パルス形ハードウェアニューロンモデルを用いた

四足歩行ロボットシステムに関する研究

## 令和 4年 1月

日本大学大学院理工学研究科博士後期課程

精密機械工学専攻

武 井 裕 樹

| 目 | 次 |
|---|---|
|   |   |

| 第1章 | 章 序論                            | 1  |
|-----|---------------------------------|----|
| 1-1 | 研究背景                            | 1  |
| 1-2 | ニューロンモデル                        | 3  |
| 1-3 | 四足歩行動物の歩行運動                     | 4  |
| 1-4 | 四足歩行動物の歩容の工学的模倣                 | 7  |
| 1-4 | 4-1 CPG モデルによる歩容の生成             | 7  |
| 1-4 | 4-2 受動歩行                        | 8  |
| 1-4 | 4-3 位相振動子を用いた歩容の生成              | 10 |
| 1-5 | 本論文の目的                          | 12 |
| 1-6 | 本論文の構成                          | 14 |
| 第2章 | 章 パルス形ハードウェアニューロンモデル(P-HNM)     | 17 |
| 2-1 | 細胞体モデル                          | 17 |
| 2-2 | 抑制性シナプスモデル                      | 19 |
| 第3章 | 章 ディスクリート素子による自己抑制をもつ P-HNM     | 20 |
| 3-1 | ディスクリート素子による自己抑制をもつ P-HNM の設計   | 20 |
| 3-2 | ディスクリート素子による自己抑制をもつ P-HNM の測定結果 | 25 |
| 第4章 | 章 自己抑制をもつ P-HNM を用いて歩容を生成する四足歩行 |    |
| ロボッ | ットシステム                          | 30 |
| 4-1 | 機械構成要素                          | 31 |
| 4-2 | 電気構成要素                          | 33 |
| 4-3 | 四足歩行ロボットシステムの関節の制御              | 36 |
| 4-4 | 四足歩行ロボットシステムによる歩容の生成            | 39 |
| 第5章 | 章 集積回路(IC)による自己抑制をもつ P-HNM      | 43 |
| 5-1 | IC による自己抑制をもつ P-HNM の設計         | 43 |

| 5-2 | IC チップに実装した自己抑制をもつ P-HNM の測定結果          | .49 |
|-----|-----------------------------------------|-----|
| 5-3 | 回路定数を変更した IC による自己抑制をもつ P-HNM の設計       | .53 |
| 5-4 | IC チップに実装した自己抑制をもつ P-HNM の測定結果(回路定数変更後) | )   |
|     |                                         | .58 |
| 第6章 | 章 歩容を生成する四足歩行ロボットモデルの動力学シミュレー           |     |
| ション | /                                       | 60  |
| 6-1 | 四足歩行ロボットモデルの設計                          | .60 |
| 6-2 | 四足歩行ロボットモデルの関節の制御                       | .65 |
| 6-3 | 四足歩行ロボットモデルによる歩容の生成                     | .68 |
| 第7章 | 章 結論                                    | 72  |
| 謝辞  |                                         | 74  |
| 参考文 | ケ献                                      | 75  |
| 研究業 | <b>崔績一覧</b>                             | 80  |

## 第1章序論

1-1 研究背景

コンピュータの性能が向上したことで、複雑なアルゴリズムのリアルタ イムな処理が可能になった.従来は制御が難しいとされてきた移動ロボッ トにおいても,高い運動能力をもたせることが可能になっている.さらに, 歩行制御理論の進展により、不安定な足場においても安定的に歩行が可能 な頑健性を有するロボットも開発された[1].近年では、レーザ距離センサ や GPS センサなどを利用して経路計画を行い, 障害物を回避しつつ入力さ れた目標地点に向かうことも可能になり、すでに多くの用途で活用されて いる[1-3]. しかし、動物と同等の運動能力は実現されているものの、動物 のように自律的に行動できるものは存在しない. その原因の1つとして, 現在の一般的なロボットの制御手法では、無数に想定される状況への自律 的な対応が困難なことが挙げられる.現在のロボット制御では,起こりう る状況を想定し、取るべき行動をあらかじめアルゴリズムに組み込む手法 が主流である.この手法は、産業ロボットのような、同じ動作を正確に何 度も繰り返す用途には適しているが、起こりうる全ての状況に対する行動 をプログラムする必要があるため、柔軟に事態に対応することは難しい. 現在のノイマン型コンピュータは,単純な数値計算の早さでは人間をも凌 駕しているが、逐次処理である性質上、自律的な行動を可能にするほどの 大量の情報のリアルタイムな処理は、スーパーコンピュータですら実現さ れていない、マウス規模の250万個のニューロンからなる大脳をシミュレ ートするためにはマウスの4万倍(400ワット)の電力が必要でありながら も実際のマウスの脳より9千倍遅く、人間の大脳規模になるとエクサスケ ールのスーパーコンピュータと5億ワットもの電力が必要になるという試 算もされている[4].一方で、神経科学の発展に伴い、動物の脳のニューラ ルネットワーク(神経回路網)を模倣した情報処理手法が研究されている

[5-10]. ニューラルネットワークを構成するニューロン(神経細胞)の特性は 明らかにされつつあるが,複雑な構造のニューラルネットワークの情報処 理原理は未だ不明な点が多く,ニューロンの機能を模倣したニューロンモ デルを用いた解析が行われている[11-14]. これまでに様々なニューロンモ デルが提案され,ニューロンやニューラルネットワークの機能の解析に用 いられている.ニューロンモデルを用いて脳の学習アルゴリズムやネット ワークの構造を模倣した,深層学習などの技術は,画像認識などの用途に おいて実用的な機能を発揮することを示した[10]. ニューラルネットワー クを模倣した情報処理手法は,学習のみならず,動物のような柔軟な運動 の生成にも期待されているが,その方法論はまだ確立されていない. 1-2 ニューロンモデル

これまでに提案されてきたニューロンモデルは、ニューロンの数式によ って模倣した数式モデルと、電子回路で模倣したハードウェアモデルがあ る[11-14]. それらのニューロンモデルは、ニューロンの機能を極めて単純 に模倣するアナログモデルやデジタルモデル、非線形な振る舞いを高い忠 実度で模倣するパルス形モデルに大別できる.数理学的なニューロンモデ ルは、ノイズの無い理想的な環境で実験することが可能な利点がある.ま た、比較的簡単に、多数のモデルを使用した大規模なネットワークを構築 することが可能であり、現在の深層学習などでよく用いられている[6,10]. しかし,前述のように,大規模なネットワークのシミュレーションには膨 大なコストがかかる.一方で、ハードウェアモデルでは、高い非線形性を もつモデルであっても高速に計算されることから、モデル化の忠実度が高 いパルス形モデルと相性がよく,高度な機能の実現が期待できる[15,16]. また,大規模なネットワークを構築した際にも応答が早く得られるため, リアルタイム性が重要なロボットの制御への利用に有効である.現状では、 ニューロンモデルをロボットの運動の生成に利用するための方法論が確立 されていないため,忠実度の高いモデルを用いる必要がある.したがって, 本論文では、四足歩行ロボットシステムにパルス形ハードウェアニューロ ンモデル(Pulse-Type Hardware Neuron Model: P-HNMと略記)を実装した.

1-3 四足歩行動物の歩行運動

動物は、多数の自由度をもちながらも、脳や全身のニューラルネットワ ークにより,自律的に行動することが可能である.生理学の研究により, 動物は、呼吸や咀嚼、歩行のような定型的な運動を脊髄の中枢パターン生成 器(Central Pattern Generator: CPG と略記)などのニューラルネットワークと感覚入 力の相互作用によって生成することが示されている[17-21].歩行運動は, 動物と歩行ロボットに共通する最も重要な動作の一つであり、歩行時の運 動学や、ニューラルネットワークの活動の多様な実験が行われてきた [22-25]. 四足歩行動物の運動学の研究では、状況に応じて歩容と呼ばれる 足並みを切り替えながら移動することが報告されている[22-24]. 特に, 歩 容ごとに最適な移動速度が存在し、歩容を切り替えることで効率的に移動 する結果を示した、ウマを用いた実験が有名である[22].四足歩行動物は、 多くの種で歩容が共通して低速では Walk, 中程度の速さでは Trot, 高速で は Gallop の歩容で移動する.これらの歩容は、脚間の位相差に図 1-1 に示 すような特徴がある.同図は、1 周期の脚の運動における、左前脚を基準 とした他の脚との位相差を示している. Walk では, 各脚を順に 90 °の位 相差で動作する. Trot では, 対角に位置する脚を1対として, それぞれの 対を180°の位相差で動作する.Gallopでは、全ての脚が地面と接しない 期間が存在する、各脚の位相差が均等でない足並みとなる、各歩容におけ る各脚を接地するタイミングは、図 1-2 に示す特徴がある. 同図では、1 周期の脚の運動において、脚を接地している間である立脚期と、接地して いない間である遊脚期を着色の有無で示している。生態や身体構造が異な る種においても同様の歩容であることから、種を超えた普遍的な原理が存 在することが考えられる.しかし,歩容を生成する原理や,ニューラルネ ットワークの働きに関して現在でも議論されているものの、その多くは未 だ不明である[26,27].



図 1-1 四足歩行動物の代表的な歩容における脚間の位相差

([24]をもとに作成)



([24,25]をもとに作成)

1-4 四足歩行動物の歩容の工学的模倣

生理学的な研究は、特定の機能を実現しているネットワークに限定して 活動を解析することが難しく、その一方で、構成論的手法によって、工学 的に歩容を生成する原理が推測されている.本節では、本論文と特に関係 が深い、CPGモデルと、受動歩行、位相振動子による歩容の生成について 説明する.

1-4-1 CPG モデルによる歩容の生成

複数のニューロンモデルを結合することによって構築した CPG モデル の研究では、CPG を構成する各ニューロンの発振の位相差を四足歩行ロボ ットの各脚の運動の位相差(歩容)として用いる手法が提案されている [28-37]. CPG モデルの動作はリミットサイクルの特性をもち、センサによ る感覚入力が無くとも一定のリズムを出力するため、安定的にロボットの 歩容を生成することが可能である.一方で、状況に応じて行動を変更する ためには不可欠な感覚入力を CPG モデルの出力の調節に取り入れた方法 論によって、歩行の早さに応じた歩容の調整や、不整地における安定的な 歩行が可能であることが報告されている[28-34]. CPG モデルや、CPG モデ ルと感覚入力によってロボットを制御する方法論は、高次のコントローラ が計算する必要があった、歩容を生成するために必要な多次元の制御信号 を単純化することが可能である.

CPG モデルを構築する際は、それぞれのニューロンモデルが他のニュー ロンモデルに与える影響を定義することで、ニューロンモデル間の位相関 係を設計する. すなわち、脚間の相互作用を予め設計する必要がある. し かし、動物の CPG の構造や、脚間の相互作用は明らかにされておらず、 CPG モデルを設計する方法論は確立されていない.

1-4-2 受動歩行

受動歩行は,図 1-3 に示すような,受動的に動作する関節をもつ歩行機 械による歩行を指す[38].歩行機械は能動的に動力を生成するアクチュエ ータをもたないが,坂の上に置くことで,重力によって身体の構造と環境 との相互作用を利用して歩容を生成することが可能である.歩行機械は, 各脚が胴体によって接続されていることで,脚間の相互作用には制限があ るが,制御はされない.

