上下顎前方移動および舌骨上筋群牽引術前後における数値流体力学 解析を用いた上気道呼吸動態の変化

日本大学大学院歯学研究科歯学専攻

山縣 加夏子

(指導:外木 守雄 教授, 篠塚 啓二 助教)

	ページ
概要	1
緒言	2
材料および方法	3
結果	7
考察	9
結 論	12
参考文献	14
図表	18

閉塞性睡眠時無呼吸症の治療方法のひとつに睡眠外科手術があるが, このうち,上下顎前方移動術 (Maxillo-mandibular Advancement, MMA) と舌骨を牽引する舌骨上筋群前方移動術 (Genioglossus advancement, GA、両手術を同時に行うことを以後、MMA+GAと略する)は、無呼吸 低呼吸指数を減少し、睡眠の質を改善するという報告がされている。こ れまでの研究では,形態学的分析が主体で,上気道形態の変化と呼吸生 理学的機能の変化についての評価は十分とはいえない。そこで本研究 では, MMA+GA を行った症例に数値流体力学 (Computational fluid dynamics, CFD)解析を行い,術後に起こる上気道呼吸動態の変化を, 気道断面積,気道内の気流速度,気道壁にかかる静圧および全圧,気道 抵抗の変化について検討し、MMA+GAの効果を評価した。その結果、 MMA+GA 術後に口蓋咽頭の上端から喉頭蓋の上端における気道の断 面積は明らかな増大を認めた。また、気道内の流速は減少し、気流も安 定し整流化していた。特に断面積の増大を認めた軟口蓋の最下点では, 静圧力,全圧力が有意に減少し,気道内の抵抗も下がっていた。このこ とは、MMA+GA を行うことで、気道壁面を潰そうとする力が減少し、 安定した潰れにくい気道になり、気道内換気が容易になったと示唆さ れた。また,CFD 解析は、術前に気道狭窄部位の確認や静圧の高い部位 の確認ができ、気道閉塞が生じる可能性を警鐘することや、手術での移 動量や方向の検討に有効な予測データを提供できるものと考えられた。

緒言

閉塞性睡眠時無呼吸症(Obstructive sleep apnea,以下 OSA)の要因の ひとつに,解剖学的に狭窄もしくは閉塞した上気道があげられる。この 閉塞を引き起こす要因には,一般的に肥満,鼻内疾患,アデノイド・ロ 蓋扁桃肥大,巨舌など軟組織の要因があるが,小顎,過蓋咬合など硬組 織の形態異常も原因のひとつとして考えられている¹⁻⁵⁾。顎骨および咬 合状態と OSA に関する一連の研究で,骨格性下顎後退症に加え開咬を 呈するもの,上顎が後方にあるものに上気道狭窄が起こりやすいこと が報告されている^{6.7)}。

また,OSA の治療方法のひとつに睡眠外科手術があるが,このうち, 上下顎前方移動術 (Maxillo-mandibular advancement,以下 MMA) と舌 骨を牽引する舌骨上筋群前方移動術 (Genioglossus advancement,以下 GA,両手術を同時に行うことを以後,MMA+GA と略する)は,無呼吸 低呼吸指数 (Apnea and hypopnea index,以下 AHI)を減少し,睡眠の質 を改善すると報告されている^{8,9)}。

しかし、これまでの研究では、形態学的分析が主体で、上気道形態の 変化と呼吸生理学的機能の変化は評価されていなかった。そこで荻澤 らは、multi-detector computed tomography(以下 MDCT)を用い、その 上気道呼吸動態変化について数値流体力学(Computational fluid dynamics、以下 CFD)解析を行い、MMAの移動量および方向と術後の 上気道の呼吸動態の変化を予測するモデルを確立し、シミュレーショ ンが実際の事象を再現しているという報告をしている¹⁰⁾。

この CFD 解析法を用いて, MMA+GA の移動量および方向と呼吸生理

 $\mathbf{2}$

学的変化を検討することは、MMA+GAの効果を解明するために重要な ことであり、術前の資料から術後予測することが可能となって、治療方 針の決定に有用な情報となり得ると考える。

