ネコ MHC 遺伝子の多型性に関する研究

日本大学大学院獣医学研究科獣医学専攻 博士課程

岡野 雅春

第1章	5
第2章	
2.1 序論	
2.2 材料	および方法15
2.2.1	参照ゲノム配列における各 FLA クラスI遺伝子構造の検討
2.2.2	供試検体15
2.2.3	RNA の抽出および逆転写酵素反応による cDNA の合成
2.2.4	アンプリコンシークエンシング法による FLA クラスI遺伝子の PCR 増幅16
2.2.5	アンプリコン法の PCR 増幅産物の精製および定量17
2.2.6	アンプリコン法のエマルジョン PCR、NGS によるアンプリコンシークエンシン
グおよ	たびデータ処理17
2.2.7	アンプリコン法のリードの選別およびトリミング18
2.2.8	アンプリコン法の新規 FLA クラスI配列の同定とリファレンスの作成18
2.2.9	アンプリコン法の個体毎のFLA クラスI配列の同定およびリード数の算定19
2.2.10	サブクローニング法による FLA-E, -H およびK 遺伝子の転写産物の解析19
2.2.11	塩基配列の解析
2.3 結果	
2.3.1	遺伝子構造が保存された FLA クラスI遺伝子の推定21
2.3.2	アンプリコン法による FLA クラスI遺伝子の転写産物の同定
2.3.3	アンプリコン法により同定された5 個体のFLA クラスI遺伝子
2.3.3	サブクローニング法により同定された各個体のFLA クラスI遺伝子24
2.4 考察	
第3章	
3.1 序論	
3.2 材料	と方法
3.2.1	供試検体41
3.2.2	RNA の抽出および逆転写酵素反応による cDNA の合成41
3.2.3	アンプリコンシークエンスによる FLA クラスI多型解析の PCR 増幅41
3.2.4	アンプリコン法の PCR 増幅産物の精製および定量42
3.2.5	アンプリコン法のエマルジョン PCR、NGS を用いたアンプリコンシークエンス
およて	バデータ処理
3.2.6	アンプリコン法のリード選別およびトリミング43

作成43
44
ぶ数の算定44
44
45
46
47
47
47
49
50
50
51
53
70
79 82

4.4 考察	89
第5章	109
5.1 序論	110
5.2 材料と方法	112
5.2.1 供試檢体	112
5.2.2 アンプリコンシークエンス法による FLA-DRB 多型解析の PCR 増幅	112
5.2.3 PCR 増幅産物の精製および定量	112
5.2.4 エマルジョンPCR、NGS のシークエンスおよびデータ処理	112
5.2.5 リード選別およびトリミング	113
5.2.6 新規 FLA-DRB アレルの同定	113
5.2.7 配列の相同性検索と分子系統解析による FLA-DRB アレルの分類	113
5.2.8 マッピング解析による各個体のFLA-DRB アレルの同定	113
5.2.9 FLA-DRB ハプロタイプの推定	113
5.2.10 新規 FLA-DRB アレルおよびハプロタイプの命名方法	114
5.3 結果	115
5.3.1 150 個体から同定された FLA-DRB アレルの分子系統解析	115
5.3.2 同定された FLA-DRB アレルの頻度	116
5.3.3 推定された FLA-DRB ハプロタイプ毎の比較	116
5.3.4 雑種群と洋品種群間のFLA-DRB ハプロタイプ出現頻度の比較	118
5.4 考察	119
第6章	130
謝辞	136
引用文献	

第1章

緒論

主要組織適合性複合体(Major Histocompatibility Complex, MHC)は、有 顎類以降の脊椎動物に出現し、進化の過程で保存されてきた分子である。ヒト の MHC であるヒト白血球抗原(Human Leukocyte Antigen, HLA) は、HLA ク ラスI (HLA-I) と HLA クラスII (HLA-II) に大別される。HLA-Iの構造は、主 要なα鎖と HLA-Iの構造を支える β2 ミクログロブリン (β2m) から構成され る。一方、HLA-IIは、α鎖とβ鎖から構成される。これらの分子は、どちらも 細胞表面に発現し、なおかつ細胞膜の外側に溝(ペプチド収容溝)を持つ。こ のペプチド収容溝にペプチドを挟み込み、T細胞へ提示することで獲得免疫を 発動させる。この HLA-Iと HLA-IIの発現細胞と免疫機構での役割は大きく異な る。まず HLA-Iは、ほとんどの有核細胞の表面上に発現し、細胞内に由来する 抗原(細胞内在性抗原)の断片(抗原ペプチド)を提示する。生体内では、ウ イルス感染細胞や腫瘍細胞などにおいて、HLA-Iのペプチド収容溝にはウイル スまたは腫瘍関連抗原由来の抗原ペプチドが挟み込まれ、細胞表面に発現され る。この HLA-Iと抗原ペプチドの複合体は、T 細胞レセプター(T cell receptor, TCR)を介して細胞傷害性T細胞(CD8陽性T細胞)に認識される。これによ り活性化した細胞傷害性 T 細胞は、標的細胞のアポトーシスを誘導し、ウイル ス感染細胞や腫瘍細胞などを排除する。次に HLA-IIは、主に樹状細胞などの抗 原提示細胞やB細胞などの表面に発現し、細胞外に由来する抗原(細胞外来性 抗原)を提示する。生体内において、これらの細胞によって貪食された細菌や 寄生虫などの外来性因子は、細胞内での処理を経て抗原ペプチドとなり、HLA-IIのペプチド収容溝に挟み込まれ、細胞表面に発現される。この HLA-IIおよび 抗原ペプチドの複合体は、TCR を介してヘルパーT 細胞(CD4 陽性 T 細胞)に 認識される。細菌や寄生虫に由来する抗原ペプチドを認識したヘルパーT 細胞 は活性化し、サイトカイン産生などを行うことにより、B細胞やマクロファー

ジの活性化など免疫反応を誘起する。以上のように、HLA-Iおよび HLA-IIは獲 得免疫の発動を担うことから、免疫機構においてなくてはならない分子であ る。

ヒトゲノム内の HLA をコードする遺伝子(HLA 遺伝子)は、第6番染 色体上に集中しており、これを HLA 領域と呼ぶ。この領域には、複数の HLA クラスI遺伝子が位置する HLA クラスI領域と、複数の HLA クラスII遺伝子が 位置する HLA クラスII領域が含まれる。また、この2つの領域(HLA クラスI およびクラスII領域)の間には、HLA 遺伝子ではなく補体や腫瘍壊死因子

(tumor necrosis factor, TNF) などの種々の免疫関連遺伝子が集中している領域 があり、これを HLA クラスIII領域と呼ぶ。これら 3 つの領域のうち、HLA ク ラスI領域には、HLA-Iの α 鎖をコードする 6 個の HLA クラス I 遺伝子(*HLA-A*, *HLA-B*, *HLA-C*, *HLA-E*, *HLA-F* および *HLA-G*)が同定されている。一方 HLA-Iの β2m は、第 15 番染色体上に存在する。また、HLA クラスII領域には、 HLA-II DR、DQ および DP 分子の α 鎖をコードする 3 個の HLA クラスII遺伝子

(*HLA-DRA*, *HLA-DQA1* および *HLA-DPA1*) および β 鎖をコードする 3 個の HLA クラスII遺伝子(*HLA-DRB1*, *HLA-DQB1* および *HLA-DPB1*) が同定されて いる(Mungall et al., 2003)。

HLA 遺伝子は、ヒトの遺伝子の中で、各人のゲノムによる塩基配列の 違い、すなわち多型性が最も大きい遺伝子であることが知られている。HLA 多 型情報が公開されている Immuno Polymorphism Database (European Bioinformatics Institute, EBI)によると、HLA クラス I 遺伝子である *HLA-A*, *HLA-B* および *HLA-C* においては、それぞれ 3896, 4803 および 3618 種類の対立遺伝子(アレル) が現在までに報告されている(IPD-IMGT/HLA Release 3.42.0 2020-10-15)。一 方 HLA-Iの β2m における多型は認められていない。また、HLA-II において、β

鎖をコードする HLA-DRB1, HLA-DQB1 および HLA-DPB1 は、それぞれ 1973, 1273 および 1064 種類のアレルが報告されており、α 鎖をコードする HLA-DRA, HLA-DQA1 および HLA-DPA1 と比較して多型に富むことが知られている (EBI)。これらの HLA 遺伝子の多型は、ペプチド収容溝を形づくる領域に集中 している。つまり、HLA 多型によってペプチド収容溝のアミノ酸配列に違いが 生じ、抗原ペプチドとの結合性に HLA アレルごとの差が生み出される(Dai et al., 2008)。さらに、同一染色体上の各座位におけるアレルの並びをハプロタイ プと呼ぶが、HLA 領域における各 HLA 座位には、それぞれ数多くのアレルが 報告されていることから、HLA ハプロタイプは膨大な数の組み合わせが生み出 される。また、この HLA ハプロタイプは膨大な数の組み合わせが生み出 される。また、この HLA ハプロタイプは膨大な数の組み合わせが生み出 される。また、この HLA ハプロタイプはしく親および母親から 1 セットずつ 遺伝されることから、子における 2 つのハプロタイプの組み合わせによって も、HLA の多様性が生み出されている。

このように、免疫において重要であり、なおかつ多型に富む特徴を有 する HLA 遺伝子と免疫反応の個人差との様々な関連解析は、今までに数多く 報告されてきた(Shiina et al., 2004;Shiina et al., 2009)。まず、ヒトに感染するレ トロウイルスであるヒト免疫不全ウイルス(Human Immunodeficiency Virus, HIV)において、特定の HLA クラスIハプロタイプ(HLA-B*52:01-C*12:02)を 有する HIV 感染患者は、このハプロタイプを持たない患者と比較して、血漿中 ウイルス量が低いことが明らかになっている(Chikata et al., 2017)。また、日本 人の関節リウマチにおいて、特定の HLA クラスIアレルである HLA-DRB1*13:02 を保有する人は、この HLA アレルを持たない人と比較して発症す るリスクが低いことが報告されている(Oka et al., 2014)。

さらに、臓器移植の際にドナーとレシピエントとの HLA の違いにより、免疫拒絶が引き起こされることが知られている(Zinkernagel and Doherty,

1997;Nakamura et al., 2019)。このように、比類なき遺伝的多型性を有する HLA は、感染症および自己免疫疾患の発症や重症化ならびに他家移植の際の組織適 合性といった免疫反応の個人差に深く関わっている。

獣医学分野でもウシ、ブタ、ヒツジ、ヤギ、ウマ、イヌ、ニワトリお よびサケ科魚類などの MHC 遺伝子解析が進められている(Ballingall et al., 2018)。特に、産業動物であるウシ(Davies et al., 1997)およびブタ(Ho et al., 2009) と、伴侶動物であるイヌ(Kennedy et al., 2001)における MHC 多型情報が蓄積さ れてきた。また、これらの哺乳類において、MHC 多型と疾患との関連性も数 多く報告されている。具体的には、ウシに感染するレトロウイルスであるウシ 白血病ウイルスにおいて、特定の MHC クラスIIハプロタイプ (DRB3*1101-DOA1*10011)を有する感染牛は、このハプロタイプを持たない牛と比較し て、プロウイルス量が低いことが報告され、飼育牛群の疾病対策に応用されて いる(Lewin et al., 1988; Miyasaka et al., 2013)。また、ブタにおける MHC 領域と メラノーマ発症との間に有意な相関性が認められ(Geffrotin et al., 2004)、ヒトの 腫瘍発症モデル動物として研究されている。さらに、イヌにおける関節リウマ チ(Ollier et al., 2001)、炎症性腸疾患(Peiravan et al., 2016)、壊死性髄膜脳炎(Greer et al., 2010; Pedersen et al., 2011)などの疾患において、特定のアレルまたはハプロ タイプとの疾患関連性が報告されている。加えて、イヌにおけるドナーとレシ ピエント間の MHC の適合性と免疫拒絶反応との関連解析も行われている (Miyamae et al., 2019; Sato et al., 2020)。イヌにおけるこれらの研究成果は、疾患 関連性因子を避けたブリーディングや拒絶反応が少ない移植医療を目的とした ドナーとレシピエント間の組織適合性検査など、獣医療への応用が期待されて いる。このようにウシ、ブタおよびイヌなどの MHC 多型に関する研究成果は 数多く報告されている。また、その MHC 多型情報は Immuno Polymorphism

Database に登録され、動物毎の MHC 多型情報が臨床および応用分野との関連 研究に活かされつつある。しかしながら、MHC 遺伝子解析の報告が少ないこ とから、ネコの MHC の多型解析法は未だに開発されておらず、その情報も極 めて乏しいため、データベースすら存在していない状況である。

本邦にて飼育される伴侶動物は、人気の高いイヌが長年にわたり飼育 頭数の最上位に位置していたのに対して、ネコは二番手の存在であった。しか しながら、2019年に行われた調査によりネコは、その飼育頭数が977万頭に達 し、イヌの879万頭を上回り、最も多い伴侶動物である(一般社団法人ペットフ ード協会、2019)。ヨーロッパ諸国やアメリカ合衆国でも日本と同様に、ネコは イヌよりも飼育頭数が多い(The European Pet Food Industry, 2017; American Veterinary Medical Association, 2018)。獣医療の対象としても重要性が高まって きたネコにおいて、乳腺腫瘍(Dagher et al., 2020)やリンパ腫(Paulin et al., 2018)に 加え、免疫の関与が疑われる歯肉口内炎(Harley et al., 2011)や全身性エリテマト ーデス(Gorman and Werner, 1986)などの発症例が報告されている。これらの疾患 のほとんどは、ヒトにおいて HLA との関連性が報告されている(Shiina et al., 2009)が、MHC 情報が極めて乏しいネコにおいて、MHC との関連性が報告され た例はない。また、獣医学分野では、古くからネコのレトロウイルス(Olmsted et al., 1992;Maruyama et al., 2003)や、コロナウイルス(O'Brien et al., 2006)などの 研究が進められてきた。これらのうち、レトロウイルス感染症に対する効果的 なワクチン開発を目指したネコ白血病ウイルスの抗原ペプチドと FLA クラスI 分子との結合性の有無を観察した結晶構造解析などの研究が進められている (Liang et al., 2018)。レトロウイルス感染症のような致死的なウイルス感染症の 中には、有効なワクチンや治療法が確立されていないものも多いが、ネコにお いて、これらウイルス感染症と MHC との関連性が報告された例は数少ない。

ヒトにおける腎臓や肝臓などの他家移植では、拒絶反応を防ぐために ドナーリンパ球に対するレシピエントの抗体の有無を調べるリンパ球クロスマ ッチ検査に加えて、HLA 検査(HLA 遺伝子の多型解析)によって、ドナーと レシピエント間の HLA 型の一致率を調べる(湯沢賢治, 2014)。この HLA 型の一 致率は、移植片の長期生着に関わると考えられている(Everly and Terasaki, 2009)。近年では、ネコにおける末期の慢性腎不全の治療法として、腎移植が臨 床分野で行われている(Mishina et al., 1996)。また、その他の難治性疾患に対す る再生医療がネコにおいても求められてきているが、ネコの MHC 検査法が開 発されていないため、MHC 型を一致させた移植を行うことはできない。この ように、ネコの獣医療のさらなる発展のためには、ネコの MHC と感染症、自 己免疫疾患および移植の際の組織適合性などとの関連解析による新たな知見が 求められている。

ネコは主要な伴侶動物であるにも関わらず、MHC 多型解析法が開発さ れていないために、多型情報は極めて乏しい。この課題を解決するために、本 学位論文ではネコの MHC (Feline Leukocyte Antigen, FLA) 遺伝子の多型解析法 の開発を試みた。そのために、まず、FLA クラスI遺伝子の転写産物を同定 し、機能的な遺伝子を同定した(第2章)。その後、FLA クラスIおよびクラ スII遺伝子における多型解析法を開発し、血縁関係の明確な個体群から、その 有用性と正確さを明らかにした(第3章および第4章)。最後に、様々な品種 のネコにおいて、FLA クラスII遺伝子における多型解析から、ネコの品種と FLA 多型との関連性を検討した(第5章)。本学位論文を通して、高度な獣医 療に必須である FLA 遺伝子の多型情報を収集する新たな手法を開発した。これ によって、臨床応用に向けた FLA 遺伝子の研究基盤を築いた。

第2章

FLAクラスI遺伝子の転写産物の同定

2.1 序論

MHC クラスI領域のゲノム構造は、動物種によって違いが認められる。 ヒトは第6番染色体に MHC クラスI領域が存在し、6個の MHC クラスI遺伝子 が同定されているが、イヌでは二つの染色体に分かれて MHC クラスI領域が存 在し、第18番染色体上に1個、第12番染色体上に3個の MHC クラスI遺伝子 が同定されている(Figure 1)。具体的には、ヒトの *HLA-A*, -*G* および-*F* が位 置する領域(*MHC-A/G/F* 領域)は、イヌでは1個の MHC クラスI遺伝子

(*DLA-79*)が同定されている。次に、ヒトにおいて、*HLA-E*が位置する領域 (*MHC-E*領域)は、イヌでは認めらない。さらに、ヒトにおいて *HLA-B* およ び-Cが位置する領域(*MHC-B/C*領域)は、イヌでは3個(*DLA-88, DLA-88L/12* および *DLA-64*)が同定されている(Miyamae et al., 2018)。以上のように、ヒト とイヌを比較すると MHC クラスI遺伝子の数と、MHC ゲノム構造に違いが認 められている。

ネコは第 B2 染色体に MHC クラスI領域が存在し、そのゲノム配列は、 Yuhki ら(2008 年)によって決定された。この報告では、ネコの *MHC-A/G/F* 領域が欠失し、*MHC-E* 領域に 2 個(*FLA-S* および *FLA-R*)および *MHC-B/C* 領 域に 17 個(*FLA-A~FLA-Q*)が同定された。このように、ネコは、ヒトやイヌ と比較して極めて数多くの MHC クラスI遺伝子が同定された(Yuhki et al., 2008)。これら計 19 個のうち *FLA-E*, *-H* および*-K* は、ヒトやマウスの MHC ク ラスI遺伝子と同様のエキソン構造を有し、且つ多くの臓器や細胞(心筋、腎 臓、リンパ節、肺、末梢血単核球、卵巣、空腸および脾臓)で転写産物が同定 された(Holmes et al., 2013)。加えて、*FLA-E*, *-H* および*-K* それぞれに 10、11 お よび 12 種類の対立遺伝子(アレル)が報告され、多型性を有することから、

抗原提示の役割を担う主要な FLA クラスIと考えられている(Holmes et al., 2013)。以上のように、計 19 個のうち、*FLA-E*, -*H*および-*K*は転写産物および 多型性が認められているが、その他は、現在まで解析対象とされておらず、遺伝子発現の有無などの詳細な報告はなかった。

次世代シークエンス(Next Generation Sequencing, NGS)を用いたアン プリコンシークエンシング法(アンプリコン法)は、mRNA(cDNA)を鋳型 とした PCR および NGS による塩基配列決定を行う方法である。本解析法は、 NGS のハイスループットな解析能によって、遺伝子発現レベルが低いものから 高いものまで、網羅的な配列決定が可能であることが利点としてあげられる。 また、おおよその転写産物量が、NGS から出力されるリード数から評価できる ことも利点である(Kita et al., 2012)。

FLA クラスI遺伝子の多型解析法を開発するためには、偽遺伝子をその 対象から除く必要がある。そこで本章では、FLA クラスI遺伝子毎の転写産物 の同定を行った。そのために、まず、ネコの参照ゲノム配列のうち、FLA クラ スI領域に同定された計 19 個の FLA クラスI遺伝子の遺伝子構造を検討し、発 現遺伝子を推定した。その後のアンプリコン法による転写産物の解析によっ て、発現遺伝子を同定した。

2.2 材料および方法

2.2.1 参照ゲノム配列における各 FLA クラスI遺伝子構造の検討

ネコの参照ゲノム配列(アクセッション番号; EU153401)から、19 個 の各 FLA クラスI遺伝子の配列を取得した。これら 19 個に対して、GeneScan (Burge and Karlin, 1998)の規定値設定にてエキソンの推定を行った。その後、8 つのエキソン様構造が認められた FLA クラスI遺伝子に関して、Sequencher ver 5.0.1 (Gene Codes Co.) および GENETYX (株式会社ゼネティクス)を用いて 翻訳領域を推定した。推定された各 FLA クラスI遺伝子翻訳領域のアミノ酸配 列は、GENETYX を用いて ClustalW によるマルチプルアライメントを行い、ヒ ト MHC である HLA-A*01:01:01:01 (アクセッション番号; NM_001242758)、 マウス MHC である H2-K1 (アクセッション番号; L23495) との比較解析を行 った。この推定翻訳領域の比較では、MHC 分子のペプチド収容溝をコードす る塩基配列の長さを検討した。

2.2.2 供試検体

日本大学動物病院に来院した雑種のネコ1個体(個体番号; A6)およ びアビシニアン種のネコ4個体(個体番号; A116, A165, A176 および A214)の 検査後の残余全血を使用した。全血は EDTA-2K により抗凝固処理を施したも のを用いた。

2.2.3 RNA の抽出および逆転写酵素反応による cDNA の合成

TRIzol LS Reagent (Thermo Fisher Scientific 社) および Direct-zol RNA Kit (Zymo Research 社)を用い、製品添付のプロトコルに従って 5 個体の全血 から total RNA を抽出した。全血から抽出した RNA を DNase I (Thermo Fisher Scientific 社) で処理した後、ReverTra Ace (東洋紡株式会社) を用いて cDNA 合成を行なった。DNase I 処理および cDNA 合成はいずれも添付のプロトコル に従った。

2.2.4 アンプリコンシークエンシング法による FLA クラスI遺伝子の PCR 増幅

NGS を用いたアンプリコンシークエンスによる FLA クラスI遺伝子の 転写産物の同定(アンプリコン法)を行うにあたり、まずプライマーを設計し た。このアンプリコン法のプライマーは、2.2.1 にて遺伝子構造が認められた 8 個すべての FLA クラスI遺伝子が増幅されるように設計する必要があった。ま た、このアンプリコン法のプライマーは、増幅された領域の塩基配列の違いに 基づいて、いずれかの FLA クラス I 遺伝子に分類できるように設計する必要が あった。これらを踏まえて、*FLA-A*, *-E*, *-H*, *-J*, *-K*, *-L*, *-M* および-*O* すべてに共通 した配列部分であり、なおかつ、各遺伝子の分類が可能な特異性が高い領域

(エキソン3~4)を含むようにプライマーを設計した(Figure 2)。なお、 Figure 2 には、本解析により、遺伝子発現が認められた 7 個の FLA クラスI遺 伝子のみ記載している。このプライマーから予想される PCR 増幅長は、290 bp であった。また、プライマーの名称および塩基配列は Table 1A に示した。さ らに、このアンプリコン法では、NGS 装置である Ion PGM (Thermo Fisher Scientific 社)を用いて、一度に複数サンプルの解析が可能なマルチプレックス アンプリコンシークエンシングを適用した。今回の実験では、同時に 5 個体の 解析を行うために、プライマーの 5 末端には、Ion Torrent adapters(A アダプタ ーおよび P1 アダプター)および 5 個体を識別するバーコード(10 bp)を付加 した計 5 種類プライマーを設計した。

合成された cDNA を鋳型として、PrimeSTAR GXL (タカラバイオ株式 会社) と上述したプライマーを用いて PCR を行った。PCR 反応溶液は、cDNA を 10 ng、PrimeSTAR GXL DNA 合成酵素を 1 単位、PCR バッファー (5 mM Mg+) を 4.0 uL、dNTP (2.5 mM) およびプライマー (0.4 uM) をそれぞれ 1.6 uL を加え、総量 20 uL とした。PCR 反応条件は、最初に 96℃で 2 分間の変性 を行なったのちに、98℃で 10 秒間、55℃で 15 秒間、68℃で 30 秒間の 3 工程 を 1 サイクルとし、合計 35 サイクル行なったのちに、さらに 72℃で 2 分間の 伸長反応を行った。

2.2.5 アンプリコン法の PCR 増幅産物の精製および定量

増幅産物は Agencourt AMPure XP(Beckman Coulter, Inc.)を用いた精製 を行ったのち、PicoGreen(Thermo Fisher Scientific)および Fluoroskan Ascent micro-plate fluorometer(Thermo Fisher Scientific)を用いた DNA 濃度の定量を行 なった。定量された DNA 濃度に基づいて、5 個体の PCR 増幅産物が等モル量 になるように一つのチューブへ混合し、プロトコルに従い希釈した。

2.2.6 アンプリコン法のエマルジョン PCR、NGS によるアンプリコンシーク エンシングおよびデータ処理

希釈した PCR 増幅産物を鋳型として、Ion PGM Template IA 500 Kit (Thermo Fisher Scientific) および GeneAmp PCR system 9700 (Thermo Fisher Scientific) を用いて、エマルジョン PCR (emPCR) を行なった。emPCR 後、 ビーズと結合した一本鎖 DNA テンプレートを濃縮するために、Ion OneTouch Enrichment System (Thermo Fisher Scientific 社) をプロトコルに従って行なっ た。その後、Ion PGM Hi-Q View Sequencing Kit (Thermo Fisher Scientific 社) お よび Ion 316 Chip Kit (Thermo Fisher Scientific 社)を用いてシークエンシングを 実施した。生データの情報処理、ベースコール、トリミング、クオリティフィ ルターは、Torrent Suite 4.2.1 (Thermo Fisher Scientific 社)によって処理され、5 個体の識別が可能なバーコードに基づいて 5 つの fastq ファイルに分類され た。

2.2.7 アンプリコン法のリードの選別およびトリミング

fastq ファイルには、一つの PCR 増幅産物(290 bp)が1本の配列(リード)として塩基配列決定されたものが、10,000 リード以上含まれていた。

この fastq ファイルのリードは、配列のクオリティが低いものを除去 し、各リードのプライマー配列を除去する必要があった。まず初めに、リード の中から、PRINSEQ ver. 0.20.3 lite (Schmieder and Edwards, 2011)を用いて、 quality values (QVs) が9を下回るようなクオリティの低いリードを除去し た。次に、リードには、PCR に用いたプライマーの配列が含まれていることか ら、Sequencher ver 5.0.1 (Gene Codes Co.) を用いたトリミングを行った。この リードのトリミングにより、すべてのリードは PCR 増幅長の 290 bp からプラ イマー配列が除かれ、252 bp ヘトリミングされた。