図 1-3 に示した二対の脚による歩行機械だけでなく,四足の歩行機械も 同様に歩容を生成することが明らかにされている[39-42].四足の歩行機械 は、坂の傾斜角度や脚の長さなどの機械的性質に応じて、いくつかの四足 歩行動物の歩容を生成する.歩行機械が歩容を生成し、維持することは、 歩行機械に力学的な安定点が存在していることを示唆している.歩行機械 が坂を下る際に歩容を生成するため、平坦な床における歩容の生成に適用 が可能とは限らないが、長い時間をかけて動物が進化する中で獲得したも のと同様の歩容を生成できることは、受動歩行が歩容生成の原理に近いこ とを示唆している可能性がある.



図 1-3 受動歩行機械([38]より引用)

1-4-3 位相振動子を用いた歩容の生成

各脚の位相を数式による位相振動子の位相と連動させて制御する四足歩 行ロボットシステムを用いた実験では、四足歩行ロボットシステムが移動 速度に応じて四足歩行動物の歩容を生成することが報告されている[43, 44].四足歩行ロボットシステムの各脚には、図 1-4 に示すように、位相振 動子[45,46]によって制御された DC モータを使用した関節が配置されてい る.それぞれの脚の先端には圧力センサが取り付けられており、各位相振 動子に個別にフィードバックする.脚を制御する位相振動子は式(1-1)で表 される.

$$\dot{\phi}_i = \omega + \sigma N_i \cos \phi_i \tag{1-1}$$

ここで、φ は振動子の位相、N は脚先の圧力を表す. したがって、左辺は 振動子の角速度を表す. ω は角速度であり、これを変化させることで歩行 の早さを変化させることが可能である. また、σ はフィードバックゲイン を表す定数である. 下付き文字の *i* は *i* 番目の脚を意味しており、この四 足歩行ロボットシステムにおいては、*i* は 1 から 4 であり、それぞれ、右 前、右後ろ、左前、左後ろの脚における変数を表す.式(1-1)が示すように、 4 つの位相振動子は結合されていないが、それぞれの脚が胴体によって物 理的に接続されることで、N<sub>i</sub> は異なる値をとり、振動が加減速される. N<sub>i</sub> の差は振動の早さに影響を与え、その結果、各脚の動作の位相差(歩容)を 生成する.式(1-1)の右辺は、N が 0 の(脚が接地していない)場合、ω とな る. この位相振動子には右辺 = 0 の安定点が存在し、右辺第二項のφによ ってフィードバックの強さと、振動の加速、減速が切り替わることで安定 点に向かって制御される.

この位相振動子を利用する方法論は、平坦な床において、動物のように 身体と環境の相互作用を利用して歩容を生成する方法論のひとつとして有 効であると考え,本論文で示す四足歩行ロボットシステムの歩容を生成す る方法論に応用した.



図 1-4 位相振動子によって歩容を生成する四足歩行ロボットシステムの 外観([44]をもとに作成)

## 1-5 本論文の目的

現代のロボットの制御方法は、あらかじめロボットがおかれる状況を想 定し、状況ごとにアルゴリズムをプログラムしておく必要がある. 無数の 状況に対応可能なアルゴリズムや、それをリアルタイムに処理する能力を 有するコンピュータはなく、自律的に行動することが可能なロボットは実 現されていない. コンピュータの性能が向上するに伴って、今後もロボッ トが対応可能な状況を拡張することが可能であると予想できるが、動物の もつ柔軟な状況への対応能力とは大きな開きがある.

ロボットは移動計画からアクチュエータの制御までの全てをコンピュー タによって計算しているが、一方で、動物は歩行などの定型的な運動を脊 髄のニューラルネットワークによって無意識下で生成している.歩行は、 ロボットと動物に共通する最も基本的な動作のひとつであり、動物が足並 み(歩容)を生成する原理を模倣することで、動物のような柔軟な状況への 対応力をもつロボットが実現できる可能性がある.動物が種によって生態 や身体構造が異なるにも関わらず同様の歩容であることから、歩容の生成 には普遍的な原理が存在していると考えられるが、その原理は明らかにさ れていない.

生理学的な実験は、動物がニューラルネットワークにより、身体と感覚 入力の相互作用を利用して歩容を生成することを示唆している.しかし、 複雑な構造のニューラルネットワークの機能は解析が困難であり、ニュー ラルネットワークと歩容の関係の多くは明らかにされていない.工学的に ニューロンを模倣したモデルを用いることで、その機能が動物のニューラ ルネットワークの機能を再現できる可能性がある.これまでに提案されて きたニューロンモデルの中でも、特に、パルス形ハードウェアニューロン モデルは、モデル化の忠実度の高さと応答の早さからロボットの制御に有 利であり、自律的に行動することが可能なロボットの実現が期待できる. パルス形ハードウェアニューロンモデルを用いて CPG を構築することに よって歩容を生成できることが示されているが、パルス形ハードウェアニ ューロンモデルを用いて身体と感覚入力の相互作用を利用して歩容を生成 する方法論は確立されていない.

歩行機械を用いた研究では、歩行機械は感覚入力による制御システムを もたないが、坂を下ることで身体と環境の相互作用を利用して歩容を生成 することが示された.歩行機械が歩容を生成し、維持することは、歩行機 械に力学的な安定点が存在していることを示唆している.身体と感覚入力 を利用して歩容を生成する方法論としては、位相振動子と脚先の圧力のフ ィードバックを用いた四足歩行ロボットシステムが提案されている.この 四足歩行ロボットシステムは、平坦な床において歩容を生成することが可 能であったが、歩行機械とは異なり、4 つの位相振動子それぞれに安定点 が定義されていることで複雑化しており、歩容を生成する原理は明らかに されていない.

以上のように、歩容を生成する様々な方法論が提案されているが、その 原理は未だ不明である.筆者は、ニューロンの非線形な振る舞いを高い忠 実度で模倣するパルス形ハードウェアニューロンモデルを用いて身体と感 覚入力の相互作用を利用することによって歩容を生成する方法論を開発す ることで、動物が歩容を生成する原理に迫り、自律的に行動することが可 能なロボットの実現に近づくと考えた.そこで、本論文では、P-HNMを用 いて歩容を生成する方法論の一つとして開発した、P-HNMに脚先の圧力を 個別にフィードバックすることによって脚を駆動する四足歩行ロボットシ ステムについて述べる.また、四足歩行ロボットシステムに用いた P-HNM を集積回路に実装することによる、回路の特性の改善について述べる.さ らに、四足歩行ロボットシステムを動力学シミュレータ上にモデル化し、 そのモデルの動作について述べる.

1-6 本論文の構成

図 1-5 に本論文のフローチャートを示す.第1章では研究背景を述べ, 第2章では,P-HNM について説明する.第3章以下が筆者の研究成果であ り,第3章では,自己抑制をもつ P-HNM の基本的な特性について述べる. 第4章では,第3章で述べた P-HNM を用いて歩容を生成する四足歩行ロ ボットシステムについて述べる.第5章,第6章は,第4章の四足歩行ロ ボットシステムの実験結果をもとにした研究について述べる.第5章では, 第3章で述べた P-HNM の回路間の特性のばらつきを低減するために開発 した集積回路(Integrated Circuit: IC と略記)について述べる.第6章では, 第4章で述べた四足歩行ロボットシステムの機体の設計データを動力学シ ミュレータに取り込み,四足歩行ロボットシステムと同様に動作するモデ ルを用いたシミュレーションについて述べる.最後に,第7章では,本研 究で得られた結果をもとに結論を述べる.

本論文の各章の内容を以下にまとめる.

第1章 序論

本研究の背景,ニューロンモデル,四足歩行動物の歩行運動,歩容の工学的な模倣を行う先行研究について述べ,本研究の目的と構成を説明する.

第2章 パルス形ハードウェアニューロンモデル(P-HNM)

第3章で述べる,四足歩行ロボットシステムに用いた自己抑制をもつ P-HNMの構成要素である,細胞体モデルと抑制性シナプスモデルについて 説明する.

第3章 ディスクリート素子による自己抑制をもつ P-HNM

ディスクリート素子によって構築した自己抑制をもつ P-HNM に求められる要件と、回路基板に実装した自己抑制をもつ P-HNM の基本的な特性について述べる.

第4章 P-HNMを用いて歩容を生成する四足歩行ロボットシステム

P-HNM を用いて歩容を生成する四足歩行ロボットシステムの機械構成 要素と、電気構成要素、P-HNM を用いた関節の制御方法について述べる. さらに、四足歩行ロボットシステムを歩行させる実験の結果を示す.

第5章 集積回路(IC)による自己抑制をもつ P-HNM

第3章の P-HNM において発生した回路基板間の特性のばらつきを低減 するために開発した IC の設計と,特性の測定結果について述べる.

第6章 歩容を生成する四足歩行ロボットシステムの動力学シミュレーション

第4章の四足歩行ロボットシステムの機体の設計データを用いて構築した四足歩行ロボットモデルの設計と,関節の制御方法について述べる.また,四足歩行ロボットモデルのシミュレーション結果を示す.

第7章 結論

本研究で得られた成果をまとめ、結論を述べる.



図 1-5 本論文のフローチャート

第2章 パルス形ハードウェアニューロンモデル(P-HNM)

本章では、四足歩行ロボットシステムに実装した、自己抑制をもつ P-HNMの構成要素である、細胞体モデルと抑制性モデルについて説明する.

2-1 細胞体モデル

本細胞体モデルは、生体のニューロンのように相対不応性、出力パルス のアナログ性、および時間的に変化する負性抵抗特性をもつ、電流入力電 圧出力の発振回路である.発振モードには、自励振動と他励振動の2通り があり、VAに応じて切り替わる.自励振動モードでは、細胞体モデルは細 胞体モデルの外部からの入力に依らずに発振する.他励振動モードでは、 直流電圧入力あるいは、交流電圧入力によって発振する.

図 2-1 に、細胞体モデルの基本回路図を示す. 同図の回路は、電圧制御 型負性抵抗回路、等価インダクタ、抵抗  $R_1$ ,  $R_2$ および、膜容量  $C_M$ から構 成されている. 電圧制御型負性抵抗回路および等価インダクタは、n チャ ネル MOSFET  $M_1$ , p チャネル MOSFET  $M_2$ , 電圧源  $V_A$ , 漏れ抵抗  $R_L$ , 抵抗  $R_G$ および、容量  $C_G$ で構成されている. 細胞体モデルの出力  $v_{out}$ のパルス 周期とパルス幅は、発振条件を満たす範囲において、 $V_A$ 、 $C_G$ 、 $C_M$  によっ て任意の出力が得られるように設計することが可能である. 図 2-2 に、細 胞体モデルの出力の一例(シミュレーション結果)を示す. シミュレーショ ンにおける回路定数は、 $C_G = 47$  pF,  $C_M = 10$  pF,  $R_1 = 15$  kΩ,  $R_2 = 20$  kΩ,  $R_G =$ 8.2 MΩ,  $R_L = 10$  kΩ であり、MOSFET は、 $M_1$ : BSS83,  $M_2$ : BSH205 である. 電源電圧は  $V_A = 3.5$  V とした.