今回,本研究では,MMA+GA術後に起こる気道の変化について,術前後の上気道の断面積,気道内の気流速度,気道壁にかかる静圧および 全圧,気道抵抗の変化を,CFD解析を用いて検討し,MMA+GAの効果 を評価した。

材料および方法

1. 対象

2012年9月から2017年8月に咬合の改善を目的とし日本大学歯学部 付属歯科病院口腔外科での顎変形症の診断のもと、顎矯正手術を施行 した患者のうち、MMAとGAを同時に行い、術前および術後1年経過 時にMDCTを撮影し、本研究の趣旨に同意が得られた6名(男性1名、 女性5名、平均年齢32歳±8歳、平均BMI20.63±2.68)を対象とし た。

本研究は日本大学歯学部倫理委員会の許可を得ている(倫理許可番号: EP16D007)。

2. 手術術式

1) MMA + GA

(1) 上顎に対する手術は、Le Fort I型骨切り術、すなわち、犬歯窩部 を梨状ロ側縁、下鼻甲介下部から、翼口蓋窩に向かって水平に骨切り後、 翼突上顎縫合部を離断し上顎骨体を分離した後,これを任意の前方位 に移動する術式を用いた。本研究での前方への平均移動量は,3.17 ± 1.07 mmで,上方への平均移動量は 3.75 ± 1.35 mmであった(表 1)。

(2)下顎に対する手術は、両側の下顎枝を矢状分割し、近位顎関節部
 骨と遠位下顎骨体部と分離して、下顎骨体部を上顎と中心咬合位で嵌
 合するように前方に移動した。本研究での前方への平均移動量は、9.20
 ± 3.40 mm であった(表 1)。

すなわち MMA は、上下顎を一体として前方へ移動する術式で、上気 道が拡大すると考えられている術式である ^{7,9,10)}。

(3) GA は下顎骨内面に付着する舌骨上筋群を牽引し、MMA と同様に
 上気道を拡大する効果がある⁹⁾。本研究での前方への平均移動量は、
 6.33 ± 2.13 mm であった(表 1)。

3. 計測方法

1) 資料採取, MDCT 撮影

術前,術後1年経過時に治療を目的に,Asteion Super 4 Edition(東芝)を用いて MDCT 撮影を行った画像を用い,顎骨形態,気道形態の評価を行うため 3D モデルを作成した。CT の撮影条件は,仰臥位で,頭位は frankfort horizontal plane (FH 平面)を床と垂直にした。撮影中は患者に,咬頭嵌合位で口唇を閉鎖し舌を口蓋につけるよう指示し,安静呼吸で嚥下を行わないようにした。

撮像範囲は、舌骨から頭頂までとし、管電圧 120 kV, 管電流 100 mA マトリックスサイズ 512×512 pixel で 1 mm スライス撮影を行った。

2) CFD 解析方法

気道の抽出

対象患者 6名の digital imaging and communications in medicine(DICOM) データから Intage Volume Editor version 1.1 (Cybernet)を用いて,空気 の部分を体組織と区分し,気道を抽出した。上方は前頭洞を含み,下方 は喉頭蓋最上部,左右は上顎洞を含み,前方は顔面前方空間を含め,後 方は頚椎の位置で上気道を取り巻く軟組織は除外した。複雑な気道デ ータのメッシュを作成するためには全ての形状を多数の小さな三角形 の集まりとして表現する必要があり,3次元形状の standard triangulated language (以下 STL)を作成した (図 1)。

(2) CFD メッシュの作成

STLから HEXPRESS version 7.2 (NUMECA) を使用し, CFD メッシ ユを作成した。外鼻孔の外側から鼻腔に入り込む気流を正確に再現す るために顔面前方部に入口境界を設定,気道最下方部に出口境界を設 定して計算メッシュ (Computational mesh)を作成した。メッシュ生成 においては鼻腔および口腔の複雑な構造を表現できる非構造メッシュ (Unstructured mesh)を用い,6面体メッシュとした(図 2)。複雑な空 間形状にこのようなメッシュを生成するために,密な6面体メッシュ と比較的粗な6面体メッシュの間を4面体(テトラ)メッシュでつな ぐことで,各メッシュの歪みを極力抑制し,3次元形状のモデル化精度 を向上させている。メッシュ規模は total number of cell約 1000万, total number of vertices 約 1000 万~1100 万とした。