2.2.8 アンプリコン法の新規 FLA クラス I 配列の同定とリファレンスの作成 リードの選別およびトリミング後の配列を用いて、新規配列の同定を 行った。具体的には、Sequencher ver 5.0.1 および AmpliSAS (Sebastian et al.,
2016)を用いて、リードの de novo アッセンブリー解析を行った。この de novo アッセンブリー解析では、新規配列を同定するために各個体にて 10 リード以 上から構成されたコンセンサス配列を作成した。次に、作成されたコンセンサ ス配列およびデータベースに登録されている FLA クラスI配列に対するリード のマッピングを GS Reference Mapper ver. 3.0 (Roche Ltd) を用いて行った。こ のマッピングでは matching parameter 98~100%および minimum overlap length parameter 200~252 bp に設定した。以上の解析から新規の FLA クラス I 配列を 同定した。同定された新規および既知 FLA クラス I 配列をリファレンスとし て、続いてのマッピング解析に用いた。

2.2.9 アンプリコン法の個体毎の FLA クラス I 配列の同定およびリード数の 算定

FLA クラス I 配列に対するリードのマッピングを GS Reference Mapper ver. 3.0 を用い、matching parameter 100%,および minimum overlap length parameter 150 bp に設定して行った。これにより、FLA クラス I 配列のリードか ら、各個体の FLA クラスI配列を同定した。また、FLA クラスI配列のリード数 の合計を、個体毎に 100,000 リードに補正し、個体間での比較を行った。

2.2.10 サブクローニング法による FLA-E, -H および-K 遺伝子の転写産物の解析

FLA クラスI遺伝子のうち、これまでの研究で遺伝子発現がすでに同定 されている FLA-E, -H および-K において、サブクローニング法による塩基配列 決定を行うために、プライマーを設計した(Table 1B)。このプライマーは、 FLA-E, -H および-K に共通であり、かつエキソン 1~8 の PCR 増幅が可能な位 置に設計した(Figure 2)。

合成された cDNA を鋳型として、KOD FX(東洋紡株式会社)とプライ マーを用いて PCR を行った。PCR 反応溶液は、cDNA を 10 ng、KOD FX DNA 合成酵素を 0.4 単位、PCR バッファー、dNTP(2.5 mM)およびプライマー

(0.4 uM)を加え、総量 20 uL とした。PCR 反応条件は、最初に 94℃で 2 分間 の変性を行ったのちに、98℃で 10 秒間、58℃で 30 秒間、68℃で 1 分間の 3 工 程を 1 サイクルとし、合計 35 サイクル行ったのちに、さらに 72℃で 2 分間の 伸長反応を行った。

PCR 増幅産物は、プロトコルに従って pTA2 クローニングベクター (東洋紡株式会社) へ導入した。遺伝子導入されたクローンは、サンガーシー クエンス装置である ABI3130 (Thermo Fisher Scientific) を用いた Big Dye サイ クルシーケンシングによって、プロトコルに従い配列決定された。PCR および シークエンス時のエラーを防ぐために、1 個体あたり 21~52 クローンを配列決 定した。

2.2.11 塩基配列の解析

塩基配列および推定アミノ酸配列の相同性解析は、GENETYX および Sequencher ver 5.0.1 を用いた。NCBI データベースに対する塩基配列の相同性検 索には BLAST を用いた。

2.3 結果

2.3.1 遺伝子構造が保存された FLA クラスI遺伝子の推定

ネコゲノムの MHC 領域から、19 個の FLA クラスI遺伝子の塩基配列を 取得した。この 19 個のうち 10 個 (*FLA-A*, *-E*, *-F*, *-H*, *-J*, *-K*, *-L*, *-M*, *-O* および-Q)は、ヒトおよびマウスの MHC クラスI遺伝子と同様、8 つのエキソン様の 構造が認められ、翻訳領域が推定できた(Table 2)。その他(FLA-B, -C, -D, -G.-I.-N.-P.-R および-S)は、一部のエキソンが欠失していたため以降の解析か ら除いた。次に、翻訳領域が推定された10個のうち、FLA-Fの推定アミノ酸 配列のエキソン4内に終止コドンが認められた(Table 3)。同様に、FLA-Oの 推定アミノ酸配列のエキソン2内にも終止コドンが認められた。これらのこと から、FLA-Fおよび-Qは、ペプチド収容溝を有するMHC分子の発現が不可能 であると考えられたため以降の解析から除いた。その一方で、8個(FLA-A,-E, -*H*, -*J*, -*K*, -*L*, -*M* および-*O*)は、エキソン 2~4 に終止コドンが挿入されること なくアミノ酸配列が推定された。このうち FLA-A は、エキソン5に終止コドン が認められたが、エキソン1~4まではアミノ酸翻訳が可能であり、ペプチド 収容溝を有する MHC 分子の機能を有すると考えられた。以上のように本解析 から、8個(FLA-A, -E, -H, -J, -K, -L, -M および-O)は FLA クラスI遺伝子候補、 その他 (FLA-B, -C, -D, -F, -G, -I, -N, -P, -Q, -R および-S) は偽遺伝子と定義し た。以降の転写産物解析では、8個の遺伝子候補を対象とした。

2.3.2 アンプリコン法による FLA クラスI遺伝子の転写産物の同定

アンプリコンシークエンスによる FLA クラスI遺伝子の転写産物の同定 (アンプリコン法)では、8 個それぞれの FLA クラス I 遺伝子(*FLA-A*, -*E*, -*H*, -*J*, -*K*, -*L*, -*O* および-*M*)のエキソン 3~4 配列の同定を試みた。これらの解析の 結果、計 20 種類の FLA クラスI遺伝子の配列(No. 01~20)が決定された。計 20 種類の配列は、*FLA-A*, -*E*, -*H*, -*J*, -*K*, -*L* および-*O* のいずれかの FLA クラスI 遺伝子と 94~100%の相同性を示した(**Table 4**)。しかしながら、*FLA-M* と高 い相同性を示す配列は認められなかった。具体的には、計 20 種類の FLA クラ スI遺伝子の配列のうち、5 種類(No. 01~05)が *FLA-E* に、3 種類(No. 06~ 08)が *FLA-H* に、4 種類(No. 09~12)が *FLA-K* に、1 種類(No. 13)が *FLA-A* に、2 種類(No. 14 および 15)が *FLA-J* に、1 種類(No. 16)が *FLA-L* に、4 種類(No. 17~20)が *FLA-O* に分類された。以上のことから、FLA クラス I 遺 伝子のうち、7 個の遺伝子(*FLA-A*, -*E*, -*H*, -*J*, -*K*, -*L* および-*O*)の転写産物が同 定された。

FLA クラスI遺伝子の配列のうち No. 18 および No. 20 は、目的増幅長 である 252 bp よりも 38 bp 短い配列(214 bp)であった(Table 4)。また、No. 18 と No. 17 を比較して、No. 18 は、No. 17 の一部(38 bp)が欠失しており、 この欠失が認められた領域は、FLA クラスI遺伝子のエキソン 3 とエキソン 4 の境界であった。No. 20 も同様に、No. 19 の一部(38 bp)の欠失が認められ た。これらことから、No. 18 および No. 20 は、選択的スプライシングによる変 異体と考えられた。これらの二つの配列が高い相同性を示した *FLA-O* との比較 を行ったところ、No. 18 および No. 20 は、38 bp の短縮によるフレームシフト が原因となり、アミノ酸配列の途中に終止コドンが認められる非機能的な配列 と考えられた。このため、No. 18 および No. 20 は、以降の解析から除いた。

2.3.3 アンプリコン法により同定された5個体のFLAクラスI遺伝子

アンプリコン法から、計 18 種類の配列が同定され、それぞれ FLA-A, -E, -H, -J, -K, -L および-O 遺伝子に分類された。この同定された配列の数や種類 は、個体毎に異なっていた(**Table 5**)。例えば、個体番号 A6 において、アン プリコン法では 7 個の FLA クラスI遺伝子(*FLA-A, -E, -H, -J, -K, -L* および-O) の転写産物である計 13 種類の配列(No. 01, 02, 05, 08~10, 13 および 15~20) が同定された。具体的には、*FLA-E* に分類された No. 01, 02 および 03 が認めら れた。同様に、*FLA-H*に No. 08 が、*FLA-K*に No. 09 および 10 が、*FLA-A* に No. 13 が、*FLA-J*に No. 15 が、*FLA-L* に No. 16 が、*FLA-O* に No. 17 および No. 19 が認められた。このように、アンプリコン法にて 5 個体に同定された配列 は、少ないもので個体番号 A214 の 9 種類、多いもので A165 の 15 種類であ り、配列の種類も異なっていた。

次に、FLA クラス I 遺伝子毎の配列数を比較したところ、配列数に違い が認められた(Table 5)。特に、FLA-A,-J,-L および-O 遺伝子は、1 個体に認め られる配列数が 1 または 2 種類であるのに対し、FLA-E,-H および-K 遺伝子は、 3 種類も認められた個体がいた。具体的には、FLA-E 遺伝子は、個体番号 A6 に 3 種類もの配列(No.01,02 および,05)が認められた。同様に、FLA-E 遺伝子は A165, A176 および A214 に、FLA-H 遺伝子は A116 に、FLA-K 遺伝子は A116 お よび A165 に 3 種類も配列が認められた。このように、FLA-E,-H および-K 遺伝 子は、同一の遺伝子に分類される 3 種類の配列が同定される個体がいた。この ことが意味することは、1 個体のゲノムを構成する 2 つハプロタイプのうち、ど ちらか片方のハプロタイプに、同一の遺伝子が 2 つ重複して存在するというこ とである。つまり、この結果から、FLA-E,-H および-K 遺伝子の遺伝子重複が示 唆された。さらに、FLA-H および-A 遺伝子が認められない個体が存在した。具

体的には、*FLA-H* 遺伝子は、A176 および A214 に配列が認められなかった。同様に、*FLA-A* 遺伝子は、A214 に認められなかった。これらの個体では、*FLA-H* および-A 遺伝子の欠失が示唆された。以上のように転写産物の解析から、個体によって FLA クラス I 遺伝子の数に違いが認められたことから、遺伝子の重複や欠失によるコピー数多型が考えられた。

2.3.3 サブクローニング法により同定された各個体の FLA クラスI遺伝子

また、同5個体をサブクローニング法でも解析した結果、FLA-E,-Hお よび-K遺伝子の転写産物である計11種類の配列(No. 01-05および 07-12)が 同定された(Table 5)。アンプリコン法のFLA-E,-Hおよび-K遺伝子の配列と 比較して、サブクローニング法では No. 06 は認められなかった。このアンプリ コン法とサブクローニング法の間で、個体毎に同定された FLA-E,-Hおよび-K 遺伝子の配列を比較してみたところ、アンプリコン法では認められるが、サブ クローニング法では認められない配列が存在した。例えば、個体番号 A6 は、 アンプリコン法で同定された FLA-K の No. 10 は、サブクローニング法では認 められなかった。その他の個体も同様に、A116 の No. 01, 06 および 09、A165 の No. 02 および 08、A176 の No. 01, 02 および 09 は、アンプリコン法で同定さ れたが、サブクローニング法では認められなかった。

2.4 考察

ゲノム上の MHC 領域は、進化の過程で遺伝子重複および偽遺伝子化が 頻繁に生じる領域であることが、ヒトやマウスなどの哺乳類、ニワトリ、カエ ルおよびゼブラフィッシュ MHC 遺伝子の塩基配列を用いた系統解析によって 明らかにされている(Nei et al., 1997)。ネコゲノムの FLA 領域に位置する FLA クラスI遺伝子群も、複数回の遺伝子重複によって形成されたと考えられている (Yuhki et al., 2003)。しかしながら、FLA-E, -H および-K 以外の FLA クラスI遺伝 子は今までに解析されていなかったため、それぞれの遺伝子の遺伝子発現が不 明であった。本章におけるゲノム配列の解析から、計19個のFLAクラスI遺伝 子のうち、遺伝子構造が保存されたものは FLA-A, -E, -H, -J, -K, -L, -M および-O の8個であった。次に、5個体における転写産物の解析によって、8個のFLA クラスI遺伝子のうち、転写産物が認められたものは FLA-A, -E, -H, -J, -K, -L お よび-Oの7個であった。以上のことから、今まで報告されていた FLA-E, -H お よび-Kに加えて、新たにFLA-A, -J, -L および-Oの遺伝子発現を同定した。こ れにより、計7個(FLA-A, -E, -H, -J, -K, -L および-O)を対象にした多型解析を 行う必要があることが明らかになった。この結果に基づいて、以後の FLA クラ スI遺伝子における多型解析法の開発では、これら7個を実験の対象とした。

本章の転写産物の解析から、発現された FLA クラス I 遺伝子の数が異 なる個体がいた。特に、FLA-E, -H および-K 遺伝子が数多く認められる個体 や、FLA-A および-H 遺伝子が認められない個体がいた。このように、個体レベ ルで発現される遺伝子に違いが認められたことから、違いが認められた個体の ゲノム中の FLA クラス I 領域において、FLA-E, -H および-K 遺伝子の重複と、 FLA-A および-H 遺伝子の欠失が示唆された。このことから、FLA クラス I 遺

伝子は、コピー数多型を示し、ハプロタイプ毎に遺伝子の数が多様であること が考えられた。このような MHC 遺伝子のコピー数多型は、他の哺乳類にて報 告されている。カニクイザルの MHC クラスI遺伝子がすでに同定されている が、カニクイザルでは、ハプロタイプ毎に同定された MHC クラスI遺伝子の数 は 3~11 個と多様であり、MHC クラスI遺伝子のコピー数多型を有する動物種 として知られている(Shiina and Blancher, 2019)。

本章の実験には、従来の方法であるサブクローニング法と、NGS を用 いたアンプリコンシークエンシング法(アンプリコン法)の2種類の塩基配列 決定方法を適用した。これら二つの方法によって同定されたアレルの数に関し て、アンプリコン法はサブクローニング法と比較し、より多くのアレルが同定 された。このことから、複数の遺伝子に対する網羅的な転写産物の解析には、 アンプリコン法の方がサブクローニング法よりも適していると考えられた。ま た、本章のアンプリコン法から、複数個体の同時解析も可能と考えられた。こ のため、アンプリコン法であれば、複数個体において同時に7個の FLA クラス I 遺伝子の多型解析が可能であり、サブクローニング法と比較して、必要な時 間および費用が削減できると考えられた。

以上により、7個の遺伝子から生成される FLA クラスI遺伝子の多型 は、遺伝子毎のアレルの多型に加え、コピー数多型によっても多様性が生み出 されていることが考えられた。FLA クラスI遺伝子の多型解析を正確に行うた めには、遺伝子毎のアレルの多型およびコピー数多型のどちらも同定できるよ うな網羅的な方法の開発が必要と考えられた。

Duimonnomo	$\mathbf{Primar}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} r$	Primer	Primer	Product	Analyzed
rimer name	Friner sequence (5 to 5)	position	length	length	length
A. For FLA-I transe	cribed analysis				
FLA-I_exp_F-1	RGATTACATCGCCCTGAAC	Exon 3	19 bp		
FLA-I_exp_F-2	RGATTACATCACCCTGAAC	Exon 3	19 bp	200.1	2521
FLA-I_exp_F-3	RGATTACATCTCCCTGAAC	Exon 3	19 bp	290 бр	252 бр
FLA-I_exp_R	GCCAGGTYRGGGTGATCTC	Exon 4	19 bp		
B. For sub-cloning of FLA-E/H/K genes					
FLAI_CDS_F	CTCCTGAGACTCACATTTCTCC	Exon 1	22 bp	1162 h.s.	1100 hm
FLAI_CDS_R	CAGATCCTGCATCGCTCAG	Exon 8	19 bp	1103 bp	1122 bp

Table 1. Primer information used for this study

Locus	Conserved	Logus	Conserved
	exon	Locus	exon
FLA-A	exon 1-8	FLA-K	exon 1-8
FLA-B	exon 3-7	FLA-L	exon 1-8
FLA-C	exon 2-4	FLA-M	exon 1-8
FLA-D	exon 7-8	FLA-N	exon 1
FLA-E	exon 1-8	FLA-O	exon 1-8
FLA-F	exon 1-8	FLA-P	exon 4
FLA-G	exon 1-7	FLA-Q	exon 1-8
FLA-H	exon 1-8	FLA-R	exon 4
FLA-I	exon 1	FLA-S	exon 1-5
FLA-J	exon 1-8		

Table 2. Characteristics of gene structure in FLA-class I loci

This table shows the characteristics of gene structure based on FLA genomic sequence (EU153401). All FLA-I loci were compared to the exon structure with known MHC class I genes such as human and mouse in this study.

Logue			Lengt	h of cod	ling exo	n (bp)			Total lo of C	ength DS
Locus	exon	exon	exon	exon	exon	exon	exon	exon	at	
	1	2	3	4	5	6	7	8	Πι	aa
FLA-A	73	270	276	276	107*				1002	334
FLA-E	73	270	276	276	108	33	48	5*	1089	363
FLA-F	73	270	275	21*					-	-
FLA - H	73	270	276	276	108	33	48	5*	1089	363
FLA - J	70	270	276	276	108	33	48	5*	1086	362
FLA - K	73	270	276	276	108	33	48	5*	1089	363
FLA - L	73	270	276	276	108	33	17*		1053	351
FLA - M	73	270	273	276	108	33	48	5*	1086	362
FLA-O	73	270	276	276	108	33	48	5*	1089	363
FLA-Q	61	269*							-	-

Table 3. GeneScan analysis of conservation of coding exons in the FLA-class I loci

Asterisk indicates the presence of the exonic terminator codon. Yellow background indicate the FLA-I gene candidate that were predicted by *in-silico* analysis.

Provisional	Most similar FLA-class I	Nucleotide s	similarity
sequence name	locus	(bp)	(%)
No. 01		252/252	100
No. 02		251/252	99
No. 03	FLA-E	246/252	97
No. 04		242/252	96
No. 05		238/252	94
No. 06		252/252	100
No. 07	FLA-H	251/252	99
No. 08		249/252	98
No. 09		252/252	100
No. 10		251/252	99
No. 11	FLA-K	249/252	98
No. 12		244/252	96
No. 13	FLA-A	252/252	100
No. 14		252/252	100
No. 15	FLA-J	246/252	97
No. 16	FLA-L	252/252	100
No. 17		252/252	100
No.18*		214/214	100
No. 19	FLA-U	250/252	99
No. 20*		212/214	99
None	FLA-M	-	-

 Table 4. FLA-I allele sequences derived from the subcloning and amplicon

 sequencing methods using five unrelated cats and their nucleotide similarities

The nucleotide similarity was calculated by comparing with the FLA genomic sequence (EU153401). *No. 18 and No. 20 show splice variants of No. 17 and No. 19, respectively.

Provisional	Classified	/	A6		A116		A165	
sequence	FLA-I loci	Reads	Subclone	Reads	Subclone	Reads	Subclone	
name	(Table 4)	Num.	Num.	Num.	Num.	Num.	Num.	
No. 01		31540	16	186	0	28219	19	
No. 02		27349	1	0	0	4936	0	
No. 03	FLA-E	0	0	24738	8	0	0	
No. 04		0	0	0	0	15317	15	
No. 05		5928	1	0	0	0	0	
					_			
No. 06		0	0	455	0	0	0	
No. 07	FLA-H	0	0	12669	2	0	0	
No. 08		12676	2	8652	2	11890	0	
No. 09		11516	1	1097	0	14113	13	
No. 10	FLA-K	1515	0	0	0	19271	5	
No. 11		0	0	21941	6	726	0	
No. 12		0	0	24817	3	0	0	
No. 13	FLA-A	192	0	79	0	197	0	
No. 14	FI A_I	0	0	1869	0	847	0	
No. 15	T LA-J	4339	0	0	0	64	0	
No. 16	FLA-L	414	0	434	0	592	0	
No. 17	FLA-O	584	0	0	0	580	0	
No. 19	I LA O	1072	0	1331	0	694	0	
Total 1	Num.	100,000	21	100,000	21	100,000	52	
Total Sec	ą. Num.	13	5	13	5	15	4	

Table 5. FLA-I allele sequences and classified loci in five unrelated cats

Тя	ble	5.	Continued
	NIU	•••	Commuta

Provisional Classified		Α	176	A	A214		
sequence	FLA-I loci	Reads	Subclone	Reads	Subclone		
name	(Table 4)	Num.	Num.	Num.	Num.		
No. 01		94	0	0	0		
No. 02	FLA-E	3305	0	40329	1		
No. 03		0	0	0	0		
No. 04		39084	21	18473	10		
No. 05		0	0	8575	6		
		_					
No. 06		0	0	0	0		
No. 07	FLA-H	0	0	0	0		
No. 08		0	0	0	0		
No. 09	FLA-K	188	0	0	0		
No. 10		46314	12	20404	4		
No. 11		0	0	0	0		
No. 12		0	0	0	0		
No. 13	FLA-A	431	0	0	0		
No. 14	FLA-I	3137	0	1651	0		
No. 15	T L/1-9	0	0	7164	0		
No. 16	FLA-L	1023	0	185	0		
		_					
No. 17	FLA-O	0	0	0	0		
No. 19		2989	0	1548	0		
Total	Num.	100,000	33	100,000	21		
Total Seq. Num.		10	2	9	4		

Yellow and blue backgrounds indicate FLA-I allele sequences detected by both the subcloning and amplicon sequencing methods and by the amplicom sequencing method only, respectively.

Figure 1. Comparative genome map of FLA, HLA and DLA class 1 genomic regions. This map shows the approximate locations of MHC genes based on the HLA (NC_000006.12), DLA (CM000012.3 and CM000018.3) and FLA genomic information (EU153401 and Beck et al., 2001). White, striped and black boxes indicate transcribed genes, gene candidates and pseudogenes, respectively, after our classification in this study. In the HLA map, only the expressed genes are described. Gray highlights indicate orthologous genomic regions (E and B/C) where the number of MHC genes

differs between HLA, DLA and FLA. Bold letter of the gene name indicates a gene whose transcription was newly confirmed in this study.

(A)

		gl domain (Exon 2)	
FLA-F	1		100
FLA-H	1		100
FIN-K	1		100
FIN-N	1		100
FIN-T	1		100
FLA-U FIA-I	1	с.	100
FLA-L	1		100
FLA-O	T		100
FLA-F	101	TCCCCCTTCC3 C3CCCCCCCCCC3 3 TCCCC3CC23 3 C3CCCCCCCCCC	200
FTA-U	101		200
FIA-H	101		200
FLA A	101		200
FLA-A	101		200
FLA-U	101		200
FLA-L	101		200
FLA-O	101		200
		α2 domain (Exon 3)	
FLA-E	201	CTTGGACACCGCACAGATTTCCCGAGTGAACCTGAACACGTTGCTCCGCTACTACAACCAGAGCGAGTCC GGGTCGCACAACATCCAGAGAATGTATGGC	300
FLA-H	201	GAA	300
FLA-K	201	GAA.AA	300
FLA-A	201	.AAAG	300
FLA-J	201	GAAA	300
FLA-L	201	.AACACTCGACCG.GTTT	300
FLA-O	201	.AATGCAGGCCC.GCGCC	300
		FLA-I_exp_F	
FLA-E	301	tgtgacgtggacccagaccggcgcttcctccgcgggtacagtcaggactcctatgacggcaa <mark>ggattacatcgccctgaac</mark> ¢aggacctgcgctcctgga	400
FLA-H	301	······································	400
FLA-K	301	G	400
FLA-A	301		400
FLA-J	301	A.C.GAGAA.CC	400
FLA-L	301	A.C.GGTG.CC	400
FLA-O	301	A.C.GG.TG.AC	400
			=
FLA-E	401	CCGCGGCGGACACCGCGGCGCGCAGATCACACGCCGCAGTGGGAGGAGGAGGCCGGTGTGGGCGGAGCAGGAGCAGGAGCACGAGCAGGAGCAGGAGCACGAGGGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG	500
FLA-H	401	СССССС.	500
FLA-K	401		500
FLA-A	401		500
FLA-J	401	CTCTCTCT	500
FLA-L	401	A	500
FLA-O	401	TACGCT.T.CGATCG.	500
		α3 domain (Exon 4)	
FLA-E	501	gctcgccaaatacctggacatggggaaggaggcgctgctgcgcgca gaatctcccaacacgcgtgacccgccaccccatctctgaccgtgaggtgacc	600
FLA-H	501		600
FLA-K	501		600
FLA-A	501	CGGGTG.GCAA CC.CGGA.A.CA.TCTATC	600
FLA-J	501	A	600
FLA-L	501	C	600
FLA-O	501	CGGGG	600
		FLA-I_exp_R	
FLA-E	601	CTGAGGTGCTGGGCCCTGGGCTTCTACCCTGCG <mark>GAGATCACCCTGACCTGGC</mark> AGCGTGATGGGCAGGACCACCACGGACACAGAGCTTGTGGAGACCA	700
FLA-H	601		700
FLA-K	601		700
FLA-A	601	A	700
FLA-J	601		700
FLA-L	601		700
FLA-O	601		700
(B)			
----------------	------	--	------
• •		FLA-I_CDS_F	
		5'UTR (Exon 1) SP region (Exon 1)	
FLA-E	1	AGTTTCCGCACCCGCTCCTGAGACTCACATTTCTCCTCAGACCCCGAGGATGCGGGTTCGTGATGTCCCCAACTGTGCTCCTGCTGCTGCTGGGGGGCCCT	100
FLA-K FLA-H	1		100
1 117 11	1		100
		al domain (Exon 2)	
FLA-E	101	GGCCGCGCCCCAGACCTGGGCG GGCTCCCACTCCCTGAGGTATTTCTACACCGCGGTGTCCCGGCCCGGCCTCGGGGAGCCCCGCTTCATCTCCGTGGGC	200
FLA-K	101	A	200
F.T''H	101		200
FLA-E	201	TACGTGGACGACACGCAGTTCGTGCGGTTCGACAGCGACGCCCCGAATCCCAGGAAGAGCCGCGGGGCGCCGGAGTGGATGGA	300
FLA-K	201	GATGGT.	300
FLA-H	201	G. ATG.	300
		02 domain	
FLA-E	301	GGGACCGGAACACGCGGATTTACTTGGACACCGCACAGATTTCCCGAGTGAACCTGAACACGTTGCTCCGCTACTACAACCAGAGCGAGTCC GGGTCGCA	400
FLA-K	301	A.G.GACG.GAA.AA	400
FLA-H	301		400
		(Exon 3)	
FLA-E	401	CAACATCCAGAGAATGTATGGCTGTGACGTGGACCCAGACCGGCGCTTCCTCCGCGGGTACAGTCAGGACTCCTATGACGGCAAGGATTACATCGCCCTG	500
FLA-K	401		500
FLA-H	401	G.	500
FLA-E	501	AACGAGGACCTGCGCTCCTGGACCGCGGCGGACACCGCGGCGCAGATCACACGCCGCAAGTGGGAGGAGGCGGGTGTGGCGGAGCAGGAGAAGAACTACC	600
FLA-K	501		600
FLA-H	501		600
		α3 domain (Exon 4)	
FLA-E	601	TGGAGGGCACGTGCGTGGAGTGGCTCGCCAAATACCTGGACATGGGGAAGGAGACGCTGCTGCGCGCA GAATCTCCCAACACGCGTGACCCGCCACCC	700
FLA-K	601		700
r LA-H	001		700
FLA-E	701	CATCTCTGACCGTGAGGTGACCCTGAGGTGCTGGGCCCTGGGCTTCTACCCTGCGGAGATCACCCTGACCTGGCAGGGTGATGGGCAGGACCACCCCAG	800
FLA-K	701	T	800
F.TV-H	/01	G	800
	0.01		000
FLA-K	801		900
FLA-H	801		900
		Transmembrane domain (Exon 5)	
FLA-E	901	ATGTGCAGCACAAGGGGCTGCCCGAGCCCATCAACTTGAGATGG GAGCCATCGTCTCGCCCTTCATCACCATCTGGGCATCATTGCTGGTGTGGCTGT	1000
FLA-R	901		1000
	501		1000
		Cytoplasmic domain (Exons 6-8)	
FLA-E	1001	CUTTGTGGTCACCTGTGGTGGTTGGAGCTGTGATCTGG AGGAAGAAGTGCCAGGAGGAAAGGACCAATCTATTCTCACGCTGCACCGACGACAGACGACGACGACGACGACGACGACGACG	1100
FLA-K FLA-H	1001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1100
-			
		FLA-I_CDS_R	
FLA-E	1101	SUUK (EXON 5) CAGGGCCTCGATCCACACATCCACATCCACACATCCACACATCCACACATCCACACATCCACACATCCACACATCCACACATCCACATCCACACATCCACACATCCACATCCACACATCCATCCATCCACATCCACATCCACATCCATCCACATCCACATCCACATCCATCCATCCACATCCATCCACATCCACATCCACATCCATCCACATCCATCCACATCCACATCCACATCCATCCACATCCATCCACATCCACATCCATCCACATCCATCCACATCCATCCACATCCATCCATCCATCCACATCAT	1200
FLA-K	1101	G	1200
FLA-H	1101		1200

Figure 2. Nucleotide alignment for FLA-I cDNA sequences and primer locations.

