分後に下部チャンバーから 20 µL の透析液を採取し、グルコース CII テスト(和光純薬工業,大阪,日本)を使用してグルコース含有量を測定した。

2-2-<mark>3</mark>-2 グルコース吸着量の解析法

(1) グルコース拡散モデル

透析膜を介したグルコース拡散を説明するために本実験で構築したモデルを Figure 2-11 に示す。

モデルの前提条件は次のとおりである。

Figure 2-10 Schematic diagram of dialysis system.

C: Glucose concentration in dialysis membrane

Figure 2-11 Model of glucose diffusion through a membrane.

C: Glucose concentration in dialysis membrane $[kg/m^3]$

 C_1 : Concentration of free glucose in chamber 1 [kg/m³]

 C_2 : Glucose concentration in chamber 2 [kg/m³]

D: Diffusion coefficient of glucose in dialysis membrane $[m^2/s]$

j: Diffusion rate of glucose in dialysis membrane $[kg/(m^2 \cdot s)]$

- i) チャンバー1(上部チャンバー)とチャンバー2(下部チャンバー)の溶液は、透析実験中に完全に混合される。つまり、グルコース濃度はチャンバー1および2で均一である。
- ii) 透析膜中のグルコースの拡散係数 D [m²/s]は、グルコース濃度や透析膜内の位置に関わらず一定である。
- iii) 透析膜は準定常状態で、濃度は膜内の拡散方向に沿って直線的に変化する。
- iv)静水圧と浸透圧の差による透析膜中の水の透過流束は無視で きる。
- v)水溶性高分子に吸着されるグルコースの量 m [kg]は、透析実験中一定である。
- vi) パラメータ A、L、V1、および V2の値は、透析実験中一定である。

グルコース吸着挙動の解析式は次のとおりである。

透析膜を通過するグルコースの拡散速度 j [kg/(m²・s)]は、準定常状態でのフィックの法則によって次のように記述される。

$$j = D \frac{C_1 - C_2}{L} \qquad (1)$$

ここで、 $C_1 [kg/m^3]$ は上部チャンバーの遊離(水溶性高分子に結 合していない)グルコース濃度、 $C_2 [kg/m^3]$ は下部チャンバーのグ ルコース濃度、 $D [m^2/s]$ は上部チャンバーのグルコースの拡散係 数、L[m]は透析膜の厚さである。また、 $C_1 \ge C_2$ は時間 tの関数で ある。つまり、 $C_1 = C_1(t)$ および $C_2 = C_2(t)$ である。下部チャンバー のグルコースの物質収支から、

$$j = \frac{V_2}{A} \frac{dC_2}{dt} \quad (2)$$

となる。ここで、 $A[m^2]$ は膜の面積である。システム内のグルコースの総量 $M_0[kg]$ は、

 $M_0 = C_1 V_1 + C_2 V_2 + m \tag{3}$

となる。ここで、 V_1 は上部チャンバー $[m^3]$ の溶液量、 V_2 は下部チャンバー $[m^3]$ の溶液量である。

(1)、(2)、(3) 式から、次の微分方程式が得られる。

$$\frac{dC_2}{dt} = -\frac{1}{T} \left(C_2 - \frac{M_0 - m}{V_1 + V_2} \right)$$
(4)

ここで、パラメータ T は、透析膜内の拡散プロセスの時定数であり、次の式で定義される。

$$T = \frac{V_1}{V_1 + V_2} \frac{LV_2}{DA}$$
(5)

微分方程式(4)は、次のように、t=0で初期条件 C₂=0を用いて解 くと、以下のようになる。

$$C_2 = \frac{M_0 - m}{V_1 + V_2} \left(1 - e^{-t/T}\right) \qquad (6)$$

となる。

(2) 水溶性高分子無添加時の拡散係数 D の評価

水溶性高分子無添加時の実験では、(6)式で m をゼロと見なせるので、以下の式が得られる。

$$x = x_0 \ e^{-t/T} \tag{7}$$

ここで、変数 x と x0 は次のように定義される。

$$x = C_2 - \frac{M_0}{V_1 + V_2}$$
(8)
$$x_0 = -\frac{M_0}{V_1 + V_2}$$
(9)

(7) 式から、次の式が導かれる。

 $\log_{e} (x/x_{\theta}) = - t/T \qquad (10)$

水溶性高分子無添加時の透析実験から得られる log_e(x/x₀)対 t プロ ットの傾きは、-1/T である。上述のように求められた T の値を用い て D の値は、(5) 式から算出される。

(3) 水溶性高分子存在下での吸着量 m の算出

グルコース吸着量 m は、拡散係数 D の値を用い、水溶性高分子 存在下での実験から得られた C₂対 t プロットを(6)式に回帰する ことによって算出した。

(4) 水溶性高分子溶液の粘度

食物繊維の血糖値上昇抑制作用は、溶液粘度上昇によるという説 がある(Dikeman and Fahey, 2006)ので、溶液粘度を cone-and-plate 型粘度計により測定した。粘度計としては、 cone-and-plate 型粘度計 TVE-22(東機産業株式会社,東京,日本)を、直径 48 mm、コーン 角度 1°34′のコーンを用いて使用した。コーンとプレートの間に各 サンプル溶液を充填し、ローター速度は 0.5 から 50 rpm まで変化さ せた。粘度測定は 37°C で実施した。

2-2-4 統計解析

データは Mac 統計解析 ver.3.0 (エスミ株式会社, 東京) を使用し

た一元配置分散分析(ANOVA)によって分析した。各グループ間の 比較は、Tukey-Kramerの検定を使用して行いp値が0.05 未満を統 計的に有意なものとした。

2-3 結果

2-3-1 蕎麦タンパク質の分画

Ikeda ら (1994) は、蕎麦粉から 0.9% (w/v) NaCl 溶液で抽出し たタンパク質が哺乳類の a-アミラーゼに対する阻害活性を有してい ることを報告している (Ikeda *et al.*, 1994)。そこで、蕎麦 a-AI を含 むタンパク質を特定するため、蕎麦粉から水溶性のアルブミンおよ び塩溶性のグロブリン画分を抽出し、a-アミラーゼ阻害活性を比較 した。希酸・希アルカリ可溶性のグルテリンおよびアルコール可溶 性のプロラミンは a-アミラーゼ阻害活性を測定する溶媒へ溶解しな いため、a-アミラーゼ阻害活性を測定できないので抽出を行わなか った。蕎麦粉から pH 6.9 の緩衝液にて抽出したタンパク質を水に対 して透析することで、抽出を行った。透析内液を遠心分離した際の 上清を水溶性のアルブミン画分、沈殿物を塩溶性のグロブリン画分 として回収した結果、アルブミン画分にはグロブリン画分よりも 16 倍多く a-AI が含まれていた (Figure 2-12 および Table 2-1)。このこ とから、蕎麦タンパク質中の主な a-AI はアルブミン中に含まれて いることが明らかとなった。

2-3-2 穀物アルブミンの食後血糖値上昇抑制効果

(1) デンプン負荷試験(OSTT) およびグルコース負荷試験(OGTT)

蕎麦、小麦および米アルブミンのタンパク質純度を BCA 法によ り算出した結果、どのサンプルもタンパク質純度が 85%以上だっ た。このサンプルを動物実験に用いた。デンプン負荷後の血糖値お よびインスリン値に対する蕎麦および小麦アルブミンの影響を、健 常ラットで検討した。蕎麦および小麦アルブミンを投与したラット

Figure 2-12 SDS-PAGE of buckwheat albumin and globulin.

Table 2-1 α-Amylase inhibitory activity of buckwheat albumin

and globulin

Fraction	Inhibitory unit (IU)
Albumin	42.74
Globulin	2.62

IU : One inhibitory unit was defined as the amount of inhibitor (mg) required for 50% inhibition of 1 unit of amylase.

のデンプン負荷後 15 分での食後血糖値は、デンプンのみ投与した 群と比較して、各々12%と 15%低かった(Figure 2-13AB)。曲線下 面積は、有意差はなかったものの、蕎麦アルブミン投与群は、コン トロール群よりも低くなった。デンプン負荷後の同時間で、蕎麦お よび小麦アルブミンを投与されたラットの食後血漿インスリン値 は、デンプンのみ投与したラットよりも各々85%、70%と低かった (Figure 2-13CD)。曲線下面積も、蕎麦アルブミン投与群は、コン トロール群よりも有意に低い値であった。グルコース負荷試験で は、蕎麦および小麦アルブミンは食後血糖値の上昇(Figure 2-14AB) あるいは血漿インスリン値の上昇(Figure 2-14CD)を抑制 しなかった。

(2) α-アミラーゼ阻害活性測定

様々な由来のα-アミラーゼに対する蕎麦および小麦アルブミンの 阻害活性を Figure 2-15 に示す。小麦アルブミンは、ヒト唾液 (99.5%)、ヒト膵臓(99.3%)、ブタ膵臓(99.4%) およびミールワ ーム(97.6%) 由来のα-アミラーゼを強力に阻害した。一方、蕎麦 アルブミンもブタ膵臓(97.9%) およびミールワーム(93.2%) 由来 のα-アミラーゼを強く阻害したが、ヒト膵臓(68.7%) からのα-ア ミラーゼの阻害はやや弱く、ヒト唾液(10.2%) 由来のα-アミラー ゼの阻害は非常に弱かった。

(3) 蕎麦および小麦アルブミンによる α-アミラーゼ阻害の動力学 的解析

小麦(Figure 2-16A) および蕎麦(Figure 2-16B) アルブミンの酵素反応速度を評価するために Lineweaver-Burk プロットを生成し

Figure 2-13 Effect of buckwheat albumin on blood glucose level (A),

glucose AUC (B), plasma insulin level (C), and insulin AUC (D) after oral loading of starch in normal Wistar rats. Values with different letters are significantly different at p < 0.05 vs. control group by Tukey-Kramer's test. Each value is the mean of 6-7 experiments with S.E. shown as a vertical bar.

Figure 2-14 Effect of buckwheat albumin on blood glucose level (A), glucose AUC (B), plasma insulin level (C), and insulin AUC (D) after oral loading of glucose in normal Wistar rats. Values with different letters are significantly different at p <0.05 vs. control group by Tukey-Kramer's test. Each value is the mean of seven experiments with S.E. shown as a vertical bar.

Figure 2-15 α-Amylase inhibitory activity of wheat, buckwheat, and rice albumins. Each value is the mean of three experiments with standard error (S.E.) shown as a vertical bar. n.d. : Not detected.

Figure 2-16 Kinetic analysis of the inhibitory activity against α -amylase from porcine pancreas. (A) Wheat α -AI; and (B) Buckwheat α -AI.

た。小麦アルブミンのプロットは、横軸上で交差した。一方、蕎麦アルブミンのプロットは、縦軸上で交差した。

2-3-3 穀物アルブミンの特性の評価

(1) In vitro での蕎麦アルブミンの消化性および糖タンパク質の染
 色

蕎麦アルブミンの in vitro での消化性は、ペプシンおよびトリプ シンによる連続消化にて評価した。14 kDa の小麦タンパク質は高い 消化耐性を示したが (Figure 2-17)、蕎麦タンパク質はほとんど 6.5 kDa 未満のペプチドに加水分解され、蕎麦アルブミンには消化酵素 による耐性が認められなかった。

高分子(>29 kDa)の蕎麦アルブミンの糖タンパク質は染色試薬 により検出された。一方、ネガティブコントロールとして使用した ウシ血清アルブミン(BSA)では糖タンパク質はほとんど検出され なかった(Figure 2-17)。

(2) 蕎麦、小麦および米アルブミン α-AIの比較

蕎麦アルブミンの二次元電気泳動は、pI 4.1-4.8 の範囲に、10-17 kDa の 4 つのスポットが認められた (Figure 2-18)。一方、小麦およ び米アルブミンのスポットは、それぞれ pI 4.5-5.7、pI 5.5-7.2 であ った。

2-3-4 水溶性高分子へのグルコースの吸着挙動の解析

(1) 透析膜中でのグルコースの拡散係数 D の算出

Figure 2-19(A)に、水溶性高分子無添加時の下部チャンバー(C₂)のグルコース濃度の時間経過を示す。C₂の値は時間 t と共に増加し

Figure 2-17 SDS-PAGE of wheat and buckwheat albumins before and after treatment with digestive enzymes and glycoprotein staining. (A) Wheat albumin; (B) rice albumin; (C)
Buckwheat albumin. (M) Marker; (1) Undigested; (2)
Digested by pepsin for 2 h; (3) Digested by pepsin for 2 h followed by digestion with trypsin for 2 h; (4) Digested by pepsin for 2 h followed by digestion with trypsin for 4 h; and, (5) Digested by pepsin for 2 h followed by digestion with trypsin for 4 h; and, (5) Digested by pepsin for 6 h; (1S) Undigested and stained with glycoprotein-staining reagent; (D) Bovine serum albumin stained with glycoprotein-staining reagent.

Figure 2-18 Two-dimensional-electrophoresis of (A) wheat-albumin α -AI, (B) buckwheat-albumin α -AI, and (C) rice-albumin α -AI.

Figure 2-19 Evaluation of coefficient of glucose diffusion through dialysis membrane (D) using experimental data. (A) The time course of the glucose concentration in the lower chamber C₂ (B) Plots for evaluating D Initial glucose concentration in the upper chamber: ●, 50 mM; ■, 100 mM; ▲, 200 mM

た。x と xoの値は、Figure 2-19 (A)のデータを使用し、(8) および (9) 式から算出した。Figure 2-19 (A)に示した 3 つの実験の loge (x/xo) 対 t のプロットを Figure 2-19 (B)に示す。すべてのプロット は、原点を通る一本の直線となった。傾きの逆数から、(10) 式の T の値は、1.15×10⁴ 秒となった。この T の値を用いて、(5) 式から、 透析膜中のグルコースの拡散係数 D の値は、1.66×10⁻¹¹ m²/s と算出 された。

Figure 2-19 に示す実験では、容器上部の液面の変化は観察されなかった。しかし、300 mM (54 kg/m³)以上のグルコース濃度の場合、おそらく浸透圧のため液面の上昇が観察された。(データは示していない)。したがって、このモデルは、初期のグルコース濃度が 300 mM の以上の場合には適用できないことが確認された。

(2) 水溶性高分子へのグルコース吸着量 m の算出

Figure 2-20 に、食物繊維存在下における透析実験中の時間経過に よる C_2 の変化を示す。コントロールとして、水溶性高分子無添加 時の C_2 対 t プロット (Figure 2-19 (A)) も示している。水溶性高分 子存在下での C_2 の値は、水溶性高分子無添加時の値よりも低かっ た。したがって、水溶性食物繊維は、Ina ら (2016) が報告してい るように、透析膜を介したグルコース拡散を遅延させることが示さ れた (Ina *et al.*, 2016)。同一時刻 t における C_2 の値は、キサンタン ガム > グアーガム > CMC > 米アルブミンの順に減少した。 Figure 2-20 中の実線の曲線は、データを (6) 式に回帰することに より算出された (Figure 2-19 (B)から得られた D=1.6×10⁻¹¹ m²/s を使 用)。すべての実験データは (6) 式で良好に回帰された (相関係数 の値は 0.999 以上)。このことから、本研究で構築されたモデルは、

Figure 2-20 Effects of various sources of dietary fibres on glucose diffusion rate. Initial glucose concentration in the upper chamber: (A) 50 mM, (B) 100 mM, (C) 200 mM. ●, Control; ○, CMC; □, Xanthan gum; △, Guar gum; ◇, Rice albumin. Concentration of dietary fibre in the upper chamber: 2 mg/mL. The solid curves: The best-fit computations from Eq. (6) using D obtained from Figure 2-16.