(3) CFD 解析における境界条件の設定

CFD 解析には FINE/Open with OpenLabs version 7.2 (NUMECA) を用 い,鼻腔から上気道の空気の流れを解析する為に圧縮性流体の Navier-Stokes 式を解く解析法を用いた。乱流モデルは Spalart-Allmaras 方程式 でこの研究の気流の流れにおける粘性の影響を表す最大 Reynolds 指数 は 10000~25000 とした。境界条件は入口で質量流量を固定して出口で 静圧を固定した。質量流量は後述する鼻腔通気度測定より得られた体 積流量 V (cm³/s) から求めた質量流量 (Massflow rate) を用いた。空気 は perfect gas と仮定して室温 25℃の空気密度を $\rho=P$ (大気圧 Pa) /R (287.03 J/Kg・K) ×T (273.15 + t℃) から求めた。質量流量は測定さ れた体積流量 と $\rho=P/RT$ から求められた空気密度より massflow rate= ρ V·10⁻⁶を用いて算出した。出口境界条件は各ケースの相対的評価 を容易にするために 100836 Paに固定した。

(4) CFD モデルを用いた上気道の断面積,気流速度,静圧,全圧,気 道抵抗の測定

CFD モデルより作成した気道を図3に示す。測定した境界断面は、1 を両鼻合流部、2は口蓋咽頭の上端、4は軟口蓋の最下点、3を境界断 面2と4の中間点、6は喉頭蓋の上端、5を境界断面4と6の中間点を 設定した。この6つの境界断面における断面積をそれぞれ測定した。ま た、手術前後に最も断面積の変化が大きかった境界断面において、入口 境界から出口境界までの気流の速度,流体が外界に及ぼす圧力である 静圧力,静圧力と動圧力の和である全圧力,気道の換気の程度を示す気 道抵抗をそれぞれ計測し比較検討した。気道抵抗は R=△P(静圧差)/Q の式にて算出し,Qは massflow rate で,0.2408 g/s とした。

3) 鼻腔通気度測定

MPR3100(日本光電社製)を用いて,術前後で MDCT 撮影と同時に 行い,鼻腔通気度測定ガイドライン¹¹⁾に沿って,アンテリオール・マ スク法により測定した。計測時の諸条件は MDCT 撮影と同一とした。 鼻腔通気度計測より得られた体積流量 V(cm³/s)は CFD 解析での質量 流量を算出するために使用した。

4) 統計学的解析

術前後の気道断面積,流速,静圧力,全圧力,気道抵抗に関する統計
学的解析は Paired *t*-test を用いて有意差検定を行った(SPSS version 24.0,
International Business Machines)。なお,p < 0.05 を有意差ありとした。

結 果

1. CFD 解析

1) 気道断面積

6 断面境界における手術前後の変化を表2および図4に示す。術前後 で比較すると、両鼻合流部1は、有意差を認めなかった(P=0.67)。口 蓋咽頭の上端2から喉頭蓋の上端6では、術後、断面積の明らかな増 大を認め,特に軟口蓋の最下点4で最も拡大していた(P < 0.01)。 2)気流速度

図 5 に症例 1 の CFD 解析による気流速度の分布を可視化したものを 示す。これは、入り口境界の等間隔点群からの流線であり、速度の大き さをカラーで示している。副鼻腔にはほとんど気流は流れないことが 分かる。術前では鼻腔内および軟口蓋の最下点付近で流速が大きく、鼻 腔内においては 4.1 m/s の速度、また軟口蓋の最下点付近では 2.9 m/s の速度が生じており、流速が速いところが収束していた。術後に同様の 部位はそれぞれ 2.7 m/s および 1.0 m/s と明らかに流速が減速しており、 上気道全体で流速が均一化して、鼻腔内および軟口蓋の最下点の速度 の速い部分がほぼ無くなっていた。さらに、鼻腔内および上気道全体に おいて、気流の整流化を認めた。また、6 症例における、最も断面積の 変化のあった軟口蓋の最下点での術前後の流速を比較すると平均値 2.20 m/s から 1.49 m/s へと速度の減少を認めた (図 6)。