(A) shows the nucleotide alignment of FLA-E/H/K genes and primer locations for subcloning of FLA-I genes (**Table 2B**), (B) shows the nucleotide alignment of seven FLA-I genes and primer locations for FLA-I expression analysis (**Table 2A**). The nucleotide alignments were constructed by using the 2.98 Mb genomic sequence (EU153401). 5'UTR, SP and 3'UTR indicate 5' untranslated region, signal peptide and 3' untranslated region, respectively. Locations of primers are indicated by boxes and red letters. Arrows shows direction of primers.

第3章

FLA クラスI遺伝子の多型解析の開発

FLA クラスIアレルの同定およびハプロタイプの推定

3.1 序論

現在までに、FLA クラスI遺伝子の多型性に関する報告は、わずか1報 のみである(Holmes et al., 2013)。その報告では、ゲノム DNA を対象として FLA-E, -H および-K それぞれに特異的な3種類のプライマーを用いた PCR – sequence based typing (PCR-SBT) 法が用いられた。この PCR-SBT 法により 12 個体のネコから、12種類のFLA-Eアレル、11種類のFLA-Hアレルおよび10 種類のFLA-Kアレルが同定された。この計33種類のアレルが、ネコのMHC クラスI遺伝子の多型情報であり、イヌの 205 種類(EBI; Miyamae et al., 2018)、ウ シの91種類(EBI)およびブタの239種類(EBI)と比較して極めて乏しい。また、 ネコの各組織由来の RNA を用いた実験から、FLA-E,-H および-K 遺伝子に共通 の PCR プライマー (FLA-I U multiple F および R) を用いた組織発現解析が行 われた(Holmes et al., 2013)。その結果、FLA-E, -H および-K 遺伝子は、全身の各 組織に転写産物が認められた。このことから、FLA-E,-Hおよび-K遺伝子は、 抗原提示の役割を担う主要な FLA クラスI分子をコードする遺伝子と考えられ た。しかしながら、その他の FLA クラスI遺伝子の転写産物は同定されておら ず、多型の有無などの詳細は不明であった。第2章より、今までに転写産物が 同定されていた FLA-E, -H および-K に加えて、FLA-A, -J, -L および-O の転写産 物が新たに同定された。つまり、FLA クラスI遺伝子における多型解析法を開 発するためには、これら7個全てのFLAクラスI遺伝子の対立遺伝子(アレ ル)を同定する必要があると考えられた。

近年、哺乳類のアカゲザルやカニクイザル(Wiseman et al., 2009;Budde et al., 2010;Shiina et al., 2015)、ブタ(Kita et al., 2012)、鳥類のシロエリヒタキ (Radwan et al., 2012)、魚類のグッピー(Herdegen et al., 2014)など様々な動物にお

いて、MHC 遺伝子の多型解析の新たな手法であるアンプリコンシークエンス 法が適用されてきた。この手法は、NGS のハイスループットな解析能によっ て、転写産物量が乏しいものを含め、網羅的な MHC アレルの配列決定が可能 であることが利点としてあげられる。

本章では、NGS を用いたアンプリコンシークエンス法による FLA クラ スI遺伝子の多型解析法(アンプリコン法)の開発を試みた。また、開発した多 型解析法の正確性を明らかにするために、血縁関係の明確な 2 家系の個体群を 実験に供した。すなわち、FLA クラスI多型解析によって、各個体の FLA クラ スIアレルの同定を行った。同定されたアレルの分子系統解析により、各 FLA クラスI遺伝子へ分類した。その後、個体毎に同定されたアレルの組み合わせ と、個体間の血縁関係から、FLA クラスIハプロタイプの推定を行った。さら に、Holmes ら(2013 年)によって報告された方法(Holmes 法)を用い、同個 体群において再解析を行った。以上の実験を通して、FLA クラスI遺伝子の多 型解析法の開発を試みた。

3.2 材料と方法

3.2.1 供試検体

実験動物生産販売施設(北山ラベス株式会社)から供された血縁関係 の明確な2家系20個体のネコ(雑種)の全血を実験に用いた。供試されたネ コは、2つの家系(Family1およびFamily2)に属していた。この2つの家系 は、それぞれ10個体が含まれ、3世代から成り立っていた。これら全20個体 の家系図、個体名および性別はFigure1に示した。ネコ全血の採取は、株式会 社北山ラベス動物福祉委員会に定められた手順に従って行われた。全血は EDTA-2Kにより抗凝固処理を施したものを用いた。

3.2.2 RNA の抽出および逆転写酵素反応による cDNA の合成

TRIzol LS Reagent (Thermo Fisher Scientific 社) および Direct-zol RNA Kits (Zymo Research 社) を用い、製品添付のプロトコルに従って 20 個体の全 血から total RNA の抽出した。全血から抽出した RNA を DNase I (Thermo Fisher Scientific 社) で処理した後、ReverTra Ace (東洋紡株式会社) を用いて cDNA 合成を行なった。DNase I 処理および cDNA 合成はいずれも添付のプロ トコルに従った。

3.2.3 アンプリコンシークエンスによる FLA クラスI多型解析の PCR 増幅

NGS を用いたアンプリコンシークエンスによる FLA クラスI多型解析 法(アンプリコン法)を開発するにあたり、まずプライマーを設計した

(Figure 2A)。このアンプリコン法のプライマーは、第2章にて転写産物が認められた7個すべてのFLAクラスI遺伝子が増幅されるように設計する必要が

あった。また、このアンプリコン法のプライマーは、7 個の FLA クラス I 遺伝 子それぞれの対立遺伝子(アレル)を同定するために、多型の集中する領域の 上流と下流に設計する必要があった。これらを踏まえて、FLA-A,-E,-H,-J,-K,-L および-O すべてに共通した配列部分であり、なおかつ、多型が集中する領域 (エキソン 2~3)を含むようにプライマーを設計した。このプライマーから予

想される PCR 増幅長は、353 bp であった。プライマーの名称、塩基配列および 設計位置は Table 1A に示した。また、NGS 装置である Ion S5(Thermo Fisher Scientific 社)による 20 個体の識別可能なマルチプレックスアンプリコンシー クエンシングを行うために、プライマーの 5^{*}末端に Ion Torrent adapters(A ア ダプターおよび P1 アダプター)および 20 個体が識別可能なバーコード(10 bp)を付加したプライマーを 20 種類設計した。

合成された cDNA を鋳型として、KOD FX(東洋紡株式会社)とプライ マーを用いて PCR を行なった。PCR 反応溶液は、cDNA を 10 ng、KOD FX DNA 合成酵素を 0.4 単位、PCR バッファー、dNTP (2.5 mM) およびプライマ ー (0.4 uM) を加え、総量 20 uL とした。PCR 反応条件は、最初に 96℃で 2 分 間の変性を行なったのちに、98℃で 10 秒間、56℃で 30 秒間、68℃で 30 秒間 の 3 工程を 1 サイクルとし、合計 35 サイクル行なったのちに、さらに 72℃で 2 分間の伸長反応を行なった。

3.2.4 アンプリコン法の PCR 増幅産物の精製および定量

PCR 産物は Agencourt AMPure XP (Beckman Coulter, Inc.) を用いた精製 を行なったのち、PicoGreen (Thermo Fisher Scientific 社) および Fluoroskan Ascent micro-plate fluorometer (Thermo Fisher Scientific 社) を用いた DNA 濃度 の定量を行なった。定量された DNA 濃度に基づいて、20 個体の PCR 増幅産物

が等モル量になるように一つのチューブへ混合し、プロトコルに従い希釈し た。

3.2.5 アンプリコン法のエマルジョン PCR、NGS を用いたアンプリコンシー クエンスおよびデータ処理

希釈した PCR 増幅産物を鋳型として、Ion 520 & Ion 530 Kit-OT2 および OneTouch 2 instrument (Thermo Fisher Scientific 社)を用いたエマルジョン PCR (emPCR)を行った。emPCR 後、ビーズと結合した一本鎖 DNA テンプレート を濃縮するために、Ion OneTouch Enrichment System (Thermo Fisher Scientific 社)をプロトコルに従い行なった。その後、Ion 520/530 Chip Kit (Thermo Fisher Scientific 社)を用いてシークエンシングを実施した。生データの情報処 理、ベースコール、トリミング、クオリティフィルターは、Torrent Suite 5.6.0 (Thermo Fisher Scientific 社)によって処理され、20 種類の Ion Xpress Barcodes に基づいて fastq ファイルに分類された。

3.2.6 アンプリコン法のリード選別およびトリミング

20 個体の fastq ファイルからのリード選別およびトリミングは第2章と 同様の方法を用いた。選別後の全てのリードは、PCR 増幅長の 353 bp からプラ イマー配列が除かれ、316 bp ヘトリミングされた。

3.2.7 アンプリコン法の新規 FLA クラス I アレルの同定とリファレンスの作成

リードの選別およびトリミング後の配列を用いて第2章と同様の方法 にて、各個体での新規配列を同定した。また、新規 FLA クラス I アレルのリフ アレンス作成は、第2章と同様の方法を用いた。なお、リファレンス作成に て、マッピング解析の minimum overlap length parameter は、200~316 bp に設定 した。

3.2.8 分子系統解析による FLA クラスIアレルの分類

FLA クラス I アレルの塩基配列および推定アミノ酸配列の NCBI デー タベースに対する相同性検索には BLAST を用いた。推定アミノ酸配列に基づ く分子系統解析には、MEGA7 ソフトウェア(Kumar et al., 2016)を用いた。 ClustalW を用いた新規および既知の FLA クラスIアレルの推定アミノ酸配列

(105 残基)のアライメントを行った。また、アウトグループとしてイヌの MHC クラスI遺伝子である *DLA-88*(アクセッション番号; NM_001014767)を 加えた。アライメント結果から、近接結合法を用いた系統樹を作成し、p 距離 モデルおよびブーストラップ法(2,000 回反復)で統計的支持値を算出した。

3.2.9 アンプリコン法のマッピング解析によるアレルの同定およびリード数 の算定

マッピング解析は第2章と同様の方法で行い、FLA クラス I アレルに マッピングされたリードから、個体毎の FLA クラスI アレルを同定した。ま た、個体毎に FLA クラス I アレルへマッピングされたリード数の合計を 100.000 リードに補正し、個体間でのリード数の比較を行った。

3.2.10 Holmes 法の PCR 増幅、増幅産物の精製および定量

FLA クラスI遺伝子の mRNA に基づく塩基配列決定方法は、現在までに Holmes ら(2013 年)によって *FLA-E*, *-H* および*-K* の共通プライマーを用いた 方法(Holmes法)が報告された。そこで本実験では、この Holmes 法の共通プ ライマー(FLA-I_Umultiple_F および R)を用いた PCR および NGS を用いた塩 基配列決定による再解析を行った。この FLA-I_Umultiple_F および R は、*FLA-E*,-*H* および-*K* の共通配列部分であり、なおかつエキソン 1~4 の PCR 増幅が 可能な位置に設計された(Figure 2B)。プライマーの塩基配列、設計位置およ び予想される増幅長は Table 1B に示した。この再解析には、アンプリコン法を 行った 20 個体のうち 4 個体を用いた。この 4 個体は、2 家系 20 個体において 推定された全てのハプロタイプを網羅できるように選択された。この Holmes 法による再解析と、本章で開発したアンプリコン法との結果を照らし合わせ、 アンプリコン法の正確さを確認した。

PCR は、合成された cDNA を鋳型として、KOD FX(東洋紡株式会 社)と Holmes 法の FLA-I_Umultiple_F および R を用いて行った。PCR 反応溶 液は、cDNA を 10 ng、KOD FX DNA 合成酵素を 0.4 単位、PCR バッファー、 dNTP (2.5 mM) およびプライマー (0.4 uM) を加え、総量 20 uL とした。PCR 反応条件は、最初に 96℃で 2 分間の変性を行なったのちに、98℃で 10 秒間、 58℃で 30 秒間、68℃で 1 分間の 3 工程を 1 サイクルとし、合計 35 サイクル行 なったのちに、さらに 72℃で 2 分間の伸長反応を行った。その後の PCR 増幅 産物の精製および定量は 3.2.4 と同様の方法を用いて行った。

3.2.11 Holmes 法の NGS によるシークエンス、データの処理および解析

再解析の PCR および精製した産物から、NGS ライブラリを作成した。 既報のように、PCR 増幅産物の断片化およびバーコード付加によるライブラリ 作成、DNA 断片長の測定、DNA の定量を行った(Ozaki et al., 2015)。その後、 エマルジョン PCR、NGS によるシークエンス、データ処理およびデータ解析 は、3.2.5 および 3.2.6 と同様の方法を用いて行った。

3.2.12 新規 FLA クラスIアレルおよびハプロタイプの命名方法

多型解析において同定された新規 FLA クラスIアレルは、一時的な通し 番号として FLAI_001~FLAI_014 と名付けた上で、Genbank/EMBL/DDBJ デー タベースに登録された。推定された FLA クラスIハプロタイプは、ブタ MHC である SLA のハプロタイプ命名法に従って命名した (Smith et al., 2005)。例え ば、FLA クラスI領域のハプロタイプ (ハプロタイプ 1) は Hp-1.0 と表記し た。

3.3 結果

3.3.1 アンプリコン法によって同定された FLA クラスIアレル

アンプリコンシークエンスによる FLA クラスI多型解析法(アンプリコ ン法)では、7個の FLA クラス I 遺伝子(FLA-A, -E, -H, -J, -K, -L および-O)そ れぞれのアレルの同定を試みた。この結果、2家系 20個体から計 32種類の FLA クラスIアレルが同定された(Table 2)。これらのうち、18種類は既知の アレルであったが、14種類は新規のアレルであった(Table 2 内の赤文字で示 したアレル)。これら新規アレルは FLAI_001 から FLAI_014 と命名した。ま た、これら計 32種類の FLA クラスIアレルのうち、FLAI_011 と FLAI_012 は、異なる塩基配列であったが、同一のアミノ酸配列に翻訳されたことから同 義置換のアレルであった。同様に、FLA-E*01601 と FLAI_009 および FLA-L と FLAI 013 も同義置換のアレルであった。

3.3.2 アンプリコン法から同定された FLA クラスIアレルの分子系統解析

計 32 種類の FLA クラスIアレルを系統樹に基づいて分類した(Figure 3 および Table 2)。この系統樹から、計 32 種類の FLA クラス I アレルのうち、 31 種類を 5 つの系統(*FLA-E/H/K*, *FLA-O*, *FLA-J*, *FLA-L* および *FLA-A*)に分類 した。具体的には、18 種類(FLA-E*01801, K*00401, K*00101, H003011, K*00303, E*00902, E*01401, E*00501, H*016:01, 008011, K*00701 および FLAI_001~007)を *FLA-E/H/K* 系統に分類した。同様に、4 種類(FLA-O およ び FLAI_010~012)を *FLA-O*に、6 種類(FLA-J*01:18, J*01:16, J*01:14, E*01601, FLAI_008 および 009)を *FLA-J*に、2 種類(FLA-L および FLAI 013)を *FLA-L*に、および1 種類(FLA-A)を *FLA-A* に分類した。

このうち、*FLA-E/H/K*系統に分類した 18 種類のアレルのうち、*FLA-H*のアレル(FLA-H*003011)と*FLA-K*のアレル(FLA-K*00303)が同一の系統 枝に分類され、同様に*FLA-E*のアレル(FLA-E*01801)と*FLA-K*のアレル

(FLA-K*00401) も同一の系統枝に分類された。これらのことから、本解析で は *FLA-E*, *-H* および*-K* の相同性が極めて高いために混合した一つの系統(*FLA-E/H/K*系統)とした。

計 32 種類の FLA クラスIアレルのうち、1 種類(FLAI_014)は、*FLA-J* 系統と *FLA-L* 系統の間に分岐し、他の配列と系統枝を形成しないアレルであっ た。この FLAI_014 の BLAST 検索および分子系統解析を詳細に行ったところ、 2 つの異なる配列に由来するキメラ様構造を示していた(**Figure 4A**)。具体的 には、316 bp からなる FLAI_014 の塩基配列のうち 5[°]末端側の 124 bp は BLAST 検索の結果、*FLA-E アレルを*含む 12 種類と同一の配列であった。同様 に 3[°]末端側の 191 bp は、*FLA-K アレルを*含む 2 種類と同一の配列であった

(Figure 4C および 4D)。この2つの断片の間に存在する1塩基は、いずれの 配列とも異なっていた(Figure 4B)。これらの理由から、FLAI_014 は、FLA-E および-K のキメラであることが考えられた。このため FLAI_014 が分類され る新たな系統を、FLA-E/H/K Rec 系統と命名した。

3.3.3 アンプリコン法により各個体に同定された FLA クラス I アレル

計 32 種類の FLA クラス I アレルに対して、個体毎にマッピング解析を 行った(Table 3)。この結果、少ない個体で 7 種類、多い個体で 14 種類の FLA クラス I アレルが同定された。例えば、Family 1 の個体番号 01 におい て、*FLA-E/H/K* 系統の FLA-E*00501, H*003011, K*00401, K*00701 および FLAI_006 が同定された。同様に、*FLA-A* 系統の FLA-A、*FLA-J* 系統の FLA-

E*01601 および J*01:14、*FLA-L* 系統の FLA-L および *FLA-O* 系統の FLA-O および FLAI_012 が同定された。このように個体番号 01 は、これら計 11 種類の FLA クラス I アレルが同定され、同様のマッピング解析から、計 20 個体の FLA クラス I アレルが同定された。

3.3.4 FLA クラスIハプロタイプの推定

各個体に同定された FLA クラス I アレルの組み合わせと、個体の血縁 関係に基づいて、ハプロタイプ推定を行った(Table 4)。Family 1 の個体番号 05 と、05 の父と母である 01 と 02 に同定された FLA-E/H/K 系統のアレルを例 にして説明する。まず、子である個体番号 05 には、*FLA-E/H/K* 系統の 5 種類 のアレル(E*00501, E*01801, K*00701, FLAI_004 および FLAI_005)が同定され た。これら 5 種類のうち、2 種類(E*00501 および K*00701)は父である個体 番号 01 に認められ、残る 3 種類(E*01801, FLAI_004 および FLAI_005)は母 である 02 に同定された。同一染色体上のアレルの組み合わせであるハプロタ イプは、父および母から子へ1 セットずつ遺伝されることから、E*00501 およ び K*00701は、ハプロタイプ(Hp-1.0)として父から遺伝し、同様に、 E*01801, FLAI_004 および FLAI_005 は、ハプロタイプ(Hp-4.0)として母から 遺伝したと考えられた。個体番号 05 のその他の系統のアレルや、その他の個 体においても同様に、FLA クラス I ハプロタイプが推定された(Figure 5)。 以上のようにハプロタイプ(Hp-1.0~Hp-7.0)が推定された(Figure 6)。

3.3.5 推定された FLA クラスIハプロタイプの比較

推定された計7種類のハプロタイプを比較すると、ハプロタイプ毎に含まれる FLA クラス I アレルの数が異なっていた(Figure 6)。例えば、Hp-1.0 は FLA-E/H/K 系統の2種類(E*00501 および K*00701)、FLA-J 系統の E*01601 および FLA-O 系統の FLAI_012 の計4種類のアレルから構成されていたハプロタ イプであった。同様に、Hp-5.0 は5種類、Hp-6.0 は6種類、Hp-2.0 は7種類お よび Hp-3.0, Hp-4.0 および Hp-7.0 は8種類のアレルから構成されていた。この ハプロタイプ毎のアレル数の違いは、特に FLA-E/H/K 系統に集中していた。具 体的には、Hp-1.0, -3.0 および-5.0 に推定された FLA-E/H/K 系統のアレルは2種 類であった。その一方で、Hp-2.0, -4.0 および-6.0 が3種類、Hp-7.0 が4種類で あった。同様に、FLA-J および FLA-O 系統のアレルにおいても、ハプロタイプ に推定されるアレルが1または2種類であり、ハプロタイプ毎のアレル数に違 いが認められた。

FLA-A 系統において、ハプロタイプ毎にアレルの有無があった。具体的 には、Hp-2.0, -3.0, -4.0 および-7.0 において、FLA-A アレルが同定されたのに対 して、Hp-1.0, -5.0 および-6.0 には認められなかった。同様に、FLA-L 系統におい ても、ハプロタイプ毎のアレルの有無があった。つまり、FLA-A および FLA-L 系 統において、ハプロタイプによってはアレルの欠失が示唆された。

3.3.6 FLA クラス I アレルおよび系統毎のリード数比較

推定されたハプロタイプ、系統分類およびリード数に基づいて、FLAク ラスI系統の平均リード数を算出した。この結果、FLAクラスI系統のリード 数を比較すると、系統による転写産物量の違いが明らかとなった(Table 5)。 例えば、FLA-E/H/K系統には、18 種類のアレルが分類された。これら 18 種類の アレルが全 20 個体のハプロタイプ (2*n*=40) に認められた回数 (アレルの出現 回数) は、少ないアレルで1回、多いアレルで15回であり、合計すると95回 であった。この計 95回のリード数を平均すると、16,444 リードであった。この ようにして、すべての系統のリード数を算出したところ、*FLA-E/H/J_Rec*系統は 11,820 リード、*FLA-A*系統は210、*FLA-J*系統は5,069、*FLA-L*系統は248、*FLA-O*系統は878 であった。この平均リード数を系統間で比較したところ、大まか に*FLA-E/H/K* > *FLA-E/H/K_Rec* > *FLA-J* > *FLA-O* > *FLA-L* = *FLA-A*の関係性にあ ることが考えられた。

次に、*FLA-E/H/K_Rec*系統の FLAI_014 アレルの平均リード数 (11,831 リ ード)は、*FLA-E/H/K*系統のアレルの平均リード数 (16,444 リード)との間に有 意差 (P=0.06)は認められなかった。その一方で、*FLA-E/H/K_Rec*系統のアレル の平均リード数は、*FLA-J*系統 (5,071 リード)と比較して有意に多かった (P= 1.2×10^{-9})。このようなリード数の違いから、*FLA-E/H/K_Rec*系統は、*FLA-E/H/K* 系統に含まれることが示唆された。

また、FLA-E/H/K および FLA-E/H/K_Rec 系統の平均リード数は、その他 の FLA-A,-J,-L および-O 系統の平均リード数と比較して有意に多かった (16,095 リード vs 2,201 リード)。特に、FLA クラスI遺伝子毎の平均リード数が最も少 ない FLA-A 系統の平均リード数は、最も多い FLA-E/H/K 系統のおよそ 1/80 であ った。以上のようなリード数の違いから、FLA クラス I 系統によって転写産物 量が大きく異なることが示唆された。