図 2-1 細胞体モデルの基本回路図



図 2-2 細胞体モデルの出力電圧の一例(シミュレーション結果)

2-2 抑制性シナプスモデル

抑制性シナプスモデルは、電圧入力、電流出力の回路である.vslinには、 抑制性シナプスモデルに対して入力する細胞体モデルのvoutを接続し、*i*lsout には、抑制性シナプスモデルから入力を受ける細胞体モデルの vout を接続 する.vslinに vout を入力する細胞体モデルが発振した際に、抑制性シナプ スモデルは、*i*lsout を出力する.*i*lsoutにより、抑制性シナプスモデルから入 力を受ける細胞体モデルから電流が引き抜かれるため、この細胞体モデル は発振が抑制される.



図 2-3 抑制性シナプスモデルの回路図

第3章ディスクリート素子による自己抑制をもつ P-HNM

第3章以下が筆者の研究成果である.本章では,四足歩行ロボットシス テムの歩容の生成に用いた,ディスクリート素子による自己抑制をもつ P-HNM について述べる.

3-1 ディスクリート素子による自己抑制をもつ P-HNM の設計

四足歩行ロボットシステムに用いる自己抑制をもつ P-HNM の要件は以下のとおりである.四足歩行ロボットシステムにおける同回路の役割は第4章で述べる.

1. 電圧入力により、パルスを出力する周期(パルス周期 T)が変化すること
2. Tが四足歩行ロボットシステムの関節をリアルタイムに駆動することが可能な長さであること

3. 出力電圧 vout が, ワンボードマイコン Arduino DUE(マイコンと略記)が 扱うことが可能な電圧であること

図 3-1 にディスクリート素子による自己抑制をもつ P-HNMの回路図を示 す. ディスクリート素子による P-HNMの回路定数は,  $C_{1S} = 3.3 \mu$ F,  $C_{G} = 47$ pF,  $C_{M} = 10$  pF,  $R_{1} = 15$  k $\Omega$ ,  $R_{2} = 20$  k $\Omega$ ,  $R_{G} = 8.2$  M $\Omega$ ,  $R_{L} = 10$  k $\Omega$  であり, MOSFET は,  $M_{1, 5, 6, 7, 8}$ : BSS83,  $M_{2, 3, 4}$ : BSH205 である. 電源電圧は  $V_{A} = 3.5$ V,  $V_{DD} = 5.0$  V とした.



図 3-1 ディスクリート素子による自己抑制をもつ P-HNM の回路図

要件1は、第2章で述べた抑制性シナプスモデルに MOSFET Msを追加 し、細胞体モデルの出力電圧を抑制性シナプスモデルによって、同じ細胞 体モデルに入力(自己抑制)することで満足させた. Ms に印加する電圧 vw に応じて、抑制性シナプスモデルが細胞体モデルの発振を抑制する強さが 変化することによって、Tが変化する.自己抑制をもつ P-HNM を四足歩行 ロボットシステムに実装する際には、足裏に取り付けた圧力センサの出力 に応じて vw を変化させた. vw をマイコンによって生成し、自己抑制をもつ P-HNM に印加した. vw に対する T の変化の傾きを、四足歩行ロボットシ ステムに搭載したマイコンが生成する電圧の分解能(約 0.8 mV)に対して急 峻に設計した場合、足裏に掛かっている圧力の大きさと自己抑制をもつ P-HNM に印加されている vw との間の乖離が大きくなる.

要件2は、第4章で述べる脚の駆動方法における適当なパルス周期を事 前に計算することは困難であるため,自己抑制をもつ P-HNM の回路定数 は実験的に決定した.四足歩行ロボットシステムの関節のサーボモータを 制御するマイコンは、パルスが入力されるたびに割り込み処理を実行する ことによって、関節を一定角度ずつ回転するため、短いパルス周期に設計 した場合、関節のサーボモータは滑らかに動作する.しかし、パルス周期 が短くなるほど、時間あたりに割り込み処理を実行する回数が増加するた め、マイコンが圧力を読み取る処理を実行する周期が長くなる、したがっ て、圧力センサによって取得した圧力がリアルタイムにパルス周期に反映 されなくなる.一方で、パルス周期が長くなるほど、脚の動作のリアルタ イム性が失われる.そこで,Tが最も短い状態で約1ms,vwによってTが 最も長くなった状態で約5msになる回路定数とした.すなわち,関節を一 定角度ずつ回転する割り込み処理は,Tが最も短い状態で約1kHz,最も長 くなった状態で約200Hzで実行される.第4章の実験において,四足歩行 ロボットシステムは、この回路定数の自己抑制をもつ P-HNM を用いて歩 容を生成することが可能であった.

要件3は、voutがマイコンの割り込みトリガ電圧(約1.7 V)以上かつ、動 作電圧の3.3 Vまでとなる回路定数に設計することで満たした.ただし、 周辺回路を追加する必要があるが、自己抑制をもつ P-HNM とマイコンの 間に昇圧、または降圧回路を組み込むことで、この範囲外の vout であって も利用可能である.

自己抑制をもつ P-HNM の抑制性シナプスモデルは、細胞体モデルが発振した際に、シナプス荷重コントロール電圧 vw に応じた電流を引き抜く. 電流を引き抜かれた細胞体モデルは、パルスの生成が抑制され、T が長くなる.図 3-2 にディスクリート素子による自己抑制をもつ P-HNM の PSpice によるシミュレーション結果を示す. 同図のシミュレーションでは、vwを 0 Vから 1.0 V に変更しており、これによって T が長くなることを示して いる. ディスクリート素子による自己抑制をもつ P-HNM の vw に対する T の変化特性を図 3-3 に示す. 同図は、vw = 2.0 V から vw = 3.0 V の範囲にお いて、T が約 1.0 ms から約 5.0 ms に長くなることを示している. 四足歩行 ロボットシステムにおける同回路は、足裏の圧力が増加することによって vw が高くなり、T が長くなる.



図 3-2 ディスクリート素子による自己抑制をもつ P-HNM の出力電圧の 一例(シミュレーション結果)



図 3-3 ディスクリート素子による自己抑制をもつ P-HNM の vw に対す る Tの変化特性(シミュレーション結果)

3-2 ディスクリート素子による自己抑制をもつ P-HNM の測定結果

四足歩行ロボットシステムに実装するにあたり、ディスクリート素子に よる自己抑制をもつ P-HNMを Flame Retardant-4(FR-4と略記)基板に実装し た(図 3-4 参照). 図 3-5 に、FR-4 基板に実装した自己抑制をもつ P-HNM の 出力電圧の一例を示す.また、図 3-6 に、FR-4 基板に実装した自己抑制を もつ P-HNM の、 $v_w$ に対する T の変化特性の測定結果の一例を示す.電源 電圧は  $V_A = 2.72$  V、 $V_{DD} = 5.0$  V である.同図は、 $v_w$ が 0.9 V から 1.2 V の 0.3 V の間で、パルス周期が 2 倍程度変化することを示している.四足歩 行ロボットシステムの歩容の生成には、この範囲を使用した.この範囲に おけるパルス周期の変化特性は式(3-1)によって近似できる.

$$T = 5.0 v_{\rm w}^2 - 8.0 v_{\rm w} + 3.9 \tag{3-1}$$



図 3-4 FR-4 基板に実装したディスクリート素子による自己抑制をもつ P-HNM



Time 1 ms / div

図 3-5 FR-4 基板に実装したディスクリート素子による自己抑制をもつP-HNMの出力電圧の一例



図 3-6 FR-4 基板に実装したディスクリート素子による自己抑制をもつ P-HNMの vw に対する Tの変化特性

図 3-7 に、四足歩行ロボットシステムに実装した 4 枚のディスクリート 素子による自己抑制をもつ P-HNM 回路基板の  $V_A$ に対する Tの変化特性の 測定結果を示す.測定時の電源電圧は  $V_{DD} = 0$  V,  $v_w = 0$  V である.図中の No. 1, 2, 3, 4 は、各基板の測定結果を示している.図中のプロットがある 範囲が、自己抑制をもつ P-HNM が発振する  $V_A$ の範囲である.例えば、No. 1 の基板の測定結果では、 $V_A = 2.2$  V 付近から  $V_A = 2.9$  V 付近までの範囲で 発振ことを示している.図 3-7 より、各基板の自己抑制をもつ P-HNM が発 振する  $V_A$ の範囲と、T は大きく異なっているため、これらの基板を四足歩 行ロボットシステムに実装する際には、基板ごとに  $V_A$  を個別に設定する 必要があった.



図 3-7 四足歩行ロボットシステムに実装した自己抑制をもつ P-HNM回路基板の V<sub>A</sub>に対する T の変化特性

図 3-8 に、図 3-7 で測定した各基板において、 $V_A$ を共通とした場合の、  $v_w$ に対する Tの変化特性を測定した結果を示す.測定時の電源電圧は、全 ての基板に実装した、自己抑制をもつ P-HNM が発振することが可能な  $V_A$  = 2.90 V,  $V_{DD}$  = 5.0V とした. 図中の No. 1, 2, 3, 4 は、図 3-7 の基板の番号と 対応する. 自己抑制をもつ P-HNM は、発振が可能な  $V_A$ の範囲において、  $V_A$ が低いほど抑制性シナプスモデルによる Tの延長が大きくなる性質があ るため、発振が可能な範囲の下限に近い  $V_A$ を印加されている No. 3, 4 は Tが大きく変化し、No. 1, 2 は、 $V_A$ が発振の可能な範囲の上限に近いため、Tにはほとんど変化がない.



図 3-8 四足歩行ロボットシステムに実装した自己抑制をもつ P-HNM
回路基板の vw に対する Tの変化特性

図 3-7,図 3-8 に示したように、四足歩行ロボットシステムに実装した基 板の特性のばらつきは、四足歩行ロボットシステムの実験において、電気 的な外乱要素となる.したがって、第4章の四足歩行ロボットシステムの 実験では、足裏の圧力に対して各脚を同様に動作させるために、VA、圧力 フィードバックのゲイン σ、自己抑制をもつ P-HNM がパルスを出力するた びに関節を回転する角度 θ を回路の特性に合わせて個別の値に設定する必 要があった.四足歩行ロボットシステムに実装する自己抑制をもつ P-HNM の特性のばらつきの低減に対しては、第5章において、自己抑制をもつ P-HNM を IC に実装することで改善した. 第4章自己抑制をもつ P-HNM を用いて歩容を生成する

四足歩行ロボットシステム

自己抑制をもつ P-HNM を用いて歩容を生成する四足歩行ロボットシス テムの構成要素は,機械構成要素と電気構成要素に分けられる.本章では, 自己抑制をもつ P-HNM を用いて歩容を生成する四足歩行ロボットシステ ムの構成要素と脚の制御方法を説明し,歩行実験の結果を示す.図4-1に 自己抑制をもつ P-HNM を用いて歩容を生成する四足歩行ロボットシステ ムの外観を示す.



図 4-1 自己抑制をもつ P-HNM を用いて歩容を生成する四足歩行ロボット システムの外観

## 4-1 機械構成要素

四足歩行ロボットシステムの機械構成要素は,胴体フレームと4本の脚である.脚の動作による歩容の生成に焦点を当てるために,四足歩行ロボットシステムの関節は脚部のみに配置した.各脚の関節は2箇所であり,構造は共通である.図4-2に示すように,脚はPartA,B,Cとサーボモータ(KRS-2552 RHV ICS)で構成した.足の裏には滑り止めのゴムを取り付けた.脚の付け根側の関節の軸から脚の先端までの長さは138mm,前後脚間の距離は175mm,左右脚間の距離は101mmである.