3)静 圧

図7に症例1のCFD解析による吸気時の静圧分布の結果を示す。軟 ロ蓋の最下点における静圧力は、術前で100842 Paなのに対して術後で は100836 Paの静圧力であった。6症例の静圧を術前後で比較すると、 平均値10844 Paから100838 Paへ統計学的に有意に減少していた(図 8)。また、外部圧力と気道内との静圧の差(静圧差 ΔP)を比較するた めに、入口境界である外鼻孔と出口境界の喉頭蓋先端との静圧差を調 べた結果、症例1において、術前で25 Paの圧力差なのに対して術後で は6 Paの圧力差であった。6症例における、静圧差の術前の平均値は

41.83 Pa であったが, 術後の平均値は 23.50 Pa と有意な減少を認めた (表 3)。

4) 全 圧

図9に症例1のCFD解析による吸気時の全圧分布の結果を示す。軟 ロ蓋の最下点における全圧力は,術前で100838Paなのに対して術後で は100836Paの全圧力であった。6症例の全圧力は,術前で平均値100852 Paに対して術後で100840Paであり,統計学的に有意に減少していた (図10)。また,入口境界である外鼻孔と出口境界の喉頭蓋先端との全 圧力の差(全圧差)を調べた結果,症例1において,術前で26Paから 術後で7Paに大きく減圧していた。(図9)。

5) 気道抵抗

軟口蓋の最下点における気道の抵抗 R は術前で平均値 173.71 Pa・s/g から術後で 97.59 Pa・s/g に統計学的に有意に減少した (表 3)。

考察

1. CFD 解析の有用性について

CFD 解析は, 偏微分方程式の数値解法等を駆使して流体の運動に関 する方程式(オイラー方程式, ナビエ-ストークス方程式, またはその 派生式)をコンピュータで解くことによって流れを観察する数値解析・ シミュレーション手法である¹²⁾。これまでに CFD 解析に関する研究は 脳動脈瘤コイル塞栓術後の閉塞状態の予測に有用なパラメーターを開 発するもの¹³⁾やステント留置による血行力学的変化を解析¹⁴⁾, 人工肺 の血流や圧力損失の検討¹⁵⁾など活発に行われている。口腔顎顔面領域 では、口蓋垂軟口蓋咽頭弁形成術前後¹²⁾や顎矯正手術、上下顎前方移 動術前後^{10,16,17)}および口腔内装置の装着による気流の変化¹⁸⁾を検討 した報告や持続陽圧呼吸療法を行った状態での呼吸時の定時流れ解析 による圧力損失の検討¹⁹⁾などOSAに関連する報告もされてきている。 CFD 解析はセファロや CT 等の静的な評価と比較し、非侵襲的で、か つ、動的評価が行えることで近年注目されている。今回、MMA+GA を 施行した術前後の CFD 解析を行い、断面積の違いにより生じる生理学 的な変化、すなわち、気流速度、静圧、全圧、抵抗を詳細に検討できた ことからその有用性が示唆された。

2. CFD 解析の結果について

気道断面積については, 術前と比較し術後1年経過時において, 口蓋 咽頭の上端から喉頭蓋の上端までの断面積は有意に増加し, 特に軟口 蓋の最下点で著しかった (P<0.01)。このことから, MMA+GA は気道 を拡大する効果を持つことが示唆され, 上顎を前方移動させることで 気道の前後径が拡大し, 下顎の前方移動で気道の幅径が増大すると報 告した Okushi ら⁷⁾の研究結果と一致した。

流速について, 症例 1 では, 最も狭窄していた鼻腔内における流速は 4.1 m/s から 2.7 m/s に減少し, さらに整流化していた。また, 上気道全 体でも流速が均一化して, 軟口蓋の最下点の速度の速い部分がほぼ無 くなっていた。軟口蓋の最下点における 6 症例の術前後の流速を比較 すると平均値 2.20 m/s から 1.49 m/s へと速度の減少を認めた。気流速 度が減速することで気道にかかる圧が正常化され, OSA の治療に効果