3.3.7 Holmes 法とアンプリコン法との結果の比較

本実験で開発したアンプリコン法による FLA クラス I 多型解析と、既 報の解析方法である Holmes 法による再解析の結果を照らし合わせ、アンプリ コン法の正確さを確認した(Table 6)。この Holmes 法には、推定された全ての FLA クラスIハプロタイプを網羅する 4 個体(個体番号 01, 02, 07 および13)を用いた。この結果、Holmes 法においてもアンプリコン法と同様に 4 個体から 18 種類の FLA クラス I アレルが同定された。具体的には、個体番号 01 において、多型解析において、5 種類の FLA-E/H/K 系統のアレル E*00501, K*00701, H*003011, K*00401 および FLAI_006 が同定されたが、再解析においても同一の 5 種類が同定された。また、Holmes 法にて新たなアレルが同定されることはなかった。他の 4 個体も同様に、2 つの解析結果に違いは認められず、Holmes 法にて新たにアレルが同定されることはなかった。

3.4 考察

NGS を用いたアンプリコンシークエンシング法(アンプリコン法) は、様々な動物種において、MHC 遺伝子の多型解析に適用されてきた(Radwan et al., 2012;Herdegen et al., 2014)。この方法は、DNA または RNA (cDNA) のど ちらをテンプレートとしても多型解析が可能である。本研究では RNA をテン プレートとして実験を行った。RNA を用いたアンプリコン法の利点として次の 二つが挙げられる。一つは、プライマー領域が類似した偽遺伝子の PCR 増幅を 避けて、mRNA ヘ転写された MHC 遺伝子のみを標的にできる点である。二つ 目は、MHC アレルのおおよその転写産物量が、NGS から出力されるリード数 から評価できる点である(Kita et al., 2012)。このような特徴を有するアンプリコ ン法を、FLA クラスI遺伝子に適用した結果として、筆者は、計 32 種類の FLA クラスIアレルを同定した。同定されたアレルの分子系統解析から、5つの異な った FLA クラス I 系統(*FLA-E/H/K*, *-A*, *-J*, *-L* および-*O*)に分類した。このこ とより、FLA-E/H/K, -A, -J, -L および-Oの各アレルを網羅的に解析できた。ま た、同定されたアレルのうち、43.8%ものアレルは、本解析で新たに同定され た。第2章に記したように、ネコ MHC 領域には数多くの偽遺伝子が存在す る。本章で開発したアンプリコン法によって、これら偽遺伝子の PCR 増幅を避 けて、効率的に FLA クラス I 遺伝子の多型解析が可能となった。以上のことか ら、ネコにおいて初めて FLA クラス I 遺伝子の網羅的な多型解析法が開発さ れ、今後も本解析を行うことでより数多くのアレルが同定されることが期待で きる。

本解析において、ネコにおいて初めて FLA クラスIハプロタイプが推定 され、その推定結果は、個体間の血縁関係と矛盾が無かった。これらのハプロ

タイプを比較すると、ハプロタイプに含まれるアレルの数に違いが認められた。また、ハプロタイプによっては遺伝子の欠失が認められた。以上のことから、FLA クラス I 遺伝子のコピー数多型が示唆された。今後、血縁関係が明確な個体群の解析を行うことで、数多くの FLA クラス I ハプロタイプが推定されることが考えられる。

RNA をテンプレートとしたアンプリコンシークエンシング法は、MHC アレル毎に転写産物量の差が大きいために、DNA をテンプレートとしたとき よりも多くのリード配列が必要となる点が欠点として挙げられる。このような 欠点を踏まえて、本解析では、1個体あたり10,000以上のリード配列から、ア レルの同定を行った。その結果、FLA クラス I 系統間でのリード数に差が認め られ、リード数の乏しい系統(FLA-A および-L)が認められた。また、これら の2つの系統において、ハプロタイプ特異的なアレルの欠失が認められた。し かしながら、このアレルの欠失は、解析に用いたリード数が少ないために、マ ッピング解析によって同定されなかったことが原因として考えられる。本章で 解析した個体のうち、個体番号 04 および 12 から、FLA-A 系統のリードは認め られなかった。また、個体番号 04 においては、FLA-L 系統も確認されなかっ た。これらの個体のマッピング解析に用いた総リード数は、個体番号 04 が 46.589 リード、12 が 45.490 リードであり、全個体の平均総リード数(42.696 リード)を上回るものであった。つまり、これらの個体に FLA-A および FLA-L 系統のアレルが認められなかったことは、解析に用いたリード数の不足による ものではなく、ハプロタイプ毎の遺伝子の欠失であると考えられた。しかしな がら、FLA-A および FLA-L において、リード数の不足およびハプロタイプ特異 的なアレルの欠失の原因には、プライマーの特異性が不足している可能性も考 えられる。このような、ハプロタイプ特異的な FLA クラスI遺伝子の情報を明

らかにするためには、本研究のような NGS による多型解析法を用いた詳細な 解析に加えて、各 FLA クラスI遺伝子特異的なプライマーを用いた発現解析を 行うことが必要となる。

ヒトにおいて、HLA クラス I 分子のうち、HLA-A, -B および-C は、抗 原提示が主要な役割であり、古典的 HLA クラス I 分子と呼ばれる。その一方 で、HLA-E、-Fおよび-Gは、NK細胞に対する免疫抑制のシグナル伝達などに 関わり、非古典的 HLA クラス I 分子と呼ばれる。これらの古典的 HLA 分子を コードする古典的 HLA 遺伝子は非古典的と比較して多型に富むこと、全身の 各組織において遺伝子発現が認められること、各組織にて高い転写産物量を示 すことなどが挙げられる(黒木喜美子 et al., 2016)。本解析でも、FLA クラス I アレルのおおよその転写産物量は、NGS から出力されるリード数から評価でき た。このリード数を FLA クラス I 系統毎に比較すると、FLA-E/H/K > FLA-*E/H/K Rec > FLA-J > FLA-O > FLA-L = FLA-A*のように、系統による転写産物量 の違いが明らかとなった。これに加えて、FLA-E,-Hおよび-Kは、他のFLAク ラスI遺伝子(FLA-A, -J, -L および-O)よりも多型に富むことが示唆された。こ れらのことから、FLA-E,-Hおよび-Kは、転写産物量が多く、多型に富む古典 的 FLA クラス I 遺伝子であることが考えられた。また、古典的 FLA クラス I 遺伝子との転写産物量と多型性の違いから、FLA-A,-J,-L および-O が非古典的 クラスI遺伝子であると考えられた。今回明らかとなった、ネコの古典的および 非古典的 FLA クラス I 遺伝子に関して、リアルタイム PCR などを用いた各遺 伝子における転写産物レベルの測定などを行うことで、各遺伝子の特徴がより 詳細に明らかになる。今後、ネコの免疫機構の解明に向けて、FLA クラス I 遺 伝子においても、古典的および非古典的遺伝子の機能の違いが明らかにされる ことが求められる。

Driver or a care o	Primer sequence	Primer	Primer	Product Analyzed		Deference
Primer name	(5' to 3')	position	length	length	length	Reference
A. For genotyping of F	LA-I genes					
	GTSGGCTACGT	Even 2	10 hm			This starter
ΓLΑ-Ι_Γ2	RGACGACA	EXOII 2	19 op	252 h	2161	This study
	ATCTGCGCHG	Even 2	101	333 bp	510 bp	This starter
FLA-I_K2m	CSGTGTCC	Exon 3	18 bp			This study
B. For confirmation of	genotyping data in l	FLA-E/H/I	K genes			
FLA-I_	GTGCTCCTGCT	Evon 1	19 hn		7001	Holmes et
Umultiple_F	GCTGTTG	EXOII I	18 Up	0.07.1		al. 2013
FLA-I_	TGGCACGTGT	Even 4	20 hm	8∠7 bp	789 bp	Holmes et
Umultiple_R	ATCTCTGCTC	EXON 4	20 bp			al. 2013

Table 1. Primer information used for this study

FLA-I allele name	Accession number	FLA locus lineage in Figure 3
	KC763048	ELA E/H/V
FLA-E 00501 FLA E*00902	KC763019	
FLA E*01401	KC763050	
FLA E*01801	EU015360	
ELA L 01001	E0915500	
FLA-H*003011	KC 703028	
FLA-H*008011	KC /63034	FLA-E/H/K
FLA-K*00101	EU153401	FLA-E/H/K
FLA-K*00303	KC/63039	FLA-E/H/K
FLA-K*00401	KC763049	FLA-E/H/K
FLA-K*00701	KC763047	FLA-E/H/K
FLAI_001	LC534228	FLA-E/H/K
FLAI_002	LC534229	FLA-E/H/K
FLAI_003	LC534230	FLA-E/H/K
FLAI_004	LC534231	FLA-E/H/K
FLAI_005	LC534232	FLA-E/H/K
FLAI_006	LC534233	FLA-E/H/K
FLA-H*016:01	MK644232	FLA-E/H/K
FLAI_007	LC534234	FLA-E/H/K
FLAI_014	LC534241	FLA-E/H/K_Rec
FLA-A	EU153401	FLA-A
FLA-E*01601	EU915358	FLA-J
FLAI_008	LC534235	FLA-J
FLA-J*01:18	MK737915	FLA-J
FLAI_009	LC534236	FLA-J
FLA-J*01:16	MK737902	FLA-J
FLA-J*01:14	MK737908	FLA-J
FLA-L	EU153401	FLA-L
FLAI_013	LC534240	FLA-L
FLA-O	EU153401	FLA-O
FLAI_010	LC534237	FLA-O
FLAI_011	LC534238	FLA-O
FLAI_012	LC534239	FLA-O

Table 2. Identified FLA-class I alleles and lineages of FLA-class I loci for

phylogenetic analysis

Table 3. Read information for genotyping of FLA-class I genes in the two cat

families

Family 1

FLA locus lineage	FLA-I sequence	Family 1				
in Figure 3	name	01	02	03	04	05
	FLA-E*00501	12179	0	0	31332	28084
	FLA-E*00902	0	0	0	18333	0
	FLA-E*01401	0	0	0	0	0
	FLA-E*01801	0	7504	0	0	11645
	FLA-H*003011	20171	0	0	0	0
	FLA-H*008011	0	0	0	0	0
	FLA-K*00101	0	0	7503	0	0
	FLA-K*00303	0	0	0	0	0
	FLA-K*00401	4628	0	0	0	0
FLA-E/H/K	FLA-K*00701	12897	0	0	29436	8973
	FLAI_001	0	29099	20896	0	0
	FLAI_002	0	4647	6977	0	0
	FLAI_003	0	0	24315	0	0
	FLAI_004	0	31513	0	0	24697
	FLAI_005	0	12292	0	0	12557
	FLAI_006	39954	0	0	0	0
	FLA-H*016:01	0	0	14883	0	0
	FLAI_007	0	0	8604	0	0
FLA-E/H/K_Rec	FLAI_014	0	0	0	14090	0
FLA-A	FLA-A	369	16	511	0	483
· · · · · · · · · · · · · · · · · · ·	FLA-E*01601	7483	474	0	6466	7975
	FLAI_008	0	5161	5798	0	0
	FLA-J*01:18	0	3609	4260	0	0
FLA-J	FLAI_009	0	0	3202	0	0
	FLA-J*01:16	0	0	0	0	0
	FLA-J*01:14	229	1293	0	0	3256
	FLA-L	41	682	236	0	0
FLA-L	FLAI_013	0	364	0	0	154
	FLA-O	1527	1963	1448	209	1644
EL A O	FLAI_010	0	1383	1366	0	0
ГLA-U	FLAI_011	0	0	0	0	0
	FLAI_012	523	0	0	134	532
Total seque	ence number	11	14	13	7	11

Table 3. Family 1 continued

FLA locus lineage	FLA-I sequence	Family 1					
in Figure 3	name	06	07	08	09	10	
	FLA-E*00501	26666	0	0	0	28269	
	FLA-E*00902	0	15585	15263	15923	0	
	FLA-E*01401	0	0	0	0	0	
	FLA-E*01801	0	0	0	0	0	
	FLA-H*003011	0	0	0	0	0	
	FLA-H*008011	0	0	0	0	0	
	FLA-K*00101	0	8222	7780	0	6874	
	FLA-K*00303	0	0	0	0	0	
	FLA-K*00401	0	0	0	0	0	
FLA-E/H/K	FLA-K*00701	8850	19177	19956	23379	8280	
	FLAI_001	29111	0	0	25226	0	
	FLAI_002	8131	0	0	7592	0	
	FLAI_003	0	16509	18921	0	20260	
	FLAI_004	0	0	0	0	0	
	FLAI_005	0	0	0	0	0	
	FLAI_006	0	0	0	0	0	
	FLA-H*016:01	0	12992	11959	0	11901	
	FLAI_007	0	8240	8757	0	10546	
FLA-E/H/K_Rec	FLAI_014	0	12972	12564	9328	0	
FLA-A	FLA-A	482	371	287	129	471	
	FLA-E*01601	6803	835	886	676	8283	
	FLAI_008	10092	0	0	8185	0	
	FLA-J*01:18	6061	0	0	6272	0	
FLA-J	FLAI_009	0	3613	2495	0	4101	
	FLA-J*01:16	0	0	0	0	0	
	FLA-J*01:14	0	0	0	0	0	
	FLA-L	139	479	319	472	196	
FLA-L	FLAI_013	0	0	0	0	0	
	FLA-O	1481	1004	813	1327	332	
	FLAI_010	1584	0	0	1491	0	
FLA-O	FLAI_011	0	0	0	0	0	
	FLAI_012	599	0	0	0	486	
Total seque	ence number	12	12	12	12	12	

Table 3. Family 2 continued

FLA locus lineage	FLA-I sequence	Family 2					
in Figure 3	name	11	12	13	14	15	
	FLA-E*00501	0	27281	0	0	32844	
	FLA-E*00902	0	0	14386	0	0	
	FLA-E*01401	0	28739	21472	0	0	
	FLA-E*01801	0	0	0	0	0	
	FLA-H*003011	0	0	0	0	0	
	FLA-H*008011	0	10619	10161	0	0	
	FLA-K*00101	0	0	0	0	0	
	FLA-K*00303	0	13133	10876	0	0	
	FLA-K*00401	0	0	0	0	0	
FLA-E/H/K	FLA-K*00701	0	8127	24780	0	9686	
	FLAI_001	50725	0	0	54450	28380	
	FLAI_002	15354	0	0	15737	7485	
	FLAI_003	0	0	0	0	0	
	FLAI_004	0	0	0	0	0	
	FLAI_005	0	0	0	0	0	
	FLAI_006	0	0	0	0	0	
	FLA-H*016:01	0	0	0	0	0	
	FLAI_007	0	0	0	0	0	
FLA-E/H/K_Rec	FLAI_014	0	0	11328	0	0	
FLA-A	FLA-A	205	0	0	79	170	
	FLA-E*01601	0	5637	788	0	5825	
	FLAI_008	17388	0	0	14284	7628	
	FLA-J*01:18	11558	0	0	10565	4711	
FLA-J	FLAI_009	0	0	0	0	0	
	FLA-J*01:16	0	4942	4567	0	0	
	FLA-J*01:14	0	0	0	0	0	
	FLA-L	503	128	385	304	180	
ГLA - L	FLAI_013	0	0	0	0	0	
	FLA-O	1337	0	481	1281	693	
EL A O	FLAI_010	2930	0	0	3301	1437	
r'la-U	FLAI_011	0	782	776	0	0	
	FLAI_012	0	611	0	0	960	
Total seque	ence number	8	10	11	8	12	

Table 3. Family 2 continued

FLA locus lineage	FLA-I sequence	Family 2					
in Figure 3	name	16	17	18	19	20	
	FLA-E*00501	0	0	0	0	0	
	FLA-E*00902	0	15681	15539	0	16352	
	FLA-E*01401	23411	0	0	23881	0	
	FLA-E*01801	0	0	0	0	0	
	FLA-H*003011	0	0	0	0	0	
	FLA-H*008011	10520	0	0	8902	0	
	FLA-K*00101	0	0	0	0	0	
	FLA-K*00303	11741	0	0	11518	0	
	FLA-K*00401	0	0	0	0	0	
FLA-E/H/K	FLA-K*00701	0	23677	24124	0	23005	
	FLAI_001	23536	23101	21507	23886	22439	
	FLAI_002	8708	8031	6918	7031	6991	
	FLAI_003	0	0	0	0	0	
	FLAI_004	0	0	0	0	0	
	FLAI_005	0	0	0	0	0	
	FLAI_006	0	0	0	0	0	
	FLA-H*016:01	0	0	0	0	0	
	FLAI_007	0	0	0	0	0	
FLA-E/H/K_Rec	FLAI_014	0	10335	11959	0	11987	
FLA-A	FLA-A	226	112	100	213	182	
	FLA-E*01601	0	809	832	0	972	
	FLAI_008	8652	7465	8830	8925	8002	
	FLA-J*01:18	5418	7504	7409	7125	7299	
FLA-J	FLAI_009	0	0	0	0	0	
	FLA-J*01:16	3756	0	0	5468	0	
	FLA-J*01:14	0	0	0	0	0	
	FLA-L	517	326	273	258	245	
FLA-L	FLAI_013	0	0	0	0	0	
	FLA-O	593	1150	1054	868	913	
	FLAI_010	1758	1809	1454	1196	1613	
FLA-U	FLAI_011	1163	0	0	727	0	
	FLAI_012	0	0	0	0	0	
Total seque	ence number	13	12	12	13	12	

The read numbers are normalized per 100,000 reads per cat. Novel FLA-class I sequences and their accession numbers are indicated by red letters.

Table 4. Estimated FLA-I haplotypes

Fa	mil	v 1

Simplified name	01		0	02		03	
FLA-class I Hp.	Hp-1.0	Нр-2.0	Нр-3.0	Hp-4.0	Нр-3.0	Hp-7.0	
	E*00501	H*003011	FLAI_001	E*01801	FLAI_001	K*00101	
	K*00701	K*00401	FLAI_002	FLAI_004	FLAI_002	FLAI_003	
FLA-E/H/K		FLAI_006		FLAI_005		H*016:01	
						FLAI_007	
FLA-E/H/K_Rec							
FLA-A		FLA-A	FLA-A	FLA-A	FLA-A	FLA-A	
	E*01601	J*01:14	FLAI_008	E*01601	FLAI_008	FLAI_009	
ГLА-J			J*01:18	J*01:14	J*01:18		
FLA-L		FLA-L	FLA-L	FLAI_013	FLA-L	FLA-L	
ELAO	FLAI_012	FLA-O	FLA-O	FLA-O	FLA-O	FLA-O	
ГLA-U			FLAI_010		FLAI_010		

Table 4. Family 1 continued

Simplified name	04	4	05		
FLA-class I Hp.	Нр-1.0 Нр5.0		Hp-1.0	Hp-4.0	
	E*00501	E*00902	E*00501	E*01801	
	K*00701	K*00701	K*00701	FLAI_004	
FLA-E/H/K				FLAI 005	

FLA-						
E/H/K_Rec		FLAI_014				
FLA-A	-			FLA-A		
	E*01601	E*01601	E*01601	E*01601		
ГLA-J				J*01:14		
FLA-L				FLAI_013		
FLA-O	FLAI_012	FLA-O	FLAI_012	FLA-O		

Table 4. Family 1 continued

Simplified name	06		0	7	08		
FLA-class I Hp.	Hp-1.0	Нр-3.0	Hp5.0	Нр-7.0	Hp5.0	Нр-7.0	
	E*00501	FLAI_001	E*00902	K*00101	E*00902	K*00101	
	K*00701	FLAI_002	K*00701	FLAI_003	K*00701	FLAI_003	
ΓLA-E/Π/Κ				H*016:01		H*016:01	
				FLAI_007		FLAI_007	
FLA-							
E/H/K_Rec			ΓLΑΙ_014		FLAI_014		
FLA-A		FLA-A		FLA-A		FLA-A	
EI A I	E*01601	FLAI_008	E*01601	FLAI_009	E*01601	FLAI_009	
ГLА-Ј		J*01:18					
FLA-L		FLA-L		FLA-L		FLA-L	
EL A O	FLAI_012	FLA-O	FLA-O	FLA-O	FLA-O	FLA-O	
ГLA-U		FLAI_010					

Table 4. Family 1 continued

Simplified name	0	9	1	0
FLA-class I Hp.	Нр-3.0	Hp5.0	Hp-1.0	Нр-7.0
	FLAI_001	E*00902	E*00501	K*00101
	FLAI_002	K*00701	K*00701	FLAI_003
ΓLΑ-Ε/Π/Κ				H*016:01
				FLAI_007
FLA-				
E/H/K_Rec		FLAI_014		
FLA-A	FLA-A			FLA-A
	FLAI_008	E*01601	E*01601	FLAI_009
FLA-J	J*01:18			
FLA-L	FLA-L			FLA-L
	FLA-O	FLA-O	FLAI_012	FLA-O
FLA-U	FLAI_010			

Table 4. Family 2

Simplified name	1	11		2	1	.3
FLA-class I Hp.	Нр-3.0	Hp-3.0	Hp-1.0	Нр-6.0	Hp5.0	Нр-6.0
	FLAI_001	FLAI_001	E*00501	E*01401	E*00902	E*01401
	FLAI_002	FLAI_002	K*00701	H*008011	K*00701	H*008011
FLA-E/H/K				K*00303		K*00303
FLA-		·	,			
E/H/K_Rec					FLAI_014	
FLA-A	FLA-A	FLA-A				
	FLAI_008	FLAI_008	E*01601	J*01:16	E*01601	J*01:16
ГLA-J	J*01:18	J*01:18				
FLA-L	FLA-L	FLA-L		FLA-L		FLA-L
ELAO	FLA-O	FLA-O	FLAI_012	FLAI_011	FLA-O	FLAI_011
ГLA-О	FLAI_010	FLAI_010				

Table 4. Family 2 continued

Simplified name	14			15
FLA-class I Hp.	Нр-3.0	Нр-3.0	Hp-1.0	Нр-3.0
	FLAI_001	FLAI_001	E*00501	FLAI_001
FLA-E/H/K	FLAI_002	FLAI_002	K*00701	FLAI_002

FLA-				
E/H/K_Rec				
FLA-A	FLA-A	FLA-A	·	FLA-A
	FLAI_008	FLAI_008	E*01601	FLAI_008
FLA-J	J*01:18	J*01:18		J*01:18
FLA-L	FLA-L	FLA-L		FLA-L
ELA O	FLA-O	FLA-O	FLAI_012	FLA-O
ГLA-О	FLAI_010	FLAI_010		FLAI_010

Table	4.	Famil	y 2	continu	ed
-------	----	-------	-----	---------	----

Simplified name	16		6 17		1	18	
FLA-class I Hp.	Нр-3.0	Нр-6.0	Hp-3.0	Hp5.0	Нр-3.0	Hp5.0	
	FLAI_001	E*01401	FLAI_001	E*00902	FLAI_001	E*00902	
	FLAI_002	H*008011	FLAI_002	K*00701	FLAI_002	K*00701	
ΓLΑ-Ε/Π/Κ		K*00303					
FLA-	•						
E/H/K_Rec	_			TLAI_014		TLAI_014	
FLA-A	FLA-A		FLA-A		FLA-A		
	FLAI_008	J*01:16	FLAI_008	E*01601	FLAI_008	E*01601	
ГLА-Ј	J*01:18		J*01:18		J*01:18		
FLA-L	FLA-L	FLA-L	FLA-L		FLA-L		
ELAO	FLA-O	FLAI_011	FLA-O	FLA-O	FLA-O	FLA-O	
ГLA-U	FLAI_010		FLAI_010		FLAI_010		

 Table 4. Family 2 continued

Simplified name	1	9	2	0
FLA-class I Hp.	Нр-3.0	Нр-3.0 Нр-6.0		Hp5.0
	FLAI_001	E*01401	FLAI_001	E*00902
FLA-E/H/K	FLAI_002	H*008011	FLAI_002	K*00701
		K*00303		
FLA-				
E/H/K_Rec				FLAI_014
FLA-A	FLA-A		FLA-A	
	FLAI_008	J*01:16	FLAI_008	E*01601
ГLА-J	J*01:18		J*01:18	
FLA-L	FLA-L	FLA-L	FLA-L	
FLAO	FLA-O	FLAI_011	FLA-O	FLA-O
FLA-O	FLAI_010		FLAI_010	

Red letter indicates novel allele.

For each allele					For each lineage			
Allele	Allele frequency (2 <i>n</i> =40)	Average reads	±SD	FLA lineage	Sequence Num.	Sequence frequency	Average reads	±SD
E*00501	7	26,665	6,265					
E*00902	8	15,883	1,066					
E*01401	4	24,376	2,676					
E*01801	2	9,575	2,071					
H*003011	1	20,171	0					
H*008011	4	10,050	685					
K*00101	4	7,595	489					
K*00303	4	11,817	823					
K*00401	1	4,628	0	FLA-	10	05	16 111	0 126
K*00701	15	16,290	6,350	E/H/K	18	93	10,444	8,150
I_001	14	25,168	2,639					
I_002	14	7,400	909					
I_003	4	20,001	2,830					
I_004	2	28,105	3,408					
I_005	2	12,425	132					
I_006	1	39,954	0					
H*016:01	4	12,934	1,206					
I_007	4	9,037	892					
I_014	8	11,820	1,403	FLA- E/H/K_Rec	1	8	11,820	1,403
А	21	210	152	FLA-A	1	21	210	152
E*01601	17	3,220	2,636					
I_008	14	7,886	1,253					
J*01:18	14	5,842	1,159	FIA I	6	56	5 060	2 648
I_009	4	3,363	589	I'LA-J	0	50	5,009	2,040
J*01:16	4	4,683	624					
J*01:14	3	1,593	1,254					
L	23	247	144	FLAI	2	25	248	1/12
I_013	2	259	105	T LA-L	2	23	240	142
0	30	671	351					
I_010	14	1,523	159	FLAO	Δ	54	878	475
I_011	4	862	175	r LA-U	+	54	0/0	- 7/J
I_012	7	550	225					

Table 5. Average read numbers in each allele and lineage

Red letter indicates novel allele.