Figure 2-20 に示す透析膜を介したグルコース拡散速度を良好に記述 することが確認された。

水溶性食物繊維に吸着したグルコース量 *m* [kg]は、Figure 2-20 の データを(6) 式に当てはめることにより算出した。*m*の値から、 単位質量あたりの食物繊維に吸着されたグルコースの量[kg/kgsolid] (GAC) が算出された。Figure 2-21 は、37℃での CMC、グア ーガム、キサンタンガムおよび米アルブミンのグルコース吸着等温 線を示している。グルコース濃度の増加に伴い、グルコースの吸着 量はほぼ直線的に増加した。吸着したグルコース量は、同じグルコ ース濃度でキサンタンガム > グアーガム > CMC > 米アルブミ ンの順に大きい傾向がみられた。

(3) 水溶性高分子溶液の粘度

Figure 2-22 は、キサンタンガムおよびグアーガムの 2 mg/mL の濃 度での流動特性(粘度 vs. せん断速度のプロット)を示す。キサン タンガムとグアーガムでは、ずり流動化(せん断速度の増加に伴う 粘度の低下)が観察された。水溶性食物繊維溶液の粘度は、添加す るグルコース濃度の影響を受けなかった。2 mg/mL の濃度での CMC の粘度は、使用した cone-and-plate 粘度計で測定するには小さすぎ たが、文献(Kumagai *et al.*, 2009)によると、~10⁰ mPa・s であっ た。Kumagai ら (2009)は、CMC 溶液が 2%(w/w)の濃度以下で ニュートン流体に近い挙動を示すことを報告している(Kumagai *et al.*, 2009)。

Figure 2-23 にグルコースの吸着量と水溶性食物繊維の粘度の関係 を示す。Figure 2-23 では、CMC 溶液の粘度を 1 mPa・s とした。吸 着されたグルコース量と溶液粘度との間に相関関係は認められなか

Figure 2-21 Glucose adsorption isotherms of water-soluble dietary fibres. Temperature: 37°C. Concentration of dietary fibre: 2 mg/mL. ○, CMC; □, Xanthan gum; △, Guar gum; ◇, Rice albumin. Each value is the mean of three experiments with S.D. shown as a vertical bar.

Figure 2-22 Shear-rate dependence of viscosity of dietary-fibre solutions at 37°C. □, Xanthan gum; △, Guar gum. Concentration of dietary fibre: 2 mg/mL.

Figure 2-23 Relationship between amount of glucose adsorbed onto water-soluble dietary fibre and viscosity at shear rates of (A) 2 s⁻¹ and (B) 20 s⁻¹. CMC: ○, 50 mM glucose; +, 100 mM glucose; ●, 200 mM glucose. Xanthan gum: □, 50 mM glucose; ◇, 100 mM glucose; ■, 200 mM glucose. Guar gum: △, 50 mM glucose; ▽, 100 mM glucose; ▲, 200 mM glucose.

った。

(4) グルコースの拡散シミュレーション

透析膜を用いた拡散実験における緩和過程(平衡状態に達する過程)の状況を明瞭にするために、構築した拡散モデルを用いて、初期グルコース濃度 100 mM(18 kg/m³)での拡散実験のシミュレーションを行った。結果を Figure 2-24 および Figure 2-25 に示す。上部 チャンバーと下部チャンバーの間の拡散は、約5~6×10⁴秒(約14~17時間)で平衡に達した。Figure 2-24 では、食物繊維存在下での C1 と C2 は、同時に t でコントロール溶液よりも低くなっている。 平衡状態の C1 の値は、初期値の約10分の1に減少した。

膜を通過する拡散の推進力 $(C_1 - C_2)$ と膜を通過するグルコース 流束を Figure 2-25 に示す。平衡状態では、 $C_1 - C_2$ がゼロになり、jがゼロになる。食物繊維存在下での $C_1 - C_2$ の値は、tのコントロー ル溶液の値よりも低くなった。

Figure 2-24 Simulation of time course of (A) C₁ and (B) C₂ during diffusion experiment. C, CMC; G, Guar gum; X, Xanthan gum; Control, without dietary fibre. Temperature: 37°C.
Concentration of dietary fibre: 2 mg/mL. Initial glucose concentration in the upper chamber: 100 mM (18 kg/m³).
Eqs. (3) and (6) were used for Figure 2-23 (A), and Eq. (6) for Figure 2-23 (B).

Figure 2-25 Simulation of time course of C₁ - C₂ and j during diffusion experiment. C, CMC; G, Guar gum; X, Xanthan gum;
Control, without dietary fibre. Concentration of dietary fibre: 2 mg/mL. Temperature: 37°C. Initial glucose concentration in the upper chamber: 100 mM (18 kg/m³).
Eqs. (3) and (6) were used for Figure 2-24 (A), and Eqs. (2) and (6) for Figure 2-24 (B).

2-4 考察

2-4-1 穀物アルブミンの食後血糖値上昇抑制効果

本章では、蕎麦アルブミンが健常ラットの食後血糖上昇を抑制す ることを示した。小麦アルブミンは、昆虫および哺乳類両方の α-ア ミラーゼを阻害すること(Silano *et al.*, 1973; O'Donnell *et al.*, 1976; Petrucci *et al.*, 1976; Oneda *et al.*, 2004)および血糖値上昇抑制効果 を有すること(Puls and Keup, 1973; Koike *et al.*, 1995; Lankisch *et al.*, 1998)が既に報告されている。本章では、蕎麦アルブミンの α-アミラーゼ阻害活性と食後の血糖値上昇に対する抑制効果を小麦お よび米アルブミンと比較した。

OSTTでは、蕎麦アルブミンは、小麦および米アルブミンと同様 に食後の血糖値および血漿インスリン値の上昇を抑制したが

(Figure 2-13)、OGTT では、蕎麦および小麦アルブミンのどちらも 食後の血糖値および血漿インスリン値の上昇を抑制しなかった

(Figure 2-14)。小麦アルブミンの結果は、Puls and Keup (1973)の 結果と同様であった (Puls and Keup, 1973)。米アルブミンは OSTT と OGTT の両方で食後の血糖値上昇を抑制することが報告されてい る (Ina *et al.*, 2016)。

この血糖値上昇メカニズムを検討するために蕎麦、小麦および米 アルブミンα-アミラーゼ阻害活性を比較した。様々な穀物にはα-AI が含まれており、哺乳類由来のアミラーゼを阻害するものもあれ ば、ミールワーム由来のアミラーゼのみを阻害するものもある。 Figure 2-15 に示すように、小麦アルブミンは、ヒト唾液、ヒト膵 臓、ブタ膵臓、およびミールワーム由来のα-アミラーゼを阻害し た。米アルブミンは、ミールワーム由来のα-アミラーゼを阻害する が、ヒト唾液、ヒト膵臓、およびブタ膵臓由来のα-アミラーゼは阻 害しないことが報告されている(Ina *et al.*, 2016)。大麦(Weselake *et al.*, 1983a)、ライ麦(Granum, 1978; Iulek *et al.*, 2000)、トウモロ コシ(Blanco-Labra, 1981)およびインゲンマメ(Marshall *et al.*, 1975)の α -AI も、ミールワームの α -アミラーゼを阻害すると報告 されている。一方、蕎麦アルブミンは、ヒト膵臓、ブタ膵臓および ミールワーム由来の α -アミラーゼを阻害したが、ヒト唾液の α -アミ ラーゼは阻害しなかった(Figure 2-15)。これは、Buonocore and Poerio(1975)、 Feng ら(1991)、および Ikeda and Kishida

(1993)の結果と同様であった(Buonocore and Poerio, 1975; Feng et al., 1991; Ikeda and Kishida, 1993)。この結果は、ヒト唾液および膵臓からの α-アミラーゼの基質認識のメカニズムが異なり、蕎麦および小麦 α-AIの構造が同一ではないことを意味している。

小麦および蕎麦 α-AIの酵素阻害メカニズムを調査するため、 Lineweaver-Burk プロットを作成した。Figure 2-16 において、小麦 α-AIの Lineweaver-Burk プロットは、横軸上で交差しており、以前 に報告されているように、小麦 α-AIがブタ膵臓からの α-アミラー ゼを非競合的に阻害することを示している (O'Connor et al., 1981)。一方、蕎麦 α-AIのプロットは、縦軸上で交差しており、蕎 麦 α-AIが α-アミラーゼを競合的に阻害することを示している。一 般的に、糖は α-アミラーゼの活性部位に適合し、ペプチドは基質と して認識される可能性が低いため、蕎麦 α-AIから生成された糖ペ プチドが競合阻害剤になっている可能性が考えられる。一部の研究 者は、植物から得られた糖タンパク質が α-アミラーゼを競合的に阻 害することを報告した (Maskos et al., 1996; Gibbs and Alli, 1998; Gadge et al., 2015)。さらに、29 kDa 以上の糖タンパク質が未消化の 蕎麦アルブミンで検出された (Figure 2-17)。蕎麦アルブミン調製中

に遊離の糖が除去され、蕎麦アルブミンのほとんどが 6.5 kDa 未満 のペプチドに加水分解されたことを考慮すると、蕎麦アルブミン中 に存在する糖タンパク質から消化酵素による加水分解によって生成 された糖ペプチドが α-アミラーゼ阻害活性を示した可能性が考えら れる。また、蕎麦アルブミンの α-AI の二次元電気泳動パターンは 小麦アルブミンの α-AI とは異なり (Figure 3-11)、蕎麦 α-AI の α-ア ミラーゼ阻害活性を有するアミノ酸配列が小麦アルブミンの α-AI と異なることを示している (Baker, 1988; Feng *et al.*, 1996)。したが って、蕎麦および小麦 α-AI のアミラーゼ阻害活性のメカニズムは 互いに異なるため、これらは構造と分子量の異なるタンパク質だと 推察される。

蕎麦アルブミンは Figure 2-15 に示すように、デンプン負荷後の食後血糖値上昇抑制効果は、in vitro で哺乳類由来の α-アミラーゼを 阻害したため、小麦アルブミンのメカニズムと同様に、デンプンから還元糖への加水分解を阻害したことに起因することが示唆された。米アルブミンのグルコース負荷後の食後血糖値上昇抑制効果については、米アルブミンは哺乳類由来の α-アミラーゼを阻害せず、消化酵素によって加水分解もされないため、小腸でグルコース分子を吸着する食物繊維様の作用によるものだと考えられる(Ina et al., 2016)。そこで、米アルブミンの食後血糖値上昇抑制メカニズムを検討するため、透析膜を用いたグルコース拡散実験を行った。

2-4-2 水溶性高分子へのグルコース吸着挙動の解析

Ina ら(2016)は、Ou ら(2001)の方法を修正した透析膜を用いた拡散実験により、米アルブミンとグルコースの相互作用を評価した(Ina *et al.*, 2016)。Ou ら(2001)は、分子量 12000 で分画する透

析バッグを使用し、200 mLの脱イオン水に対して 25 mLのグルコ ースと水溶性高分子の混合物を透析した。最大拡散速度は、コント ロール > CMC > グアーガム > キサンタンガムの順で減少した

(Ou et al., 2001)。本研究では Ina ら(2016) と同様に、分画分子 量が 3500 の透析ユニットを使用して透析実験を行い、上部チャン バー内にグルコースと水溶性高分子の混合物 250 µL を入れ、下部 チャンバーに2mLの脱イオン水を加え、水に対して振とうしなが ら透析した。本実験の拡散システムでは、溶液量が少なく、振とう の影響により、2つのチャンバーでグルコース濃度が均一になると 予想される (Ina et al., 2016)。このような実験条件下でも、Figure 2-19 に示すように、コントロールと水溶性高分子を含む溶液の間に C_2 の違いが観察された。 C_2 の値は、Ouら(2001)によって報告さ れた傾向と同様にキサンタンガム > グアーガム > CMC の順に 減少した(Ou et al., 2001)。以前の研究では、米アルブミン、 CMC、またはグアーガムを含む溶液はコントロールと比較しグルコ ース濃度 C_2 に有意差 (p < 0.05) が観察され、 C_2 は Ou ら (2001) によって報告された傾向と同様にコントロール> CMC > 米アル ブミン > グアーガムの順に減少した (Ou et al., 2001)。本実験で は、透析膜を通過する拡散速度を、輸送現象に基づく拡散モデルを 使用してさらに定量的に解析した。

Figure 2-19 では、透析膜におけるグルコースの拡散係数 D の値は 1.66×10⁻¹¹ m²/s と算出された。水中のグルコースの拡散係数は約 7×10⁻¹⁰ m²/s (Suhaimi and Das, 2016) で、Suhaimi ら (2015) は、 27-30°C で膜を通過するグルコースの拡散係数の値が 10⁻¹¹~10⁻¹⁰ m²/s であることを報告した (Suhaimi *et al.*, 2015)。透析膜における グルコースの拡散係数の値は、膜の細孔サイズに依存する。本実験 では、分画分子量が3500の透析膜を使用し、D=1.66×10⁻¹¹ m²の評価値は妥当であると考えられる。

本実験で構築されたモデルでは、静水圧と浸透圧の差による透析 膜を通る水の浸透流束は無視されている。Figure 2-10 および Figure 2-11 に示す実験では、Figure 2-19 および Figure 2-20 に示すよう に、上部チャンバー内の液面の変化は観察されなかった。したがっ て、静水圧および浸透圧の差による透析膜を通る水の透過流束は無 視できることが確認された。

一般に透析膜を用いた実験では、溶液中の高分子による膜の目詰 まり、透析膜表面でのゲル分極が起こりうる。しかし、本研究の実 験系において、拡散実験中に目詰まりやゲル分極が進行すれば、拡 散係数 D は見かけ上低下し、その結果グルコース吸着量も変化する はずである。Figure 2-19、Figure 2-21 に示すように一定の拡散係数 D の値を用いて求められたグルコース吸着量 m は拡散実験中一定 である (回帰の良好さがそれを示している)。本研究で用いた膜の 分画分子量は 3,500 であるので、おそらく食物繊維は透析膜中の細 孔にほとんど入らなかったと推察される。また、用いた食物繊維は 水溶性であり、使用濃度が 2 mg/mL と低濃度なので、膜表面での ゲル分極も起こらなかったと考えられる。

(5) 式の時定数 T は、拡散が平衡状態に達するまでの緩和時間と 見なすことができる。(6) 式によると、t = 0から平衡状態 ($t \rightarrow \infty$) への C_2 の変化は、T の経過後に 63%、3T 後に 95%、5T 後に 99%であった。 T $\approx 1.15 \times 10^4$ 秒 (約 3.2 時間) であるため、拡散プロ セスは 5×10⁵ 秒 (約 14 時間) 後に平衡に達すると見なされた。この 結果は、Figure 2-24 および Figure 2-25 に示すシミュレーション結 果と矛盾しない。Ou ら (2001) は拡散が平衡に達したと仮定し

て、37℃で6時間攪拌した後、水溶性高分子に結合したグルコース 量を測定した。しかし、我々の計算によれば、Ouらの実験では6 時間で平衡状態に達していない可能性が考えられる。

我々が構築したモデルでは、各実験中に透析膜でも準定常状態に なると想定されるため、この仮定を検証した。厚さL[m]の平板内 の拡散過程は、無次元時間 $Dt/(L/2)^2$ が2以上、つまり $t > L^2/(2D)$ になると、平衡状態または定常状態になる(Gurney and Lurie, 1923)。本実験では、 $L^2/(2D)$ の値は(2.8×10^{-5})²/ $\{2 \times (1.66 \times 10^{-11})\}$ =24秒 であった。したがって、膜の両側の溶液のグルコース濃度が一定の 場合、膜の濃度分布は約1分で定常状態に達すると推察される。拡 散実験はFigure 2-19 およびFigure 2-20 に示すように数時間程度の ため、各実験の間に透析膜中では準定常状態となり、濃度は膜内の 拡散の方向に沿って直線的に変化すると考えられる。