があることが示唆された。

また、本研究では、注目する気道狭窄部周辺の解析条件をそろえるた めに、喉頭蓋先端の出口境界の静圧を固定する境界条件を用いて CFD 解析を行っている。これにより、術前後の静圧力、全圧力の比較が可能 となった。静圧について、術前後で比較すると、6 症例の平均値は 100844 Pa から 100838 Pa と有意に減圧していた。このことは、気道壁面を潰 そうとする力が減少し、安定した潰れにくい気道になったことを意味 している。また、入口境界である外鼻孔と出口境界の喉頭蓋先端の静圧 差が大きいと、気道内の陰圧による軟口蓋や舌根部を引き込む力が大 きくなり、力学的に咽頭付近の気道狭窄を促進する要因となると考え られている²⁰⁾。全6 症例の解析結果において、術前では平均値 41.83 Pa であった静圧差が、術後で平均値 23.50 Pa に大きく減少している。こ の結果から、静圧差による力学的な気道狭窄促進リスクが、手術によっ て低減されたことが分かる。

さらに, 症例1において, 術前の入口境界である外鼻孔と出口境界の 喉頭蓋先端との全圧差は26 Paから術後で7 Paに大きく減圧していた。 このことより, 手術の効果により気道が広くなったことが示唆された。

気道抵抗は、定義された気体の体積を指定された時間内に押し出す ために必要な特定の圧力を表し、抵抗が高いと気流が流れにくいこと を示しており、気道抵抗 R が吸気の難易度を決定する重要な指標であ る。本研究の結果では、術前の気道抵抗は平均値 173.71 Pa・s/g から術 後平均値 97.59 Pa・s/g に有意 (P<0.05)に減少し、減少率は 44%であ った。これは気道内換気が容易になったこと、すなわち呼吸が楽になっ

たことを示唆している。

OSA 患者で、気道が狭窄もしくは閉塞する原因のひとつには、気道 にかかる流速、静圧などの圧力の上昇が考えられる。本研究の結果から、 MMA+GA を行うことで、気道の断面積が拡大し、気道内の流速が減少 して、気道にかかる静圧、全圧が減少し、潰れにくい気道となって気道 内の抵抗が下がり、呼吸が楽になることが示唆された。これは、睡眠外 科治療として、口蓋垂軟口蓋咽頭形成術を施行し、同部を流れる流速や 圧力が減少したことで、AHI が明らかに低下したという報告¹²⁾や口腔 内装置を用いることで、流速や全圧、抵抗が低下し、AHI が改善した報 告¹⁸⁾と同様の結果であった。したがって MMA+GA は OSA に対する有 効的な治療法である根拠となり、いままでの報告^{8,9)}とも一致する結果 となった。

また、今回の結果から CFD 解析は、術前に気道狭窄部位の確認や静 圧の高い部位の確認ができ、気道閉塞が生じる可能性を警鐘すること や、MMA+GAの移動量や方向を検討する手段として有用性が高いこと が示唆された。今後、症例数をさらに増やし、予測値との差異を反映し た修正をモデル計算にフィードバックすることで、モデルの精度をさ らに向上させ、手術での最適な各部位の移動量の検討に有効な予測デ ータを提供できるものと考えられた。

結 論

本研究の結果から、以下の結論を得た。

1. MMA+GAを行うことで、気道の断面積が拡大し、気道内の流速

が減少して,気道にかかる静圧,全圧が減少し,潰れにくい気道 となって気道内の抵抗が下がり,呼吸が楽になることが示唆され た。

2. CFD 解析は、術前に気道狭窄部位の確認や静圧の高い部位の確認ができ、気道閉塞が生じる可能性を警鐘することや、MMA+GAの移動量や方向を検討する手段として有用性が高いことが示唆された。

謝辞

本研究遂行にあたり,格別たるご指導ご鞭撻を賜りました日本大学 歯学部口腔外科学第 I 講座の外木守雄教授に謹んで心から感謝申し上 げます。本研究をご指導およびご高閲賜りました帝京大学戦略的イノ ベーション研究センター流体および構造解析・設計応用研究部門の田 沼唯士教授に謹んで深く感謝申し上げます。