Table 6. Comparison of the FLA-E/H/K genotyping results between the two

Simplified name		C)1			C	2	
FLA-I haplotype	Hp	-1.0	Нр	-2.0	Hp	-3.0	Hp-4.0	
Primer pair	С	Е	С	Е	С	Е	С	Е
FLA-E*00501	13558	31728						
FLA-K*00701	14357	22362						
FLA-E*00902								
FLA-H*003011			22455	19304				
FLA-K*00401			5152	5529				
FLAI_006			44477	21077				
FLAI_001					34212	14833		
FLAI_002					5464	9117		
FLA-E*01801							8822	12619
FLAI_004							37050	47536
FLAI_005							14452	15895
FLA-H*016:01								
FLA-K*00101								
FLAI_003								
FLAI_007								
FLA-E*01401								
FLA-H*008011								
FLA-K*00303								

primer pairs designed in different locations

Table 6. continued

Simplified name	07			13				
FLA-I haplotype	Hp	-5.0	Hp	-7.0	Нр	-5.0	Нр-6.0	
Primer pair	С	Е	С	Е	С	Е	С	Е
FLA-E*00501								
FLA-K*00701	23756	28257			30340	27838		
FLA-E*00902	19307	16750			17614	14005		
FLA-H*003011								
FLA-K*00401								
FLAI_006								
FLAI_001								
FLAI_002								
FLA-E*01801								
FLAI_004								
FLAI_005								
FLA-H*016:01			16093	26590				
FLA-K*00101			10185	19900				
FLAI_003			20451	7498				
FLAI_007			10207	1005				
FLA-E*01401							26290	26074
FLA-H*008011							12440	24505
FLA-K*00303							13317	7579
The read numbers	s are nor	malized	per 100,	000 reads	s per cat. '	'C" and '	'E" indic	ate read
numbers obtained	from an	nplicons	using F	LA-I prin	ner pairs f	for genot	yping of	FLA-I
genes (Table 1A)	and for	conform	nation of	the FLA-	-I genotyp	oing resu	lts (Tab l	le 1B),

respectively. Relationships between the simplified names and FLA-I haplotypes are shown in **Figures 5** and **6**.

(A)

(B)

Family	Generation	Individual name	ID number	gender
	1 ot	S12LMC	01	Male
	151	131279	02	Female
		383782	03	Male
	Ond	F42MFC	04	Female
Eomily 1	2110	U23PFC	05	Female
гапшу і		U33PFC	06	Female
		K1YPMC	07	Male
	2 rd	K2YPMC	08	Male
	3rd	K3YPMC	09	Male
		K4yPMC	10	Male
	1 ot	176365	11	Male
	151	S21OFC	12	Female
		Q57MFC	13	Female
	Ond	384323	14	Male
Family 2	2110	T11QMC	15	Male
		T21QMC	16	Male
		Z23PFC	17	Female
	2rd	Z33PFC	18	Female
	Siu	Z43PFC	19	Female
		Z53PFC	20	Female

(~)		FLA-I F2
		Cul domain (Exon 2)
FLA-E	1	GGCTCCCACTCCCTGAGGTATTTCTACACCGCGGTGTCCCGGCCCGGCCTCGGGGAGCCCCGCTTCATCTCC <mark>GTGGGCTACGTGGACGACA</mark> GCAGTTCG
FLA-H	1	
FLA-K	1	G
FLA-A	1	
FLA-J	1	
FLA-L	1	
FLA-O	1	
FLA-E	101	TGCGGTTCGACGCGACGCCCCGAATCCCCAGGGAAGAGCCGCGGGGCGCCGTGGATGGA
FLA-H	101	GATGACGC
FLA-K	101	GATGGTA.G.GACG.
FLA-A	101	CTGGATGAC.TATTACGG.A.G.GGGCGC
FLA-J	101	CTGTCTGG
FLA-L	101	
FLA-O	101	CAGATGCGC
		α2 domain (Exon 3)
FLA-E	201	CTTGGACACCGCACAGATTTCCCGAGTGAACCTGAACACGTTGCTCCGCTACTACAACCAGAGCGAGTCC GGGTCGCACAACATCCAGAGAATGTATGGC
FLA-H	201	GAAAG
FLA-K	201	GAA.AA
FLA-A	201	.AAAG
FLA-J	201	GAAA
FLA-L	201	.AACACTCGACCG.GTTI.AG.CG.C.
FLA-O	201	.AATGCAGGCCC.GCGCC
FLA-E	301	TGTGACGTGGACCCAGACCGGCGCTTCCTCCGCGGGTACAGTCAGGACTCCTATGACGG CAAGGATTACATCGCCCTGAACGAGGACCTGCGCTCCTGGA
FLA-H	301	А.
FLA-K	301	G
FLA-A	301	CAGGCTTCAAT.GTT.GG
FLA-J	301	A.C.GAGAA.CC
FLA-L	301	A.C.GGTG.CCT
FLA-O	301	A.C.GG.TG.ACTTGGCGC
		FLA-I_R2m
FLA-E	401	CCCCCCCC
FLA-H	401	
FLA-K	401	
FLA-A	401	
FLA-J	401	
FLA-L	401	T A GCTG A G
FLA-O	401	
		α3 domain (Exon 4)
FLA-E	501	GCTCGCCAAATACCTGGACATGGGGAAGGAGACGCTGCTGCGCGCA GAATCTCCCAACACACGCGTGACCCGCCACCCCATCTCTGACCGTGAGGTGACC
FLA-H	501	A.G
FLA-K	501	
FLA-A	501	CGGGTG.GCACAA CC.CGGA.A.CA.TCTATC
FLA-J	501	AGG
FLA-L	501	C
FLA-O	501	CGGGG
FLA-E	601	CTGAGGTGCTGGGCCCTGGGCTTCTACCCTGCGGAGATCACCCTGACCTGGCAGCGTGATGGGCAGGACCACACCCCAGGACACAGAGCTTGTGGAGACCA
FLA-H	601	TG
FLA-K	601	
FLA-A	601	A
FLA-J	601	
FLA-L	601	
FLA-O	601	A

		FLA-I_Umultiple_F	
		5'UTR (Exon 1)	
FLA-E	1	AGTTTCCGCACCCGCCTCCTGAGACTCACATTTCTCCCTCAGACCCGAGGATGCGGTTCGTGATGTCCCCAACTGTGCTGCTGCTGCTGCTGGGGGGCCCT	100
FLA-K	1	C	100
FLA-H	1	GG	100
		α1 domain(Exon 2)	
FLA-E	101	GGCCGCGCCCCAGACCTGGGCG GGCTCCCACTCCCTGAGGTATTTCTACACCGCGGTGTCCCGGCCTCGGGGAGCCCCGCTTCATCTCCGTGGGC	200
FLA-K	101	A	200
FLA-H	101		200
FLA-E	201	TACGTGGACGACGACGTCGTGCGGTTCGACGCGCGCGCGC	300
FLA-K	201		300
F.TV-H	201		300
		α2 domain	
FLA-E	301	GGGACCGGAACACGCGGATTTACTTGGACACCGCACAGATTTCCCCGAGTGAACACGGTGCTCCGCTACTACAACCAGAGCGAGTCC GGGTCGCA	400
FLA-K FLA-H	301 301	A.G.GACG.GAA.AATGA.	400
		(Exon 3)	
FLA-E	401	CAACATCCAGAGAATGTATGGCTGTGACGTGGACCCAGACCGGCGCTTCCTCCGCGGGTACAGTCAGGACTCCTATGACGGCAAGGATTACATCGCCCTG	500
FLA-K	401		500
FLA-H	401		500
FLA-E	501	AACGAGGACCTGCGCCCCGCGGCCGGACACCGCCGGGCGGAGATCACACGCCGCAAGTGGGAGGAGGGCCGGTGTGGCGGAGGAGGAGGAAGGA	600
FLA-K	501		600
FLA-H	501		600
		α3 domain (Exon 4)	
FLA-E	601	TGGAGGGCACGTGCGTGGAGTGGCTCGCCAAATACCTGGACATGGGGAAGGAGACGCTGCTGCGCGCA GAATCTCCCCAACACACGCGTGACCCGCCACCC	700
FLA-K	601		700
FLA-H	601		/00
FLA-E	701	CATCTCTGACCGTGAGGTGACCCTGAGGTGCTGCGGGGCTTCTACCCTGCGGAGATCACCCTGGCAGGGCGGGAGGAGGACCACCCCAG	800
FLA-H	701		800
	/01		000
		FLA-I_Umultiple_R	
FLA-E	801	GACACAGAGCTTGTGGAGACCAGGCCTGCGGGGAGATGGGACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGAGAG BAGCAGAGATACACGTGCC	900
FLA-K	801	G	900
FLA-H	801		900
		Transmembrane domain (Exon 5)	
FLA-E	901	ATGTGCAGCACAAGGGGCTGCCCGAGCCCATCAACTTGAGATGG GAGCCATCGTCTTGCCCTTCATCACCATTCTGGGCATCATTGCTGGTGTGGCTGT	1000
FLA-K FLA-H	901 901		1000
		Cytoplasmic domain (Exons 6-8)	
FLA-E	1001	CCTTGTGGGCCACTGTGGGGGGGGGGGGGGGGGGGGGGG	1100
FLA-K	1001		1100
FLA-H	1001		TTOO
		3'UTR (Exon 8)	
FLA-E	1101	CAGGGCTCTGATTCGTCTCTAATGGCTCCTAAAGTTTGAGACCCGCTGCCTGTGGAGAACTGAGCGATGCAGGATCTGTTCACACTCCCACTTGGTGACA	1200
FLA-K	1101		1200
FLA-H	1101		1200

Figure 2. Nucleotide alignment for FLA-I cDNA sequences and primer locations.

(A) shows the nucleotide alignment of seven FLA-I genes and primer location for genotyping of FLA-I genes (**Table 1A**), (B) shows the nucleotide alignment of FLA-E/H/K genes and primer location for confirmation of the FLA-I genotyping results (**Table 1B**). The nucleotide alignments were constructed by using the 2.98 Mb genomic sequence (EU153401). 5'UTR, SP and 3'UTR indicate 5' untranslated region, signal peptide and 3' untranslated region, respectively. Locations of primers are indicated by boxes and red letters. Arrows shows direction of primers.

(B)

Figure 3. Amino acid sequence-based phylogenetic trees of FLA-I sequences by the Neighbor joining method. The trees were constructed by the neighbour-joining method. Numbers at branches indicate bootstrap values over 50. FLA-I tree based on 40 amino acid sequences, deduced from 32 FLA-I translated from the nucleotide sequences that were identifiedgenerated in this study, seven FLA-I reference sequences (EU153401) (bold letters) and DLA-88 (NM_001014767) that was used as an outgroup sequencewere used for constructing the tree. The FLA-I_014 in FLA-E/H/K_Rec lineage that shows a unique phylogenetic relationship is indicated by a black background and white letters.

Figure 4. Gene structure of the recombinant FLA-I_014 sequence. (A) Schematic diagram showing the PCR region used for genotyping and the location of the recombination hotspot. Blue and red bars indicate nucleotides that support the FLA-

E*00902 (KC763019) and K*00801 (KC763045) sequences, respectively. (B) Nucleotide sequence of FLA-I_014. Arrow indicates estimated recombination hotspot. (C) Phylogenetic analyses using FLA-E/H/K and FLA-I_014 sequences. The FLA-E Ref., FLA-H Ref. and FLA-K Ref were obtained from the cat genome reference sequence (EU153401). Numbers showing on the branches are bootstrap values. (C1) The 316 bp alignment for the PCR region was used. (C2) The 124 bp alignment for the exon 2 was used. (C3) The 191 bp alignment for exons 2 and 3 was used. (D) List of FLA-I alleles identical to FLA-E*00902 and K*00801.

Figure 5. A summary for the inheritance of FLA haplotypes in two cat families. The family charts with the FLA haplotype information were summarized based on the FLA haplotype structures described in **Figure 6** and **Table 3**. Circles and squares indicate females and males, respectively, and numbers in the circles and squares indicate the identification number of the 20 cats. Question marks indicate individuals with unknown FLA genotypes.

Figure 6. Haplotype structures of the FLA-I subregions. The haplotypes that are composed of the different types of transcribed FLA-I loci and alleles. The lineage of the FLA-I sequences were classified and inferred from the phylogenetic analyses. Novel sequences identified in this study are indicated by red letters and a yellow background.

第4章

FLA クラスII遺伝子の多型解析の開発

FLA クラスIIアレルの同定およびハプロタイプの推定

4.1 序論

MHC クラス II 領域のゲノム構造は、動物種によって違いが認められ る。ヒトは第6番染色体に MHC クラス II 領域が存在し、13 個の MHC クラス II 遺伝子が同定された(Figure 1)。一方イヌは、第12番染色体に MHC クラ ス II 領域が存在し、8 個の MHC クラス II 遺伝子が同定された(Lindblad-Toh et al., 2005)。具体的には、ヒトの HLA-DRA, -DRB1 および-DRB5 が位置する領域 (*MHC-DR* 領域) には、イヌでは2 個の MHC クラス II 遺伝子 (*DLA-DRA* およ び-DRB1) が同定された。次に、ヒトにおいて、HLA-DQA1, -DQB1, -DQA2 お よび-DQB2 が位置する領域 (*MHC-DQ* 領域) には、イヌでは2 個の MHC クラ ス II 遺伝子 (*DLA-DQA1* および-DQB1) が同定された。また、ヒトにおいて HLA-DOB, -DMB, -DMA および-DQA1 が同定された。また、ヒトにおいて HLA-DOB, -DMB, -DMA および-DOA が位置する領域 (*MHC-DD*/DO 領域) に は、イヌでも同様に4 個 (*DLA-DOB*, -DMB, -DMA および-DOA) が同定され た。さらに、ヒトにおいて HLA-DPA1 および-DPB1 が位置する領域 (*MHC-DP* 領域) には、イヌでは、欠失している。以上のように、ヒトとイヌを比較する と MHC クラス II 遺伝子の数と、MHC ゲノム構造に違いが認められている。

ネコは第 B2 染色体に MHC クラス II 領域が存在し、そのゲノム配列 は、Yuhki ら(2008 年)によって決定された。現在までに、ネコ1 個体の2 種 類のハプロタイプ (ハプロタイプ1とハプロタイプ2) が報告されている。こ れらのうち、ハプロタイプ1は MHC クラス II 領域全長の配列が公開された が、ハプロタイプ2 は、*MHC-DR* 領域のみの配列が公開された。

このネコとヒトの MHC クラス II 領域を比較すると、ヒトの MHC-DQ 領域に相当する領域は、ネコでは欠失していた。また、ネコの MHC-DP 領域に 2 個 (FLA-DPA および-DPB) が同定されたが、どちらも偽遺伝子であった。そ

の一方で、ヒトの MHC-DR 領域に相当する領域は、ネコでは拡大しており、ヒ トやイヌと比較して数多くの MHC-DR 遺伝子が同定されている。具体的には、 ハプロタイプ1では7個の遺伝子 (FLA-DRA1, -DRA2, -DRA3, -DRB1, -DRB2, -DRB3 および-DRB4) 、ハプロタイプ2では8個 (FLA-DRA1, -DRA2, -DRA3, -DRB1, -DRB2, -DRB3, -DRB4 および-DRB5) が同定された。このことからハプロ タイプ1とハプロタイプ2との間で MHC-DR 遺伝子の数が異なっており、コピ 一数多型を有することが明らかにされた。また、ヒトの MHC-DM/DO 領域に相 当する領域には、ネコでは4個の遺伝子 (FLA-DOB, -DMB, -DMA および-DOA) が同定された。このように、ネコは、MHC-DR および MHC-DM/DO 領 域に同定された遺伝子のみが機能的であった(Yuhki et al., 2008)。

ネコの MHC-DR および MHC-DM/DO 領域には、機能的な遺伝子が同定 されている。このうち、MHC-DM/DO 領域の MHC クラス II 遺伝子は、ヒトに おいて多型が乏しいことから、ネコの MHC-DM/DO 領域の MHC クラス II 遺伝 子も多型は期待されなかった。また、ネコの MHC-DM/DO 領域に同定された 4 個の遺伝子は研究の対象となっていない。その一方で、ネコの MHC-DR 領域の MHC クラス II 遺伝子のうち、1 個の FLA-DRA 遺伝子 (FLA-DRA1) および 4 個の FLA-DRB 遺伝子群 (FLA-DRB1, FLA-DRB3, FLA-DRB4 および FLA-DRB5) の転写産物が同定された。さらに、これらの遺伝子のうち、4 個の FLA-DRB 遺伝子群は、FLA-DRA 遺伝子と比較して、多型に富むことが明らか にされている(Yuhki and O'Brien, 1997)。以上のことから、ネコの MHC クラス II 遺伝子のうち、遺伝子発現が認められ、多型を有するのは FLA-DRB 遺伝子 群のみであった。以上のことから、ネコの MHC クラス II 遺伝子のうち、FLA-DRB 遺伝子群が多型解析を行う対象である。

現在までに報告された FLA-DRB アレルは、149 個体の多型解析から 70 種類のみであり、他の動物種と比較して、多型情報が極めて乏しい (Kuwahara et al., 2000;Kuwahara et al., 2001;Kennedy et al., 2002;Kennedy et al., 2003a)。また、これらの塩基配列のほとんどは、サブクローニング法によって 塩基配列決定が行われてきた。しかし、サブクローニング法による塩基配列決 定は、必要な時間および費用が膨大であるため、数多くの個体の多型解析には 適していなかった。本章にて、FLA-DRB 遺伝子群における多型解析法を開発 するためには、4 個 (FLA-DRB1, FLA-DRB3, FLA-DRB4 および FLA-DRB5) す べての FLA-DRB 遺伝子における対立遺伝子(アレル)を同定する必要があっ た。そこで、第3章と同様にアンプリコンシークエンス法が、FLA-DRB 遺伝 子の多型解析法に適していると考えられた。そこで本章では、NGS を用いたア ンプリコンシークエンシング法による FLA-DRB 遺伝子群を対象とした多型解 析法の開発を試みた。また、開発した多型解析法の正確性を明らかにするため に、第3章同様、血縁関係の明確な個体を実験に供した。同定されたアレルの 分子系統解析により、各 FLA-DRB 遺伝子へ分類した。さらに、血縁関係に基 づいたハプロタイプの推定を行った。

4.2 材料と方法

4.2.1 供試検体

第3章で作成した血縁関係の明確な同20個体のネコ(雑種)のcDNAを用いた。

4.2.2 アンプリコンシークエンスによる FLA-DRB 多型解析の PCR 増幅

アンプリコンシークエンスによる FLA-DRB 多型解析法を開発するにあ たり、まずプライマーを設計した。このプライマーは、今までの報告にて転写 産物が認められた4個の FLA-DRB 遺伝子に基づいて設計した(Figure 2)。具 体的には、4個の FLA-DRB 遺伝子(*FLA-DRB1,-DRB3,-DRB4* および-*DRB5*) に共通した配列部分であり、なおかつ、遺伝子毎のアレルを同定するために、 多型が集中するエキソン2(270 bp)を含むようにエキソン1および3にプラ イマーを設計した。プライマーの名称、塩基配列、設計位置および予想される 増幅長は Table 1 に示した。また、NGS 装置である Ion S5(Thermo Fisher Scientific)による 20 個体の識別可能なマルチプレックスアンプリコンシークエ ンシングを行うために、プライマーの 5^{*}末端に Ion Torrent adapters および個体 識別バーコードを付加したプライマーを 20 種類設計した。

PCR では、合成された cDNA を鋳型として、PrimeSTAR GXL (タカラ バイオ株式会社) とプライマーを用いて行った。PCR 反応溶液は、cDNA を 10 ng、PrimeSTAR GXL DNA 合成酵素を1単位、PCR バッファー (5mM Mg⁺) を 4.0 uL、dNTP (2.5 mM) およびプライマー (0.4 uM) をそれぞれ 1.6 uL を加 え、総量 20 uL とした。PCR 反応条件は、最初に 96℃で 2 分間の変性を行なっ たのちに、98℃で 10 秒間、55℃で 30 秒間、68℃で 30 秒間の 3 工程を1 サイ

クルとし、合計 40 サイクル行なったのちに、さらに 72℃で 2 分間の伸長反応 を行なった。

4.2.3 PCR 増幅産物の精製および定量

PCR 産物の精製および定量は、第3章と同様の方法で行った。

4.2.4 エマルジョン PCR、NGS のシークエンスおよびデータ処理

Ion 520 & Ion 530 Kit-OT2 および OneTouch 2 instrument を用いたエマル ジョン PCR (emPCR)、emPCR 後の濃縮、Ion 520/530 Chip Kit (Thermo Fisher Scientific)を用いたシークエンシング、生データの情報処理、ベースコール、 トリミング、クオリティフィルターは、第2章と同様の方法で行った。

4.2.5 リード選別およびトリミング

20 個体の fastq ファイルからのリード選別およびトリミングは第2章と 同様の方法を用いた。選別後のリードは、エキソン2 配列の 270 bp ヘトリミン グされた。

4.2.6 新規 FLA-DRB アレルの同定とリファレンスの作成

リードの選別およびトリミング後の配列を用いて、各個体での新規配 列の同定およびリファレンスの作成を行った。新規 FLA-DRB アレルの同定と リファレンスの作成は、第2章と同様の方法を用いた。なお、リファレンス作 成にて、マッピング解析の minimum overlap length parameter は、200~270 bp に 設定した。 4.2.7 マッピング解析によるアレルの同定およびリード数の算定

マッピング解析は第2章と同様の方法で行い、個体毎にリファレンス ヘマッピングされたリードから、FLA-DRB アレルの有無を判定した。また、 個体毎にマッピングされたリード数の合計を100,000 リードに補正した。この 補正リード数は、各アレル毎の平均リード数および系統樹によってアレルが分 類された系統毎の平均リード数を算出した。この平均リード数から、FLA-DRB 系統間でのリード数の比較を行った。

4.2.8 塩基配列の解析および分子系統解析による FLA-DRB アレルの分類

塩基配列および推定アミノ酸配列の NCBI データベースに対する相同性 検索には BLAST を用いた。推定アミノ酸配列に基づく分子系統解析には、 MEGA7 ソフトウェア(Kumar et al., 2016)を用いた。ClustalW を用いた新規およ び既知の FLA-DRB アレルのエキソン2の推定アミノ酸配列(90 残基)のアラ イメントを行った。アライメント結果から、近接結合法を用いた分子系統樹を 作成し、p 距離モデルおよびブーストラップ法(2,000 回反復)で統計的支持値 を算出した。

4.2.9 新規 FLA-DRB アレルおよびハプロタイプの命名方法

多型解析において同定された新規 FLA-DRB アレルは、一時的な通し番 号として FLA-DRB_001~FLA-DRB_007 と名付けた上で、

Genbank/EMBL/DDBJ データベースに登録された。推定された FLA-DRB ハプ ロタイプは、第3章と同様に命名した。例えば、FLA クラス II 領域のハプロタ イプ (ハプロタイプ 1) は Hp-0.1 と表記した。

4.3 結果

4.3.1 多型解析によって同定された FLA-DRB アレル

FLA-DRB 多型解析では、4 個の FLA-DRB 遺伝子 (*FLA-DRB1*, *FLA-DRB3*, *FLA-DRB4* および *FLA-DRB5*) それぞれのアレルの同定を試みた。この結果、2 家系 20 個体から、計 16 種類の FLA-DRB アレルが同定された(**Table 2**)。これ らのうち、9 種類は既知のアレルであったが、7 種類は新規のアレルであった (**Table 2** 内の赤文字で示したアレル)。これら新規アレルは、FLA-DRB_001 か ら FLA-DRB_007 と命名した。また、これら 16 種類の FLA-DRB アレルのうち、 FLA-DRB_n06 と FLA-DRB_001 は、異なる塩基配列であったが、同一のアミノ 酸配列に翻訳されたことから同義置換のアレルであった。

4.3.2 同定された FLA-DRB アレルの分子系統解析

計 16 種類の FLA-DRB アレルを系統樹に基づいて分類した(Figure 3 および Table 2)。この系統樹から、計 16 種類の FLA-DRB アレルを、4 つの 系統(*FLA-DRB1*, *FLA-DRB3*, *FLA-DRB4* および *FLA-DRB5*) に分類した。具体 的には、3 種類(FLA-DRB*040101, DRB*n05 および DRB_004) を *FLA-DRB1* 系統に分類した。同様に、6 種類(FLA-DRB*n06, DRB_001-003, DRB*0203 お よび DRB_006) を *FLA-DRB3* 系統に、6 種類(FLA-DRB*0301, DRB1-rr6, DRB_007, DRB1-rr7, DRB*0107 および DRB*0103) を *FLA-DRB4* 系統および 1 種類(FLA-DRB 005) を *FLA-DRB5* 系統に分類した。

4.3.3 各個体に同定された FLA-DRB アレル

計 16 種類の FLA-DRB アレルに対して、個体毎にマッピング解析を行った。この結果、少ない個体で2 種類、多い個体で6 種類の FLA-DRB アレル が同定された(Table 3)。例えば、Family 1 の個体番号 01 において、*FLA-DRB1* 系統の FLA-DRB*n05、*FLA-DRB3* 系統の FLA-DRB*0203、DRB*n06 および DRB_001 および *FLA-DRB4* 系統の FLA-DRB*0107 が同定された。このよう に個体番号 01 は、これら計 5 種類の FLA-DRB アレルが同定された。他の個体 も同様に、FLA-DRB アレルが同定された。

4.3.4 FLA-DRB ハプロタイプの推定

各個体に同定された FLA-DRB アレルの組み合わせと、個体の血縁関係 に基づいて、全 20 個体のハプロタイプ推定を行った(Table 4)。Family 1 の 個体番号 05 と、05 の父と母である 01 と 02 に同定されたアレルを例にして説 明する。まず、子である 05 には、5 種類のアレル (DRB*n05, DRB*n06, DRB*0107, DRB_004 および DRB_001)が同定された。これら 5 種類のうち、3 種類 (DRB*n05, DRB*n06 および DRB*0107)は父である 01 に認められ、残る 2 種類 (DRB_004 および DRB_001)は母である 02 に同定された。同一染色体 上のアレルの組み合わせであるハプロタイプは、父および母から子へ1 セット ずつ遺伝されることから、DRB*n05, DRB*n06 および DRB*0107 は、ハプロタ イプ (Hp-0.1)として父から遺伝し、同様に、DRB_004 および DRB_001 は、 ハプロタイプ (Hp-0.4)として母から遺伝したと考えられた。その他の個体に おいても同様に、ハプロタイプが推定された。以上のようにハプロタイプ (Hp-0.1~Hp-0.8)が推定された。 4.3.5 推定された FLA-DRB ハプロタイプの比較