図 4-2 四足歩行ロボットシステムの胴体フレームと脚の構造

胴体フレームは、図 4-3 に示すように、Part 1, 2, 3, 4 で構成し、各脚を 取り付けた. Part1, 2, 3, 4, B はアルミ合金板を機械加工して作製した. さ らに、Part 1, 2, 3, 4 には、曲げ加工を施した. Part A, C は 3D プリンタに よって作製した. 四足歩行ロボットシステムの質量は約 1.1kg である.



図 4-3 四足歩行ロボットシステムの各パーツの構造

4-2 電気構成要素

四足歩行ロボットシステムの電気構成要素は、自己抑制をもつ P-HNM 回路基板,圧力センサ(FSR402: Interlink Electronics)、周辺回路基板、マイ コンである.また、四足歩行ロボットシステムとの物理的な接続が、実験 の結果を記録する際に実験結果に与える影響を排除するため、バッテリと Bluetooth モジュールを搭載した.搭載した自己抑制をもつ P-HNM 回路基 板は、第3章で測定結果(図 3-7、図 3-8)を示した4枚の基板である.圧力 センサは、表面に加わっている圧力に応じて電気抵抗が変化するデバイス であり、各脚の Part C と滑り止めの間に取り付けることにより、足裏の圧 力の測定に使用した(図 4-4 参照).



図 4-4 足裏の拡大図
自己抑制をもつ P-HNM 回路基板と圧力センサ,サーボモータを周辺回路基板によってマイコンと接続し,各脚の関節を個別に制御する脚制御システムを構築した.1本の脚を制御する,脚制御システムの構成を図 4-5 に示す.1台のマイコンに,4組の脚制御システムを接続することにより,四足歩行ロボットシステムとした.図 4-6 に,周辺回路基板と自己抑制をもつ P-HNM 回路基板の接続を示す.周辺回路基板は,C<sub>F</sub>, R<sub>F</sub>による積分回路,U<sub>1</sub>によるバッファ回路,U<sub>2</sub>によるバッファ回路,R<sub>D1,D2</sub>による分圧回路,R<sub>D3</sub>による分圧回路によって構成した.周辺回路基板は,以下の3つの機能を有する.

1. 足裏の圧力センサの電気抵抗を R<sub>D3</sub>による分圧回路によって v<sub>pressi</sub>としてマイコンに入力する

 マイコンが v<sub>pressi</sub>に応じて出力する Pulse Width Modulation(PWM)による 電圧を C<sub>F</sub>, R<sub>F</sub>による積分回路で積分し、U<sub>1</sub>によるバッファ回路、R<sub>D1, D2</sub>に よる分圧回路を通して、自己抑制をもつ P-HNM 回路基板に v<sub>wi</sub>として入力 する

3.自己抑制をもつ P-HNM 回路基板の出力電圧 vouti を、U2 によるバッファ
回路を通してマイコンに入力する

ここで、下付き文字のiは、i番目の脚における変数であることを示す.周辺回路の回路定数は、 $C_{\rm F} = 3.3 \mu$ F、 $R_{\rm F} = 11 k\Omega$ 、 $R_{\rm D1, D2, D3} = 11 k\Omega$ であり、オペアンプは、 $U_{1, 2}$ : LMC6032 である.

34



図 4-5 脚制御システムの構成



図 4-6 周辺回路基板と自己抑制をもつ P-HNM 回路基板の接続

4-3 四足歩行ロボットシステムの関節の制御

図 4-7 に、マイコンの動作の概要を示す.マイコンは、まず、初期化フ エーズで、関節の角度、VA、Vw、VDD、θを初期化する.次に、Vpressを読み 取り、Vpressに応じて Vwを変更する.その後は、Vpressの読み取りと Vwの変 更を繰り返す. i番目の脚の Vwは式(4-1)によって計算される.ここで、Vw0 は、自己抑制をもつ P-HNM の回路基板に印加する最低の電圧であり、図 3-6 の例では 0.9 V である.自己抑制をもつ P-HNM は、印加される Vw が高 いほど T が長くなるため、足裏の圧力が強いほど T が長くなる.

$$v_{wi} = v_{w0i} + \sigma v_{pressi} \tag{4-1}$$

初期化フェーズ以降は、4 つの個別の割り込みピンに入力される  $v_{outi}$  が 割り込み処理をトリガする電圧(約 1.7 V)を超えるたびに、i 番目の脚の関 節の角度を変更する割り込み処理(図 4-7 右側)を実行する. すなわち、自 己抑制をもつ P-HNM がパルスを生成するたびに、割り込み処理を実行す る.割り込み処理では 2 つの処理を行う.割り込み処理の 1 番目の処理で は、脚先が図 4-8、図 4-9 に示す目標点を順に辿るように、関節の回転方向 が決定される.割り込み処理の 2 番目の処理では、関節を  $\theta$  (°)回転する. 脚先が目標点  $P_{1,2,3,4}$ を順に辿ることで 1 周期の脚の動作となる.例えば、 脚先が目標点  $P_3$  にある左前脚に対応した自己抑制をもつ P-HNM がパルス を出力すると、目標点  $P_4$  に向かって左前脚の関節の角度を  $\theta$ 変更する.し たがって、関節の角速度  $\omega_i$  (°/s)は式(4-2)で表される.

$$\omega_i = \frac{\theta}{T_i} \tag{4-2}$$

36

式(4-2)は, T が短いほど単位時間あたりのパルス数が多くなるため, 脚の 動作が早くなり, T が長いほど遅くなることを示している. T に応じて ω をリアルタイムに変化させるためには, θを1 周期の脚の動作に対して非 常に小さい値に設定する必要がある.

マイコンは、それぞれの脚における変数を個別に扱うため、各足裏の圧 力や関節の角度を他の脚の関節を制御する際に用いない.しかし、各脚は 胴体フレームによって機械的に結合されているため、力学的に相互作用が ある.各脚の圧力の差によってωは異なる値となり、各脚の動作に位相差 (歩容)を生じる.



図 4-7 マイコンの動作の概要



図 4-8 1 周期の脚の動作による脚先の軌道と各目標点の位相



図 4-9 1 周期の脚の動作と各目標点における脚の角度

4-4 四足歩行ロボットシステムによる歩容の生成

四足歩行ロボットシステムを平坦な床に置き、低速で歩行をさせる実験 と、高速で歩行をさせる実験を行った.低速で歩行をさせる実験では、 $\theta$ = 0.012°、高速で歩行をさせる実験では、 $\theta$ = 0.0243°とした.定数の $\sigma$ 、 $\theta$ は、歩 容を数周期維持する値を実験的に求めた.どちらの実験においても共通の 実験条件として、各脚の初期位相は  $3\pi/2$ の直立状態とし、すべての脚を同 時に動作開始させ、実験中の $\sigma$ 、 $\theta$ は一定とした.

図 4-10, 図 4-11 に低速,高速で歩容を生成した際の歩行の様子,脚の動作の位相,脚間の位相差を示す.図中の破線は,1周期の脚の動作を示す. 脚間の位相差は,左前脚から他の脚への位相差として示した.どちらの結果においても,四足歩行ロボットシステムは,実験開始から数周期の脚の動作の後に四足歩行動物の歩容を生成した.図 4-10 は左前脚(LF),左後脚(LH),右前脚(RF),右後脚(RH)の順に 90°の位相差の Walk の歩容である. 図 4-11 は LF と RH, RF と LH の順に 180°の位相差の Trot の歩容である. 図 4-10 と図 4-11 のどちらの実験においても,四足歩行ロボットシステムは,生成した歩容を維持した期間は短く,5 周期程度であった.歩容を維持した期間が短い原因として,電気的な外乱要素と機械的な外乱要素の影響があったためであると考える.



図 4-10 低速で歩行をさせる実験における各脚の位相と位相差の遷移 A:歩行時の四足歩行ロボットシステム B:各脚の位相と位相差の遷移



図 4-11 高速で歩行をさせる実験における各脚の位相と位相差の遷移 A:歩行時の四足歩行ロボットシステム B:各脚の位相と位相差の遷移

以上の実験結果より,自己抑制をもつ P-HNM を用いた四足歩行ロボットシステムが,四足歩行動物と同様に,低速の歩行では Walk の歩容,高速の歩行では Trot の歩容を生成することを明らかにした.電気的な外乱要素に対しては,第5章において,自己抑制をもつ P-HNM を IC チップに実装することによって低減する検討を行う.機械的な外乱要素に対しては,第6章において,理想的な空間でロボットをシミュレーションすることが可能な動力学シミュレータを用いた検討を行う.

## 第5章集積回路(IC)による自己抑制をもつ P-HNM

第4章では、ディスクリート素子による自己抑制をもつ P-HNM が歩容 の生成に利用可能であることを示したが、四足歩行ロボットシステムが歩 容を維持した期間は短く、数周期の間であった.この原因として、機械的、 電気的な外乱要素の影響が考えられる.本章では、電気的な外乱要素とし て考えられる,回路ごとの特性のばらつきを低減するために IC チップに実 装した、自己抑制をもつ P-HNM の設計と、測定結果を示す.

## 5-1 IC による自己抑制をもつ P-HNM の設計

四足歩行ロボットシステムに実装する,自己抑制をもつ P-HNM の回路 間の特性のばらつきは,各脚の足裏の圧力に対する挙動に差異を生じるた め,ばらつきは可能な限り小さくする必要がある.そこで,自己抑制をも つ P-HNM を回路間のばらつきの低減が期待できる IC チップに実装するた めに,ディスクリート素子による P-HNM の回路内の線形抵抗を MOSFET に置き換えた,IC による自己抑制をもつ P-HNM を設計した.IC による自 己抑制をもつ P-HNM の回路図を図 5-1 に示す.IC による自己抑制をもつ P-HNM の回路定数は,ディスクリート素子による自己抑制をもつ P-HNM と同様に,四足歩行ロボットシステムに実装するための要件を満たす値に 設計した.回路定数は, $M_{c1} = W/L = 3/10, M_{c2} = W/L = 1.2/10, M_{c3,4} = W/L$ = 10/1.2,  $M_{1S1,5}$ :  $W/L = 10/100, M_{1S2,6}$ :  $W/L = 40/2, M_{1S3}$ :  $W/L = 10/10, M_{1S4}$ :  $W/L = 20/2, C_{G} = 10$  nF,  $C_{M} = 20$  pF,  $C_{1S} = 100$  pF である.ここで,Wはチャネル幅(µm),Lはチャネル長(µm)を表す.



図 5-1 IC による自己抑制をもつ P-HNM の回路図

IC による自己抑制をもつ P-HNM の出力電圧の一例のシミュレーション 結果を図 5-2 に示す.シミュレーションには HSPICE を用いた.電源電圧 は  $V_A = 2.80$  V,  $V_{DD} = 3.30$  V である.図 5-2 は、 $v_w = 1.0$  V における、設計 した IC による自己抑制をもつ P-HNM の  $v_{out}$ は、マイコンの割り込みトリ ガ電圧より低いことを示している.したがって、四足歩行ロボットシステ ムに同回路を実装する際は、 $v_{out}$ を割り込みトリガ電圧を超えるように増 幅してマイコンに印加する必要がある.