最後に,本研究を通じて多大なるご協力と助言を賜りました本学部 口腔外科学第 I 講座の篠塚啓二助教を始め,同講座の皆様に深く感謝 いたします。

- Riley RW, Powell N, Guillminault C (1987) Current surgical concepts for treating obstructive sleep apnea syndrome. J Oral Maxillofac Surg 45, 149-157.
- Schellenberg JB, Maislin G, Schwab RJ (2000) Physical findings and the risk for obstructive sleep apnea. The importance of oropharyngeal structures. Am J Respir Crit Care Med 162, 740-748.
- 3) Tsai WH, Remmers JE, Brant R, Flemons WW, Davies J, Macarthur C (2003) A decision rule for diagnostic testing in obstructive sleep apnea. Am J Respir Crit Care Med 167, 1427-1432.
- 4) Zonato AI, Bittencourt FL, Martinho FL, Júnior JF, Gregório LC, Tufik S (2003) Association of systematic head and neck physical examination with severity of obstructive sleep apnea-hypopnea syndrome. Laryngoscope 113, 973-980.
- 5) Yagi H, Nakata S, Tsuge H, Yasuma F, Noda A, Morinaga M, Tagaya M, Nakashima T (2009) Morphological examination of upper airway in obstructive sleep apnea. Auris Nasus Larynx 36, 444-449.
- 6) 栁川圭一, 篠塚啓二, 外木守雄(2019) 顎顔面骨格形態が上気道形態におよぼす影響について-日本人の側面頭部 X 線規格写真を用いた検討-. 日大歯学 93, 33-43.
- 7) Okushi T, Tonogi M, Arisaka T, Kobayashi S, Tsukamoto Y,

Morishita H, Sato K, Sano C, Chiba S, Yamane GY, Nakajima T (2011) Effect of maxillomandibular advancementon morphology of velopharyngeal space. J Oral Maxillofac Surg 69, 877-884.

- 8) Liu SY, Huon LK, Ruoff C, Riley RW, Strohl KP, Peng Z (2017) Restoration of sleep architecture after maxillomandibular advancement: Success Beyond the Apnea-Hypopnea Index. Int J Ora 1 Maxillofac Surg 46, 1533-1538.
- 9)中村亮太(2019)上下顎前方移動術およびオトガイ舌筋・舌骨筋前 方移動術が上気道形態と睡眠におよぼす影響.日大歯学 93, 25-32.
- 10) Ogisawa S, Shinozuka K, Aoki J, Yanagawa K, Himejima A, Nakamura R, Yamagata K, Sato T, Suzuki M, Tanuma T, Tonogi M (2019) Computational fluid dynamics analysis for the preoperative prediction of airway changes after maxillomandibular advancement surgery. J Oral Sci 61, 398-405.
- 11) Naito K (2001) Rhinomanometry guidelines. Jpn J Rhinol 40, 327-331.
- 12)野村務,西嶌大宣,近藤健二,菊地茂(2017) Computational fluid dynamics により術後機能評価した睡眠時無呼吸症候群.
 日耳鼻 120, 1073-1078.
- 13)梅田靖之,石田藤麿,辻正範,古川和博,佐野貴則,当麻直樹, 阪井田博司,霜坂辰一,鈴木秀謙(2015)多孔質媒体モデルを用いた CFD 解析による脳動脈瘤コイル塞栓術後閉塞状態の予測.JNET 9,69-77.

- 14) 辻正範,石田藤麿,古川和博,三浦洋一,佐野貴則,芝真人, 種村浩,梅田靖之,安田竜太,当麻直樹,霜辰一,鈴木秀謙(2017) 脳動脈瘤に対するステント留置による血行力学的効果-多孔質媒 体モデルを用いた数値流体力学 (CFD) による検討-.脳外誌 26, 444-451.
- 15) 舟久保昭夫, 幡多徳彦, 多賀一郎, 福井康裕(2013)人工肺開発に おける流れの解析と最適化. 可視化情報 33, 133-138.
- 16) Yajima Y, Oshima M, Iwai T, Kitajima H, Omura S, Tohnai I (2017) Computational fluid dynamics study of the pharyngeal airway space before and after mandibular setback surgery in patients with mandibular prognathism. Int J Oral Maxillofac Surg 6, 839-844.
- 17) Sittitavornwong S, Waite PD, Shih AM, Cheng GC, Koomullil R, Ito Y, Cure JK, Harding SM, Litaker M (2013) Computational fluid dynamic analysis of the posterior airway space after maxillomandibular advancement for obstructive sleep apnea syndrome. J Oral Maxillofac Surg 71, 1397-1405.
- 18) Song B, Li Y, Sun J, Qi Y, Li P, Li Y, Gu Z (2019) Computational fluid dynamics simulation of changes in the morphology and airflow dynamics of the upper airways in OSAHS patients after treatment with oral appliances. PLoS One 14, e0219642.
- 19) Wakayama T, Suzuki M, Tanuma T (2016) Effect of Nasal

Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses. PLoS One 11, e0150951.