Figure 2-19 (B)では、Figure 2-19 (A)の 3 つの実験の loge (x/x₀) 対 t のプロットは、原点を通る一本の直線である。これは、膜内の 拡散が定常状態でフィックの法則に従うこと、および D の値が本実 験で選択されたグルコース濃度の範囲で一定であることを示してい る (Bird *et al.*, 1960)。

Figure 2-20 では、*C*₂の値は 9000 秒まで増加した。Figure 2-24 に 示すように、上部チャンバーの *C*₁の値は、9000 秒で初期の *C*₁値の 約 3 分の 1 になった。Figure 2-21 から、グルコース濃度の増加に伴 い、グルコースの吸着量はほぼ直線的に増加した。本実験で使用し た水溶性高分子へのグルコースの吸着が可逆的であるなら、Figure 2-20 に示す実験中に、グルコースの吸着量は徐々に減少するであろ う。本実験では *V*₂/*V*₁ = 8 であるため、*C*₁の値は平衡状態の初期 *C*₁ の約 9 分の 1 になり、水溶性高分子に結合するグルコースの量は脱 着によって初期値の9分の1に減少する。もしそうであるなら、C₂ 対tのプロットは(6)式では記述されなかったであろう(モデルに おいて、mは拡散実験の間一定であると仮定されている)。おそら く、水溶性高分子からのグルコースの脱着速度が遅いため、吸着さ れたグルコースの量が実験の間(数時間)ほぼ一定に保たれていた と考えられる。

Figure 2-20 に示すように、CMC、キサンタンガム、およびグアー ガムの溶液は、透析膜を通過するグルコースの拡散を遅らせた。膜 を通るグルコース拡散速度は、溶液の粘度の増加とともに減少した 可能性が考えられる。粘性多糖類の粘度は、グルコース吸収の阻害 に重要な役割を果たすと考えられているが(Qi *et al.*, 2016)、米糠 繊維のグルコース拡散および透析遅延指数(Glucose Diffusion and Dialysis Retardation Index : GDRI)はそれらの粘度と相関していない

(López et al, 1996)。López ら(1996)はアーティチョーク繊維に よって引き起こされたグルコース拡散の遅延は溶液粘度が要因でな かったと述べている(López et al, 1996)。また、Fabek ら(2014) は、キサンタンガムやグアーガムなどの食物繊維の粘度だけが、食 後の血糖値の調節における唯一の要因ではない可能性を述べている (Fabek et al., 2014)。他の研究でも、粘度と食後血糖値の上昇に対 する抑制効果との間に関連は認められないが、一部の粘性食物繊維

は溶液粘度による血糖値上昇抑制に効果的であるといわれている

(Dikeman and Fahey, 2006)。CMC 溶液の粘度は水の粘度に近かっ たが、グルコース拡散速度をグアーガムと同じレベルで低下させ た。グアーガムの粘度は、せん断速度 10 s⁻¹で水の粘度の数十倍で あった。さらに、Figure 2-20 に示すように、吸着されたグルコース 量と溶液粘度の間に相関関係は認められなかった。水溶性高分子の

粘度の増加は、透析膜を通過する拡散速度の減少の程度を適切に説 明していないといえる。一方、透析膜を通過するグルコースの拡散 速度は、(1) 式の(C₁ – C₂)に比例する。Figure 2-25 に示すシミュ レーションによると、水溶性高分子を含む溶液の C₁ – C₂ はコント ロールよりも小さく(Figure 2-25 (A))、グルコース流束 *j* が減少す る(Figure 2-25 (A)(B))。このように、水溶性高分子(CMC、キサ ンタンガム、グアーガム)は、水溶性高分子溶液の粘度が高いため ではなく、グルコースの吸着によって、透析膜を介したグルコース 拡散を遅らせることが確認された。

Figure 2-21 に示すように、CMC、グアーガム、キサンタンガムに 吸着するグルコース量は、グルコース濃度の増加に伴ってほぼ直線 的に増加した。米糠繊維(Rice Bran water-Insoluble Fibre: RBIF)お よび硫酸修飾米糠繊維 (Sulfuric acid-Modified Rice Bran Insoluble Fibre: SMRBIF) の場合、グルコース吸着量 (Glucose-Adsorption Capacity: GAC) はグルコース濃度とともに増加した。RBIF および 2.0% SMRBIF の GAC の値は、それぞれ約 0.05 mmol/g (= 0.009 kg/kg) および 1.5 mmol/g (= 0.27 kg/kg) であった (Qi et al., 2016)。一方、Figure 2-21 に示すように、CMC、グアーガム、キサ ンタンガムに吸着したグルコース量は、100 mM グルコース濃度で それぞれ約1.5、1.8 および2.7 kg/kgであった。水溶性高分子は、 WISDF よりも多くのグルコースを吸着する可能性が考えられる。In vivo での実験は小麦ふすま等の不溶性食物繊維が食後のグルコース 応答にほとんど影響を及ぼさないことを示しているが、オート麦、 大麦、およびライ麦などの可溶性食物繊維は、食後の血糖値の上昇 を抑制する。

本研究で構築されたモデルは、グルコース拡散系での拡散速度を

よく表している(Dikeman and Fahey, 2006)。さらに、水溶性高分 子に吸着されたグルコース量を測定することができる。グルコース 吸着による小腸でのグルコース濃度の低下は、食後の血糖値上昇に 対する食物繊維の抑制効果の重要なメカニズムの1つであるため、 ここで提案する拡散モデルは、DMの予防に効果的な食物繊維のス クリーニングに使用可能であると考えられる。さらに、この拡散モ デルは、食物繊維や難消化性タンパク質などの高分子量化合物への グルコース以外の物質の吸着の分析への利用も期待できる。
2-5 小括

本章では、動物実験により、蕎麦アルブミンの食後血糖値上昇抑 制効果について検討し、小麦および米のアルブミンと比較した。ま た *in vitro* で、蕎麦、米、小麦のアルブミンの α-アミラーゼの阻害 活性を測定し、酵素動力学的な解析を行った。さらに、アルブミン のグルコース吸着能について拡散モデルを構築し、定量的評価を行った。

蕎麦および小麦アルブミンは、哺乳類のα-アミラーゼ活性を競合 的および非競合的に阻害することにより、デンプン負荷後の食後の 血糖値上昇を抑制したが、米アルブミンは哺乳類のα-アミラーゼ阻 害活性は認められなかったにも関わらず、デンプンおよびグルコー ス負荷の両方の食後の血糖値上昇を抑制した。蕎麦アルブミンは、 酵素によって低分子に加水分解されたが、小麦および米アルブミン は難消化性を示した。

米アルブミンの食後血糖値上昇抑制メカニズムを検討するため、 透析膜を通過するグルコース拡散速度を記述するためのモデルを構築し、水溶性高分子に吸着するグルコースの拡散実験を行った。透 析膜におけるグルコースの拡散係数 D は、グルコース濃度に関係な く一定を示した。グルコース濃度の増加に伴い、水溶性高分子への グルコース吸着量は直線的に増加し、米アルブミンも水溶性高分子 と同等にグルコースを吸着していることが示された。さらに、グル コース拡散速度の低下は、粘度との相関が認められなかった。

したがって、各穀物アルブミンの血糖値上昇抑制メカニズムにつ いては、蕎麦および小麦アルブミンは哺乳類のα-アミラーゼに対す る競合的および非競合的な阻害、米アルブミンは食物繊維様に働 き、グルコースを吸着することに起因することが示唆された。 第3章 蕎麦アルブミン加水分解物の食後血糖値上昇抑制効果 および関与ペプチドの推定(Ninomiya *et al.*, 2018, Ninomiya *et al.*, 2022b)

3-1 緒言

前章にて、蕎麦アルブミンはペプシンおよびトリプシンによる消 化耐性は認められなかったが、酵素消化により低分子化した蕎麦ア ルブミンがα-アミラーゼ阻害活性を維持し、食後血糖値上昇抑制効 果を有する可能性が考えられる。

本章では、蕎麦アルブミンを酵素により加水分解し、残存する α-アミラーゼ阻害活性および *in vivo* における蕎麦アルブミン加水分解 物の食後の血糖値上昇に対する抑制効果を検討した。さらに、ゲル 濾過クロマトグラフィー、アフィニティークロマトグラフィー、お よび High-Performance Liquid Chromatography (HPLC)を使用して加水 分解物中の活性ペプチドを精製した後、α-アミラーゼ阻害活性に関 与するペプチドのアミノ酸配列の分析を行った。 3-2 実験材料と方法

3-2-1 実験試料

蕎麦粉(富澤商店株式会社、東京、日本)と小麦粉(日清製粉株式
会社、東京、日本)は市販品購入した。ブタ膵臓由来のα-アミラー
ゼは、Sigma-Aldrich (St. Louis, State of Missouri, USA)、および
α-アミラーゼの基質である 2-chloro-4-nitrophenyl-α-D-maltotrioside

(G3-CNP)はオリエンタル酵母(東京、日本)から入手した。ペ プシン(ブタ胃由来)およびトリプシン(ウシ膵臓由来)は和光純 薬工業(大阪、日本)から入手した。他の化学薬品はすべて特級試 薬を使用した。

3-2-2 蕎麦および小麦アルブミン加水分解物の α-アミラーゼ阻害活 性

2-2-2(1)の方法で加水分解した蕎麦アルブミン加水分解物の残存した α-アミラーゼ阻害活性を 2-2-1-3(1)の方法で測定した。

3-2-3 動物実験試料としての蕎麦および小麦アルブミン加水分解物の調製(Figure 3-1)

動物実験試料としての蕎麦および小麦アルブミン加水分解物は、 2-2-2(1)の方法を一部修正して行った。初めに、蕎麦および小麦 アルブミン 100 mg を 10 mL のトリプシン溶液に懸濁し、37°C で 6 時間インキュベートした。インキュベート後、10 mL のペプシン溶 液を加え、37°C で 2 時間インキュベートした。酵素反応は 100℃で 5 分ボイルすることにより停止した。加熱後、3 kDa 以上の高分子 画分はフィルター (Amicon® Ultra-15 3,000 NMML, Merck Millipore Co., Ltd., US)を用いて遠心分離 (10,000×g、10 min、4°C) によっ

Figure 3-1 Digestibility of cereal albumins.

て除去した。得られた3kDa 未満の画分は、蕎麦および小麦アルブ
ミン加水分解物として凍結乾燥した。加水分解の程度は、2-2-2
(1)の方法と同様に SDS-PAGE にて評価した。

3-2-4 実験動物

実験動物である Wistar ラットの飼育は 2-2-1-2(1) と同じ条件で 行った。本章における全ての動物実験は、日本大学動物実験運営内 規に則り行った(承認番号: AP12B059)。

3-2-5 蕎麦および小麦アルブミン加水分解物のデンプン負荷試験
(OSTT) (Figure 3-2)

試験前、ラットをランダムに以下の3群に分けた(n=7/群):可 溶性デンプン投与群、可溶性デンプン+蕎麦アルブミン加水分解物 300 mg/kg体重投与群、可溶性デンプン+小麦アルブミン加水分解 物 300 mg/kg体重投与群。なお、可溶性デンプンのみを1g/kgとな るように PBS で調製したものを投与した群をコントロール群とし た。以降、2-2-1-2(2)と同様の方法で OSTT を行い、血糖値、血 漿インスリン値および曲線化面積を算出した(Wolever and Jenkins, 1986)。

3-2-6 ペプチド推定のための蕎麦アルブミンの精製 (Figure 3-3)

2-2-1(4) で得られたゲルろ過後にブタ膵臓由来 α-アミラーゼに 対する阻害活性 90%以上示した画分をアフィニティークロマトグラ フィーおよび HPLC を用いて精製した。まず、10 mg の蕎麦アルブ ミンを 1 mg/mL となるように 50 mM Tricin buffer (pH 8.0) に溶解 したトリプシン 1 mL と混合し、37℃で 4 時間インキュベートし

Figure 3-2 Experimental design for oral soluble starch tolerance test (OSTT) in normal rats.

— Measure *N*-terminal amino-acid sequence

Figure 3-3 Analysis of primary structure of peptides with α -amylase

inhibitory activity.

た。インキュベート後、酵素反応は100℃で5分のボイルにより停 止させ、溶液を凍結乾燥した。アフィニティーカラムはα-アミラー ゼとカップリングした HiTrap NHS-activated HP column (φ 0.7 cm×2.5 cm, 17-0716-01, GE Healthcare Japan, Tokyo, Japan)を作製した。カラ ムを1 mM HCl で洗浄後、10 mg のブタ膵臓由来 α-amylase (1663 U/mg protein) を加えた 1 mL のカップリング buffer (0.2 M 炭酸水 素ナトリウムおよび 0.5 M NaCl 含有、pH 8.3)をカラムにアプライ し、4℃で4h静置した。次に、3 mL のカップリング buffer をアプ ライした。未反応の官能基をブロックするため、6 mL の ブロッキ ング buffer (0.5 M monoethanolamine (MEA) および 0.5 M NaCl 含 有、pH 8.3)をアプライし室温で1h 静置した。その後、洗浄 buffer (0.1 M 酢酸ナトリウムおよび 0.5 M NaCl 含有、pH 4.0)、ブロッ キング buffer および洗浄 buffer を各 6 mL アプライし、11 mLの平 衡化 buffer(20 mM HEPES, 50 mM NaCl, および 3 mM CaCl2 含有、 pH 6.9) をアプライした。次に、3 mL の平衡化 buffer に溶解した 20 mg の蕎麦アルブミンペプチドをカラムにアプライし、平衡化 bufferは 280 nm での溶出吸光度がおおよそ 0 になるまでアプライ し続けた。α-アミラーゼとカラム内で結合した蕎麦アルブミンペプ チドは溶出 buffer (0.1 M グリシンおよび 0.02 M HCl 含有) で溶出 した。各フラクション(1 mL)は 280 nm での吸光度および αamylase 阻害活性を測定し、90%以上のブタ膵臓由来 α-アミラーゼ に対する阻害活性を示したフラクションを回収し凍結乾燥した。蕎 麦アルブミンペプチドの HPLC は COSMOSIL 5C18-AR-II column (4.6 mm I.D.×150 mm, 38144-31, ナカライテスク株式会社,京都)を接 続した liquid chromatographic system (株式会社島津製作所, 京都)を 用いた。測定条件は以下の通り:カラム温度,40°C:移動相,100%

溶媒 A (0.05% TFA in 5% acetonitrile solution) を 50 min、80% 溶媒 A/20% 溶媒 B (アセトニトリルに溶解した 0.05%トリフルオロ酢酸 (TFA)) を 80 min、および 100% 溶媒 B を 60 min: 流速, 0.5 mL/min; 注入量, 20 μL; および検出, 215 nm。蕎麦アルブミンペプ チドは溶媒 A に溶解し、0.45 μm membrane-filter (Millex-LH, Merck Co., Ltd., Tokyo, Japan)でフィルターろ過した。各フラクション (0.5 mL) は回収し、α-アミラーゼ阻害活性を測定した。ブタ膵臓由来 α-アミラーゼに対する高い α-アミラーゼ阻害活性を示したフラクショ ンは凍結乾燥した。

3-2-7 蕎麦アルブミン中の α-AI の推定

HPLC によって精製した蕎麦アルブミン α-AI ペプチドは 0.05% TFA および 5%アセトニトリル水溶液に溶解し、N-末端タンパク質 配列はプロテインシーケンサー(Applied Biosystems model492, Thermo Fisher Scientific K.K., Tokyo, Japan)で分析した。得られたア ミノ酸配列から、蕎麦ゲノムデータベース (Kazusa DNA Res. Inst. (http://www.kazusa.or.jp/e/resources/database.html)) よりタンパク質 の一次配列を推定した (Yasui *et al.*, 2016; Kazusa DNA Research Institute, 2015)。分子量および親タンパク質の理論上の p*I* は ExPASy ProtParamtool (https://web.expasy.org/protparam/)を用いて推 定した。