図 5-2 IC による自己抑制をもつ P-HNM の出力電圧の一例(シミュレー ション結果)

図 5-3 に、IC による自己抑制をもつ P-HNM の  $v_w$ に対する Tの変化特性 のシミュレーション結果を示す. 図 5-3 のシミュレーション結果は,  $v_w = 0.3$ Vから  $v_w = 0.6$  Vの, 0.3 Vの間で Tが 1.5 ms 程度から 3.2 ms の約 2 倍に 長くなることを示している. T の変化は、ディスクリート素子による自己 抑制をもつ P-HNM の  $v_w$ に対する Tの変化特性のシミュレーション結果(図 3-3)の約 5 倍に対して小さいが、四足歩行ロボットシステムが歩行時に使 用した Tの範囲(図 3-6)の約 2 倍と同等である. また、Tが変化する  $v_w$ の 範囲は 0.3 V であり、図 3-6 に示した結果と同等であることから、設計し た IC による自己抑制をもつ P-HNM を四足歩行ロボットシステムに実装し た際も歩容の生成が可能であると考えられる.



図 5-3 IC による自己抑制をもつ P-HNM の vw に対する T の変化特性 (シミュレーション結果)

IC による自己抑制をもつ P-HNM を,四足歩行ロボットシステムに必要 な4回路実装した IC チップを設計した.図 5-4 に,設計した IC チップ全 体のレイアウト図,図 5-5 に,1回路の自己抑制をもつ P-HNM のレイアウ ト図を示す.回路内の C<sub>G</sub>は,IC チップ内に実装できない容量であるため, IC チップの外部の,v<sub>G</sub>,v<sub>out</sub>のパッド間に実装した.IC チップの設計には 0.8 μm のプロセスルールを適用した.設計した IC は外部ファウンダリを 利用し,QFP80 としてパッケージングした.パッケージング後の寸法は17 ×17 mm であった.ベアチップのサイズは2.4×2.4 mm である(図 5-6 参照).



図 5-4 自己抑制をもつ P-HNM を実装した IC チップ全体のレイアウト図



図 5-5 IC チップに実装した自己抑制をもつ P-HNM のレイアウト図



図 5-6 自己抑制をもつ P-HNM のベアチップの外観

5-2 IC チップに実装した自己抑制をもつ P-HNM の測定結果

図 5-7 に IC チップに実装した自己抑制をもつ P-HNM の出力電圧の一例 を示す.図 5-8 に、製造した 1 枚のチップ内の 4 回路における、 $V_A$ に対す る T の変化特性の測定結果を示す.測定条件は、 $V_{DD} = 0 V$ かつ、 $v_w = 0 V$ である.同図は、FR-4 基板に実装した自己抑制をもつ P-HNMの測定結果(図 3-7)と比較して、IC の各回路の  $V_A$ に対する T の変化特性のばらつきが極 めて小さいことを示している.また、 $V_{DD} = 0 V$ かつ、 $v_w = 0 V$ の測定条件 であり、抑制性シナプスモデルを機能させていないため、細胞体モデルの 特性のばらつきが低減されたことを示している.



図 5-7 IC チップに実装した自己抑制をもつ P-HNM の出力電圧の一例



図 5-8 IC チップに実装した自己抑制をもつ P-HNM の V<sub>A</sub>に対する T の

変化特性

図 5-9 に、図 5-8 で測定した IC チップにおける、 $v_w$ に対する Tの変化特性の測定結果を示す.測定条件は、 $V_A = 2.89$  V、 $V_{DD} = 3.30$  V である. 同図は、同 IC チップ内のそれぞれの IC による自己抑制をもつ P-HNM がディスクリート回路による P-HNM と同様に、 $v_w$ に応じてパルス周期を変化する特性を有することを示している.  $v_w$ に対する Tの変化特性は、FR-4 基板に実装した自己抑制をもつ P-HNM の測定結果(図 3-7)と比較すると、各回路における Tの下限(約 1.0 ms)および、上限(約 2.1 ms)のばらつきは大きく低減された結果となった. Tの上限にはばらつきがあるが、この影響は、T = 2.0 ms までの範囲を四足歩行ロボットシステムに用いることで排除が可能である.  $v_w$ に対する Tの変化特性のばらつきが低減された要因として、自己抑制をもつ P-HNM には、図 5-10 に示すように、 $V_A$ に応じて、 $v_w$ に対する Tの変化特性が異なる性質があり、細胞体モデルの特性のばらつきが低減されたことが考えられる.



図 5-9 IC チップに実装した自己抑制をもつ P-HNM の  $v_w$ に対する T の

変化特性



図 5-10 IC チップに実装した自己抑制をもつ P-HNM (No. 1)の各 VA における, vw に対する Tの変化特性

5-3 回路定数を変更した IC による自己抑制をもつ P-HNM の設計

5-2 節で測定した IC チップ内の各回路における細胞体モデルの特性は, FR-4 基板に実装した自己抑制をもつ P-HNM と比較して大幅にばらつきが 低減された.しかし、 $v_w$ によって T が変化を始める電圧と、 $v_w$ に対する T の傾きにばらつきがあり、四足歩行ロボットシステムに実装する際には  $v_{w0}$ と  $\sigma$  を個別に設定する必要があった.このばらつきの原因として、抑制性 シナプスモデルの MOSFET  $M_{IS2}$ が、製造ばらつきが生じやすいしきい値電 E未満で動作する回路定数であったことが考えられる.そこで、抑制性シ ナプスモデルの MOSFET  $M_{IS2}$  をしきい値電圧以上で動作させるために回 路定数を変更した IC チップを設計した.

回路定数を変更した IC による自己抑制をもつ P-HNM の出力電圧の一例 のシミュレーション結果を図 5-11 に示す.回路定数は, *M*<sub>C1</sub> = *W*/*L* = 3/10, *M*<sub>C2</sub> = *W*/*L* = 1.2/10, *M*<sub>C3,4</sub> = *W*/*L* = 10/1.2, *M*<sub>1S1,2,3,4</sub>: *W*/*L* = 10/10, *M*<sub>1S5</sub>: *W*/*L* = 10/100, *M*<sub>1S6</sub>: *W*/*L* = 40/2, *C*<sub>G</sub> = 4.7 nF, *C*<sub>M</sub> = 20 pF, *C*<sub>1S</sub> = 3.3 nF である. 電源電圧は *V*<sub>A</sub> = 2.55 V, *V*<sub>DD</sub> = 3.30 V である. 図 5-11 より, *v*<sub>w</sub> = 1.2 V にお ける *v*<sub>out</sub> は, マイコンの割り込みトリガ電圧より低いため, 回路定数変更 前と同様に, 四足歩行ロボットシステムに同回路を実装する際は, *v*<sub>out</sub> を 割り込みトリガ電圧を超えるように増幅してマイコンに印加する必要があ る.

53



図 5-11 回路定数を変更した IC による自己抑制をもつ P-HNM の出力 電圧の一例(シミュレーション結果)

回路定数変更前後の、vwに対する Tの変化特性のシミュレーション結果の比較を図 5-12 に示す. 同図は、変更後の回路定数では、vwが 0.5 Vから 1.0 Vの、0.5 Vの間で Tが 1.5 ms 程度から 3.2 ms の約 2 倍に長くなることを示している. vwに対する Tの変化は回路定数変更前と比較して緩やかであり、四足歩行ロボットシステムに実装した際に、足裏の圧力に対して、vw を精細に変化させることが可能である.



図 5-12 ICによる自己抑制をもつ P-HNMの vwに対する Tの変化特性の 回路定数変更前後の比較(シミュレーション結果)

回路定数を変更した IC による自己抑制をもつ P-HNM を 4 回路実装した IC チップを設計した.図 5-13 に,設計した IC チップ全体のレイアウト図, 図 5-14 に,1回路のレイアウト図を示す.回路内の  $C_G$ ,  $C_{1s}$ は,IC チップ 内に実装できない容量であるため,IC チップの外部の, $v_G$ , $v_{out}$ のパッド間, $v_{CIS}$ , $V_{DD}$ のパッド間に実装した.IC チップの設計には 0.8  $\mu$ m のプロセスル ールを適用した.設計した IC は外部ファウンダリを利用し,QFP80 とし てパッケージングした.パッケージング後の寸法は 17 × 17 mm であった. ベアチップのサイズは 2.4 × 2.4 mm である(図 5-15 参照).



図 5-13 自己抑制をもつ P-HNM を実装した IC チップ全体のレイアウト図 (回路定数変更後)



図 5-14 IC チップに実装した自己抑制をもつ P-HNM のレイアウト図 (回路定数変更後)



図 5-15 自己抑制をもつ P-HNM のベアチップの外観(回路定数変更後)

5-4 IC チップに実装した自己抑制をもつ P-HNM の測定結果(回路定数変 更後)

図 5-16 に、回路定数を変更した自己抑制をもつ P-HNM を実装した 1 枚 のチップ内の4回路における、 $V_A$ に対する Tの変化特性の測定結果を示す. 測定条件は、 $V_{DD} = 3.3$  V かつ、 $v_w = 0$  V である. 同図は、回路定数変更前 の測定結果(図 5-8)と同様に、IC の各回路の  $V_A$ に対する T の変化特性のば らつきが極めて小さいことを示している.



図 5-16 IC チップに実装した自己抑制をもつ P-HNM の VA に対する T の 変化特性(回路定数変更後)

図 5-17 に、図 5-16 で測定した IC チップにおける、 $v_w$ に対する T の変化 特性の測定結果を示す.測定条件は、 $V_A = 2.45$  V、 $V_{DD} = 3.30$  V である.図 5-17 は、 $v_w = 0.65$  V から  $v_w = 1.0$  V の、0.35 V の間で T が 1.4 ms 程度から 3.0 ms の約 2 倍に長くなることを示している.また、回路定数変更前の IC チップの測定結果(図 5-9)と比較すると、 $v_w$ によって T が変化を始める電圧 と、 $v_w$ に対する T の傾きの回路間のばらつきが極めて小さくなったことを 示している.T の上限にはばらつきがあるが、この影響は、T = 3.0 ms まで の範囲を四足歩行ロボットシステムに用いることで排除が可能である.

以上の結果より、回路定数を変更した自己抑制をもつ P-HNM を実装した IC チップを、四足歩行ロボットシステムに実装した、ディスクリート素子による自己抑制をもつ P-HNM と置き換えることで、各脚の足裏の圧力に対する挙動生じていた差異を大幅に低減することが可能であると考える.



 図 5-17 IC チップに実装した自己抑制をもつ P-HNM の vw に対する T の 変化特性(回路定数変更後)

第6章歩容を生成する四足歩行ロボットモデルの

動力学シミュレーション

機械的な外乱要素を排除した,理想的な空間における四足歩行ロボット システムの振る舞いを解析するために動力学シミュレータ(CoppeliaSim)に 四足歩行ロボットモデルを構築した.本章では,四足歩行ロボットモデル の設計,関節の制御,シミュレーション結果について述べる.