推定された計 8 種類のハプロタイプを比較すると、ハプロタイプ毎に構 成される FLA-DRB アレルの数が異なっていた(Figure 4)。具体的には、Hp-0.1 は、*FLA-DRB1* 系統の FLA-DRB*n05、*FLA-DRB3* 系統の DRB*n06 および *FLA-DRB4* 系統の DRB*0107 の計 3 種類のアレルから構成されていたハプロタイプ であった。同様に、Hp-0.2~0.4 は 2 種類、Hp-0.5~0.8 は 3 種類のアレルから構 成されていた。また、推定された FLA-DRB ハプロタイプは、ハプロタイプ特異 的なアレルの欠失やハプロタイプ毎のアレル数の違いが認められた。これらの ことから、FLA-DRB ハプロタイプ毎のアレル数の違い、つまり、コピー数多型 が認められた。

また、Hp-0.1 と Hp-0.8 は、どちらも 3 つのアレルが含まれていたが、そ のうち *DRB1* および *DRB4* 系統の 2 種類のアレル (DRB*n05 および DRB*0107) は、どちらのハプロタイプにおいても認められた。しかし、*DRB3* 系統は異なっ ており、Hp-0.1 は DRB*n06 が、と Hp-0.8 は DRB 006 が含まれていた。

4.3.6 FLA クラス I 領域から FLA-DRB 領域までのハプロタイプ構造

第3章と本章にて同一の2家系20個体を実験に用いたことから、FLA クラスIから FLA-DRB領域まで(FLA領域全体)のハプロタイプが推定された

(Figure 5)。本研究に用いた 20 個体から、計 8 種類の FLA クラスI - DRB ハ プロタイプ (Hp-1.1, Hp-2.2, Hp-3.3, Hp-3.8, Hp-4.4, Hp-5.5, Hp-6.6 および Hp-7.7) が推定された。このハプロタイプのうち Hp-3.3 は、個体番号 11 にて、ホモ接合 体と推定された。また、計 8 種類の FLA クラスI - DRB ハプロタイプのうち Hp-3.3 と Hp-3.8 は、同一の FLA クラスIハプロタイプ (Hp-3.0) を共有していた。

その一方で、これら2つのハプロタイプは、異なる FLA-DRB ハプロタイプ (Hp-0.3 または Hp-0.8) から構成されていた。

4.3.7 FLA-DRB 系統毎の平均リード数の比較

推定されたハプロタイプ、系統分類およびリード数に基づいて、FLA-DRB 系統の平均リード数を算出した。この結果、FLA-DRB 系統のリード数を比 較すると、系統による転写産物量の違いが明らかとなった(Table 5)。例えば、 *FLA-DRB1* 系統には、3 種類のアレルが分類された。これら 3 種類のアレルが全 20 個体のハプロタイプ (2*n*=40) に認められた回数 (アレルの出現回数) は、少 ないアレルで 2 回、多いアレルで 13 回であり、合計すると 19 回であった。こ の計 19 回のリード数を平均すると、25,228 リードであった。このようにして、 すべての系統のリード数を算出したところ、*FLA-DRB3* 系統は 14,701 リード、 *FLA-DRB4* 系統は 14,340 リード、*FLA-DRB5* 系統は 41,605 リードであった。こ の平均リード数を系統間で比較したところ、大まかに DRB5 > DRB1 > DRB3 = DRB4 の関係性であることが考えられた。このうち、FLA-DRB 遺伝子毎の平均 リード数が最も少ない *FLA-DRB4* は、最も多い *FLA-DRB5* のおよそ 1/3 であっ た。

4.4 考察

本研究における多型解析法では、今までに多型を有することが明らか であった FLA-DRB 遺伝子(*FLA-DRB1, -DRB3, -DRB4* および-DRB5)に共通の プライマーを設計した。このプライマーと NGS によるアンプリコンシークエ ンシング法を用いて、FLA-DRB 遺伝子の網羅的な多型解析を試みた。その結 果、20 個体の解析から 16 種類の FLA-DRB アレルが同定され、そのうち 7 種 類(43.8%)は新規アレルであった。このことから、アンプリコンシークエン シング法によって、より効率的な FLA-DRB 多型解析が実現された。

本解析において、FLA-DRB ハプロタイプが推定された。なおかつ、各 個体のハプロタイプ推定結果は、個体間の血縁関係と矛盾が無かった。今後、 様々なネコの品種にて血縁関係が明確な個体の解析を行うことで、数多くの FLA-DRB ハプロタイプが推定できると考えられる

MHC 遺伝子は、進化の過程で、正の自然選択の影響を受けてきたため に、相同組換え(乗換えや遺伝子変換)によって遺伝子が重複や欠失、または 新たな遺伝子が生成されてきたと考えられている(Nei et al., 1997)。本章で推定 されたハプロタイプを比較すると、ハプロタイプに含まれるアレルの数に違い が認められた。また、ハプロタイプによっては遺伝子の欠失が認められた。以 上のことから、FLA-DRB 遺伝子はコピー数多型を有することが考えられた。 また、本章で推定されたハプロタイプの中には、DRB3 系統アレルのみ異な り、他の2つの系統(DRB1 および DRB4 系統)のアレルが共通した2種類の ハプロタイプ(Hp-0.1 および Hp-0.8)が認められた。この2つのハプロタイプ は、FLA-DRB 領域の相同組換えによって、DRB3 系統のアレルが遺伝子変換ま たは組換えを起こし、生み出されたと推測できた。

前章と同様に、解析によって各アレルのリード数から推定される転写 産物量を、FLA-DRB系統毎に比較すると、DRB5 > DRB1 > DRB3 = DRB4の関 係性が明らかになったが、前章で解析した FLA クラスIにおける系統と比較 し、DRB系統によるリード数の差は小さかった。このことから、FLA-DRB系 統による遺伝子発現レベルの違いは少なく、いずれの遺伝子も類似した MHC クラスII分子の機能を有すると考えられる。将来的に各 FLA-DRB系統に特異 的なプライマーなどを用いたより詳細な遺伝子発現量の解析などが必要である が、本解析法が FLA-DRB 遺伝子においてもアレルの同定および転写産物量の 推定にも有用であると考えられる。

第3章および本章での実験によって、20個体から計8種類のFLAクラ スI - DRB ハプロタイプが推定された。これらのうち Hp-3.3 と Hp-3.8 は、同 ーのFLA クラスIハプロタイプである Hp-3.0 を共有していた。しかし、FLA-DRB ハプロタイプは Hp-0.3 または Hp-0.8 と異なっていた。このことから、以下の仮 説が考えられる。本解析に用いたネコの祖先個体は、Hp-3.3 と Hp-8.8 のヘテロ 接合体であった。この祖先ネコの体内において、減数分裂の際に FLA クラス I 領域と FLA-DRB 領域との間で相同組換えが起きた。この相同組換えの結果、 Hp-3.8 と Hp-8.3 の 2 種類のハプロタイプが生成された。このうち、Hp-3.8 が、 本解析に用いたネコに遺伝された。また、この減数分裂にて、Hp-8.3 も生成され ているはずであるが、本解析では認められなかった。今後、FLA-DRB 多型解析 を続けていく中で、Hp-8.3 が推定されることが考えられる。

本章から、FLA-DRB 遺伝子のアレルの同定およびハプロタイプの推定 は、第3章で開発した FLA クラスI遺伝子と比較して、一つのハプロタイプに 含まれるアレルの数が少なく、アレルの同定にかかる時間や解析の作業量が少 なかった。このことから、FLA-DRB 遺伝子の多型解析は、FLA クラス I 遺伝

子と比較して容易である。具体的には、ハプロタイプに含まれるアレルの数 は、FLA-DRB ハプロタイプは2,3 種類であり、FLA クラス I ハプロタイプの 4~8 種類と比較して少ない。このため、FLA-DRB ハプロタイプ推定は、少な い数のアレルの組み合わせであるために容易である。この理由から、不特定多 数の個体を対象にする際は、まず初めに FLA-DRB 遺伝子のアレルの同定およ びハプロタイプの推定を行うことが適切であると考えられる。

Primer name	$\mathbf{Primer sequence}\left(5! \text{ to } 2!\right)$	Primer	Primer	Product	Analyzed
	Finnel sequence (5 to 5)	position	length	length	length
For genotyping o					
FLA-DRB_F	YCTKGATGRCAGCTCTGATG	Exon 1	20 bp	412 h	272 h.c
FLA-DRB_R	GAGCAGACCARGAGGTTGTG	Exon 4	20 bp	412 bp	372 bp

Table 1. Primer information used for this study

Table 2. Identified FLA-DRB I alleles and lineages of FLA-DRB loci for

phylogenetic analysis

FLA-DRB allele name*	Accession number	FLA locus lineage in Figure 4
FLA-DRB*0401*	U51527	FLA-DRB1
FLA-DRB*n05	EU916196	FLA-DRB1
FLA-DRB_004	LC534245	FLA-DRB1
FLA-DRB*0203*	U51498	FLA-DRB3
FLA-DRB*n06	EU916197	FLA-DRB3
FLA-DRB_001	LC534242	FLA-DRB3
FLA-DRB_002	LC534243	FLA-DRB3
FLA-DRB_003	LC534244	FLA-DRB3
FLA-DRB_006	LC534247	FLA-DRB3
FLA-DRB*0103*	U51483	FLA-DRB4
FLA-DRB*0107*	U51487	FLA-DRB4
FLA-DRB*0301*	U51514	FLA-DRB4
FLA-DRB1-rr6*	AJ428211	FLA-DRB4
FLA-DRB1-rr7*	AJ428212	FLA-DRB4
FLA-DRB_007	LC534248	FLA-DRB4
FLA-DRB_005	LC534246	FLA-DRB5

Table 3. Read information for genotyping of FLA-DRB genes in the two cat

families

Family 1

FLA locus lineage	FLA-DRB	Family 1					
in Figure 4	allele name*	01	02	03	04	05	
	FLA-DRB*0401*	0	0	0	0	0	
FLA-DRB1	FLA-DRB*n05	19746	23726	20467	18568	24202	
	FLA-DRB_004	0	13859	0	0	6994	
	FLA-DRB*0203*	39908	0	0	0	0	
	FLA-DRB*n06	16105	0	0	14127	22868	
	FLA-DRB_001	11542	24149	0	0	19322	
FLA-DKB3	FLA-DRB_002	0	0	0	13138	0	
	FLA-DRB_003	0	0	0	0	0	
	FLA-DRB_006	0	8051	32123	0	0	
	FLA-DRB*0103*	0	0	0	7309	0	
	FLA-DRB*0107*	12700	30215	11432	7659	26615	
	FLA-DRB*0301*	0	0	2006	0	0	
ΓLΑ-DΚΒ4	FLA-DRB1-rr6*	0	0	0	0	0	
	FLA-DRB1-rr7*	0	0	0	0	0	
	FLA-DRB_007	0	0	33972	0	0	
FLA-DRB5	FLA-DRB_005	0	0	0	39199	0	
Total sequence number		5	5	5	6	5	

Table 3. Family 1 continued

FLA locus lineage	FLA-DRB	Family 1					
in Figure 4	allele name*	06	07	08	09	10	
	FLA-DRB*0401*	0	0	0	0	0	
FLA-DRB1	FLA-DRB*n05	43502	0	0	18136	22276	
	FLA-DRB_004	0	0	0	0	0	
	FLA-DRB*0203*	0	0	0	0	0	
	FLA-DRB*n06	17103	0	0	0	17357	
	FLA-DRB_001	0	0	0	0	0	
FLA-DKB3	FLA-DRB_002	0	12916	12737	13842	0	
	FLA-DRB_003	0	0	0	0	0	
	FLA-DRB_006	15650	13464	13327	12958	15438	
	FLA-DRB*0103*	0	8702	7273	9911	0	
	FLA-DRB*0107*	23745	0	0	7672	13708	
	FLA-DRB*0301*	0	1394	2784	0	3569	
FLA-DKD4	FLA-DRB1-rr6*	0	0	0	0	0	
	FLA-DRB1-rr7*	0	0	0	0	0	
	FLA-DRB_007	0	23735	24796	0	27651	
FLA-DRB5	FLA-DRB_005	0	39788	39084	37481	0	
Total sequence number		4	6	6	6	6	

Table 3. Family 2

FLA locus lineage	FLA-DRB	Family 2					
in Figure 4	allele name*	11	12	13	14	15	
	FLA-DRB*0401*	0	40942	40767	0	0	
FLA-DRB1	FLA-DRB*n05	0	21414	0	22137	24011	
	FLA-DRB_004	0	0	0	0	0	
	FLA-DRB*0203*	0	0	0	0	0	
	FLA-DRB*n06	0	13763	0	0	18845	
	FLA-DRB_001	0	0	0	0	0	
FLA-DRB3	FLA-DRB_002	0	0	8013	0	0	
	FLA-DRB_003	0	12579	6083	0	0	
	FLA-DRB_006	0	0	0	18892	0	
	FLA-DRB*0103*	0	0	10949	0	0	
	FLA-DRB*0107*	0	9194	0	11277	12321	
	FLA-DRB*0301*	0	2108	2922	0	0	
FLA-DKB4	FLA-DRB1-rr6*	81776	0	0	36757	36075	
	FLA-DRB1-rr7*	18224	0	0	10937	8748	
	FLA-DRB_007	0	0	0	0	0	
FLA-DRB5	FLA-DRB_005	0	0	31266	0	0	
Total sequ	ence number	2	6	6	5	5	

 Table 3. Family 2 continued

FLA locus lineage	FLA-DRB	Family 2					
in Figure 4	allele name*	16	17	18	19	20	
	FLA-DRB*0401*	40982	0	0	62614	0	
FLA-DRB1	FLA-DRB*n05	0	14994	0	0	0	
	FLA-DRB_004	0	0	0	0	0	
	FLA-DRB*0203*	0	0	0	0	0	
	FLA-DRB*n06	0	0	0	0	0	
	FLA-DRB_001	0	0	0	0	0	
FLA-DRB3	FLA-DRB_002	0	7712	11005	0	7439	
	FLA-DRB_003	14556	0	0	10668	0	
	FLA-DRB_006	0	9464	0	0	0	
	FLA-DRB*0103*	0	10961	12658	0	9073	
	FLA-DRB*0107*	0	12783	0	0	0	
	FLA-DRB*0301*	2322	0	0	1772	0	
FLA-DKB4	FLA-DRB1-rr6*	35246	0	18537	18371	22485	
	FLA-DRB1-rr7*	6893	0	7825	6575	9040	
	FLA-DRB_007	0	0	0	0	0	
FLA-DRB5	FLA-DRB_005	0	44086	49975	0	51963	
Total sequence number		5	6	5	5	5	

The read numbers are normalized per 100,000 reads per cat. Novel FLA-DRB

sequences and their accession numbers are indicated by red letters. Asterisks show the allele sequences with 237-238 bp of exon 2 in FLA-DRB gene.

Table 4. Estimated FLA-DRB haplotypes

Family 1						
Simplified	01		0	2	0	13
name	(/1	U	2	0	5
FLA-DRB	$\mathbf{H}_{\mathbf{n}} \cap 1$			$\mathbf{H}_{\mathbf{r}} \cap \mathbf{A}$	IL: 0.9	II., 07
Hp.	пр-0.1	пр-0.2	пр-0.8	пр-0.4	пр-0.8	пр-0.7
FLA-DRB1	DRB*n05		DRB*n05	DRB_004	DRB*n05	
	DRB*n06	DRB*0203	DRB_006	DRB_001	DRB_006	DRB_006
FLA-DRB3		DRB_001				
	DRB*0107		DRB*0107		DRB*0107	DRB*0301
FLA-DKB4						DRB_007
FLA-DRB5						

Table 4. Family 1 continued

Simplified	0	94	0:	5
name				
FLA-DRB	$\mathbf{U}_{\mathbf{n}} \cap 1$	$U_{\rm m} 0.5$	$U_{n} \cap 1$	$H_{\rm m} 0.4$
Hp.	пр-0.1	пр-0.5	пр-0.1	пр-0.4
FLA-DRB1	DRB*n05		DRB*n05	DRB_004
FLA-DRB3	DRB*n06	DRB_002	DRB*n06	DRB_001
FLA-DRB4	DRB*0107	DRB*0103	DRB*0107	
FLA-DRB5		DRB_005		

Table 4. Family 1 continued

Simplified	- 06			07		08	
name	0	0	U	//	U	08	
FLA-DRB	Π. Ο 1	II. 0.9	II. 0.5	II., 0.7	IL. 0.5	II. 07	
Hp.	Hp-0.1	Нр-0.8	Нр-0.5	Hp-0.7	Нр-0.5	нр-0.7	
FLA-DRB1	DRB*n05	DRB*n05					
FLA-DRB3	DRB*n06	DRB_006	DRB_002	DRB_006	DRB_002	DRB_006	
	DRB*0107	DRB*0107	DRB*0103	DRB*0301	DRB*0103	DRB*0301	
FLA-DRB4				DRB_007		DRB_007	
FLA-DRB5			DRB_005		DRB_005		

Table 4. Family 1 continued

Simplified	0	9	1	10		
FLA-DRB Hp.	Нр-0.8	Нр-0.5	Нр-0.1	Нр-0.7		
FLA-DRB1	DRB*n05		DRB*n05			
FLA-DRB3	DRB_006	DRB_002	DRB*n06	DRB_006		
FLA-DRB4	DRB*0107	DRB*0103	DRB*0107	DRB*0301 DRB 007		
FLA-DRB5		DRB_005				

Table 4. Family 2

Simplified	11		1	2	13		
name	1	1	1	2	1	15	
FLA-DRB	$U_{\rm P} = 0.2$	$H_{n} \cap 2$	Un 0 1	Up 0.6	$U_{\rm m} 0.5$	Un 0.6	
Hp.	пр-0.5	пр-0.3	пр-0.1	пр-0.0	пр-0.5	пр-0.0	
FLA-DRB1			DRB*n05	DRB*0401		DRB*0401	
			DRB*n06	DRB_003	DRB_002	DRB_003	
FLA-DKB3							
	DRB1-	DRB1-	DDD*0107	DDD*0201	DDD*0102	DDD*0201	
ELA DDD4	rr6	rr6	DKD 010/	DKD 0501	DKD 0103	DKD 0301	
ГLA-DKD4	DRB1-	DRB1-					
	rr7	rr7					
FLA-DRB5					DRB_005		

 Table 4. Family 2 continued

Simplified	14		15	
name				
FLA-DRB	$H_{n} \cap 2$	Hp 0.8	Hp () 1	$H_{\rm P}$ 0.2
Hp.	11p-0.5	11p-0.8	11p-0.1	11p-0.5
FLA-DRB1		DRB*n05	DRB*n05	
		DRB_006	DRB*n06	
	DRB1-	DDD*0107	DDD*0107	DRB1-
	rr6	DKD 0107	DKD 0107	rr6
ΓLΑ-DΚD4	DRB1-			DRB1-
	rr7			rr7
FLA-DRB5				

Table 4. Family 2 continued

Simplified	16		17			18	
name							
FLA-DRB	$H_{\rm P}$ 0.2	Hp 0.6	Up 08	$H_{\rm P} = 0.5$	$H_{\rm P}$ 0.3	Нр-0.5	
Hp.	11p-0.5	11p-0.0	11p-0.8	11p-0.5	11p-0.5		
FLA-DRB1		DRB*0401	DRB*n05				
FLA-DRB3		DRB_003	DRB_006	DRB_002		DRB_002	
FLA-DRB4	DRB1-	DDD*0201	DDD*0107	DDD*0102	DRB1-	DDD*0102	
	rr6	DKD 0301	DKB-0107 DKB-0103		rr6	DKD 0103	
	DRB1-				DRB1-		
	rr7				rr7		
FLA-DRB5				DRB_005		DRB_005	

Table 4. Family 2 continued

Simplified	19		20			
FLA-DRB Hp.	Нр-0.3	Нр-0.6	Нр-0.3	Нр-0.5		
FLA-DRB1		DRB*0401				
FLA-DRB3		DRB_003		DRB_002		
FLA-DRB4	DRB1- rr6 DRB1- rr7	DRB*0301	DRB1- rr6 DRB1- rr7	DRB*0103		
FLA-DRB5				DRB_005		

Red letter indicates novel allele.

	For each Allele				For each lineage			
FLA Allele	Allele frequency (2 <i>n</i> =40)	Average reads	±SD	FLA lineage	Sequence Num.	Sequence frequency	Average reads	±SD
DRB*0401	4	46,326	9,404					
DRB*n05	13	21,014	2,527	DRB1	3	19	25,228	12,376
DRB_004	2	10,426	3,433					
DRB*0203	1	39,908	0	DRB3	6	33	14,701	6,085
DRB*n06	7	17,167	2,861					
DRB_001	3	18,338	5,193					
DRB_002	8	10,850	2,539					
DRB_003	4	10,972	3,139					
DRB_006	10	13,937	3,082					
DRB*0103	8	9,605	1,763	DRB4	6	49	14,340	10,954
DRB*0107	13	13,794	6,528					
DRB*0301	8	2,360	654					
DRB1-rr6	8	31,156	9,080					
DRB1-rr7	8	8,530	1,312					
DRB_007	4	27,538	3,981					
DRB_005	8	41,605	6,353	DRB5	1	8	41,605	6,353

Table 5. Average read numbers in each gene and lineage

Red letter indicates novel allele.

Figure 1. Comparative genome map of FLA, HLA and DLAgenomic regions. This map shows the approximate locations of MHC genes based on the HLA (NC_000006.12), DLA (CM000018.3) and FLA genomic information (EU153401 and Beck et al., 2001). The genomic structure of the DR haplotypes 1 is based on the genomic sequence EU153401, whereas the DR haplotype 2 is based on the description

of a published report (Yuhki et al., 2008) because its nucleotide sequence has not been published as yet. White, striped and black boxes indicate transcribed genes, gene candidates and pseudogenes, respectively, after our classification in this study. In the HLA map, only the expressed genes are described. Gray highlights indicate orthologous genomic regions where the number of MHC genes differs between HLA, DLA and FLA.

		FLA-DRB F	
		SP region (Exon 1)	
FLA-DRB1	1	ATGGTGTGCCTGTGTTTCATGGGAGGCT <mark>CCTGGATGACAGCTCTGATG</mark> TTGATATTGATGATGATGACCCCCCCCCGGCTTGGGCCAGGGACACCTCAC	100
FLA-DRB3	1	GCC	100
FLA-DRB4	1	CAGCCTAT. T GG.AGCG.	100
		β1 domain (Exon 2)	
FLA-DRB1	101	CACATTTCTTGCTCCTGTGGAAGGGCGAGTGCCATTTCACCAACGGGACGGAGCAGGTGCGATTCCTGGAGAGACACTTCTATAACGGGGAGGAGTTTGT	200
FLA-DRB3	101	AAC.ATTTATC	200
FLA-DRB4	101		200
FLA-DRB1	201	GCGCTTCGACAGCGAAGTGGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGCTGCCAAGTACCGGAACGAGCAGAAGGACTTCATGGAGCGGAAG	300
FLA-DRB3	201	T	300
FLA-DRB4	201	A	300
		β2 domain (exon 3)	
FLA-DRB1	301	CACGCCGAGGTGGACACCGTCTGCAGACAACTACGGTGTTTTTGACAGCTTCACGGTGCAGCGGCGAG TTGAGCCCGACAGTGACCGTGTTCCCCTCGA	400
FLA-DRB3	301	CTC	400
FLA-DRB4	301	.GGA.A.CCGGAGGG	400
		FLA-DRB_R	
FLA-DRB1	401	AGACGCAGCCCCTGCAGCACCACCACCTCCTGGTCTGCTCCGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAAGTGGTTCCGGAACGGCCAGGAGGA	500
FLA-DRB3	401		500
FLA-DRB4	401		500
FLA-DRB1	501	GGAGACTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGGTGATGCTGGAAACAGTTCCTCAGAGTGGAGAGGTCTAC	600
FLA-DRB3	501		600
FLA-DRB4	501	C	600
FLA-DRB1	601	ACCTGCCACGTGGAGCATCCAAGTCGCACGAGCCCTATCACCGTGGAGTGGA	652
FLA-DRB3	601	C	652
FLA-DRB4	601	A	652

Figure 2. Nucleotide alignment for FLA-DRB cDNA sequences and primer

locations. Figure shows the nucleotide alignment of seven FLA-DRB genes and primer locations for genotyping of FLA-DRB genes (**Table 2**). The nucleotide alignments were constructed by using the 2.98 Mb genomic sequence (EU153401). 5'UTR, SP and 3'UTR indicate 5' untranslated region, signal peptide and 3' untranslated region, respectively. Locations of primers are indicated by boxes and red letters. Arrows shows direction of primers.

Figure 3. Amino acid sequence-based phylogenetic trees of FLA-DRB sequences by the Neighbor joining method. The trees were constructed by the neighbour-joining method. Numbers at branches indicate bootstrap values over 50. FLA-DRB tree based on 21 amino acid sequences, 16 FLA-DRB translated from nucleotide sequences that were identified in this study, five FLA-DRB reference sequences (EU153401 and U51506) (bold letters) and a DLA-DRB1 sequence (NM_001014768) that was used as an outgroup.

Figure 4. Haplotype structures of the FLA-DRB subregions. The haplotypes that are composed of the different types of transcribed FLA-DRB loci and alleles. The lineage of the FLA-DRB sequences were classified and inferred from the phylogenetic analyses. Novel sequences identified in this study are indicated by red letters and a yellow background.