3-2-8 統計解析

データは平均±標準誤差(S.E.)として表し、Mac 統計解析 ver.3.0 (株式会社エスミ、東京)を使用した一元配置分散分析(ANOVA) によって評価した。各グループ間の比較は、Tukey-Kramerの検定を 使用して行い p < 0.05 を統計的に有意なものとした。

3-3 結果

3-3-1 蕎麦および小麦アルブミン加水分解物の α-アミラーゼ阻害活性

消化酵素による消化後の蕎麦および小麦アルブミンの残存するア ミラーゼ阻害活性を測定した(Figure 3-4)。蕎麦アルブミンは消化 酵素によって加水分解されたが、高いα-アミラーゼ阻害活性を保持 していた(91.4%)。一方、小麦アルブミンのα-アミラーゼ阻害活性 は、ペプシンおよびトリプシンによる消化耐性を有するにも関わら ず、55.9%に低下した。

3-3-2 動物実験試料としての蕎麦および小麦アルブミンの酵素的加水分解

トリプシンおよびペプシンによる加水分解前後の蕎麦および小麦 アルブミンの SDS-PAGE は、消化前に観察された 10 kDa を超える 全てのバンドが消失した(Figure 3-5)。蕎麦および小麦アルブミン のどちらも、消化酵素によって加水分解された 10 kDa 未満のペプ チドを回収することができた。

3-3-3 蕎麦および小麦アルブミン加水分解物のデンプン負荷試験(OSTT)

蕎麦アルブミン加水分解物の経口投与では、デンプン負荷後15 分で食後の血糖上昇を有意に抑制し、食後血糖値はコントロールと 比較して87%であった(Figure 3-6 (A))。デンプンと共に小麦アル ブミン加水分解物を経口投与した際の食後15分後の血糖値は、コ ントロールの血糖値の約93%であった(p=0.25)。曲線下面積は、 有意差はなかったものの、蕎麦アルブミン投与群は、コントロール

Figure 3-4 α -Amylase inhibitory activity of wheat and buckwheat albumins after digestion. (1) Undigested; (2) Digested by pepsin for 2 h; (3) Digested by pepsin for 2 h followed by digestion with trypsin for 2 h; (4) Digested by pepsin for 2 h followed by digestion with trypsin for 4 h; (5) Digested by pepsin for 2 h followed by digestion with trypsin for 6 h. Values with different letters are significantly different at p <0.05.

Figure 3-5 SDS-polyacrylamide gel electrophoresis patterns of (A) wheat albumin and (B) buckwheat albumin digested by pepsin and trypsin. (M) Marker; (1) undigested; (2) digested by pepsin for 2 h and trypsin for 6 h.

Figure 3-6 Effect of buckwheat and wheat albumins hydrolysates blood glucose level (A), glucose AUC (B), plasma insulin level (C), and insulin AUC (D) after oral loading of starch in normal Wistar rats. Each value is the mean of 7 experiments with S.E. shown as a vertical bar. Values with different letters are significantly different at p < 0.05.

群よりも低くなった。蕎麦アルブミン加水分解物および小麦アルブ ミン加水分解物群の血漿インスリン値は、有意差は認められなかっ たが、食後15分でコントロール群よりも低い傾向がみられた(そ れぞれ p = 0.33 および 0.35) (Figure 3-6 (C))。各群の各時間の間に は有意差が認められた。

3-3-4 蕎麦アルブミン α-AI ペプチドの精製

蕎麦アルブミンはゲルろ過クロマトグラフィーで分離した

(Figure 3-7)。フラクション No.27-51 は高い α-アミラーゼ阻害活性 を示したため、それらを回収し、トリプシンによって加水分解し た。蕎麦アルブミンペプチドを α-アミラーゼをリガントとしたアフ ィニティークロマトグラフィーに供した。アフィニティークロマト グラフィー後、0.1M グリシンと 0.02M HCl を含む溶出バッファー で溶出されたフラクション No.8 および 9 は、高い α-アミラーゼ阻 害活性を示した (Figure 3-8)。これらの画分を HPLC でさらに精製 し、74 分にペプチド濃度が高く、α-アミラーゼ阻害活性を持つ単一 画分が得られた (Figure 3-9)。α-アミラーゼ阻害活性の高い画分が 他にもいくつか認められたが、アミノ酸配列の分析に供するための ペプチド濃度が十分ではなかった。この精製を 3 回行い、ほぼ同一 のクロマトグラムが得られた。

3-3-5 蕎麦アルブミン α-AI ペプチドの分析

HPLC による 74 分でのフラクションの N 末端アミノ酸配列を、 タンパク質シーケンサーを使用して分析した。精製は 3 回行い、3 回の別々の精製から 3 つのペプチドが得られた (Table 3-1)。 蕎麦のゲノムデータベースによると、このペプチドは分子量 17.8

Figure 3-7 Sephadex G-50 gel filtration chromatogram of buckwheat albumin and α -amylase inhibitory activity of each fraction.

Figure 3-8 α -Amylase affinity chromatogram of buckwheat peptides and α -amylase inhibitory activity of each fraction.

Figure 3-9 Peptide concentration (solid line) and α-amylase inhibitory activity (bars) of buckwheat albumin hydrolysates separated by HPLC chromatography.

kDaの親タンパク質であり、理論上の pI 4.77 であり、未確認のアミノ酸はシステイン残基であることが明らかとなった (Figure 3-10)。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
peptide 1	Y	v	Е	Р	D	х	G	Ν	L	G	X	Х	Y	Η	X
peptide 2	Y	v	Е	Р	D	X	G	Ν	L	G	X	X	х	X	X
peptide 3	Y	v	Е	Р	D	X	G	N	L	G	X	X	Y	Η	X

Table 3-1 Amino-acid sequences of buckwheat α -AI peptide measured by protein sequencer

Kazusa DNA Res. Inst. Databases: http://www.kazusa.or.jp/e/resources/database.html

Buckwheat-albumin α-AI	1	MKLTIQCI	VVFAAI	LLASSI	PFSSGY	VEPDCGNI	LGCCYHYIC	GKCAKCCE	PGEVGFGR	GPG	60
				1	ΓP	С		С	3	G	
Wheat-albumin α-AI	1	SGPWM	ICYPGQA	FQVPAI	PACRPI	LRLQCNGS	SQVPEAVLE	RDCCQQLA	HISEWCRC	G	55
Buckwheat-albumin α-AI	61	GFGGGQGG	DPGYYO	GGQGGI	GRGSGS	FGGEQGSI	OPSYGGGQ	GDYGGRSS	GGEGGRGG	GSS	120
			DΥ	G	GG	F			E	S	
Wheat-albumin α-AI	56	ALYSMI	DSMYKE	HGAQE	GQAGTGA	FPRCRR			EVVKLT	AAS	94
Buckwheat-albumin a-AI	121	LOGGCYGG	FOGHCO	SDOGGI	AGVIGO	GOPOTGDE	TAELTCKS	CCYPTKF	FCGRCCES	GEA	180
	121	C	-~-	D GI)	- 2 - 2	CK	YP			100
Wheat-albumin α-AI	95	ITAVCR	LPIV	VDASGI)G		AYVCKD	VAAYPDA-			124
Buckwheat-albumin α-AI	181	PP 182									
Wheat-albumin α-AI	124	124									

Figure 3-10 Homology of amino-acid sequences between buckwheatalbumin α -AI and wheat-albumin α -AI.

3-4 考察

小麦アルブミンは α-アミラーゼの活性を阻害することが知られて おり、食後の血糖値の上昇を抑制するため、既に特定保健用食品 (FoSHU)の機能性成分として用いられている。前章で、蕎麦アル ブミンは α-アミラーゼの活性を競合的に阻害することにより、デン プン負荷後の食後の急激な血糖値の上昇を抑制することを示した (Ninomiya et al., 2018)。また、蕎麦アルブミンの in vitro での α-ア ミラーゼ阻害活性は小麦アルブミンよりも低かったが (Figure 2-15)、蕎麦アルブミンの in vivo での食後血糖値上昇抑制効果は小麦 アルブミンよりも高かった (Figure 2-13)。この相反する現象を解明 するために、in vitro 消化後の α-アミラーゼ阻害活性を評価した。 小麦アルブミンの α-アミラーゼ阻害活性を評価した。 小麦アルブミンの α-アミラーゼ阻害活性を評価した。 た (Figure 2-17)。一方、蕎麦アルブミンは消化酵素によって低分子 量ペプチドに加水分解されたが (Figure 3-4)。

Figure 3-6 に示すように、タンパク質が消化酵素によって小さな ペプチドに加水分解されたにも関わらず、OSTT において蕎麦アル ブミン加水分解物がデンプン投与 15 分後に血糖値の上昇を有意に 抑制した。この結果は、蕎麦アルブミン加水分解物中のいくつかの 小さなペプチドによって、デンプンからグルコースへの加水分解が 抑制され、小腸から吸収されるグルコースの量が減少したことを示 している。

蕎麦アルブミン加水分解物投与群の血漿インスリン値は増加しな かったが、食後15分でインスリン分泌の上昇を抑制する傾向が認 められた(Figure 3-6)。これは、蕎麦アルブミンの血糖値上昇抑制

効果がインスリンによる細胞へのグルコース取り込みの促進ではな く、腸内の a-アミラーゼ阻害に起因することを意味している。食後 の血糖値上昇に対する蕎麦アルブミン加水分解物の抑制効果が小麦 アルブミン加水分解物よりも高かったのは、小麦アルブミンの a-ア ミラーゼに対する阻害効果が加水分解により低下したことも一因と 考えられる (Ninomiya *et al.*, 2018)。

これらの結果は、蕎麦アルブミン加水分解物が高いα-アミラーゼ 阻害活性を有していた一方で、小麦アルブミンが *in vivo* で部分的に 消化され、食後の血糖値上昇に対する抑制効果を低下させたことを 示唆している。これは、蕎麦アルブミンが、小麦アルブミンと比較 して、*in vitro* でのα-アミラーゼ阻害活性が弱いにもかかわらず、 食後の血糖値上昇に対してより強力な抑制効果を示した理由である と考えられる。

蕎麦アルブミン加水分解物がα-アミラーゼ阻害活性を有する理由 として、3つの仮説が考えられる:(1)特定のペプチド配列がα-ア ミラーゼ阻害活性を示す、(2)ペプチドに共有結合した糖鎖がα-ア ミラーゼ阻害活性を示す、(3)糖鎖およびペプチド配列がα-アミラ ーゼ阻害活性を示す。

食後の血糖値上昇抑制に関与するペプチドを推定するために、蕎 麦アルブミンペプチドをα-アミラーゼをリガントとしたアフィニテ ィークロマトグラフィーおよび HPLC によって精製した。この手順 を3回繰り返し行い、毎回ほぼ同じクロマトグラムが得られた。タ ンパク質シーケンサーによるN末端アミノ酸配列の測定には、α-ア ミラーゼ阻害活性が高く、ペプチド濃度が十分な画分を使用した。 一部の残基は特定できなかったが、3つの別々の精製から得られた 3つのペプチドのアミノ酸配列はほぼ同一であった(Table 3-1)。次

に、この配列を蕎麦ゲノムデータベースの配列と比較したところ、 読み取り不可能なアミノ酸残基がシステイン残基であることが明ら かとなった(Figure 3-10)。推定されたアミノ酸配列

YVEPDCGNLGCCYHCは、分子量 17.8 kDa および理論上の p/ 4.77 の親タンパク質に含まれていた。蕎麦アルブミンの α-AI と小麦ア ルブミンの α-AI のアミノ酸配列の相同性は非常に低かった。前章 の Lineweaver-Burk プロットの結果から、蕎麦アルブミンの α-AI は α-アミラーゼを競合的に阻害するが、小麦アルブミンの α-AI は非競 合的に阻害する (Figure 2-16)。蕎麦アルブミンの α-AI と小麦アル ブミンの α-AI の異なる阻害様式も、アミノ酸配列が異なることを 支持している。一部の研究者は、植物から得られた糖タンパク質が α-アミラーゼを競合的に阻害すると報告している (Maskos *et al.*, 1996; Gibbs and Alli, 1998; Gadge *et al.*, 2015)。蕎麦アルブミン α-AI の阻害様式から、ペプチド自体が α-アミラーゼの活性部位に適合す る可能性は低いため、本章で推定された蕎麦 α-AI ペプチドはグリ コシル化されていると推測される。

糖鎖はアスパラギン (Asn) の側鎖中のアミド窒素原子、セリン (Ser) およびスレオニン (Thr) の酸素原子に結合することが知ら れている。今回得られた配列から 33 番目のアスパラギン、18-19、 23-24、84,86、93、96、108-109、119-120、135、161、177番目の セリン、4、151、158、167番目のスレオニンに糖鎖が付加してい る可能性が考えられる。また、トリプシンによってアルギニンおよ びリジンのカルボキシル基側でペプチド結合が切断されることか ら、Figure 3-10 に示す線の位置でペプチドの切断が起こると推測さ れる。したがって、トリプシンによる加水分解によって生じたペプ チドあるいは上述したアスパラギン、セリン、スレオニンへ付加し た糖鎖が α-アミラーゼの活性中心に入り込み α-アミラーゼを競合阻 害したことが推察される。

我々はこれまでに、米アルブミンが、デンプン負荷時だけでな く、グルコース負荷時でも食後の血糖値上昇を抑制することを示し た(Ina *et al.*, 2016)。米アルブミンは、昆虫由来のα-アミラーゼの 活性は阻害するが、哺乳類由来のα-アミラーゼの活性を阻害しない

(Figure 2-13)。したがって、食後の血糖値を抑制するメカニズム は、蕎麦アルブミンとは異なる。米アルブミンは、おそらくジスル フィド結合によって形成された強固な構造のため、ペプシンおよび トリプシンに対して消化耐性を有すると考えられる。しかし、蕎麦 アルブミン α-AI のシステイン残基数は 14 であり、米アルブミンよ りも多いが、蕎麦アルブミンは消化酵素によって容易に加水分解さ れた。これは、蕎麦のアルブミン α-AI のシステイン残基がジスル フィド結合による強固な構造の形成に寄与しないことを示してい る。

本章では、蕎麦アルブミン加水分解物が腸内の α-アミラーゼ活性 を阻害することにより、*in vivo* での食後血糖値の上昇に対して抑制 効果を有することを示し、この機能に関与するペプチドを推定し た。しかし、ペプチド濃度が低く、α-アミラーゼ阻害活性が高い画 分がいくつかあったため、蕎麦アルブミン加水分解物には他の α-AI ペプチドが含まれている可能性が考えられる。これらのペプチドの アミノ酸配列を解明し、*in vivo* での実験でその機能を証明するには さらなる研究が必要である。

3-5 小括

本章では、蕎麦アルブミンを酵素により加水分解し、残存する a-アミラーゼ阻害活性および *in vivo* における蕎麦アルブミン加水分解 物の食後の血糖値上昇に対する抑制効果を検討し、ゲル濾過クロマ トグラフィー、アフィニティークロマトグラフィー、および High-Performance Liquid Chromatography (HPLC)を使用して精製した後、 a-アミラーゼ阻害活性に関与するペプチドのアミノ酸配列の分析を 行った。

蕎麦アルブミンは、消化酵素によって加水分解された後も α-アミ ラーゼ阻害活性を維持し、デンプン負荷試験において血糖値上昇を 抑制した。この蕎麦アルブミンの血糖値上昇抑制効果は、α-アミラ ーゼの活性を阻害し、食後の血糖値上昇を抑制することが知られて いる小麦アルブミンの加水分解物よりもいくらか高かった。蕎麦ア ルブミンのアミノ酸配列と分子量は小麦アルブミンのものとは異な っていた。これらのことから、食後血糖値上昇抑制のメカニズム は、蕎麦アルブミンはペプチドなどの低分子による α-アミラーゼ阻 害、小麦アルブミンは主にタンパク質による α-アミラーゼ阻害、米 アルブミンはグルコースの吸着に起因することが明らかとなった。 したがって、蕎麦アルブミンは、食後の血糖値上昇を抑制するため 特定保健用食品の機能性成分としての利用が可能と考えられるが、 メカニズムの解明にはさらなる検討が必要である。