6-1 四足歩行ロボットモデルの設計

図 6-1 に四足歩行ロボットモデルの外観を示す.四足歩行ロボットモデル は、第4章の四足歩行ロボットシステムと同様に、胴体と4個の脚モジュ ールで構成した.四足歩行ロボットシステムのサーボモータの機能は、サ ーボモータの軸の位置に関節を設置することによって、四足歩行ロボット モデルに実装した.各パーツの物理的なパラメータは、第4章の四足歩行 ロボットシステムのパーツの設計データを用いて設定した.取り込んだ設 計データは、胴体フレームと脚、バッテリである.設定したパラメータの 一覧を表1に示す.四足歩行ロボットモデルの全体の質量は1.0kgである.



図 6-1 四足歩行ロボットモデルの外観

| Name           | Mass  |
|----------------|-------|
| Body structure | 525 g |
| Part 1         | 7.0 g |
| Part 2         | 83 g  |
| Part 3         | 1.0 g |
| Weight         | 92 g  |

表 6-1 四足歩行ロボットモデルの各パーツのパラメータ

図 6-2 に、四足歩行ロボットモデルの胴体の構造を示す. 胴体に設置し た関節の軸周りに、脚モジュールが回転する. 胴体の前方には、重心を調 節するためのおもりを設けた. 図 6-3 に、脚モジュールの構造を示す. 脚 モジュールは、Part 1, 2, 3、関節、力センサで構成した. 4 個の脚モジュー ルは全て同じ構造である. 脚モジュール内の関節の軸周りに、Part 1 から 先の、Part 2、力センサ、Part 3 が回転する. Part 1 は空間で隔てられた 2 つの部品で構成されているが、1 つの部品として機能する. 力センサは Part 2 と Part 3 の間に設置し、脚先が床から受ける力の測定に使用した. シミ ュレータ上の力センサは、3 軸の力を測定可能であるが、四足歩行ロボッ トシステムでは圧力センサによって垂直方法の力のみを測定して利用して いたため、シミュレーションにおいてもセンサに対して垂直な力のみ測定 した.



図 6-2 四足歩行ロボットモデルの胴体の構造



図 6-3 四足歩行ロボットモデルの脚モジュールの構造

6-2 四足歩行ロボットモデルの関節の制御

シミュレータは、四足歩行ロボットシステムに実装した自己抑制をもつ P-HNM をシミュレートしないため、自己抑制をもつ P-HNM の機能は数式 によって代替した.自己抑制をもつ P-HNM のパルス周期 T に対応する、 関節の駆動周期を定義し、その周期を圧力に応じて延長し、シミュレーシ ョン時間が駆動周期を超えるごとに一定角度だけ関節の角度を変更するシ ミュレーションを構築した.四足歩行ロボットモデルの1周期の脚の動作 は、四足歩行ロボットシステムの脚の動作(図 4-8、図 4-9)と同一とした.

図 6-4 にシミュレータが行う処理の概要を示す.シミュレータが行う処理は、初期化フェーズ、メインフェーズ、シミュレーションフェーズに分けられる.初期化フェーズでは、関節の初期角度や、駆動周期 T'(s)、その他の定数、変数を初期化する.その後、メインフェーズ、シミュレーションフェーズを実行し、以降は、この2つのフェーズを繰り返す.駆動周期は、全ての脚において0sとして初期化させたため、各脚の関節はシミュレーションの開始後、直ちに駆動する.関節の初期角度は、図 6-1の直立の状態(位相は 3π/2 rad)として初期化した.

メインフェーズでは、前回、関節の角度を変更した時のシミュレーション時間 *T*pre (s)から、メインフェーズが開始された時のシミュレーション時間 *T*post (s)を引いた値が *T*'以上の脚があった場合、その脚の関節の目標角度を目標点に向かって θ'(°)変更し、目標角度から脚の位相を計算する. その後、関節の目標角度を変更した脚の *T*post に対しては、*T*pre を代入する. さらに、その脚の足裏の圧力 *N* (kg·m/s<sup>2</sup>)を更新する.また、メインフェーズでは、各関節の角度から各脚の位相を計算し、*N* とともに記録する.ただし、各脚の位相は記録するのみで、四足歩行ロボットモデルの制御には用いない.

シミュレーションフェーズでは、シミュレーションを1フレーム(10 ms) 進め、各関節の角度をメインフェーズで設定した目標角度に駆動する.し たがって, *i* 番目の脚の駆動周期  $T'_i$ は式(6-1), 関節の角速度  $\omega'_i$ は式(6-2) で表される. さらに, 式(6-1)と式(6-2)より,  $\omega'_i$ は式(6-3)で表される. ここで,  $\sigma'$ はフィードバックゲイン,  $T_0$ は  $v_w = 0$  V における自己抑制をもつ P-HNM のパルス周期に相当する定数である.

$$T'_i = T_0 + N_i \,\sigma' \tag{6-1}$$

$$\omega'_i = \frac{\theta'}{T'_i} \tag{6-2}$$

$$\omega'_{i} = \frac{\theta'}{T_0 + N_i \,\sigma'} \tag{6-3}$$

四足歩行ロボットシステムでは,自己抑制をもつ P-HNM のパルス周期 に応じて時間あたりに割り込み処理が実行される回数が変化し,メインフ ェーズが実行される周期が変化する.一方で,シミュレータのメインフェ ーズは,四足歩行ロボットモデルのシミュレーションを停止した状態で実 行される.したがって,シミュレータはメインフェーズを1フレーム(10 ms) ごとに確実に実行する.



図 6-4 シミュレータの処理の概要

6-3 四足歩行ロボットモデルによる歩容の生成

四足歩行ロボットモデルを十分に広い平坦な床に設置し、 $\theta$ 'のみ異なる 複数の条件で 5000 秒間のシミュレーションを実行した。 $\theta$ 'は、0.20 °から 1.4 °まで 0.01 °ずつ変更した。全てのシミュレーションにおいて、 $T_0 \ge \sigma$ は 20 ms と 8.0 とし、 $\theta$ 'を含むこれらの定数はシミュレーション中で一定 とした。

四足歩行ロボットモデルは、複数の条件のシミュレーションにおいて、 Walk または Trot の歩容を生成した. 図 6-5 に、四足歩行ロボットシステ ムが各歩容を生成した実験条件と、四足歩行ロボットモデルが各歩容を生 成したシミュレーション条件の比較を示す. シミュレーションと実験双方 において、足裏の圧力に応じて角速度が変化するため、脚が床に接してい ない状態の角速度を図中の横軸とした. 図中の〇印は、5 周期以上歩容を 維持した条件を示す. 同図は、四足歩行ロボットシステムが Walk、Trot の歩容を生成した実験条件の付近のシミュレーション条件において、四足 歩行ロボットモデルがそれぞれの歩容を生成したことを示している.また、 四足歩行ロボットモデルは、複数の条件で各歩容の生成が可能であり、低 速の歩行では Walk、高速の歩行では Trot の歩容を生成する傾向があるこ とを示している.





図 6-5 角速度に対する生成された歩容の比較 A: 四足歩行ロボットシス テムの実験結果 B: 四足歩行ロボットモデルのシミュレーション結果
図 6-6 に,最も長時間に渡って Walk の歩容を維持したシミュレーション における,左前脚を基準とした各脚の位相差の推移を示す.同図のシミュ レーションでは, θ'は 0.99 °である.同図は,200 s付近から Walk の歩容 が生成され,シミュレーションの終了まで維持されたことを示している.

図 6-7 に,最も長時間に渡って Trot の歩容を維持したシミュレーション における,左前脚を基準とした各脚の位相差の推移を示す.同図のシミュ レーションでは, θ'は 1.09 °である.同図は,700 s 付近から Trot の歩容が 生成され,シミュレーションの終了まで維持されたことを示している.

以上の結果より,四足歩行ロボットモデルが四足歩行ロボットシステム と同様に,低速の歩行では Walk,高速の歩行では Trot の歩容を生成する ことを明らかにした.また,機械的な外乱のない理想的な空間において, 四足歩行ロボットモデルが生成した歩容を長期間に渡って維持することを 明らかにした.



図 6-6 四足歩行ロボットモデルを低速で歩行させた場合の位相差の 遷移の一例



図 6-7 四足歩行ロボットモデルを高速で歩行させた場合の位相差の 遷移の一例

# 第7章結論

本論文では、パルス形ハードウェアニューロンモデル(P-HNM)を用いて 歩容を生成する四足歩行ロボットシステムについて検討を行った. 第3章 以下が、筆者が行った研究成果であり、第3章では、四足歩行ロボットシ ステムに実装して歩容の生成に利用するために用いた、ディスクリート素 子による自己抑制をもつ P-HNM の要件を示し、ディスクリート素子によ る自己抑制をもつ P-HNM の特性の測定結果を示した. 第 4 章では, ディ スクリート素子による自己抑制をもつ P-HNM を用いて歩容を生成する四 足歩行ロボットシステムの構成要素と、脚の駆動方法を示した.また、実 験により、四足歩行システムが、歩行の早さに応じて四足歩行動物の Walk と Trot の歩容を生成することを明らかにした. 第5章では, 特性のばらつ きの大きかったディスクリート素子による自己抑制をもつ P-HNM の回路 構成を一部変更した回路を4回路実装した集積回路(IC)チップを設計した. さらに、IC チップの測定の結果、回路間の特性のばらつきが低減したこと を示した.また,回路定数を変更した IC チップを開発し,回路定数変更後 の IC チップに実装した回路の特性を測定した結果,回路間の特性のばらつ きが極めて小さくなったことを示した. 第6章では, 四足歩行ロボットシ ステムを動力学シミュレータ上にモデル化した四足歩行ロボットモデルが, 四足歩行ロボットシステムと同様に、歩行の早さに応じて四足歩行動物の Walk と Trot の歩容を生成することを明らかにした. また, それらの歩容 を長期間維持することを示した.

以上のことより,本論文では,自己抑制をもつ P-HNM を用いた方法論 が四足歩行動物の歩容を生成する事を明らかにした.また,自己抑制をも つ P-HNM を IC チップに実装することで大幅に回路間の特性のばらつきを 低減可能であり,四足歩行ロボットシステムにおける電気的な外乱の低減 が期待できることを示した.さらに,自己抑制をもつ P-HNM を用いた方 法論に基づいた動力学シミュレーションにより,四足歩行ロボットモデル が四足歩行動物の歩容を生成し,歩容を長期間維持することを明らかにした.

### 謝辞

本研究を遂行するにあたり,日頃より懇切な御指導,御鞭撻を賜りました日本大学理工学部精密機械工学科齊藤健教授に心から感謝を致します.

本論文をまとめるにあたり,有益なご助言を頂きました日本大学理工学 部精密機械工学科内木場文男教授,日本大学理工学部精密機械工学科羽多 野正俊教授,日本大学理工学部電子工学科佐伯勝敏教授に厚く御礼申し上 げます.

また,日頃よりご指導と御鞭撻を賜っている日本大学理工学部精密機械 工学科の諸先生方に深く感謝申し上げます.

本研究の遂行にあたり、ご協力頂いた日本大学大学院理工学研究科修了 生の田澤陸氏,日本大学理工学部精密機械工学科マイクロデザイン研究室, 日本大学理工学部精密機械工学科ニューロロボティクス研究室の在校生の 諸氏に感謝致します.