Figure 5. A summary for the inheritance of FLA haplotypes in two cat families. The family charts with the FLA haplotype information were summarized based on the FLA haplotype structures described in **Chapter 3**, **Figure 5** and **Table 4**. Circles and squares indicate females and males, respectively, and numbers in the circles and squares indicate the identification number of the 20 cats. Question marks indicate individuals with unknown FLA genotypes.
第5章

様々な品種における FLA-DRB 遺伝子の多型解 析

ーネコの品種と FLA クラスIIハプロタイプとの関連性の検討-

5.1 序論

ネコの MHC クラス II 遺伝子である FLA-DRB 遺伝子の多型解析は、現 在までに 149 個体のネコに対して行われてきた(Kuwahara et al., 2000;Kuwahara et al., 2001;Kennedy et al., 2002;Kennedy et al., 2003b)。この結果、70 種類の FLA-DRB アレルが報告されている。これは、イヌの MHC クラスII遺伝子が約 2500 頭から 200 以上のアレルが同定されていることと比較して、乏しい(EBI)。ネコ の獣医臨床分野にて、アレルやハプロタイプなど FLA-DRB 遺伝子の情報は、 疾患関連性の解析および移植獣医療の際のドナーとレシピエント間の組織適合 性検査に必要である。第3章にて筆者が開発した FLA-DRB 多型解析法から、 アレルやハプロタイプなど FLA-DRB 遺伝子の情報を収集することが可能とな った。

第3章と第4章にて、筆者はFLAクラスIおよびクラスII遺伝子の多 型解析法を開発した。どちらの多型解析もアンプリコンシークエンシングの手 法(アンプリコン法)を用いたものであった。アンプリコン法は、個体毎のリ ードを用いてアレルを同定するため、リード数が多いほど容易に解析ができ る。このため、より多くのリード数を取得し、多型解析を行うことが求められ るが、NGS装置から一度に出力される総リード数には限りがある。これまでの 結果から、FLA-DRB遺伝子とFLAクラスI遺伝子のアレルの数を比較する と、1個体あたりFLA-DRBアレルは2~6種類であり、FLAクラスIアレルの 7~14種類と比較して少ない。つまり、個体毎のリードのうち、1つのアレル の同定に用いることができるリード数は、FLA-DRB遺伝子のアレルの同定の ほうがFLAクラスI遺伝子よりも多い。このことから、FLA-DRB プレルの同定 は、FLAクラスIアレルと比較して容易である。加えて、FLA-DRB遺伝子群と

FLA クラスI遺伝子群は、同一染色体上の近傍に位置していることから、連鎖 する遺伝子領域と考えられる。このことから、FLA-DRB ハプロタイプから、 FLA クラスIハプロタイプを推定することも容易である。

そこで本章では、アレルおよびハプロタイプなど FLA-DRB 遺伝子の情報を収集することを目的とした。また、本邦にて飼育されてきた雑種と欧米で系統が確立された洋品種ネコの比較解析を通して、FLA-DRB アレルおよびハプロタイプとネコの品種との関連性を明らかにした。

5.2 材料と方法

5.2.1 供試検体

ANMEC およびマーブル動物医療センターから供された雑種ネコおよび 様々な洋品種ネコ 150 個体の全血由来 RNA (cDNA) を用いた。供試されたネ コは、品種に従って雑種群と洋品種群の二つに分類した(Table 1)。具体的に は、87 個体の雑種ネコ (Domestic short hair, DSH) は雑種群 (DSH group) とし た。また、63 個体の洋品種ネコを洋品種群 (Purebred group) に分類した。 Table 1 に示したように、計 11 品種を洋品種群に分類した。

5.2.2 アンプリコンシークエンス法による FLA-DRB 多型解析の PCR 増幅

計 150 個体を全 4 回に分けて、マルチプレックス PCR を行った。この マルチプレックス PCR に用いたプライマーは、第 4 章と同様に、FLA-DRB 多 型解析用プライマーの 5^{*}末端に個体識別用のバーコードを付加し、設計され た。

5.2.3 PCR 増幅産物の精製および定量

PCR 産物の精製および DNA 濃度の定量は第4章と同様の方法で行った。

5.2.4 エマルジョン PCR、NGS のシークエンスおよびデータ処理

FLA-DRB 多型解析の emPCR、シークエンシングおよびデータ処理は第 4 章と同様の方法を用いて行った。NGS から出力されたリードデータは、個体 毎に fastq ファイルに分類された。 5.2.5 リード選別およびトリミング

個体毎の fastq ファイルからのリード選別およびトリミングは第4章と 同様の方法を用いた。

5.2.6 新規 FLA-DRB アレルの同定

選別およびトリミング後のリードを用いた新規 FLA-DRB アレルの同定は、第4章と同様の方法を用いた。

5.2.7 配列の相同性検索と分子系統解析による FLA-DRB アレルの分類 塩基配列および推定アミノ酸配列の相同性検索および分子系統解析 は、第4章と同様の方法を用いた。

5.2.8 マッピング解析による各個体の FLA-DRB アレルの同定

マッピング解析は第4章と同様の方法で行い、各個体のFLA-DRBアレルを同定した。

5.2.9 FLA-DRB ハプロタイプの推定

同定された各個体の FLA-DRB アレルの組み合わせに基づいて、FLA-DRB ハプロタイプの推定を行った。具体的には、Figure 1 に示すように、ある 特定のハプロタイプ (Hp-A) のホモ接合個体 (Cat-1) のアレルの組み合わせ と同一のアレルの組み合わせが、他の個体 (Cat-2 および-4) にて認められる。 Cat-2 および-4 に認められるアレルのうち Hp-A 以外のアレルの組み合わせは、 他のハプロタイプ (Cat-2 の Hp-B および Cat-4 の Hp-C) と推定される。このよ

うに、2個体以上に認められる共通のアレルの組み合わせに基づいて、FLA-DRB ハプロタイプを推定した。加えて、第4章で認められた FLA-DRB ハプロ タイプも参照し、各個体のハプロタイプを推定した。

5.2.10 新規 FLA-DRB アレルおよびハプロタイプの命名方法

多型解析において同定された新規 FLA-DRB アレルは、系統樹の分類、 アミノ酸および塩基配列に従って命名した。具体的には、アレル名のうちアン ダーバー(_)よりも前には、系統樹から分類した DRB の系統名を示した。例 えば、DRB5 系統に分類された DRB5_00101 アレルでは、"DRB5"を表記し た。また、アンダーバー(_)より後ろの5桁の数字のうち、前半3桁はアミ ノ酸配列の違いに基づいて通し番号を付した。また、同一アミノ酸に翻訳され るが、異なる塩基配列(同義置換)のアレルが認められた場合、後半2桁は塩 基配列の違いに基づいて通し番号を付した。加えて、推定された FLA-DRB ハ プロタイプは、第4章の命名法に従って、一時的な通し番号を付した。

5.3 結果

5.3.1 150 個体から同定された FLA-DRB アレルの分子系統解析

150 個体から、計 43 種類の FLA-DRB アレルが同定された。これら計
43 種類のアレルの相同性検索の結果、35 種類は既知のアレルであったが、16
種類は新規のアレルであった(Figure 2)。この新規の FLA-DRB アレルは
Figure 2 内の赤文字で示す。

これら計 43 種類のアレルを、系統樹に基づいて分類した。作成した系 統樹から、大きく 7 つの系統(FLA-DRB5 系統, DRB6 系統, DRB4 系統, DRB7 系 統, DRB8 系統, DRB1 系統および DRB3 系統)が認められた。このうち、4 つの 系統は、第 4 章で分類した 4 つの系統(FLA-DRB5 系統, DRB4 系統, DRB1 系統 および DRB3 系統)と同一であった。しかしながら、3 つの系統(FLA-DRB6 系統, DRB7 系統および, DRB8 系統)は、第 4 章では認められなかった新たな系 統であった。この新たな 3 つの系統には、Figure 2 内の下線を付す。

これら7つの系統に基づいて、計43種類のFLA-DRBアレルを分類した。具体的には、*DRB5*系統に8種類(DRB5_00101, DRB5_00102, DRB5_00201, DRB5_00301, DRB5_00401, DRB5_00501, DRB5_00601 および DRB5_00701)のアレルを分類した。同様に、*DRB6*系統に5種類、*DRB4*系統 に8種類、*DRB7*系統に3種類、*DRB8*系統に3種類、*DRB1*系統に6種類およ び*DRB3*系統に10種類を分類した。

各 FLA-DRB 系統に分類された 43 種類の FLA-DRB アレルのうち、 DRB5_00101 と DRB5_00102 は、異なる塩基配列であったが、相同なアミノ酸 配列に翻訳されたことから同義置換のアレルであった。同様に、DRB6_01901 と DRB6 01902 および DRB1 02601 と DRB1 02602 も同義置換のアレルであっ

た。以上のことから、150個体から同定されたアミノ酸配列は計40種類であった。このため、以降のアレルの同定およびハプロタイプの推定は、計40種類のFLA-DRBアレルとして解析を行った。

5.3.2 同定された FLA-DRB アレルの頻度

計 40 種類のアレル毎の出現頻度は、アレルによって異なっていた (Table 2)。具体的には、DRB5_001 は、雑種群で 19 個体に、洋品種群で 16 個体に、計 35 個体に同定されたアレルであった。このように、40 種類のアレ ルの出現頻度は 1~80 個体であり、アレル毎に様々であった。このうち、最も 出現頻度が高いアレル(主要アレル)は DRB4_019 であり、150 個体中 80 個体

(53.3%)に認められた。その一方で、最も出現頻度が低いアレルは DRB6_010および DRB1_030の2種類であり、わずか1個体から同定された。

また、雑種群と洋品種群の間で、出現頻度が大きく異なるアレルも認められた。特に、DRB5_003は、雑種群の21個体に認められ、洋品種群の1個体と比較して出現頻度が高かった。その一方で、DRB8_024は、洋品種群の24個体に認められ、雑種群の7個体と比較して出現頻度が高かった。

5.3.3 推定された FLA-DRB ハプロタイプ毎の比較

各個体に同定されたアレルの組み合わせに基づいて FLA-DRB ハプロタ イプの推定を行った。このハプロタイプ推定では、少なくとも2個体に認めら れたアレルの組み合わせをハプロタイプとした。この結果、150個体中 139個 体から計 41 種類の FLA-DRB ハプロタイプが推定された。残る11個体は、他 の個体と共通したアレルの組み合わせが認められず、ハプロタイプの推定がで きなかった。このことから、以降の解析は、139 個体の計 41 種類の FLA-DRB ハプロタイプを用いた。

推定された計 41 種類から、ハプロタイプに含まれるアレルと、アレル が分類された系統を Table 3 に示した。例えば、Hp-0.1 は、DRB5 系統の 001 アレル、DRB4 系統の 019 アレルおよび DRB1 系統の 027 アレルの計 3 種類の アレルが含まれていた。同様に、各 41 種類のハプロタイプには、様々な種類 のアレルが含まれていた。これら 41 種類のうち、11 種類のハプロタイプに は、主要アレルの DRB4_019 が含まれていた(Table 3 にて下線を付したハプ ロタイプ)。

これら 41 種類のうち、第3章と同一のハプロタイプ(既知ハプロタイ プ)は、7種類(Hp-0.1, Hp-0.2, Hp-0.3, Hp-0.4, Hp-0.5, Hp-0.7 および Hp-0.8)認 められた(Table 3 にてハプロタイプ名を赤文字で示した)。その一方で、第3 章の Hp-0.6 と同一のハプロタイプは、本章では認められなかった。以上のこと から、計 41 種類のうち 34 種類は新規ハプロタイプであった。これら新規ハプ ロタイプの名前は、本章で認められたものとして 2 桁番号の 11 番から始まる 通し番号を付した(Hp-0.11~Hp-0.44)。

これら 41 種類のハプロタイプを比較すると、ハプロタイプに含まれる アレルの数に違いが認められた。具体的には、ハプロタイプに含まれるアレル の数が 4 個であるハプロタイプは、Hp-0.18 の 1 種類であった。また、3 個であ るハプロタイプは 18 種類、2 個であるハプロタイプは 22 種類であった。この ことから、FLA-DRB ハプロタイプのコピー数多型が認められた。

5.3.4 雑種群と洋品種群間の FLA-DRB ハプロタイプ出現頻度の比較

計 41 種類のハプロタイプの出現頻度は、ハプロタイプが推定できた計 139 個体中 2~23 個体と大きな差が認められた(Table 4)。このうち、最も出 現頻度が高いハプロタイプは、Hp-0.40 であり、23 個体に認められた。その一 方で、最も出現頻度が低いハプロタイプは、Hp-0.39, Hp-0.30 および Hp-0.3 で あり、2 個体に認められた。また、計 41 種類のハプロタイプと品種群との関連 性を検討したところ、品種群に基づいて 3 つに分類された。すなわち、雑種群 に認められ、洋品種群には認められないハプロタイプが 12 種類(Table 4 の 1 行目から 12 行目)であった。同様に、洋品種群に特異的な 9 種類(Table 4 の 1 行目)に分類された。このように、ハプロタイプは品種に基づいて雑種特異 的、洋品種特異的または両群共有の 3 つのグループに分類された。

5.4 考察

本章では、本邦にて飼育されてきた雑種ネコと欧米で系統維持されて きた洋品種ネコの計 150 個体の FLA-DRB 多型解析を行った。その結果、同定 された 43 種類の FLA-DRB アレルのうち新規アレルは 16 種類であった。この 同定されたアレルのうち新規アレルが占める割合が 39.0%と高率であった。本 章で用いたサンプルは、すべて神奈川県内の動物病院に来院したネコから採取 されたものである。このため、様々な都道府県や異なる国で飼育されているネ コを今後の実験の対象とすることで、さらに多くの FLA-DRB アレルが収集さ れると考えられる。

また本章にて、主要アレルの DRB4_019 は、150 個体から 53.3%と高率 に同定され、雑種群と洋品種群のどちらのグループにおいても認められた。ま た、DRB4_019 アレルは、最も多くのハプロタイプ間で共有されていた。これ らのことから、DRB4_019 は品種形成の過程で保存された祖先 FLA-DRB アレ ルであると考えられた。

ヒトにおいて、HLA 遺伝子群は、アジア、ヨーロッパおよびアフリカ など様々な地域にて多型解析が行われており、極めて多型に富むことから遺伝 的な指標となる。このことから、HLA 遺伝子のアレルおよびハプロタイプは、 人類集団の比較解析に用いられた。この結果、HLA アレルやハプロタイプの分 布は、東北アジア集団、東南アジア集団およびインド人など地域差・集団差が 認められた(Tokunaga et al., 2001)。さらに、この HLA アレルやハプロタイプの 違いに基づいた集団遺伝学的解析から、日本人の成立過程が推定された(徳永勝 士, 2014)。本章から、雑種群や洋品種群に特異的な FLA ハプロタイプが推定さ れた。これより、日本に土着している雑種ネコと欧米で系統維持されてきた洋

品種ネコとの間に遺伝的な隔たりが示唆された。その一方で、日本の雑種ネコ と洋品種ネコが共有するハプロタイプも数多く推定された。これらの要因とし て二つの理由が考えられる。一つは、ネコの家畜化、世界への拡散および洋品 種ネコの系統管理の歴史が浅いために、日本のネコとの遺伝的な隔たりが小さ いという考えである。二つ目は、近代になって日本へ洋品種ネコが移入され、 野に放たれた結果として、日本に土着しているネコと交雑したという考えであ る。これらを明らかにするためには、世界中の様々な地域で飼育されているネ コや様々な洋品種において、より多くの個体数を用いたハプロタイプ解析が必 要である。今後の様々なネコの比較解析によって、ネコの家畜化、品種の形成 過程および日本に移入された過程の解明が期待される。

Table 1	1.]	Breeds	and	the	number	of cat	ts

Breed Group	Breed	Number of cats	
Domestic Short Hair (DSH) Group	Domestic Short Hair	87	
	Scottish Fold	15	
	American Short Hair	12	
	Abyssinian and Somali	8	_
_	Russian Blue	8	_
_	Norwegian Forest	7	_
Purebred Group	Munchkin	6	63
_	Ragdoll	3	_
_	American Curl	1	_
_	Bengal	1	_
_	Persian	1	_
_	Egyptian Mau	1	_
	Total	15	50

Phylogentic		Number of cats					
Group	Allele	DSH	Purebred	Total			
	001	19	16	35			
_	002	2	0	2			
_	003	21	1	22			
DRB5	004	5	13	18			
_	005	2	11	13			
	006	2	0	2			
_	007	4	2	6			
	008	9	3	12			
	009	7	0	7			
DRB6	010	0	1	1			
_	011	18	3	21			
	012	4	5	9			
	013	3	9	12			
	014	3	7	10			
	015	3	3	6			
DRB4	016	3	8	11			
	017	2	1	3			
	018	14	10	24			
	019	56	24	80			
	020	3	3	6			
DRB7	021	6	14	20			
	022	10	2	12			
	023	7	5	12			
DRB8	024	7	24	31			
	025	13	5	18			

Table 2. FLA-DRB alleles identified in the DSH and Purebred Groups

Table 2. continued

Phylogentic	A 11 - 1 -	Number of cats					
Group	Anele	DSH	Purebred	Total			
	026	8	3	11			
	027	3	0	3			
DRB1	028	10	5	15			
	029	4	3	7			
	030	1	0	1			
_	031	29	15	44			
	032	6	2	8			
	033	7	22	29			
_	034	10	25	35			
	035	10	22	32			
DKD3	036	9	0	9			
_	037	7	1	8			
_	038	4	2	6			
_	039	9	5	14			
	040	6	9	15			

FLA-DRB Phylogenic Group								Number of alleles
Haplotype	DRB	DRB	DRB	DRB	DRB	DRB	DRB	-
	5	6	4	7	8	1	3	
<u>Hp-0.1</u>	001		<u>019</u>			027		3
Hp-0.4	001					028		2
Hp-0.2	001						035	2
Hp-0.11	001 008		016					3
Hp-0.12	001 008							2
Hp-0.13	001			022				2
Hp-0.14	001				025			2
Нр-0.5	002 006		018					3
<u>Hp-0.15</u>	003		<u>019</u>					2
Hp-0.16	004				024		033	3
Hp-0.17	004				024		034	3
Hp-0.18	005		016		024		033	4
Hp-0.19	005				024		033	3
Hp-0.20	007			022				2
<u>Hp-0.21</u>		008	<u>019</u>				036	3
Hp-0.22		009	018				031	3
Нр-0.23		009					031	2
<u>Hp-0.24</u>		011	<u>019</u>				031	3
Hp-0.25		011					031	2
<u>Hp-0.26</u>		012	019				031	3

Table 3. FLA-DRB alleles estimated in haplotypes

Table 3. continued

II 1.4	FLA-DRB Phylogenic Group								Number of alleles		
Наріотуре	DRB	DRB		DRB		DRB	DRB	DRB	D	RB	
	5	6		4		7	8	1		3	
Нр-0.3			013	015							2
Hp-0.27			013	018							2
<u>Hp-0.28</u>			013	018	<u>019</u>						3
Hp-0.29			014						040		2
Hp-0.30	_		014	016					040		3
Hp-0.7			014			020			040		3
Hp-0.31			014				025				2
Hp-0.32			015					030			2
Hp-0.33	_		015				023				2
Hp-0.34			018				025		037		3
<u>Hp-0.35</u>	_		<u>019</u>					026	039		3
<u>Hp-0.8</u>			<u>019</u>					027	040		3
<u>Hp-0.36</u>	_		<u>019</u>						031		2
<u>Hp-0.37</u>			<u>019</u>						036		2
<u>Hp-0.38</u>			<u>019</u>						039		2
Hp-0.39						020	023		032		3
Hp-0.40						021			034	035	3
Hp-0.41						022			038		2
Hp-0.42								026	039		2
Hp-0.43								027	040		2
Hp-0.44									034	035	2

NT	TT 1 4	Number of cats						
NO.	нарютуре	DSH	Purebred	Total				
1	Hp-0.15	21	0	21				
2	Hp-0.24	13	0	13				
3	Hp-0.37	4	0	4				
4	Hp-0.13	4	0	4				
5	Hp-0.43	3	0	3				
6	Hp-0.42	3	0	3				
7	Hp-0.31	3	0	3				
8	Hp-0.21	3	0	3				
9	Hp-0.5	2	0	2				
10	Hp-0.23	2	0	2				
11	Hp-0.32	2	0	2				
12	Hp-0.39	2	0	2				
13	Hp-0.18	0	6	6				
14	Hp-0.28	0	3	3				
15	Hp-0.38	0	3	3				
16	Нр-0.33	0	3	3				
17	Hp-0.7	0	3	3				
18	Hp-0.17	0	3	3				
19	Hp-0.14	0	2	2				
20	Hp-0.30	0	2	2				

Table 4. Frecuency of FLA-DRB haplotypes estimated in two Breed Groups

N		Number of cats				
INO.	Haplotype	DSH	Purebred	Total		
21	Hp-0.40	10	13	23		
22	Hp-0.16	5	12	17		
23	Hp-0.44	5	10	15		
24	Hp-0.35	8	2	10		
25	Hp-0.25	6	2	8		
26	Hp-0.26	3	5	8		
27	Hp-0.34	7	1	8		
28	Hp-0.29	2	4	6		
29	Hp-0.36	3	5	8		
30	Hp-0.19	2	4	6		
31	Hp-0.1	4	1	5		
32	Hp-0.11	5	1	6		
33	Hp-0.12	3	2	5		
34	Hp-0.8	2	3	5		
35	Hp-0.22	3	1	4		
36	Hp-0.2	1	3	4		
37	Hp-0.41	2	2	4		
38	Hp-0.27	1	2	3		
39	Hp-0.20	2	1	3		
40	Hp-0.4	1	2	3		
41	Нр-0.3	1	1	2		

Table 4. continued

Figure 1. Introduction of methods for estimating FLA-DRB haplotype

Figure 2. Amino acid sequence-based phylogenetic trees of FLA-DRB sequences by the Neighbor joining method. The trees were constructed by the neighbour-joining method. Numbers at branches indicate bootstrap values over 50. FLA-DRB tree based on 21 amino acid sequences, 43 FLA-DRB translated from nucleotide sequences that were identified in this study, five FLA-DRB reference sequences (EU153401 and U51506) (red letters) and a DLA-DRB1 sequence (NM_001014768) that was used as an outgroup.