第4章 機能性食品素材としての蕎麦アルブミンの物理化学的性質の評価(Ninomiya *et al.*, 2018, Ninomiya *et al.*, 2022c)

4-1 緒言

前章までに、蕎麦アルブミンが α -アミラーゼインヒビター (α amylase inhibitor: α -AI)として働き (Ikeda and Kishida, 1993; Ikeda *et al.*, 1994; Ninomiya *et al.*, 2018)、食後の急激な血糖値上昇を抑制す ることを明らかにした (Ninomiya *et al.*, 2018)。また前章におい て、蕎麦アルブミンは、既に血糖値上昇抑制する特定保健用食品 (FoSHU) (Kodama *et al.*, 2005; Arai *et al.*, 2008)の機能性成分とし て知られている小麦アルブミンと比較すると、加水分解後も高い α -アミラーゼ阻害活性と食後の血糖値上昇抑制効果があることを明ら かにした (Ninomiya *et al.*, 2018)。

蕎麦アルブミンは、水溶性のうえに無臭・無味であるため、食品の嗜好性に影響を与えることなく、血糖値の上昇を防ぐ機能性食品素材としての利用が期待できる。それゆえ、蕎麦アルブミンは糖尿病予防のFoSHUの機能性成分として有効であると考えられる。

タンパク質は食品加工中の加熱時に変性し、不溶性になることが 多いため、タンパク質を食品産業の原料として利用するには、高い 熱安定性が必要である。加えて、高い乳化および起泡性を有するこ とにより、食品での幅広い用途が可能になる。卵タンパク質は優れ た表面特性を持つことが知られており、マヨネーズ、アイスクリー ム、メレンゲおよびスポンジケーキに使用されている。蕎麦アルブ ミンが高い乳化および起泡性を有するのなら、卵タンパク質の代替 品として効果的に使用できる。

蕎麦については、既に、蕎麦粉およびグロブリン画分の乳化およ

び起泡性が報告されているが(Tomotake *et al.*, 2000; Tang, 2007; Raikos *et al.*, 2014; Kumari *et al.*, 2015)、蕎麦アルブミンの物理化学 的特性は十分に研究されていない。そこで本章では、蕎麦アルブミ ンの耐熱性、水への溶解性、乳化性および起泡性を検討し、機能性 食品への応用の可能性を検討した。また、部分的なタンパク質の分 解はタンパク質の表面特性を変化させることがあるため(Kumagai *et al.*, 1994; Kim *et al.*, 1990; Kumagai *et al.*, 2002; Zeng *et al.*, 2013)、本章では、蕎麦のアルブミン加水分解物の乳化および起泡 性についても検討した。

4-2 実験材料と方法

4-2-1 実験試料

蕎麦粉(富澤商店株式会社、東京、日本)は市販品を購入した。 卵アルブミンおよびカゼインは和光純薬工業(大阪、日本)から入 手した。プロテアーゼA「アマノ」SDは天野エンザイム株式会社

(名古屋、日本)から入手した。 ブタ膵臓由来 α-アミラーゼは Sigma-Aldrich (St. Louis, State of Missouri, USA) から入手し、α-アミラーゼの基質である 2-chloro-4-nitrophenyl-α-D-maltotrioside

(G3-CNP)はオリエオリエンタル酵母工業株式会社(東京,日本)から入手した。他のすべての試薬は特級を使用した。

4-2-2 蕎麦アルブミンの調製

蕎麦アルブミンの調製は 2-2-1-1(3) と同様の方法で行った。

4-2-3 蕎麦アルブミンの熱安定性の評価

蕎麦および小麦アルブミンの熱安定性は、加熱後のブタ膵臓由来 α-アミラーゼに対する α-アミラーゼ阻害活性の残存活性によって評 価した(Figure 4-1)。蕎麦および小麦アルブミンは、0.1%(w/w)と なるように純水1mLに溶解し、100℃で10、30、60および120分 間加熱した。室温まで放冷後、α-アミラーゼ阻害活性を 2-2-1-3 (1)と同様の操作で行った。 加熱処理後に残存している α-アミラ ーゼ阻害活性の割合(%)を熱安定性として定義し、以下の式によ り算出した。

熱安定性 (%) = IAh/IAn × 100 (4-1)

IAh: 加熱後の α-アミラーゼ阻害活性

IAn:未加熱 のα-アミラーゼ阻害活性

Figure 4-1 Method of thermal stability measurement.

4-2-4 示差走査熱量測定(DSC)による蕎麦アルブミンの変性温度 測定

変性温度測定は、Ina ら(2019)の方法で行った(Ina et al., 2019; Figure 4-2)。ジスルフィド結合の熱安定性への影響は、還元剤添加 あるいは無添加時の蕎麦アルブミンの変性温度を示差走査熱量計 (DSC-100; Seiko Instruments Inc., Chiba, Japan)で測定し、評価した。 蕎麦アルブミンは、水あるいは 200 mM dithiothreitol (DTT) 溶液を 加え 20% (w/w)となるよう溶解し、室温で 16 時間静置した。次 に、DTT 添加あるいは無添加の各蕎麦アルブミン溶液は銀製の pan に 30 mg となるよう秤量した。密封した pan は 1°C/min で 170°C まで加熱した。同量の水あるいは 200 mM DTT 溶液を入れた密封し た pan をリファレンスとした。ピーク温度 (*T*_p) とエンタルピー変 化(*dH*)は Standard Analysis (Seiko Instruments Inc.)で算出した。

4-2-5 蕎麦アルブミンの溶解度測定

溶解性は Ina ら (2019) の方法を一部修正して行った (Ina *et al.*, 2019; Figure 4-3)。タンパク質サンプル (100 mg)は 50 mM citratephosphate buffer (pH 3.0-6.0) 10 mL に懸濁し、室温で 60 分撹拌し た。溶液は 2 つの試験管に分割した; 1 つは室温に、もう 1 つは 80°C で 20 分間加熱した。遠心分離 (10,000×g、15 min) 後、上清 のタンパク質含有量を BCA protein assay kit (Thermo Fisher Scientific, Kanagawa, Japan)にて測定した。溶解度は以下の式で算出 した:溶解度 (%) = (上清のタンパク質濃度/全タンパク質濃度)× 100

Buckwheat albumin

Analysis

Figure 4-2 Method of DSC measurement.

Figure 4-3 Method of solubility measurement.

4-2-6 酵素製剤による蕎麦アルブミンの加水分解

酵素による加水分解は Kumagai ら(1994)の方法を参考に一部修 正して行った(Kumagai *et al.*, 1994; Figure 4-4)。蕎麦アルブミン 10 mgを 0.5 mLの水に溶解し、0.5 mLの 0.002% プロテアーゼ A「ア マノ」SD 溶液を加え、50°C で 15-60 分間インキュベートした。酵 素反応は、沸騰湯浴中で 10 分間ボイルし停止させた。各加水分解 物は凍結乾燥し、使用するまで-20°C で保管した。

4-2-7 蕎麦アルブミンの加水分解度測定

加水分解度は Kumagai ら(1994)の方法を参考に一部修正して行った(Kumagai *et al.*, 1994)。蕎麦アルブミン加水分解物(1 mg/mL) は 10 mL の 1.2 M トリクロロ酢酸と混合し、室温で 30 分間撹拌し た。遠心分離(13,000×g、20 min、20°C)後、上清から 350 µL を分 取し 0.42 M NaOH を 500 µL 加え中和した。タンパク質/ペプチド濃 度は BCA 法により測定した。加水分解度は上清中のペプチド濃度 と総タンパク質濃度から算出した。

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) は Laemmli (1970)の方法(Laemmli, 1970)で行い、ゲルは 0.025% (w/v) Coomassie Brilliant Blue R-250 solution (Wako Pure Chemical Industries)で染色した。

4-2-8 α-アミラーゼ阻害活性

α-アミラーゼ阻害活性は 2-2-1-3(1)と同様の方法で行った。

4-2-9 乳化性測定

蕎麦アルブミンとその加水分解物の乳化性は Ina ら(2019)の方

Buckwheat albumin hydrolysate

Figure 4-4 Hydrolysis of buckwheat by protease A "amano" SD.

法を一部修正し、pH 3.0-6.0の溶液中で卵アルブミンおよびカゼイ ンと比較し評価した(Ina *et al.*, 2019; Figure 4-5)。蕎麦アルブミン (未処理あるいは加水分解物)、卵アルブミン、あるいはカゼイン (24 mg)は 50 mM クエン酸リン酸 buffer (pH 3.0-6.0) 2.4 mL に懸濁 し、室温で 10 分間撹拌した。次に、コーン油 0.8 mL を各懸濁液に 加え、homogeniser (Physcotron, NS-52K; Microtec Co., Ltd., Chiba, Japan) で乳化 (25,000 rpm、1 min) した。乳化後 0、10、および 30 分に、50 μ L のエマルションを試験管底部から採取し、5 mL of 0.1% SDS 溶液で希釈した。希釈したエマルションの吸光度は 500 nm で 測定した。乳化能(Emulsifying Activity: EA) はホモジナイズ直後 に測定した 500 nm での吸光度から、乳化安定性(Emulsion Stability: ES)はホモジナイズ後 10 分および 30 分後の吸光度から算出した。

4-2-10 起泡性測定

蕎麦アルブミンとその加水分解物の起泡性は Ina ら(2019)の方法を一部修正し、pH 3.0-6.0の溶液中で卵アルブミンおよびカゼインと比較し評価した(Ina et al., 2019; Figure 4-6)。蕎麦アルブミン(未処理あるいは加水分解物)、卵アルブミン、あるいはカゼイン(25 mg)は 50 mM クエン酸リン酸 buffer(pH 3.0-6.0)5 mL に懸濁し、室温で 10分間撹拌した。各懸濁液は、泡立て器(Creamer Qto CQT-45, Hario, Tokyo, Japan)にて 1分間泡立てた。起泡体積は泡立て後 0-120分後に測定した。起泡能(Foaming Capacity: FC)は泡立て後 30 および 120分後の起泡体積を測定し算出した。

Figure 4-5 Measurement of emulsifying properties.

Figure 4-6 Measurement of foaming properties.

4-2-11 統計解析

各グループ間の比較は、エクセル統計 Version 7.0 (株式会社エス ミ、東京)の Tukey-Kramer の検定を使用して行い *p* 値が 0.05 未満 を統計的に有意なものとした。

4-3 結果

4-3-1 蕎麦アルブミンの熱安定性の評価

蕎麦および小麦アルブミンの熱安定性は、100℃で10-120分間加熱した後にα-アミラーゼ阻害活性を測定し評価した(Figure 4-7)。 小麦および蕎麦アルブミンのどちらも、100℃で120分間加熱後も 高いα-アミラーゼ阻害活性を維持した(各々98.2%および75.4%)。

4-3-2 蕎麦アルブミンの変性温度

DTT を添加時と無添加時の蕎麦アルブミンの示差走査熱量測定 (DSC) サーモグラムを Figure 4-8(A)に示す。DTT 無添加時は、蕎 麦アルブミンの変性吸熱ピークは、変性開始温度(T_i)が 110°C で、変性終了温度(T_f)が 160°C の幅広い範囲観察された。そのピ ーク温度(T_p)とエンタルピー変化(ΔH)はそれぞれ 148.4°Cと 3.45 J/g であった(Figure 4-8(A))。対照的に、DTT 添加時の蕎麦ア ルブミンの変性-吸熱ピークはより鋭く、 T_i 、 T_f 、 T_p 、および ΔH は それぞれ 110°C、160°C、136.3°C、および 4.05 J/g であった (Figure 4-8(A))。さらに、DTT 添加時にはゲル化が観察された

 $(Figure 4-8(B))_{\circ}$

4-3-3 蕎麦アルブミンの溶解性

Figure 4-9 は、加熱の前後の、pH 3.0-6.0 での蕎麦アルブミン、卵 アルブミン、およびカゼインの溶解性を示している。蕎麦アルブミ ンは、測定した全ての pH で高い溶解性を示し、加熱後もその高い 溶解性を保持していた。卵アルブミンと比較すると、卵アルブミン の溶解性は蕎麦アルブミンの溶解性の 50-60%であり、加熱後、pH 4.0 を超えると約 10%に低下した。カゼインの溶解性は pH 3.5-5.0

Figure 4-7 Thermal stability of wheat and buckwheat α-AIs. Each value is the mean of 2-3 experiments with S.E. shown as a vertical bar.

Figure 4-8 (A) DSC thermogram of buckwheat albumin with and without the addition of DTT. (B) Gelation of buckwheat albumin with the addition of DTT.

Figure 4-9 Solubility profiles buckwheat albumin, casein, and egg albumin in solutions at different pH values with and without heating at 80°C for 20 min. Results are expressed as the mean of three experiments \pm SD.

の間で非常に低く、pH 5.5 を超えると蕎麦アルブミンの溶解度の 50-60%程度まで増加したが、加熱後も変化しなかった。

4-3-4 蕎麦アルブミンの加水分解度

プロテアーゼによる蕎麦アルブミンの加水分解の程度は時間の経 過と共に増加し、60分間の加水分解後には<15kDaのペプチドに分 解された(Figure 4-10)。加水分解度は、15分、30分、60分処理 後、それぞれ 31.7%、47.1%、63.3%であった(Figure 4-11)。

4-3-5 酵素製剤による加水分解後の蕎麦アルブミンの α-アミラーゼ 阻害活性

プロテアーゼ処理後の蕎麦アルブミンの残存する α -アミラーゼ阻 害活性を Figure 4-12 に示す。残存する α -アミラーゼ阻害活性は、 15 分、30 分、および 60 分のプロテアーゼ処理後、それぞれ 96.1% ± 0.008、94.8% ± 0.008、および 95.2% ± 0.014 であった。プロテア ーゼによって加水分解されたにも関わらず (Figure 4-10 および Figure 4-11)、蕎麦アルブミンは 60 分のプロテアーゼ処理後でも依 然として α -アミラーゼに対する元の阻害活性の 95.2%を保持してい た。

4-3-6 蕎麦アルブミンおよびその加水分解物の乳化性

蕎麦アルブミン、蕎麦アルブミン加水分解物、卵アルブミン、およびカゼインの乳化性を Figure 4-13 に示す。蕎麦アルブミンと卵アルブミンの両方が、測定した全ての pH の 0 分で高い乳化性

(Emulsifying Activity: EA) を示した。乳化後 30 分での蕎麦アルブ ミンの乳化安定性(Emulsifying Stability: ES) はその EA の約 50%

Figure 4-10 SDS-PAGE of buckwheat albumin before and after protease treatment. (M) Marker; (1) unhydrolysed; (2) hydrolysed by protease for 15 min; (3) hydrolysed by protease for 30 min;
(4) hydro-lysed by protease for 60 min.

Figure 4-11 Change in degree of hydrolysis of buckwheat albumin treated by protease. Results are expressed as the mean of three experiments \pm SD.

Figure 4-12 α -Amylase inhibitory activity of buckwheat albumin before and after hydrolysis by protease up to 60 min. Results are expressed as the mean of three experiments \pm SD.

Figure 4-13 Emulsifying properties of buckwheat albumin and its hydrolysate in solutions of various pH immediately, 10 min and 30 min after emulsification compared with those of egg albumin and casein. Results are expressed as the mean of three experiments ± SD.