# 参考文献

- [1] Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). BigDog, the rough-terrain quadruped robot. In IFAC Proceedings Volumes (vol. 41, pp. 10822-10825). Elsevier.
- [2] Fankhauser, P., Bjelonic, M., Bellicoso, B. C., Miki, T., & Hutter, M. (2018). Robust rough-terrain locomotion with a quadrupedal robot. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5761-5768). IEEE.
- [3] Biswal, P., & Mohanty, P. K. (2021). Development of quadruped walking robots: a review. Ain Shams Engineering Journal, 12(2), 2017-2031.
- [4] Benjamin, B. V., Gao, P., McQuinn E., Choudhary, S., Chandrasekaran, A. R., & Bussat, J. M. (2014). Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. In Proceedings of the IEEE (vol. 102, no. 5, pp. 699-716). IEEE.
- [5] Amari, S., Park, H., & Fukumizu, K. (2000). Adaptive method of realizing natural gradient learning for multilayer perceptrons. Neural Computation, 12(6), 1399-1409. MIT Press.
- [6] Pastur-Romay, L. A., Porto-Pazos, A. B., Cedrón, F., & Pazos, A. (2017).
   Parallel computing for brain simulation. Current Topics in Medical Chemistry, 17(14), 1646-1668.
- [7] 久保孝富,幾谷吉晴. (2019). 人の知性を司る脳,その模倣としての機
   械学習.システム/制御/情報,vol. 63, no. 3, pp. 124-129.
- [8] 田中剛平. (2019). リザバーコンピューティングの概念と最近の動向.
   電子情報通信学会誌, vol. 102, no. 2, pp. 108-113.
- [9] 石井信,岡田真人,菅生康子,大羽成征,山崎匡,森江隆,國吉康夫.(2019). 脳型人工知能技術の開発,人工知能, vol. 34, no. 6, pp. 817-825.

- [10] Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., & Kurth-Nelson, Z.
   (2020). Deep reinforcement learning and its neuroscientific implications. Neuron, 107(4), 603-616. Cell Press.
- [11] Aihara, K., & Toyoda, M. (1990). Chaotic neural networks. Physics Letters A, 144(6-7), pp. 333-340. Elsevier.
- [12] 染谷和孝, 篠崎秀一, 関根好文. (1997). パルス形ハードウェアカオス ニューロンモデルとその分岐現象. 電子情報通信学会論文誌, vol. J80-C-II, no. 9, pp. 289-296.
- [13] Long, L. N., & Fang, G. (2010). A review of biologically plausible neuron models for spiking neural networks. In AIAA Infotech@Aerospace 2010.
   American Institute of Aeronautics and Astronautics.
- [14] Almog, A., & Korngreen, A. (2016). Is realistic neuronal modeling realistic? Journal of Neurophysiology, 116(5), 2180-2209. American Physiological Society.
- [15] 関根好文, 隅山正巳, 佐伯勝敏, 合原一幸. (2001). エンハンスメント型 MOSFET による Λ 形ニューロンモデル. 電子情報通信学会論文誌 C, vol. J84-C, no. 10, pp. 988-994.
- [16] 関根好文. (2012). 非線形電子回路の動向. 電気学会論文誌 C, vol. 133, no. 3, pp. 494-501.
- [17] Grillner, S., & Zangger, P. (1979). On the central generation of locomotion in the low spinal cat. Experimental Brain Research, 34, 241-261.
- [18] Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11(23), 986-996.
- [19] Frigon, A., & Rossignol, S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biological Cybernetics, 95, 607-627.

- [20] Selverston, A. I., & Ayers, J. (2006). Oscillations and oscillatory behavior in small neural circuits. Biological Cybernetics, 95, 537-554.
- [21] Bellardita, C., & Kiehn, O. (2015). Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Current Biology, 25(11), 1426-1436.
- [22] Hoyt, D. F., & Taylor, C. R.(1981). Gait and the energetics of locomotion in horses. Nature, 292, 239-240.
- [23] Taylor, C. R. (1980). Force development during sustained locomotion: a determinant of gait, speed and metabolic power. Journal of Experimental Biology, 115(1), 253-262.
- [24] McMahon, T. A. (1985). The role of compliance in mammalian running gaits. Journal of Experimental Biology, 115(1), 263-282.
- [25] Bhatti, Z., Waqas, A., Mahesar, A. W., & Karbasi, M. (2017). Gait analysis and biomechanics of quadruped motion for procedural animation and robotic simulation. Bahria University Journal of Information & Communication Technologies, 10(2), 1-7.
- [26] Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210(4469), 492-498.
- [27] Arshavsky, Y. I., Deliagina, T. G., & Orlovsky, G. N. (2016). Central pattern generators: mechanisms of operations and their role in controlling automatic movements. Neuroscience and Behavioral Physiology, 46(6), 696-718.
- [28] 伊藤聡,湯浅秀男,羅志偉,伊藤正美,柳原大. (1999). 環境の変化に 適応する四足歩行ロボットシステム,日本ロボット学会誌, vol. 17, no.
  4, pp. 595-603.

- [29] 土屋和雄, 辻田勝吉. (2002). Central Pattern Generator モデルに基づく 4
   脚歩行ロボットの歩行制御. 日本ロボット学会誌, vol. 20, no. 3, pp. 243-246.
- [30] Ishii, T., Masakado, S., & Ishii, K. (2004). Locomotion of a quadruped robot using CPG. In 2004 IEEE International Joint Conference on Neural Networks (vol. 4, pp. 3179-3184). IEEE.
- [31] 福岡泰宏,木村浩. (2007). 4 足ロボットの生物規範型不整地適応動歩 行.日本ロボット学会誌, vol. 19, no. 4, pp. 138-154.
- [32] Wang, J., Wen. J., Chen, W., Yue, H., & Liu, D., A gait generating algorithm with smooth speed transition for the locomotion of legged robots. Transactions of the Institute of Measurement and Control, 36(2), 260-275.
- [33] Liu, H., Jia, W., & Bi, L. (2017). Hopf oscillator based adaptive locomotion control for a bionic quadruped robot. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 949-954). IEEE.
- [34] Habu, Y., Yamada, Y., Fukui, S., & Fukuoka, Y. (2018). A simple rule for quadrupedal gait transition proposed by a simulated muscle-driven quadruped model with two-level CPGs. In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2075-2081). IEEE.
- [35] 伊藤聡,湯浅秀男,伊藤宏司.エネルギー消費量による四足歩行パターン遷移の発振器-力学モデル.計測自動制御学会論文集,vol. 32, no.
   11, pp. 1535-1543 (1996)
- [36] Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21, 642-653.
- [37] Aoi, S., Manoonpong, P., Ambe, Y., Matsuno, F., & Wörgötter, F. (2017).
   Adaptive control strategies for interlimb coordination in legged robots: a review. Frontiers in Neurorobotics, 11(39).

- [38] McGeer, T. (1990). Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62-82.
- [39] 大須賀公一,桐原謙一. (2000). 受動的歩行ロボット Quartet II の歩行 解析と歩行実験, "日本ロボット学会誌, vol. 18, no. 5, pp. 737-742.
- [40] Nakatani, K., Sugimoto, Y., & Osuka, K. (2009). Demonstration and analysis of quadruped passive dynamic walking. Advanced Robotics, 23(5), 483-501.
- [41] Sugimoto, Y., Yoshioka, H., & Osuka, K. (2011). Development of super-multi- legged passive dynamic walking robot "Jenkka-III". In SICE Annual Conference 2011 (pp, 576-579). IEEE.
- [42] 浦大介,入部正継,大須賀公一,衣笠哲也. (2015). 受動的動歩行の性 質を利用した脚歩行ロボットの一設計方法 -適応的機能を使用した 形状と関節自由度構成の設計-. 計測自動制御学会論文集, vol. 51, no. 5, pp. 329-335.
- [43] Owaki, D., Kano, T., Nagasawa, K., Tero, A., & Ishiguro, A. (2012). Simple robot suggests physical interlimb coordination is essential for quadruped walking. Journal of The Royal Society Interface, 10(78).
- [44] Owaki, D., & Ishiguro, A. (2017). A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Scientific Reports, 7(277), 1-10
- [45] Shinomoto, S., Kuramoto, Y. (1986). Phase transitions in active rotator systems. Progress of Theoretical Physics, 75(5), 1105-1110.
- [46] Shinomoto, S., Kuramoto, Y. (1986). Cooperative phenomena in two-dimensional active rotator systems. Progress of Theoretical Physics, 75(6), 1319-1327.

## 研究業績一覧

#### 1. 査読付き論文

(1) Kurosawa, M., Sasaki, T., Usami, Y., Kato, S., Sakaki, A., Takei, Y., Kaneko, M., Uchikoba, F., & Saito, K. (2021). Neural networks integrated circuit with switchable gait pattern for insect-type microrobot. Artificial Life and Robotics, 26(3), 297-303.

(2) Sasaki, T., Kurosawa, M., Usami, Y., Kato, S., Sakaki, A., Takei, Y., Kaneko, M., Uchikoba, F., & Saito, K. (2021). Development of neural networks chip generating driving waveform for electrostatic motor. Artificial Life and Robotics, 26(2), 222-227.

(3) Takei, Y., Morishita, K., Tazawa, R., Katsuya, K., & Saito, K. (2021). Non-programmed gait generation of quadruped robot using pulse-type hardware neuron models. Artificial Life and Robotics, 26(1), 109-115.

(4) Morishita, K., Takei, Y., & Saito, K. (2020). Design of hardware-based biomimetic neural networks exhibiting oscillatory burst firing of lamprey nervous system. Transactions of The Japan Institute of Electronics Packaging, 13, E20-007-1-E20-007-4.

(5) Sasaki, T., Kurosawa, M., Ohara, M., Hayakawa, Y., Noguchi, D., Takei, Y., Kaneko, M., Uchikoba, F., & Saito, K. Development of hardware neural networks generating driving waveform for electrostatic actuator. Artificial Life and Robotics, 25(3), 446-452.

#### 2. 著書

(1) Takei, Y., Morishita, K., & Saito, K. (2021). Quadruped Robots with Bio-Inspired Gait Generation Methods Using Sole Pressure Sensory Feedback.

Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning, IGI Global. (in press)

(2) Morishita, K., Kato, S., Takei, Y., & Saito, K. (2021). Development of a Receptor Cell Model for an Artificial Life. Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning, IGI Global. (in press)

(3) Takei, Y., Morishita, K., Tazawa, R., & Saito, K. (2021). Active Gaits Generation of Quadruped Robot Using Pulse-Type Hardware Neuron Models, Biomimetics, IntechOpen, DOI: 10.5772/intechopen.95760.

3. 国際会議における発表

Takei, Y., Tazawa, R., Kaimai, T., Morishita, K., & Saito, K. (2021).
 Dynamic simulation of non-programmed gait generation of quadruped robot. In
 The Twenty-Sixth International Symposium on Artificial Life and Robotics 2021
 (AROB 26th 2021).

(2) Morishita, K., Kato, S., Sasaki, T., Takei, Y., & Saito, K. (2021). Development of receptor cell model converting sensor inputs into pulse waveforms. In The Twenty-Sixth International Symposium on Artificial Life and Robotics 2021 (AROB 26th 2021).

(3) Takei, Y., Morishita, K., Tazawa, R., Katsuya, K., & Saito, K. (2020). Non-programmed gait generation of quadruped robot using pulse-type hardware neuron models. In The Twenty-Fifth International Symposium on Artificial Life and Robotics 2020 (AROB 25th 2020).