20)村田朗(2007)睡眠時無呼吸症候群の診断と治療 寝ている間に病気が作られる.日医大医会誌 3,96-101.

症例	上顎		上顎 下顎	
	前方移動量 (mm)	上方移動量 (mm)	前方移動量 (mm)	前方移動量 (mm)
1	3.0	3.0	15.4	6.0
2	5.0	2.0	5.8	6.0
3	2.0	5.0	7.5	5.0
4	2.0	6.0	8.0	9.0
5	4.0	3.0	12.0	9.0
6	3.0	3.5	6.5	5.0
Mean ± SD	3.17 ± 1.07	3.75 ± 1.35	9.20 ± 3.40	6.33 ± 2.13

MMA: Maxillo-mandibular Advancement; 上下顎前方移動術

GA: Genioglossus advancement; 舌骨上筋群前方移動術

	術前術後			
症例	Mean \pm SD (cm ²)	Mean \pm SD (cm ²)	p-value	変化率
1	4.22 ± 1.03	4.15 ± 1.26	0.670	-1.66
2	$3.26~\pm~0.44$	3.70 ± 0.68	0.033	13.50
3	1.76 ± 0.60	2.43 ± 0.48	0.008	38.07
4	1.25 ± 0.63	2.33 ± 0.86	0.004	86.40
5	$1.80~\pm~0.95$	2.60 ± 0.89	0.018	44.44
6	2.42 ± 1.26	3.05 ± 1.50	0.048	26.03
1: 両鼻合流部, 2: 口蓋咽頭の上端, 3: 境界断面 2 と 4 の中間点,				

4: 軟口蓋の最下点,5:境界断面4と6の中間点,6: 喉頭蓋の上端

表 3 術前後における静圧力の差と気道抵抗の差

	術前		術前術後		
症例	∠P (Pa)	R (Pa \cdot s/g)	∠P(Pa)	R (Pa · s/g)	p-value
1	25	103.82	6	24.92	
2	39	161.96	21	87.21	
3	60	249.17	33	137.04	
4	29	120.43	11	45.68	
5	70	290.70	48	199.34	
6	28	116.28	22	91.36	
Mean	41.83	173.71	23.50	97.59	0.001
\pm SD	\pm 17.18	\pm 72.91	\pm 13.91	\pm 52.33	

⊿P:静圧差, R:気道抵抗

図1 3次元形状の術前後上気道(症例1)

DICOM データより抽出した気道の STL データ。上段:術前,下段:術後

図 2 気道メッシュモデル(側方面観)(症例 1)
 6 面体を主とした非構造メッシュを用いて作成した気道メッシュ
 モデル。

図3 気道断面積の計測部位(症例1)

1は両鼻合流部,2は口蓋咽頭の上端,4は軟口蓋の最下点,3 を境界断面2と4の中間点,6は喉頭蓋の上端,5を境界断面4 と6の中間点を設定した。

図4 術前後の気道断面積 1は両鼻合流部,2は口蓋咽頭の上端,4は軟口蓋の最下点,3 を境界断面2と4の中間点,6は喉頭蓋の上端,5を境界断面4 と6の中間点を示す。

* p < 0.05, ** p < 0.01

図 5 術前後の気流速度の分布 (症例 1)

左:術前,右:術後

図6 術前後の気流速度

術前後の変化率は-31.58であった。

図7 術前後の静圧分布 (症例1)

左:術前,右:術後

図8 術前後の静圧力

術前後の変化率は-0.007であった。

図9 術前後の全圧分布(症例1)

左:術前,右:術後

図10 術前後の全圧力

術前後の変化率は-0.009であった。