であった。ただし、pH 4.0-6.0 では蕎麦アルブミンは卵アルブミン よりも高い乳化性を示し、pH 3.0-3.5 ではほぼ同程度であった。カ ゼインは、特に pH 3.5-5.0 の間の 0 分で低い EA を示し、10 分と 30 分での ES は、測定した全ての pH での EA よりも低かった。蕎麦ア ルブミン加水分解物は、加水分解されていない蕎麦アルブミンの 50%の EA を示し、ES は EA よりもかなり低かった。

4-3-7 蕎麦アルブミンおよびその加水分解物の起泡性

蕎麦アルブミン、その加水分解物、卵アルブミン、およびカゼインの起泡性を Figure 4-14 に示す。蕎麦アルブミンは、測定した全てのpH で高い起泡性(Foaming Capacity: FC)を示し、10分および30分での起泡安定性(Foaming Stability: FS)は FC の約80%であった。卵アルブミンとカゼインと比較すると、カゼインは蕎麦アルブミンの20-60%の FCを示し、卵アルブミンは蕎麦アルブミンの30-70%の FSを示した。蕎麦アルブミン加水分解物の FC および FS も高く、未分解の蕎麦アルブミンのものに近かった。

Figure 4-14 Foaming properties of buckwheat albumin and its hydrolysate in solutions of various pH immediately, 10 min and 30 min after whipping compared with those of egg albumin and casein. Results are expressed as the mean of three experiments ± SD.

4-4 考察

食品工業において加熱による殺菌・滅菌は不可欠なプロセスであ る。食品の pH は通常 3-6 の範囲にあるため、タンパク質を食品産 業の原料として利用するには、生理学的機能に加えて、耐熱性、水 への溶解性、弱酸性下での表面特性などの物理化学的機能を考慮す る必要がある。さらに、前章までに、蕎麦アルブミンとその加水分 解物の両方が、デンプン負荷時の血糖値の上昇を抑制することを示 した (Ninomiya et al., 2018, Ninomiya et al., 2022b)。したがって、 本章では、蕎麦アルブミンの機能性食品成分としての潜在的な用途 を見出すために、蕎麦アルブミンとその加水分解物の物理化学的機 能を評価した。

蕎麦アルブミンの熱耐性は、加熱後のα-アミラーゼに対する残存 活性と DTT 添加時と無添加時の DSC による変性温度を用いて評価 した。Figure 4-1 に示すように、小麦および蕎麦アルブミンは、加 熱後も高いα-アミラーゼ阻害活性を維持していた。小麦アルブミン は分子内ジスルフィド結合により高い熱安定性を示すと報告されて おり (Oneda *et al.*, 2004)、100℃で 120分間加熱後でもα-アミラー ゼ阻害活性を 98%以上保持した結果と一致する。蕎麦アルブミンの α-アミラーゼ阻害活性は、加熱時間に伴い徐々に低下したが、120 分後も 75%を示した。この結果は、蕎麦アルブミンの糖鎖がα-アミ ラーゼ阻害活性を有し、加熱による変性後もその活性を保持してい るという仮定と一致する。また、蕎麦アルブミンの熱安定性は高 く、加熱を伴う食品の加工にも利用可能だと考えられる。

DSC サーモグラムによると、蕎麦アルブミンの変性ピーク温度 (T_p) とエンタルピー変化(ΔH) はそれぞれ 148.4°C と 3.45 J/g で あった (Figure 4-8)。本章で得られた DSC による高い変性温度は、 蕎麦アルブミンの加熱後に残存する α-アミラーゼ阻害活性で認めら れた耐熱性と一致している (Figure 4-1)。また、蕎麦アルブミン は、pH 3-6の溶液で 80-100%の溶解性を示した。これは、加熱後も 高い溶解性を維持するという点で卵アルブミンとは異なる (Figure 4-3)。蕎麦アルブミンの耐熱性と高い水への溶解性は、製造工程で 加熱による殺菌・滅菌する必要のある食品へ応用するために望まし い特性である。

DTT 添加時は、 T_p が 136.3°C に低下し、AHが 4.05 J/g に上昇し た。これは、タンパク質構造の安定性にジスルフィド結合が関与し ていることを示している。ジスルフィド結合はタンパク質の熱安定 性に寄与することが知られており(Matsuda *et al.*, 1982, Wetzel *et al.*, 1988)、小麦および米アルブミンは、分子間ジスルフィド結合の ために耐熱性があると報告されている(Silano and Zahnley, 1978; Oneda *et al.*, 2004; Ina *et al.*, 2019)。蕎麦アルブミンは小麦アルブミ ンよりもシステインの含有量が高いため(Javornik and Kreft, 1984; Zhu *et al.*, 2006)、形成されるジスルフィド結合の数が多いほど、構 造の安定性が向上する可能性が考えられる。さらに、DTT 添加時の 蕎麦アルブミンでゲル化が観察された(Figure 4-2)。これは、DTT によって切断された分子内ジスルフィド結合が他のタンパク質分子 のチオール(SH)基と再結合し、分子内ネットワークを形成した結 果である可能性が考えられる(Hashizume and Sato, 1988; Matsudomi *et al.*, 1992; Otte *et al.*, 2000)。

DTT によるジスルフィド結合の切断は蕎麦アルブミンの T_p を低下させたが、その値は依然として 100°C 超を示した。対照的に、 DTT の添加により、米アルブミンの T_p は 100.8°C から 52.0°C に低下した (Ina *et al.*, 2019)。米アルブミンとは異なり、蕎麦アルブミ ンは糖タンパク質であり(Ninomiya *et al.*, 2018)、タンパク質のグ リコシル化は *T_p*の増強に効果的であると報告されている(Takano *et al.*, 2007)。したがって、蕎麦アルブミンの高い耐熱性は、部分的に そのグリコシル化構造に起因している可能性が考えられる。

乳化および起泡性は、食品添加物としてタンパク質を使用する際 に考慮すべき重要な特性である。両親媒性のタンパク質は、疎水性 領域を油相または気泡に、親水性領域を水相に向けることにより、 優れた界面活性剤として機能する。ただし、ほとんどのタンパク質 には、より大きな疎水性領域が含まれている。タンパク質のグリコ シル化は、親水性領域を増やすことによって物理化学的特性を改善 することが知られている(Nakamura and Kato, 2000; Takano *et al.*, 2007; Matemu *et al.*, 2009)。グリコシル化されている蕎麦アルブミ ンは、優れた親水性と疎水性のバランスを持ち、その結果、より優 れた機能特性を示すことが期待される。そこで、蕎麦アルブミンの 乳化および起泡性の検討を行った。

卵タンパク質は表面特性が高いことが知られているが、カゼイン は酸性 pH への溶解度が低く、乳化性と起泡性が低いと考えられて いる。したがって、卵アルブミンとカゼインはそれぞれポジティブ コントロールとネガティブコントロールとして使用した。卵タンパ ク質、カゼインナトリウム、およびカゼインは、中性 pH で一定レ ベルの乳化性(EA) および乳化安定性(ES) を示すことが報告さ れている(Ven der Ven, 2001; Kuan *et al.*, 2011)。蕎麦アルブミン は、pH 3-6 の卵アルブミンとほぼ同じ高い EA を示した。さらに、 乳化後 30 分での卵アルブミンの ES は、pH 4-6 の EA の 10-25%に 減少した。一方、蕎麦アルブミンの ES は、測定した全ての pH で EA の 50%に維持された(Figure 4-7)。これらの結果は、蕎麦アル

119

ブミンが卵アルブミンよりも親水性と疎水性のバランスが良く、エ マルションを形成していることを示唆している。カゼインは、pH5 まで低い EA を示したが、pH が6に近づくにつれて徐々に EA が増 加した(Figure 4-7)。カゼインの EA と ES が低いのは、pH5未満 での溶解性が低いためである可能性が考えられる(Figure 4-3)。

卵タンパク質は中性 pH で優れた起泡性を持つことが知られてお り(Kumagai et al., 2002; Raikos et al., 2007; Gharbi and Labbafi, 2019)、メレンゲ、スポンジケーキ、ホイップクリームによく使用 されている。蕎麦アルブミンの起泡性(FC)と起泡安定性(FS)は どちらも、pH 3-6の卵アルブミンおよびカゼインの FC と FS より もはるかに高かった(Figure 4-8)。卵アルブミンとカゼインの FC は、蕎麦アルブミンの FC の各々30-60%と 25-45%であった。ま た、卵アルブミンとカゼインの FS は、蕎麦アルブミンの FS の各々 30-70%と 30-55%であった。このように、蕎麦アルブミンは卵アル ブミンやカゼインよりも起泡性が高く、さまざまな食品の製造に応 用可能だということが示唆された。

乳化性や起泡性などの物理化学的特性は、溶解度の影響を強く受ける(Kinsella and Melachouris, 1976; Ahmedna *et al.*, 1999)。蕎麦ア ルブミンは、加熱後も pH 3-6 の溶液に高い溶解性を示した。酸性 pH での蕎麦アルブミンの乳化および起泡性はカゼインのものより 高かった(Figure 4-8)。カゼインの乳化性と起泡性が低いのは、pH 3-6 での溶解性が低いためだと考えられる。タンパク質の溶解性 は、空気-水界面でのタンパク質の吸着に影響を与える高い正電荷を 必要とするため、タンパク質の溶解性は起泡性を向上するために考 慮すべき事項である(Ahmedna *et al.*, 1999)。

乳化および起泡性は、加水分解後に変化することがよく見受けら

れる(Kumagai et al., 1994; Zeng et al., 2013)。蕎麦アルブミンは、 プロテアーゼ処理によって最大 60%加水分解された(Figure 4-5)。 しかし、α-アミラーゼに対する阻害活性は、加水分解後でも変化が 認められなかった(Figure 4-6)。したがって、蕎麦アルブミン加水 分解物が優れた表面特性を有する場合、糖尿病を予防するための機 能性食品の素材として有用である。

ペプチドは、界面張力を低下させ、液滴の崩壊を促進し、再合体 を防ぐことにより、乳化および起泡性に影響を与えることがある

(Walstra and Smulders, 1997)。本章では、蕎麦アルブミンの EA と ES は加水分解によって減少したが、FC と FS は未分解の蕎麦アル ブミンと同等に保持された。したがって、蕎麦アルブミン加水分解 物の表面特性を発揮するメカニズムは、未分解の蕎麦アルブミンと は異なる可能性が考えられる。この結果と同様に、ミールワームの タンパク質は加水分解時に EA の減少を示したが、FC の増加を示し たと報告されている(Leni et al., 2020)。加水分解はしばしばタンパ ク質の疎水性領域を表面に露出させ、親水性と疎水性のバランスを 変化させる。また、乳化および起泡性には適した親水性-疎水性バラ ンス (Hydrophilic-Lipophilic Balance: HLB) があることが知られて いる。通常の HLB 範囲は 1-20 で、数値が大きいほど水溶性が高い (親水性が高い)ことを示し、その逆も同様である。乳化に適した HLB は 8-18 といわれているが、起泡性の場合はより高い値のほう が好ましいとされている (Zhang *et al.*, 2012)。疎水性粒子は、気泡 の液面近辺に並び、液膜間の圧力差を減少させることによって泡沫 を安定化させることが報告されている(Kumagai et al., 1991)。した がって、加水分解し疎水性が向上することにより、蕎麦アルブミン 加水分解物が高い FC および FS を示した可能性が考えられる。

4-5 小括

本章では、蕎麦アルブミンの食品素材としての利用のため、蕎麦 アルブミンの耐熱性、水への溶解性、乳化性および起泡性を検討 し、機能性食品への応用の可能性を検討した。また、部分的なタン パク質の分解はタンパク質の表面特性を変化させることがあるた め、蕎麦のアルブミン加水分解物の乳化および起泡性についても検 討した。

蕎麦アルブミンは、150°C 近くの変性ピーク温度(*T*_p)で高い耐 熱性を示し、加熱後も pH 3-6 の溶液に高い溶解性を示した。DTT 添加時では、ゲル化とともにわずかに *T*_pの減少が観察された。これ は、蕎麦アルブミンがグリコシル化しているだけでなく、ジスルフ ィド結合の存在が部分的に起因している可能性が考えられる。さら に、蕎麦アルブミンは、弱酸性 pH で優れた乳化および起泡性を有 することが示された。また、蕎麦アルブミンは加水分解により乳化 性は低下したが、起泡性は未分解のものとほぼ同等であった。蕎麦 アルブミン加水分解物の乳化性と起泡性にこれほどの差が表れたの は、乳化および起泡に最適な親水性-疎水性バランス(HLB)が異 なるためだと考えられる。したがって、蕎麦アルブミンは、食後の 血糖値の上昇を防ぐだけでなく、パンやケーキなど加熱による殺菌 が必要な加工食品などの様々な機能性食品に利用可能と考えられ る。

122

第5章 総括

糖尿病(Diabetes mellitus: DM) は世界中で深刻な疾病の一つだ といわれており、2014年の患者数は世界で4億2200万人と推定さ れている。DMは、網膜症、腎症、神経障害、血管障害などの病変 を突然発症するまで、患者が症状を認識しないことが多いため、 "サイレントキラー"と呼ばれている。DM 患者の約90%以上を占め る II型 DM とその合併症を予防する方法の1つは、適切な食事を摂 取することによって食後の血糖値の上昇を抑制することである。食 後の血糖値の上昇を抑制する方法として、グルコース吸着能を有す る成分や多糖類の加水分解を阻害する成分の摂取が効果的といわれ ている

穀物中のタンパク質には食後の血糖値上昇を抑制する効果を有す るものがいくつか報告されている。穀物は、しばしば種子に高濃度 のα-アミラーゼインヒビター (α-Amylase Inhibitor: α-AI) を含んで いる。α-AI はデンプン分解酵素である α-アミラーゼの活性を阻害す るため、デンプンから還元糖への分解を抑制する。そのため、α-AI は食後血糖値上昇抑制作用を有することが報告されている。

本研究では、世界中で様々な製品に使用されており、日本におい ても馴染み深い広義の穀物である蕎麦のアルブミン画分中に含まれ る α-AIの食後血糖値上昇抑制効果を小麦および米のアルブミンと 比較し、その作用メカニズムについて検討した。また、蕎麦アルブ ミンの物理化学的特性、機能性についても検討した。

本研究は、第1章 序論および第2~4章から成り、内容は以下の 通りである。 第2章では、動物実験により、蕎麦アルブミンの食後血糖値上昇 抑制効果について検討し、小麦および米のアルブミンと比較した。 また *in vitro* で、蕎麦、米、小麦のアルブミンのα-アミラーゼの阻 害活性を測定し、酵素動力学的な解析を行った。また、食物繊維へ のグルコース吸着特性を解明するため、グルコース吸着能について 拡散モデルを構築し、アルブミンの定量的評価を行った。得られた 知見は以下の通りである。

特定保健用食品として既に報告されている小麦アルブミンと同様 に蕎麦アルブミンもデンプン負荷後の食後の血糖値上昇抑制効果を 示した。このメカニズムは、蕎麦および小麦アルブミンは哺乳類の α-アミラーゼ活性を競合的および非競合的に阻害することによるこ とが明らかとなった。米アルブミンは哺乳類のα-アミラーゼ阻害活 性は認められなかったにも関わらず、デンプンおよびグルコース負 荷の両方の食後の血糖値上昇を抑制した。蕎麦アルブミンは、酵素 によって低分子に加水分解されたが、小麦および米アルブミンは難 消化性を示した。二次元電気泳動の結果、蕎麦のα-AIは pJ4.1-4.8 の酸性タンパク質であり、小麦および米アルブミンと異なるタンパ ク質であることが示唆された。