(4) Sasaki, T., Kurosawa, M., Usami, Y., Kato, S., Sakaki, A., Ohara, M., Takei, Y., Kaneko, M., Uchikoba, F., & Saito, K. (2020). Development of neural networks chip generating driving waveform for electrostatic motor. In The

Twenty-Fifth International Symposium on Artificial Life and Robotics 2020 (AROB 25th 2020).

(5) Kurosawa, M., Sasaki, T., Usami, Y., Kato, S., Sakaki, A., Ohara, M., Takei, Y., Kaneko, M., Uchikoba, F., & Saito, K. (2020). Neural networks integrated circuit with switchable gait pattern for insect type microrobot. In The Twenty-Fifth International Symposium on Artificial Life and Robotics 2020 (AROB 25th 2020).

(6) Mizumoto, A., Ishikawa, M., Ito, H., Yamada, N., Osada, G., Hirao, S., Takei, Y., Kaneko, M., Uchikoba, F., & Saito, K. (2020). Simplification of leg mechanism using lever crank for insect-type MEMS microrobot. In The Twenty-Fifth International Symposium on Artificial Life and Robotics 2020 (AROB 25th 2020).

4. 国内学会における発表

(1) 有馬明日香,松本卓才,森下克幸,武井裕樹,小林伸彰,齊藤健. (2021).
 音声課題に対する脳波のフラクタル次元変化を用いた集中力の解析手法に
 対する検討.第34回 回路とシステムワークショップ.

(2) 高柳拓生, 宇佐見雄, 加藤真也, 榊亜理沙, 森下克幸, 武井裕樹, 齊藤 健. (2021). 四足歩行ロボットに搭載する自己回帰を持つニューロモーフ ィック回路の集積化に対する検討. 第 34 回 回路とシステムワークショ ップ.

(3) 榎澤瑠奈,高柳拓生,宇佐見雄,加藤真也,榊亜理沙,森下克幸,武井 裕樹,齊藤健. (2021).静電モータ駆動のマイクロロボットの歩行パターン が生成可能なニューラルネットワーク集積回路の開発.第34回 回路と システムワークショップ.

(4) 古屋菫, 伊藤穂高, 石川真聡, 山田哲之, 森下克幸, 武井裕樹, 金子美泉, 内木場文男, 齊藤健. (2021). MEMS マイクロロボットに用いる剣形脚

部の検討. 第38回「センサ・マイクロマシンと応用システム」シンポジウム.

- (5) 武井裕樹, 齊藤健. (2021). 非ノイマン型のニューロデバイスを実装したロボットシステムの開発. 令和3年電気学会全国大会.
- (6) 榎澤瑠奈, 伊藤穂高, 石川真聡, 山田哲之, 長田元気, 水本明日也, 森下克幸, 武井裕樹, 齊藤健. (2021). 昆虫型マイクロロボットの駆動に必要な静電モータの出力に対する検討. 電子情報通信学会東京支部学生会研究 発表会.
- (7)有馬明日香,松本卓才,林昂志,高橋玄記,森下克幸,武井裕樹,小林 伸彰,齊藤健.脳波のフラクタル次元を用いた注意力の解析手法に対する 検討電子情報通信学会東京支部学生会研究発表会.
- (8) 高柳拓生, 榊亜理沙, 宇佐見雄, 加藤真也, 佐々木拓郎, 森下克幸, 武 井裕樹, 齊藤健. (2021). 静電モータで動作するマイクロロボットの駆動波 形を生成するニューラルネットワークの開発. 電子情報通信学会東京支部 学生会研究発表会.
- (9) 古屋菫, 伊藤穂高, 石川真聡, 山田哲之, 長田元気, 水本明日也, 森下 克幸, 武井裕樹, 齊藤健. てこクランク機構を用いたマイクロロボット用 脚部の回転部品に対する検討. 電子情報通信学会東京支部学生会研究発表 会.
- (10) 森下克幸,宇佐見雄,武井裕樹,齊藤健. (2021). 広い発火範囲を持つ パルス形ハードウェアニューロンモデルの検討. 電気学会電子回路研究会
  (11) 山田哲之,石川真聡,伊藤穂高,長田元気,水本明日也,森下克幸,武 井裕樹,齊藤健. (2021). 昆虫型マイクロロボット用静電モータの開発. 第
  11 回集積化 MEMS 技術研究ワークショップ.
- (12)加藤真也,宇佐見雄,榊亜理沙,佐々木拓郎,森下克幸,武井裕樹,齊藤健. (2020). センサ入力に応答する受容細胞モデルの集積回路化に対す る検討. 電気学会電子回路研究会.

(13) 森下克幸,加藤真也,武井裕樹,齊藤健. (2020). センサ入力強度に応じたパルス波形を出力する受容細胞モデルの開発.電気学会電子回路研究会.

- (14) 宇佐見雄,星野太輝,黒澤実花,森下克幸,武井裕樹,齊藤健. (2020). 階層型ハードウェアニューラルネットワークの構成要素の周波数特性に 対する検討.電気学会電子回路研究会.
- (15) 榊亜理沙, 宇佐見雄, 加藤真也, 黒澤実花, 森下克幸, 佐々木拓郎, 武 井裕樹, 金子美泉, 内木場文男, 齊藤健. (2020). 静電モータで駆動する昆 虫型マイクロロボットの歩行パターンを生成するニューラルネットワーク 集積回路の開発. 電気学会電子回路研究会.
- (16) 森下克幸,武井裕樹,齊藤健. (2020). ヤツメウナギの遊泳に係る神経 系を模倣したハードウェアニューラルネットワークモデルの設計. 電気学 会電子回路研究会.
- (17) 開米拓実,森下克幸,武井裕樹,齊藤健. (2020). 伸筋と屈筋によって動作する昆虫型ロボットの脚の設計. 電気学会電子回路研究会.
- (18) 勝谷孝一,田澤陸,森下克幸,冨増優樹,武井裕樹,齊藤健. (2020).ニ ューロモーフィック回路を用いた魚型ロボットシステムの開発.電子情 報通信学会東京支部学生会第 25 回研究発表会.

(19) 榊亜理沙, 宇佐見雄, 加藤真也, 黒澤実花, 佐々木拓郎, 小原正也, 武 井裕樹, 齊藤健. (2020). マイクロロボット用の静電アクチュエータの駆動 波形を出力するニューラルネットワーク集積回路の基礎的検討. 電子情報 通信学会東京支部学生会第 25 回研究発表会.

(20) 松本卓才,林昂志,高橋玄記,武井裕樹,齊藤健. (2020). 音刺激を用いた脳波信号によるロボット制御の基礎的検討. 電子情報通信学会東京支部学生会第 25 回研究発表会.

(21) 加藤真也, 宇佐見雄, 榊亜理沙, 黒澤実花, 佐々木拓郎, 小原正也, 武井裕樹, 齊藤健. (2019). 四足歩行ロボットに搭載する集積化ニューロモー

フィック回路の出力測定. 電子情報通信学会東京支部学生会第 25 回研究 発表会.

(22) 石川真聡, 伊藤穂高, 山田哲之, 長田元気, 水本明日也, 平尾聡志, 武 井裕樹, 齊藤健. (2019). 昆虫型マイクロロボット用の静電センサの基礎的 検討. 電子情報通信学会東京支部学生会第25回研究発表会.

(23) 山田哲之,伊藤穂高,石川真聡,長田元気,水本明日也,平尾聡志,武 井裕樹,齊藤健. (2019). マイクロロボット駆動用静電モータの小型化に対 する検討. 電子情報通信学会東京支部学生会第25回研究発表会.

(24) 宇佐見雄,加藤真也,榊亜理紗,黒澤実花,佐々木拓郎,小原正也,武 井裕樹,齊藤健. (2019). 歩行パターンの切り替え可能な6脚マイクロロボ ット用ニューラルネットワーク集積回路の開発.電子情報通信学会東京支 部学生会第25回研究発表会.

(25)伊藤穂高,石川真聡,山田哲之,長田元気,水本明日也,平尾聡志,武井裕樹,齊藤健. (2019). MEMS マイクロロボット用のてこクランク機構を用いた脚部の作製.電子情報通信学会東京支部学生会第25回研究発表会
(26)山口貴大,森下克幸,武井裕樹,齊藤健. (2019). 昆虫型ロボットに搭載する中枢パターン生成器モデルの開発.電子情報通信学会東京支部学生会第25回研究発表会.

(27) 森下克幸,武井裕樹,齊藤健. (2019). ヤツメウナギの神経系を模倣し たヤツメウナギアナログ神経回路モデルの開発.第 34 回エレクトロニク ス実装学会春期講演大会.

(28) 加藤真也, 宇佐見雄, 榊亜理沙, 黒澤実花, 佐々木拓郎, 小原正也, 武 井裕樹, 齊藤健. (2019). 四足歩行ロボットに実装するニューロモーフィッ ク回路の集積化に対する検討. 電子回路研究会.

(29) 榊亜理沙, 宇佐見雄, 加藤真也, 黒澤実花, 佐々木拓郎, 小原正也, 武 井裕樹, 齊藤健. (2019). マイクロロボット用の静電アクチュエータを駆動 するニューラルネットワーク集積回路の基礎的検討. 電子回路研究会. (30) 田澤陸, 勝谷孝一, 森下克幸, 武井裕樹, 齊藤健. (2019). 馬の歩容を 生成するニューロモーフィック回路の小型化に対する検討. 電子回路研究 会.

(31) 山口貴大,森下克幸,武井裕樹,齊藤健. (2019). 昆虫の脚の動作を模 倣可能な中枢パターン生成器モデルの開発. 電子回路研究会.

(32) 宇佐見雄,黒澤実花,佐々木拓郎,森下克幸,小原正也,武井裕樹,齊藤健. (2019). 階層型のパルス形ハードウェアニューラルネットワークに 対する検討.電子回路研究会.

(33) 武井裕樹, 森下克幸, 田澤陸, 金子美泉, 内木場文男, 齊藤健. (2019). 独立したニューロ回路の実装により動物に似た歩容を生成する四足歩行ロ ボットの開発. 第32回 回路とシステムワークショップ.

(34) 武井裕樹, 冨増優樹, 田澤陸, 森下克幸, 金子美泉, 内木場文男, 齊藤健. (2019). ニューロ回路の搭載により生物の歩容を発現する四足歩行ロボットの開発. JPCA2019 アカデミックプラザ.

(35) 冨増優樹,武井裕樹,田澤陸,森下克幸,金子美泉,内木場文男,齊藤 健.(2019). 自己回帰を持つニューラル回路を実装した4足歩行ロボットの 自発的な歩容の生成.第33回エレクトロニクス実装学会春季講演大会.

(36) 田澤陸,森下克幸,冨増優樹,武井裕樹,金子美泉,内木場文男,齊藤 健. (2019). ニューロ回路を用いて自発的に足並みを変化させる四足歩行 ロボットの開発.電子情報通信学会東京支部学生会第24回研究発表会.

(37) 森下克幸,田澤陸,冨増優樹,武井裕樹,金子美泉,内木場文男,齊藤 健.(2019).4 足歩行ロボットの歩行速度を変化させるハードウェア CPG モ デルの開発.電子情報通信学会東京支部学生会第24回研究発表会.