第6章

総括

ネコは、主要な伴侶動物であるが、MHC 遺伝子の多型解析法は開発さ れていなかった。このために、ネコの MHC 遺伝子と、感染症や自己免疫疾患 との関連性および移植の際の組織適合性に関する研究報告は、他の哺乳類と比 較し極めて乏しかった。そこで本学位論文では、ネコの MHC 遺伝子の多型解 析法の開発を研究の課題とした。そのためにまず、遺伝子発現する FLA クラス I 遺伝子を同定し、FLA クラス I およびクラス II 遺伝子の多型解析法の開発を 試みた。また、様々な品種のネコ 150 個体から FLA 遺伝子の多型性を解析し た。これらの研究の結果、FLA クラス I およびクラス II 遺伝子の多型解析法が 世界で初めて開発された。また、FLA クラス I およびクラス II 遺伝子のコピー 数多型や、ネコの品種特異的なハプロタイプが認められたことから、FLA 遺伝 子の多型の特徴が明らかにされた。

第2章 FLA クラス I 遺伝子の転写産物の同定

MHCは、細胞表面に発現される分子であり、T細胞への抗原提示を行うことから、獲得免疫の発動に重要な役割を担っている。このMHCをコードするMHC遺伝子は、比類なき多型を有することが知られている。この特徴から、MHCは感染症および自己免疫疾患の発症や重症化といった免疫反応の個人差に深く関わっている。また、臓器移植の際にドナーのHLAがレシピエントのT細胞に非自己と認識され免疫拒絶が引き起こされることが知られている。ネコでは、先行研究においてFLAクラスI領域のゲノム配列が明らかになっており、19個のFLAクラスI遺伝子(*FLA-A~FLA-S*)が同定されていた。

第2章では、個々の遺伝子の塩基配列解析によって、これら19個のうち8個(FLA-A, -E, -H, -J, -K, -L, -Mおよび-O)が機能的な遺伝子構造、すなわち遺伝子発現が期待できることをつきとめた。また、ネコ5個体のRNA

(cDNA)の PCR 増幅および NGS を用いた解析から、7 個の FLA クラス I 遺 伝子(*FLA-A*, *-E*, *-H*, *-J*, *-K*, *-L* および*-O*)の配列が同定され、ネコの MHC クラ ス I 遺伝子として機能することが証明された。また、ハプロタイプ毎に FLA-I 遺伝子組成が異なるコピー数多型が示唆された。

第3章 FLA クラスI遺伝子の多型解析法の開発

-FLA クラス I アレルの同定およびハプロタイプ推定-

第2章にて、機能的な FLA クラス I 遺伝子が同定されたことから、 FLA クラス I 遺伝子の多型解析法の開発を試みた。血縁関係の明確な 2 家系 20 個体のネコの RNA (cDNA) の PCR 増幅および NGS を用いて解析した。PCR では、遺伝子発現が認められた 7 個すべての FLA クラス I 遺伝子の多型が集中 する領域 (エキソン 2 とエキソン 3) を増幅した。また、各個体のアレルの組 み合わせと、個体の血縁関係に基づいて FLA クラス I ハプロタイプを推定し た。その結果、計 32 種類の FLA クラス I アレルが同定され、計 7 種類の FLA-I ハプロタイプ推定された。このアレルおよびハプロタイプは、血縁関係との 矛盾がなかったことから、多型解析は正確であったと考えられた。また、計 7 種類ハプロタイプはそれぞれ 4~8 種類の FLA クラス I アレルを含んでいたこ とから、FLA クラス I 遺伝子のコピー数多型が認められた。

第4章 FLA クラスⅡ遺伝子の多型解析法の開発

-FLA クラスⅡアレルの同定およびハプロタイプ推定-

HLA-IIは、3 種類(HLA-DR, HLA-DQ および HLA-DP)に分類され、 それぞれをコードする遺伝子領域は、ヒトゲノムの HLA-II 領域に同定されて いる。一方、ネコゲノムの FLA クラス II 領域は、HLA-DQ および DP 領域に相 当する領域が欠失しており、DR 領域のみから構成されている。ネコのDR 領 域に同定された遺伝子のうち、4 個の FLA-DRB 遺伝子(*FLA-DRB1, -DRB3, -DRB4* および-*DRB5*) は遺伝子発現が認められ、多型を有することも知られて いる。しかしながら、FLA-II 遺伝子の多型解析法は確立されていない。本研究 では、FLA-DRB 遺伝子の多型解析法の開発を試みた。

第4章では、第3章の同20個体のcDNAを用いPCR増幅後、NGSを 用いて解析した。PCRでは、4個すべてのFLA-DRB遺伝子の多型が集中する 領域(エキソン2を増幅した。また、各個体のアレルの組み合わせと、個体の 血縁関係に基づいてFLA-DRBハプロタイプを推定した。その結果、計16種類 のFLA-DRBアレルが同定され、計8種類のFLA-DRBハプロタイプ推定され た。このアレルおよびハプロタイプは、血縁関係との矛盾がなかったことか ら、多型解析は正確であったと考えられた。また、計8種類ハプロタイプに は、遺伝子重複、欠失および遺伝子組換えの結果、生成されたと考えられるハ プロタイプも認められた。

第5章 様々な品種における FLA-DRB 遺伝子の多型解析

ーネコの品種と FLA クラスIIハプロタイプとの関連性の検討-

前述のように、FLA クラスⅡ遺伝子である FLA-DRB 遺伝子の多型情報の収集が可能となった。そこで我々は、FLA-DRB 遺伝子において、雑種および洋品種ネコ計 150 個体を対象にした多型解析を行い、FLA-DRB 多型とネコの品種との関連性を解析した。

ANMEC およびマーブル動物医療センターに来院した計 150 個体のうち、雑種ネコ 87 個体は雑種群、洋品種ネコ 63 個体は洋品種群の二つの品種群へ分類した。これらのネコの RNA (cDNA)を鋳型とし、第4章の FLA-DRB

遺伝子の多型解析法による FLA-DRB アレルの同定および FLA-DRB ハプロタ イプの推定を行った。

150 個体から計 43 種類の FLA-DRB 配列が同定された。推定された FLA-DRB ハプロタイプは計 41 種類であり、いずれも 2~4 種類の FLA-DRB ア レルから構成されていた。さらに、推定された 41 種類のハプロタイプのう ち、12 種類は雑種群に、8 種類は洋品種群に特異的であったものに加え、21 種 類は両群が共有するハプロタイプへ分類された。

本学位論文によって開発された多型解析法は、FLA クラス I およびク ラスⅡ遺伝子を網羅した世界初の方法である。本研究の対象としたネコは、イ ヌなどとは異なる過程でヒトによって家畜化され、世界中に拡散し、近年にな って品種の管理が行われ始めた伴侶動物である。その一方で、ネコは、ヒトに 依存しない生活も可能であるために、様々な地域で自由に繁殖し、複数の世代 を経てきた動物である。このような家畜化の過程および現在の生息状況の哺乳 類は、ネコの他にはいない。このため、ネコは、動物の進化および家畜化や集 団遺伝学的な研究の対象として、興味深い動物種である。本研究で解析した FLA 遺伝子およびハプロタイプには、FLA 遺伝子の重複と欠失に加えて、FLA クラス I 遺伝子のエキソン 2 内、FLA-DRB 遺伝子および FLA クラス I -DRB 領域間における DNA 組換えが認められた。これら FLA 遺伝子の多型性や FLA ハプロタイプの多様性の生成に関わるような、興味深い結果を多数認めること ができた。また、日本のネコと洋品種のネコを比較した結果、2つの集団間の 遺伝的な隔たりを示すハプロタイプ頻度の違いも認められた。これら本研究の 成果によって、ネコの遺伝学的研究の発展に有用な FLA 遺伝子の情報基盤が構 築された。

他の哺乳類にて、MHC 遺伝子は、感染症および自己免疫疾患と関連 し、移植の際の組織適合性においても重要であることが明らかとされている。 今後ネコにおいても、他の哺乳類と同様に FLA 遺伝子との関連解析が行われ、 ネコの臨床分野への応用が期待される。以上のことから、本研究にて開発され た FLA 遺伝子の多型解析法および明らかにされた FLA 遺伝子の多型情報は、 ネコの獣医学および獣医療の発展に大きく寄与すると考えられる。

謝辞

本研究を遂行するにあたり、研究室への受け入れを許可して頂き、さ らには終始ご指導、ご鞭撻を賜った東海大学医学部基礎医学系分子生命科学ゲ ノム医科学研究室の椎名隆 教授に心より感謝申し上げます。

また、直接のご指導を賜りました現岡山理科大学獣医学部獣医学科獣 医免疫学講座の宮前二朗 助教および東海大学医学部基礎医学系分子生命科学 ゲノム医科学研究室の鈴木進悟 助教に心より厚く御礼申し上げます。また、 研究材料の提供にご協力頂いたマーブル動物医療センターの難波信一 院長な らびに日本大学生物資源科学部獣医学科の亘敏広 教授、中山智宏 教授、枝村 一弥 准教授、坂井学 教授、伊藤大介 准教授、関真美子 専任講師、丸山治彦 准教授、高橋朋子 専任講師、北川勝人 教授および山谷吉樹 教授に深く感謝 いたします。加えて、日本大学生物資源科学部動物病院にて研究材料の収集に ご協力頂いた富士フイルム VET システムズ株式会社日本大学動物病院検査室 の井澤治彦 技師および同検査室の諸氏に深く感謝いたします。さらには、実 験の補助をしてくださった魚病/比較免疫学研究室の諸氏並びに日本大学動物 医科学研究センターの大学院生の皆様には深く感謝いたします。

最後に、大学院博士課程への進学を応援いただき、終始温かく見守 り、支え続けてくれた家族に心から感謝致します。

引用文献

American Veterinary Medical Association. (2018). "U.S. Pet Ownership Statistics".

- Ballingall, K.T., Bontrop, R.E., Ellis, S.A., Grimholt, U., Hammond, J.A., Ho, C.S., Kaufman, J., Kennedy, L.J., Maccari, G., Miller, D., Robinson, J., and Marsh, S.G.E. (2018). Comparative MHC nomenclature: report from the ISAG/IUIS-VIC committee 2018. *Immunogenetics* 70, 625-632.
- Beck, T.W., Menninger, J., Voigt, G., Newmann, K., Nishigaki, Y., Nash, W.G.,
 Stephens, R.M., Wang, Y., De Jong, P.J., O'brien, S.J., and Yuhki, N. (2001).
 Comparative Feline Genomics: A BAC/PAC Contig Map of the Major
 Histocompatibility Complex Class II Region. *Genomics* 71, 282-295.
- Budde, M.L., Wiseman, R.W., Karl, J.A., Hanczaruk, B., Simen, B.B., and O'connor, D.H. (2010). Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing. *Immunogenetics* 62, 773-780.
- Burge, C.B., and Karlin, S. (1998). Finding the genes in genomic DNA. *Curr Opin Struct Biol* 8, 346-354.
- Chikata, T., Murakoshi, H., Koyanagi, M., Honda, K., Gatanaga, H., Oka, S., and Takiguchi, M. (2017). Control of HIV-1 by an HLA-B*52:01-C*12:02 Protective Haplotype. *J Infect Dis* 216, 1415-1424.
- Dagher, E., Simbault, L., Abadie, J., Loussouarn, D., Campone, M., and Nguyen, F. (2020). Identification of an immune-suppressed subtype of feline triple-negative basal-like invasive mammary carcinomas, spontaneous models of breast cancer. *Tumour Biol* 42, 1010428319901052.
- Dai, S., Crawford, F., Marrack, P., and Kappler, J.W. (2008). The structure of HLA-DR52c: comparison to other HLA-DRB3 alleles. *Proc Natl Acad Sci USA* 105, 11893-11897.
- Davies, C.J., Andersson, L., Ellis, S.A., Hensen, E.J., Lewin, H.A., Mikko, S., Muggli-Cockett, N.E., Poel, J.J.V.D., and Russell, G.C. (1997). Nomenclature for factors of the BoLA system, 1996: report of the ISAG BoLA Nomenclature Committee. *Animal Genetics* 28, 159-168.
- Everly, M.J., and Terasaki, P.I. (2009). Monitoring and treating posttransplant human leukocyte antigen antibodies. *Hum Immunol* 70, 655-659.
- Geffrotin, C., Crechet, F., Le Roy, P., Le Chalony, C., Leplat, J.J., Iannuccelli, N., Barbosa, A., Renard, C., Gruand, J., and Milan, D. (2004). Identification of five chromosomal regions involved in predisposition to melanoma by genome-wide scan in the MeLiM swine model. *International journal of cancer* 110, 39-50.

- Gorman, N.T., and Werner, L.L. (1986). Immune-mediated diseases of the dog and cat.I. Basic concepts and the systemic immune-mediated diseases. *British Veterinary Journal* 142, 395-402.
- Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pedersen, N.C., Ruhe, A., Wallace, M., and Neff, M.W. (2010). Necrotizing meningoencephalitis of Pug dogs associates with dog leukocyte antigen class II and resembles acute variant forms of multiple sclerosis. *Tissue Antigens* 76, 110-118.
- Harley, R., Gruffydd-Jones, T.J., and Day, M.J. (2011). Immunohistochemical characterization of oral mucosal lesions in cats with chronic gingivostomatitis. *Journal of comparative pathology* 144, 239-250.
- Herdegen, M., Babik, W., and Radwan, J. (2014). Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure. *Journal of evolutionary biology* 27, 2347-2359.
- Ho, C.S., Lunney, J.K., Ando, A., Rogel-Gaillard, C., Lee, J.H., Schook, L.B., and Smith, D.M. (2009). Nomenclature for factors of the SLA system, update 2008. *Tissue Antigens* 73, 307-315.
- Holmes, J.C., Holmer, S.G., Ross, P., Buntzman, A.S., Frelinger, J.A., and Hess, P.R. (2013). Polymorphisms and tissue expression of the feline leukocyte antigen class I loci FLAI-E, FLAI-H, and FLAI-K. *Immunogenetics* 65, 675-689.
- The European Pet Food Industry. (2017). "European Facts & Figures 2017".
- European Bioinformatics Institute. *Immuno Polymorphism Database* [Online]. Available: <u>https://www.ebi.ac.uk/ipd/</u>.
- Kennedy, L.J., Angles, J.M., Barnes, A., Carter, S.D., Francino, O., Gerlach, J.A., Happ, G.M., Ollier, W.E.R., Thomson, W., and Wagner, J.L. (2001). Nomenclature for factors of the dog major histocompatibility system (DLA), 2000: Second report of the ISAG DLA Nomenclature Committee. *HLA* 58, 55-70.
- Kennedy, L.J., Ryvar, R., Brown, J.J., Ollier, W.E., and Radford, A.D. (2003a).
 Resolution of complex feline leukocyte antigen DRB loci by reference strandmediated conformational analysis (RSCA). *Tissue Antigens* 62, 313-323.
- Kennedy, L.J., Ryvar, R., Brown, J.J., Ollier, W.E.R., and Radford, A.D. (2003b).
 Resolution of complex feline leukocyte antigen DRB loci by reference strandmediated conformational analysis (RSCA). *Tissue Antigens* 62, 313–323.
- Kennedy, L.J., Ryvar, R., Gaskell, R.M., Addie, D.D., Willoughby, K., Carter, S.D., Thomson, W., Ollier, W.E., and Radford, A.D. (2002). Sequence analysis of MHC DRB alleles in domestic cats from the United Kingdom. *Immunogenetics* 54, 348-352.

- Kita, Y.F., Ando, A., Tanaka, K., Suzuki, S., Ozaki, Y., Uenishi, H., Inoko, H., Kulski, J.K., and Shiina, T. (2012). Application of high-resolution, massively parallel pyrosequencing for estimation of haplotypes and gene expression levels of swine leukocyte antigen (SLA) class I genes. *Immunogenetics* 64, 187-199.
- Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33, 1870-1874.
- Kuwahara, Y., Kitoh, K., Kobayashi, R., Iwata, J., Ohne, R., Hosokawa-Kanai, T.,
 Matsumoto, Y., Kitagawa, H., and Sasaki, Y. (2000). Genotyping of feline MHC (FLA) class II DRB by PCR-RFLP method using group-specific primers.
 Journal of Veterinary Medical Science 62, 1283-1289.
- Kuwahara, Y., Kitoh, K., Kobayashi, R., Iwata, J., Ohne, R., Kitagawa, H., and Sasaki,
 Y. (2001). Effects of genotype matching of feline major histocompatibility
 complex (FLA) class II DRB on skin-allograft transplantation in cats. *Journal of Veterinary Medical Science* 63, 1097-1101.
- Lewin, H.A., Wu, M.-C., Stewart, J.A., and Nolan, T.J. (1988). Association between BoLA and subclinical bovine leukemia virus infection in a herd of Holstein-Friesian cows. *Immunogenetics* 27, 338-344.
- Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Ma, L., Zhang, N., Zhang, L., Wei, X., Qu, Z., Zhang, N., and Xia, C. (2018). Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides. *Journal of virology* 92, e01631-01617.
- Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D.B., Kamal, M., Clamp, M., Chang, J.L., Kulbokas, E.J., 3rd, Zody, M.C., Mauceli, E., Xie, X., Breen, M., Wayne, R.K., Ostrander, E.A., Ponting, C.P., Galibert, F., Smith, D.R., Dejong, P.J., Kirkness, E., Alvarez, P., Biagi, T., Brockman, W., Butler, J., Chin, C.W., Cook, A., Cuff, J., Daly, M.J., Decaprio, D., Gnerre, S., Grabherr, M., Kellis, M., Kleber, M., Bardeleben, C., Goodstadt, L., Heger, A., Hitte, C., Kim, L., Koepfli, K.P., Parker, H.G., Pollinger, J.P., Searle, S.M., Sutter, N.B., Thomas, R., Webber, C., Baldwin, J., Abebe, A., Abouelleil, A., Aftuck, L., Ait-Zahra, M., Aldredge, T., Allen, N., An, P., Anderson, S., Antoine, C., Arachchi, H., Aslam, A., Ayotte, L., Bachantsang, P., Barry, A., Bayul, T., Benamara, M., Berlin, A., Bessette, D., Blitshteyn, B., Bloom, T., Blye, J., Boguslavskiy, L., Bonnet, C., Boukhgalter, B., Brown, A., Cahill, P., Calixte, N., Camarata, J., Cheshatsang, Y., Chu, J., Citroen, M., Collymore, A., Cooke, P., Dawoe, T.,

Daza, R., Decktor, K., Degray, S., Dhargay, N., Dooley, K., Dooley, K., Dorje, P., Dorjee, K., Dorris, L., Duffey, N., Dupes, A., Egbiremolen, O., Elong, R., Falk, J., Farina, A., Faro, S., Ferguson, D., Ferreira, P., Fisher, S., Fitzgerald, M., et al. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. *Nature* 438, 803-819.

- Maruyama, S., Kabeya, H., Nakao, R., Tanaka, S., Sakai, T., Xuan, X., Katsube, Y., and Mikami, T. (2003). Seroprevalence of Bartonella henselae, Toxoplasma gondii, FIV and FeLV infections in domestic cats in Japan. *Microbiology and immunology* 47, 147-153.
- Mishina, M., Watanabe, T., Maeda, H., Fujii, K., Wakao, Y., Takahashi, M., and Ejima,
 H. (1996). Renal transplantation in cats with chronic renal failure. *J Vet Med Sci.* 58, 655-658.
- Miyamae, J., Suzuki, S., Katakura, F., Uno, S., Tanaka, M., Okano, M., Matsumoto, T., Kulski, J.K., Moritomo, T., and Shiina, T. (2018). Identification of novel polymorphisms and two distinct haplotype structures in dog leukocyte antigen class I genes: DLA-88, DLA-12 and DLA-64. *Immunogenetics* 70, 237-255.
- Miyamae, J., Yagi, H., Sato, K., Okano, M., Nishiya, K., Katakura, F., Sakai, M., Nakayama, T., Moritomo, T., and Shiina, T. (2019). Evaluation of alloreactive T cells based on the degree of MHC incompatibility using flow cytometric mixed lymphocyte reaction assay in dogs. *Immunogenetics*.
- Miyasaka, T., Takeshima, S.N., Jimba, M., Matsumoto, Y., Kobayashi, N., Matsuhashi, T., Sentsui, H., and Aida, Y. (2013). Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. *Tissue Antigens* 81, 72-82.
- Mungall, A.J., Palmer, S.A., Sims, S.K., Edwards, C.A., Ashurst, J.L., Wilming, L., Jones, M.C., Horton, R., Hunt, S.E., Scott, C.E., Gilbert, J.G.R., Clamp, M.E., Bethel, G., Milne, S., Ainscough, R., Almeida, J.P., Ambrose, K.D., Andrews, T.D., Ashwell, R.I.S., Babbage, A.K., Bagguley, C.L., Bailey, J., Banerjee, R., Barker, D.J., Barlow, K.F., Bates, K., Beare, D.M., Beasley, H., Beasley, O., Bird, C.P., Blakey, S., Bray-Allen, S., Brook, J., Brown, A.J., Brown, J.Y., Burford, D.C., Burrill, W., Burton, J., Carder, C., Carter, N.P., Chapman, J.C., Clark, S.Y., Clark, G., Clee, C.M., Clegg, S., Cobley, V., Collier, R.E., Collins, J.E., Colman, L.K., Corby, N.R., Coville, G.J., Culley, K.M., Dhami, P., Davies, J., Dunn, M., Earthrowl, M.E., Ellington, A.E., Evans, K.A., Faulkner, L., Francis, M.D., Frankish, A., Frankland, J., French, L., Garner, P., Garnett, J., Ghori, M.J.R., Gilby, L.M., Gillson, C.J., Glithero, R.J., Grafham, D.V., Grant,

M., Gribble, S., Griffiths, C., Griffiths, M., Hall, R., Halls, K.S., Hammond, S., Harley, J.L., Hart, E.A., Heath, P.D., Heathcott, R., Holmes, S.J., Howden, P.J., Howe, K.L., Howell, G.R., Huckle, E., Humphray, S.J., Humphries, M.D., Hunt, A.R., Johnson, C.M., Joy, A.A., Kay, M., Keenan, S.J., Kimberley, A.M., King, A., Laird, G.K., Langford, C., Lawlor, S., Leongamornlert, D.A., Leversha, M., et al. (2003). The DNA sequence and analysis of human chromosome 6. *Nature* 425, 805 - 811.

- Nakamura, T., Shirouzu, T., Nakata, K., Yoshimura, N., and Ushigome, H. (2019). The Role of Major Histocompatibility Complex in Organ Transplantation- Donor Specific Anti-Major Histocompatibility Complex Antibodies Analysis Goes to the Next Stage. *Int J Mol Sci* 20.
- Nei, M., Gu, X., and Sitnikova, T. (1997). Evolution by the birth-and-death process in multigene families of the vertebrate immune system. *Proceedings of the National Academy of Sciences* 94, 7799–7806.
- O'brien, S.J., Troyer, J.L., Roelke, M., Marker, L., and Pecon-Slattery, J. (2006). Plagues and adaptation: Lessons from the Felidae models for SARS and AIDS. *Biological Conservation* 131, 255-267.
- Oka, S., Furukawa, H., Kawasaki, A., Shimada, K., Sugii, S., Hashimoto, A., Komiya, A., Fukui, N., Ito, S., Nakamura, T., Saisho, K., Katayama, M., Tsunoda, S., Sano, H., Migita, K., Suda, A., Nagaoka, S., Tsuchiya, N., and Tohma, S. (2014).
 Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. *PLoS One* 9, e99453.
- Ollier, W.E., Kennedy, L.J., Thomson, W., Barnes, A.N., Bell, S.C., Bennett, D., Angles, J.M., Innes, J.F., and Carter, S.D. (2001). Dog MHC alleles containing the human RA shared epitope confer susceptibility to canine rheumatoid arthritis. *Immunogenetics* 53, 669-673.
- Olmsted, R.A., Langley, R., Roelke, M.E., Goeken, R.M., Adger-Johnson, D., Goff, J.P.,
 Albert, J.P., Packer, C., Laurenson, M.K., Caro, T.M., and Et Al. (1992).
 Worldwide prevalence of lentivirus infection in wild feline species:
 epidemiologic and phylogenetic aspects. *J Virol* 66, 6008-6018.
- Ozaki, Y., Suzuki, S., Kashiwase, K., Shigenari, A., Okudaira, Y., Ito, S., Masuya, A., Azuma, F., Yabe, T., Morishima, S., Mitsunaga, S., Satake, M., Ota, M., Morishima, Y., Kulski, J.K., Saito, K., Inoko, H., and Shiina, T. (2015). Cost-efficient multiplex PCR for routine genotyping of up to nine classical HLA loci in a single analytical run of multiple samples by next generation sequencing. *BMC Genomics* 16, 318.

- Paulin, M.V., Couronne, L., Beguin, J., Le Poder, S., Delverdier, M., Semin, M.O., Bruneau, J., Cerf-Bensussan, N., Malamut, G., Cellier, C., Benchekroun, G., Tiret, L., German, A.J., Hermine, O., and Freiche, V. (2018). Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease. *BMC Vet Res* 14, 306.
- Pedersen, N., Liu, H., Millon, L., and Greer, K. (2011). Dog leukocyte antigen class II– associated genetic risk testing for immune disorders of dogs: simplified approaches using Pug dog necrotizing meningoencephalitis as a model. *The Journal of Veterinary Diagnostic Investigation* 23, 68–76.
- Peiravan, A., Allenspach, K., Boag, A.M., Soutter, F., Holder, A., Catchpole, B., Kennedy, L.J., Werling, D., and Procoli, F. (2016). Single nucleotide polymorphisms in major histocompatibility class II haplotypes are associated with potential resistance to inflammatory bowel disease in German shepherd dogs. *Vet Immunol Immunopathol* 182, 101-105.
- Radwan, J., Zagalska-Neubauer, M., Cichon, M., Sendecka, J., Kulma, K., Gustafsson, L., and Babik, W. (2012). MHC diversity, malaria and lifetime reproductive success in collared flycatchers. *Molecular ecology* 21, 2469-2479.
- Sato, K., Miyamae, J., Sakai, M., Okano, M., Katakura, F., Shibuya, H., Nakayama, T., and Moritomo, T. (2020). The utility of DLA typing for transplantation medicine in canine models. *The Journal of Veterinary Medical Science* 20-0142.
- Schmieder, R., and Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. *Bioinformatics* 27, 863-864.
- Sebastian, A., Herdegen, M., Migalska, M., and Radwan, J. (2016). AMPLISAS: a web server for multilocus genotyping using next-generation amplicon sequencing data. *Mol Ecol Resour* 16, 498-510.
- Shiina, and Blancher (2019). The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. *Cells* 8.
- Shiina, T., Hosomichi, K., Inoko, H., and Kulski, J.K. (2009). The HLA genomic loci map: expression, interaction, diversity and disease. *J Hum Genet* 54, 15-39.
- Shiina, T., Inoko, H., and Kulski, J.K. (2004). An update of the HLA genomic region, locus information and disease associations: 2004. *Tissue Antigens* 64, 631-649.
- Shiina, T., Yamada, Y., Aarnink, A., Suzuki, S., Masuya, A., Ito, S., Ido, D., Yamanaka, H., Iwatani, C., Tsuchiya, H., Ishigaki, H., Itoh, Y., Ogasawara, K., Kulski, J.K., and Blancher, A. (2015). Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing: Mafa-class I polymorphism. *Immunogenetics* 67, 563-578.

- Smith, D.M., Lunney, J.K., Ho, C.S., Martens, G.W., Ando, A., Lee, J.H., Schook, L., Renard, C., and Chardon, P. (2005). Nomenclature for factors of the swine leukocyte antigen class II system, 2005. *Tissue Antigens* 66, 623-639.
- Tokunaga, K., Ohashi, J., Bannai, M., and Juji, T. (2001). Genetic link between Asians and native Americans: evidence from HLA genes and haplotypes. *Human Immunology* 62, 1001-1008.
- Wiseman, R.W., Karl, J.A., Bimber, B.N., O'leary, C.E., Lank, S.M., Tuscher, J.J.,
 Detmer, A.M., Bouffard, P., Levenkova, N., Turcotte, C.L., Szekeres, E., Jr.,
 Wright, C., Harkins, T., and O'connor, D.H. (2009). Major histocompatibility
 complex genotyping with massively parallel pyrosequencing. *Nat Med* 15, 1322-1326.
- Yuhki, N., Beck, T., Stephens, R.M., Nishigaki, Y., Newmann, K., and O'brien, S.J. (2003). Comparative Genome Organization of Human, Murine, and Feline MHC Class II Region. *Genome research* 13, 1169-1179.
- Yuhki, N., Mullikin, J.C., Beck, T., Stephens, R., and O'brien, S.J. (2008). Sequences, annotation and single nucleotide polymorphism of the major histocompatibility complex in the domestic cat. *PLOS ONE* 3, e2674.
- Yuhki, N., and O'brien, S.J. (1997). Nature and origin of polymorphism in feline MHC class II DRA and DRB genes. *The Journal of Immunology* 158, 2822-2833.
- Zinkernagel, R.M., and Doherty, P.C. (1997). The discovery of MHC restriction. *Immunology Today* 18, 14 - 17.
- 一般社団法人ペットフード協会 (2019). 2019 年(令和元年)全国犬猫飼育実態調査 結果 [Online]. Available: <u>https://petfood.or.jp/topics/img/191223.pdf</u>.
- 黒木喜美子, 喜多俊介, および 前仲勝実 (2016). HLA の立体構造と免疫制御受 容体の分子認識機構. 日本組織適合性学会誌 23, 80-95.
- 湯沢賢治 (2014). 腎移植の現況と組織適合性検査のかかわり. 日本組織適合性 学会誌.
- 徳永勝士 (2014). HLA 遺伝子群の多型データの活用. *日本組織適合性学会誌* 21, 87-95.