米アルブミンの食後血糖値上昇抑制メカニズムを検討するため、 透析膜を通過するグルコース拡散速度を記述するためのモデルを構築し、水溶性高分子に吸着するグルコースの拡散実験を行った。透 析膜を通過するグルコースの拡散速度を表すモデルが開発され、水 溶性高分子の存在下および非存在下でのグルコースの拡散速度に関 するデータはモデルによって良好に記述された。水溶性高分子に対 する透析膜におけるグルコースの拡散係数 D は、グルコース濃度に 関係なく一定を示した。グルコース濃度の増加に伴い、水溶性高分 子へのグルコース吸着量は直線的に増加し、米アルブミンも水溶性 高分子と同等にグルコースを吸着していることが示さ、様々な水溶 性高分子に吸着されたグルコース量を評価しうることが明らかとな った。さらに、グルコース拡散速度の低下は、粘度との相関が認め られなかった。

したがって、各穀物アルブミンの血糖値上昇抑制メカニズムにつ いては、蕎麦および小麦アルブミンは哺乳類のα-アミラーゼに対す る競合的および非競合的な阻害、米アルブミンは食物繊維様に働 き、グルコースを吸着することに起因することが示唆された。

第3章では、蕎麦アルブミンを酵素により加水分解し、残存する α-アミラーゼ阻害活性および *in vivo* における蕎麦および小麦アルブ ミン加水分解物の食後の血糖値上昇に対する抑制効果を検討し、ゲ ル濾過クロマトグラフィー、アフィニティークロマトグラフィー、 および High-Performance Liquid Chromatography (HPLC)を使用して精 製した後、α-アミラーゼ阻害活性に関与するペプチドのアミノ酸配 列の分析を行った。得られた知見は以下の通りである。

蕎麦アルブミンは、消化酵素によって加水分解された後もα-アミ ラーゼ阻害活性を維持し、デンプン負荷試験において血糖値上昇を 抑制した。一方、小麦アルブミンは加水分解することによりα-アミ ラーゼ阻害活性が低下し、デンプン負荷試験において血糖値上昇抑 制効果を示さなかった。蕎麦アルブミンのアミノ酸配列と分子量は 小麦アルブミンのものとは異なっていた。これらのことから、食後 血糖値上昇抑制のメカニズムは、蕎麦アルブミンはペプチドなどの 低分子によるα-アミラーゼ阻害、小麦アルブミンは主にタンパク質 による α-アミラーゼ阻害であることが明らかとなった。したがっ て、蕎麦アルブミンは、食後の血糖値上昇を抑制するため特定保健 用食品の機能性成分としての利用が可能だと考えられるが、メカニ ズムの解明にはさらなる検討が必要である。

第4章では、蕎麦アルブミンの食品素材としての利用のため、蕎 麦アルブミンの耐熱性、水への溶解性、乳化性および起泡性を検討 し、機能性食品への応用の可能性を検討した。また、部分的なタン パク質の分解はタンパク質の表面特性を変化させることがあるた め、蕎麦のアルブミン加水分解物の乳化および起泡性についても検 討した。得られた知見は以下の通りである。

蕎麦アルブミンは、150°C 近くの変性ピーク温度(*T*_p)で高い耐 熱性を示し、加熱後も pH 3-6 の溶液に高い溶解性を示した。DTT 添加時では、ゲル化とともにわずかに *T*_pの減少が観察された。これ は、蕎麦アルブミンがグリコシル化しているだけでなく、ジスルフ ィド結合の存在が部分的に起因している可能性が考えられる。さら に、蕎麦アルブミンは、弱酸性 pH で優れた乳化および起泡性を有 することが示された。また、蕎麦アルブミンは加水分解により乳化 性は低下したが、起泡性は未分解のものとほぼ同等であった。蕎麦 アルブミン加水分解物の乳化性と起泡性にこれほどの差が表れたの は、乳化および起泡に最適な親水性-疎水性バランス(HLB)が異 なるためだと考えられる。したがって、蕎麦アルブミンは、食後の 血糖値の上昇を防ぐだけでなく、パンやケーキなど加熱による殺菌 が必要な加工食品などの様々な機能性食品に利用可能と考えられ る。

126

以上、本研究では、蕎麦アルブミンが食後血糖値上昇抑制作用を 有し、糖尿病の予防に有効な機能性食品素材であることを初めて明 らかにした。また、その血糖値上昇抑制メカニズムについては、蕎 麦アルブミンはペプチドなどが α-アミラーゼを競合的に阻害するこ とによることを明らかとし、主にタンパク質が α-アミラーゼを非競 合的に阻害する小麦アルブミンとグルコースを吸着する米アルブミ ンと異なることを示した。さらに、蕎麦アルブミンは、高い熱安定 性、水への溶解性、乳化性、起泡性を有する食品工業的な取り扱い に適した機能性食品素材であることを明らかにした (Table 5-1)。 本研究の成果は、糖尿病予防効果が期待される新たな機能性食品素 材の開発において大きく寄与することが期待される。

Table 5-1 Summary of this study

	Buckwheat	Wheat	Rice
Mammalian pancreatic α-amylase inhibition	0	0	×
Indigestibility	×	0	0
α-Amylase inhibition by albumin hydrolysate	0	Δ	Ι
Inhibition manner	Competitive	Non- competitive	Ι
Thermal stability	0	0	0
Isoelectric point	p <i>I</i> 4.1-4.8	p <i>I</i> 4.5-5.7	pI 5.5-7.2
Oral starch tolerance test	0	0	0
Oral glucose tolerance test	×	×	0
Mechanism for suppressing blood glucose elevation	α-Amylase inhibition by peptides or sugar chain	α-Amylase inhibition by protein	Glucose adsorption by protein

	Buckwheat	Wheat	Rice	Egg
Thermal stability	0	0	0	×

	Buckwheat	Hydrolysate	Egg	Casein
Solubility	0	Ι	4	×
Emulsifying property	0	Δ	0	×
Foaming property	0	0	0	×

Ahmedna, M., Prinyawiwatkul, W., Rao, R. M. (1999) Solubilized wheat protein isolate: functional properties and potential food applications. J. Agric. Food Chem. 47, 1340–1345.

Alberti, K. G. M. M., Zimmet, P. Z. (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus, Provisional report of a WHO Consultation. *Diabet. Med.* **15**, 539-553.

Arai, S., Yasuoka, A., Abe, K. (2008) Functional food science and food for specified health use policy in Japan: State of the art. J. Lipid Res. 19, 69-73.

Baker, J. E. (1988) Purification of an α-amylase inhibitor from wheat,
Triticum aestivum, and its interaction with amylase from the rice,
weevil, Sitophilus orizae (Coleoptera: Curculionidae). *Insect Biochem*.
18, 107-116.

Bird, R.B., Stewart, W.E, Lightfoot, E. N. (1960) Transport Phenomena (pp. 519–553). New York: John Willey & Sons, Inc.

Blackburn, N. A., Redfern, J. S., Jaris, H., Holgate, A. M., Hanning, I., Schrpello, J. H. B., Johnson, I. T., Read, N. W. (1984) The mechanism of action of guar gum improving glucose tolerance in man. *Clin. Sci.* **66**, Blanco-Labra, A., Iturbe-chiñas, F. A. (1981) Purification and characterization of an α -amylase inhibitor from maize (Zea maize). J. Food Biochem. 5, 1-17.

Braaten, J. T., Wood, P. J., Scott, F. W., Riedel, K. D., Poste, L. M., Collins, M. W. (1991) Oat gum lowers glucose and insulin after an oral glucose load. *Am. J. Clin. Nutr.* **53**, 1425-1430.

Buonocore, V., Poerio, R. (1975) Affinity column purification of amylases on protein inhibitors from wheat kernel. J. Chromatogr. 114, 109–114.

Buonocore, V., Petrucci, T., Silano, V. (1977) Wheat protein inhibitors of α-amylase. *Phytochem.* **16**, 811-820.

Cavallero, A., Empilli, S., Brighenti, F., Stanca, A. M. (2002) High $(1 \rightarrow 3, 1 \rightarrow 4)$ - β -glucan barley fractions in bread making and their effects on human glycemic response. *J. Cereal. Sci.* **33**, 56-66.

Chandalia. M., Garg, A., Lutjohann. D., Bergmann, K., Grundy, S. M., Brinkley, L. J. (2003) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. *N. Engl. J. Med.* **342** (19), 1392– 1398. Dikeman, C. L. Fahey, Jr., G. C. (2006) Viscosity as related to dietary fiber: a review. *Crit Rev Food Sci Nutr.* **46**, 649–663.

Fabek, H., Messerschmidt, S., Brulport, V., Goff, H. D. (2014) The effect of *in vitro* digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion., *Food Hydrocoll.* **35**, 718–726.

Feng, G.H., Chen, M., Kreamer, K.J., Reeck, G.R. (1991) Alpha-amylase inhibitors from rice: Fractionation and selectivity toward insect, mammalian, and bacterial alpha-amylases. *Cereal Chem.* **68**, 516–526.

Feng, G. H., Richardson, M., Chen., M. S., Kramer, K. J., Morgan, T. D., Reeck, G. R. (1996) α -Amylase from wheat: amino acid sequences and patterns of inhibition of insect and human α -amylase. *Insect Biochem. Mol. Biol.* **26**, 419-426.

Flourie, B. (1992) The influence of dietary fiber on carbohydrate digestion and of food nutritional function in health and disease (pp.181– 196). London: Springer-Verlag.

Foo, A. Y., Bais, R. (1998) Amylase measurement with 2-chloro-4nitrophenyl maltotrioside as substrate. *Clin. Chim. Acta.* **272**, 137–147.

Gadge, P. P., Wagh, S. K., Shaikh, F. K., Tak, R. D., Padul, M. V., Kachole, M. S. (2015) A bifunctional α-amylase/trypsin inhibitor from pigeonpea seeds: Purification, biochemical characterization and its bioefficacy against Helicoverpa armigera. *Pest Biochem. Physiol.* **125**, 17–25.

Gharbi, N., Labbafi, M. (2019) Influence of treatment-induced modification of egg white proteins on foaming properties. *Food Hydrocoll.* **90**, 72–81.

Gibbs, B. F., Alli, I. (1998) Characterization of a purified α-amylase inhibitor from white kidney beans (*Phaseolus vulgaris*). Food Res. Int. **31**, 217–225.

Gourgue, C. M. P., Champ, M. M. J., Lozano, Y., Delort-Laval, J. (1992) Dietary fiber from mango by products: characterization and hypoglycemic effects determined by *in vitro* methods. J. Agric. Food Chem. 40, 1864–1868.

Granum, P. E. (1978) Purification and characterization of an α -amylase inhibitor from rye (secale cereal) flour. J. Food Biochem. 2, 103–120.

Gul, X, Yao, H. (2006) Fractionation and characterization of tartary buckwheat flour proteins. *Food Chem.* **98** (1), 90–94.

Gurney, H. P., Lurie, J. (1923) Charts for Estimating Temperature Distributions in Heating or Cooling Solid Shapes. *Ind. Eng. Chem. Res.* **15**, 1170–1172. Hara, Y., Honda, M. (1990) The inhibition of α-amylase by tea polyphenols. *Agric. Biol. Chem.* **54**, 1939-1945.

Hashizume, K., Sato, T. (1988) Gel-forming characteristics of milk
proteins. 2. Role of sulfhydryl groups and disulfide bonds. J. Dairy Sci.
71, 1447–1454.

Hoogenkamp, H., Kumagai, H., Wanasundara, J. (2016) Rice Protein and Rice Protein Products in "Sustainable Protein Sources", Academic Press, Elsevier, Editors: Nadathur, S. R., Wanasundara, J. P. D., Scanlin L., pp. 47-65 (Chapater 3)

Ikeda, K., Kishida, M. (1993) Digestibility of proteins in buckwheat seed. *Fagopyrum* 13, 21–24.

Ikeda, K., Shida, K., Kishida, M. (1994) α-Amylase inhibitor in buckwheat seed. *Fagopyrum* 14, 3–6.

Ina, S., Ninomiya, K., Mogi, T., Hase, A., Ando, T., Matsukaze, N.,
Ogihara, J., Akao, M., Kumagai, H., Kumagai, H. (2016) Rice (*Oryza sativa japonica*) Albumin Suppresses the elevation of blood glucose and plasma insulin levels after oral glucose loading. J. Agric. Food Chem.
64, 4882–4890.

Ina, S., Hamada, A., Kaneko, T., Nakajima, N., Yamaguchi, Y., Akao, M., Kumagai, H., Kumagai, H. (2019) Physicochemical and surface properties of rice albumin for its application as a functional food material. *Food Sci. Technol. Res.* **25** (4), 555–562.

Ina, S., Hamada, A., Nakamura, H., Yamaguchi, Y., Kumagai, H., Kumagai, H., (2020) Rice (Oryza sativa japonica) albumin hydrolysates suppress postprandial blood glucose elevation by adsorbing glucose and inhibiting Na⁺-D-glucose cotransporter SGLT1 expression. *J. Funct. Foods* **64**, 103603. (8 pages).

Iulek, J., Franco, O. L., Silva, M., Slivinski, C. T., Bloch, C., Jr.,
Rigden, D.J., Grossi de Sá, M.F. (2000) Purification, biochemical
characterization and partial primary structure of a new -amylase
inhibitor from Secale cereal (rye). Int. J. Biochem. Cell Biol. 32, 1195–
1204.

Iwami, K., Sakakibara, K., Ibuki, F. (1986) Involvement of postdigestion 'hydrophobia' peptides in plasma cholesterol-lowering effect of dietary plant proteins. *Agric. Biol. Chem.* **50**, 1217–1222.

Janssen, F., Pauly, A., Rombouts, I. Jansens, K. J. A., Deleu, L. J.,
Delcour, J. A. (2016) Proteins of Amaranth (*Amaranthus* spp.),
Buckwheat (*Fagopyrum* spp.), and Quinoa (*Chenopodium* spp.): A Food
Science and Technology Perspective. Compr. Rev. Food Sci., 16, 39–58.

Javornik, B., Kreft, I. (1984) Characterization of buckwheat proteins. Fagopyrum., 4, 30–38. Kayashita, J., Shimaoka, I., Nakajoh, M., Yamazaki, M., Kato, N.
(1997) Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility. J. Nutr. 127, 1395–1400.

Kazusa DNA Research Institute, Buckwheat Genome Data Base (BGDB), (2015) http://buckwheat .kazusa.or.jp

Kim, S. Y., Park, P. S.-W., Rhee, K. C. (1990) Functional of proteolytic enzyme modified soy protein isolate. J. Agric. Food Chem. **38**, 651–656.

Kinsella. J.E., Melachouris, N. (1976) Functional properties of proteins in foods: A survey. *Crit Rev Food Sci Nutr.*, 7 (3), 219–280.

Kodama, T., Miyazaki, T., Kitamura, I., Suzuki, Y., Namba, Y., Sakurai, J., Torikai, Y., Inoue, S. (2005) Effects of single and long-term administration of wheat albumin on blood glucose control: Randomized controlled clinical trials. *Eur. J. Clin. Nutr.* **59**, 384–392.

Koike, D., Yamadera, K., Dimagno, E. P. (1995) Effect of a wheat amylase inhibitor on canine carbohydrate digestion, gastrointestinal function, and pancreatic growth. *Gastroenterology*. **108**, 1221–1229.

Kuan, Y.-H.: Bhat, R., Karim, A. A. (2011) Emulsifying and foaming properties of ultraviolet-irradiated egg white protein and sodium

caseinate. J. Agric. Food Chem. 59, 4111-4118.

Kumagai, H., Torikata, Y., Yoshimura, H., Kato, M., Yano, T. (1991) Estimation of the stability of foam containing hydrophobic particles by parameters in the capillary model. *Agric. Biol. Chem.* **55** (7), 1823–1829.

Kumagai, H., Seto, H., Kumagai, H., Sakurai, H., Ishii, K., Arai, S. (1994) Changes in Water Activity and Functional Properties of Protein Hydrolysates. Developments in Food Engineering, Yano. T., Matsuno, R., Nakamura, K., Springer: Boston, MA, US, pp. 176–178.

Kumagai, H., Seto, H., Norimatsu, Y., Ishii, K., Kumagai, H. (2002) Changes in activity coefficient γw of water and the foaming capacity of protein during hydrolysis. *Biosci. Biotechnol. Biochem.* **66** (7), 1455– 1461.

Kumagai, H., Tashiro, A., Hasegawa, A., Kohyama K., Kumagai, H. (2009) Relationship between Flow Properties of Thickener Solutions and their Velocity through the Pharynx Measured by the Ultrasonic Pulse Doppler Method, *Food Sci. Technol. Res.* **15**, 203–210. H

Kumari, N., Raghuvanshi, R. S. (2015) Physicochemical and functional properties of buckwheat (*Fagopyrum esculentum* Moench). J. Ecofriendly Agric. 10 (1), 77–81.

Laemmli, U. K. (1970) Cleavage of structural proteins during the

assembly of the head of bacteriophage T4. Nature. 227 (5259), 680-685.

Lankisch, M., Layer, P., Rizza, R. A. DiMagno, E. P. (1998) Acute postprandial gastrointestinal and metabolic effects of wheat amylase inhibitor (WAI) in normal, obese, and diabetic humans. *Pancreas.* 17, 176–181.

Leni, G., Soetemans, L., Caligiani, A., Sforza, S., Bastiaens, L. (2020) Degree of hydrolysis affects the techno-functional properties of lesser mealworm protein hydrolysates. *Foods* **9**, 381.

Liljeberg, H. G. M., Granfeldt, Y. E., Björck, I. M. E. (1996). Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans. J. Nutr. **126** 458-466.

Lineweaver, H., Burk, D. (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666.

López, G., Ros, G., Rincón, F., Periago, M. J., Martínez, M. C., Ortuño, J. (1996) Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. *J. Agric. Food Chem.* **44**, 2773–2778.

Ma, Y., Xiong, Y. L. (2009) Antioxidant and bile acid binding activity of buckwheat protein *in vitro* digests. J. Agric. Food Chem. 57, 4372–4380.

Marshall, J. J., Lauda, C. M. (1975) Purification and properties of phaseolamin, an inhibitor of α-amylase, from the kidney bean, phaseolus vulgaris. J. Biol. Chem. **250**, 8030–8037.

Maskos, K., Huber-Wunderlich, M., Glockshuber, R. (1996) RBI, a onedomain α -amylase/trypsin inhibitor with completely independent binding sites. *FEBS Lett.* **397**, 11–16.

Matemu, A. S., Kayahara, H., Murasawa, H., Nakamura, S. (2009) Importance of size and charge of carbohydrate chains in the preparation of functional glycoproteins with excellent emulsifying properties from tofu whey. *Food Chem.* **114**, 1328–1334.

Matsuda, T., Watanabe, K., Nakamura, R. (1982) Immunochemical studies on thermal denaturation of ovomucoid. *Biochem. Biophys. Acta*. **707**, 121–128.

Matsudomi, N., Oshita, T., Sasaki, E., Kobayashi, K. (1992) Enhanced heat-induced gelation of β -lactoglobulin by α -lactalbumin. *Biosci. Biotech. Biochem.* 56 (11), 1697–1700.

Matsui, T., Tanaka, T., Tamura, S., Toshima, A., Tamaya, K., Miyata, Y., Tanaka, K., Matsumoto, K. (2007) α-Glucosidase inhibitory profile of catechins and theaflavins. J. Agric. Food Chem. **55**, 99-105.
Moron, D., Melito, C., Tovar, J. (1989) Effect of indigestible residue from food stuffs on trypsin and pancreatic amylase activity *in vitro*. J. Sci. Food Agric. 47, 171–179.

Nakamura, S., Kato, A. (2000) Multi-functional biopolymer prepared by covalent attachment of galactomannan to egg-white proteins through naturally occurring Maillard reaction. *Nahrung* **44** (3), 201–206.

Ninomiya, K., Ina, S., Hamada, A., Yamaguchi, Y., Akao, M., Shinmachi, F., Kumagai, H., Kumagai, H. (2018) Suppressive effect of the α -amylase inhibitor albumin from buckwheat (*Fagopyrum esculentum* Moench) on postprandial hyperglycaemia. *Nutrients* **10** (10), 1503 (12 pages).

Ninomiya, K., Ina, S., Nakamura, H., Yamaguchi, Y., Kumagai, H. Kumagai, H. (2022a) Evaluation of the amount of glucose adsorbed on water-soluble dietary fibres by the analysis of its diffusion rate through a dialysis membrane. *Food Hydrocoll.* **129**, 107626 (9 pages).

Ninomiya, K., Yamaguchi, Y., Shinmachi, F., Kumagai, H., Kumagai, H. (2022b) Suppression of postprandial blood glucose elevation by buckwheat (Fagpopyrum esculentum) albumin hydrolysate and identification of the peptide responsible to the function. *Food Sci. Hum. Well.* **11** (4) 992-998.

Ninomiya, K., Yamaguchi, Y., Kumagai, H., Kumagai, H. (2022c) Physicochemical and functional properties of buckwheat (*Fagpopyrum* esculentum Moench) albumin. Future Foods. 6, 100178 (7 pages).

Nishimune, T., Yakushiji, T., Sumimoto, T., Taguchi, S., Konishi, Y., Nakahara, S., Ichikawa, T., Kunita, N. (1991) Glycemic response and fiber content of some foods. *Am. J. Clin. Nutr.* **54**, 414-419.

Oneda, H., Lee, S., Inouye, K. (2004) Inhibitory effect of 0.19 α -amylase inhibitor from wheat kernel on the activity of porcine pancreas α amylase and its thermal stability. J. Biochem. **135**, 421–427.

Otte, K., Zakora, M., Qvist, K. B. (2000) Involvement of disulfide bonds in bovine β -lactoglobulin B gels set thermally at various pH. J. Food Sci. 65 (3), 384–389.

Ou, S., Kwok, K.-c., Li, Y., Fu, L. (2001) *In vitro* study of possible role of dietary fiber in lowering postprandial serum glucose. *J. Agric. Food Chem.* **49**, 1026-1029.

O'Connor, C. M., McGeeney, K. F. (1981) Interaction of human αamylases with inhibitors from wheat flower. *Biochim. Biophys. Acta*. **658**, 397–405.

O'Donnell, M. D., McGeeney, K. F. (1976) Purification and properties of an α-amylase inhibitor from wheat. *Biochim. Biophys. Acta.* **422**, 159– 169. Petrucci, T., Rab, A., Tomasi, M., Silano, V. (1976) Further characterization studies of the α-amylase protein inhibitor of gel electrophoretic mobility 0.19 from the wheat kernel. *Biochim. Biophys. Acta.* **420**, 288–297.

Puls, W., Keup, U. (1973) Influence of an α -amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and NEFA in starch loading test in rats, dogs and man. *Diabetologia*. 9, 97–101.

Qi, J., Li, Y., Masamba, K. G., Shoemaker, C. F., Zhong, F., Majeed, H., Ma, J. (2016) The effect of chemical treatment on the *in vitro* hypoglycemic properties of rice bran insoluble dietary fiber. *Food Hydrocoll.* **52**, 699–706.

Radovic, R. S., Maksimovic, R. V., Brkljacic, M. J., Varkonji Gasic, I.
E., Savic P. A. (1999) 2S Albumin from Buckwheat (*Fagopyrum* esculentum Moench) Seeds. J. Agric. Food Chem. 47, 4, 1467–1470.

Raikos, V., Campbell, L., Euston, S. R. (2007) Effects of sucrose and sodium chloride on foaming properties of egg white proteins. *Food Res. Int.* **40** (3), 347–355.

Raikos, V., Neacsu, M., Russell, W., Duthie, G. (2014) Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH. *Food Sci. Nutr.* 2 (6), 802–810. Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C., Inoue, S. (1996) L-Arabinose selectively inhibits intestinal sucrose in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. *Metabolism.* **45**, 1368–1374.

Shainkin, R., Birk, Y. (1970) α-Amylase inhibitors from wheat. Isolation and characterization. *Biochim. Biophys. Acta.* **221**, 502-513.

Silano, V., Pocchiari, F., Kasarda, D. D. (1973) Physical characterization of alpha-amylase inhibitors from wheat. *Biochim. Biophys. Acta.* **317**, 139-148.

Silano, V., Zahnley, J. C. (1978) Asspcoatopm of Tenebrio molitor L.αamylase with two protein inhibitors – one monomeric, one dimeric – from wheat flour: Differential scanning calorimetric comparison of heat stabilities. *Biochem. Biophys. Acta.* 533, 181–185.

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. *Anal. Biochem.* **150** (1), 76-85

Suhaimi, H. Das, D. B. (2016). Glucose diffusion in tissue engineering membranes and scaffolds. *Rev. Chem. Eng.* **32**, 629-650.

Suhaimi, H., Wang S., Thornton, T., Das. D. B. (2015) On glucose

diffusivity of tissue engineering membranes and scaffolds. *Chem. Eng.* Sci. 126, 244-256.

Svensson, B., Fukuda, K., Nielsen, P. K., Bønsager, B. C. (2004) Proteinaceous α-amylase inhibitors. *Biochim. Biophys. Acta.* **1696**, 145– 156.

Takano, K., Hattori, M., Yoshida, T., Kanuma, S., Takahashi, K. (2007) Porphyran as a functional modifier of a soybean protein isolate through conjugation by the Maillard reaction. J. Agric. Food Chem. 55, 5796– 5802.

Tang, C.-H. (2007) Functional properties and *in vitro* digestibility of buckwheat protein products: Influence of processing. *J. Food Eng.*, 82, 568-576.

Tomotake, H., Shimaoka, I., Kayashita, J., Yokoyama, F., Nakajoh, M., Kato, N. (2000) A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J. Nutr. **130**, 1670–1674.

Tormo, M. A., Gil-Exojo, I., Romero de Tejada, A., Campillo, E. (2004) Hypoglycaemic and anorexigenic activities of an α-amylase inhibitor from white kidney beans (*Phaseolus vulgaris*) in Wistar rats. *Br. J. Nutr.* **92**, 785–790. Tormo, M.A., Gil-Exojo, I., Romero de Tejada, A., Campillo, E. (2006) White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats. *Br. J. Nutr.* **96**, 539–544.

Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., van de Lisdonk, E. H., Rutten, G. E., van Weel, C. (2004) α-Glucosidase inhibitors for patients with type 2 diabetes. *Diabetes Care.* **28**, 154–163.

Ven der Ven, C., Gruppen, H., De Bont, D. B. A., Voragen, A.G. J. (2001) Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. *J. Agric. Food Chem.* **49**, 5005–5012.

Walstra, P., Smulders, I. (1997) Making Emulsions and Foams: An overview. In Food colloids: proteins, lipids and polysaccharides; Dickinson, E., Bergenstahl, B., Eds.; The Royal Society of Chemistry: Cambridge, pp 367–381.

Weselake, R. J., MacGregor, A. W., Hill, R. D. (1983a) An endogenous α-amylase inhibitor in barley kernels. *Plant Physiol.* **72**, 809–812.

Weselake, R. J., MacGregor, A. W., Hill, R. D., Duckworth, H. W. (1983b) Purification and characteristics of an endogenous α -amylase inhibitor from barley kernels. *Plant Physiol.* **73**, 1008-1012.

Westermeier, R. (2011) Electrophoresis in gels. In Protein Purification:

Principles, High Resolution Methods, and Applications, 3rd ed., J.-C. Janson, Ed.; John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 365–377.

Wetzel, R., Perry, L. J., Baase, W. A., Becktel, W. J. (1988) Disulfide bonds and thermal stability in T4 lysozyme. *Proc. Natl. Acad. Sci. USA*. **85**, 401–405.

Wijngaard, H. H., Arendt, E. K. (2006) Buckwheat (review). *Cereal Chem.* **83** (4), 391–401.

Wolever, T. M., Jenkins, D. J. (1986) The use of the glycemic index in predicting the blood glucose response to mixed meals. Am. J. Clin. Nutr.43, 167-172.

World Health Organization (2016) Global Report on Diabetes. Geneva, Switzerland, pp. 13, 25

Yan, J., Zhao, J., Yang, R., Zhao, W. (2019) Bioactive peptides with antidiabetic properties: A review. *Int. J. Food Sci. Technol.* **54** (6) 1909– 1919.

Yasui, Y., Hirakawa, H., Ueno, M., Matsui, K., Tanaka-Katsube, T., Jung Yang, S., Aii, J., Sato, S., Moti, M. (2016) Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. *DNA Res.* **23**(3) 215–224. Yilmaz, H. Ö., Ayhan, N. Y., Meriç, Ç. S. (2020) Buckwheat: A useful food and its effects on human health. *Curr. Nutr. Food Sci.* 16, 29–34.

Yu, Z., Yin, Y., Zhao, W., Liu, J., Chen, F. (2012) Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. *Food Chem*.
135, 2078-2085.

Zeng, M., Adhikari, B., He, Z., Qin, F., Huang, X., Chen, J. (2013) Improving the foaming properties of soy protein isolate through partial enzymatic hydrolysis. *Drying Technology*. **31**, 1545–1552.

Zhang, W., Nesset, J. E., Rao, R., Finch, J. A. (2012) Characterizing frothers through critical coalescence concentration (CCC)95-hydrophilelipophile balance (HLB) relationship. *Minerals.* **2**, 208-227.

Zhu, K. X., Zhou, H. M., Qian, H. F. (2006) Proteins extracted from defatted wheat germ: nutritional and structural properties. *Cereal Chem.* **83** (1), 69–75.

本論文の執筆にあたり、終始懇篤な御指導、御鞭撻を賜りました 日本大学 生物資源科学部 生命化学科 食品化学研究室、熊谷日登 美教授ならびに山口勇将専任講師に心より感謝申し上げます。ま た、貴重な御助言、御指導、御鞭撻を賜りました共立女子大学 家 政学部 食物栄養学科 化学研究室、熊谷仁教授に深甚なる感謝の意 を表します。

日本大学 生物資源科学部 くらしの生物学科 くらしの園芸研究 室、新町文絵教授にはペプチドの解析等、多大なるご指導、ご助言 をいただきました。生命化学科 食品化学研究室、赤尾真元専任講 師、研究員の若林秀彦博士および稲成信博士には、有意義な御意見 を賜りました。また、共同実験者の同研究室、下平史哉さん(平成 22 年度卒)、中谷友美さん(平成 22 年度卒)、宮地由貴子さん(平 成 23 年度卒)、森麻由美さん(平成 23 年度卒)、南森秀介さん(平 成 24 年度卒)、瀬上雅人さん(平成 23 年度卒)、帝田子さん(平 成 27 年度卒)、福井三晃さん(平成 24 年度卒)、谷口朋子さん(平 成 27 年度卒)、福井三見さん(平成 27 年度卒)、鈴木雄貴さん(平 成 30 年度卒)、藤原里美さん(平成 30 年度卒)、中村華恵さん(平 成 30 年度卒)、濱田彩さん(平成 30 年度卒)、山田勇太さん(令和 3 年度卒)、渡邉晃太郎さん(令和 2 年度卒)、本千将さん(令和 3 年度卒)、小川里桜さんには、多大な御協力、御意見を頂きまし た。また、同研究室の皆様には、研究全般にあたり多大なご協力を 頂きました。ここに厚く御礼申し上げます。

日本大学 生物資源科学部 生命化学科 栄養生理化学研究室、関 泰一郎教授、細野崇准教授には、実験機器を快く貸して頂きまし

147

た。ここに厚く御礼申し上げます。

最後に、本研究に携わった実験動物に感謝するとともに、御冥福 をお祈りいたします。