Normal reference values for left atrial strains and strain
rates in school children assessed using two-dimensional
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Abstract

Left atrium (LA) function is a known predictive marker of heart failure in adults. Few reports of LA function analyses using
LA strain (¢) and strain rate (SR) measurements in children exist. Thus, this study aimed to determine normal reference values
for LA ¢ and SR in healthy school children and to investigate methods of interpreting LA function data based on maturational
changes using two-dimensional speckle-tracking echocardiography (2DSTE). We recruited 112 healthy school children
(median age 12.0 years; range 6—16 years). LA ¢ and SR were investigated using 2DSTE multi-vendor analysis software
(TomTec Imaging Systems, Germany) and compared to Doppler parameters and LA volumes measured by the conventional
method. The onset of the P wave was selected as the reference point for the LA ¢ analysis. Normal ranges of LA ¢ [reservoir
(¢RS), conduit (¢CD), or contractile (¢CT)] and positive SR (SRpq), early negative SR (SRgy), and late negative SR (SR; )
were obtained using Z-score models via the lambda-mu-sigma method. According to the Z-score curves, all £ showed slight
falling or continuous flat lines against age, body surface area (BSA), or heart rate (HR); however, £ CT showed modestly
positive associations with HR. As for SR, the Z-score curves showed falling lines against age and BSA. In contrast, Z-score
curves for SRgy and SRy showed rising lines against HR. SRy was independent of E/e’ and was negatively correlated with
LA volume indexed against BSA. This study demonstrated the normal reference values for LA ¢ and SR using 2DSTE in
school children. The present results recommended that LA ¢ should be evaluated together with changes in LA SR for accurate
assessment, considering maturational changes including age, BSA, and HR in school children.

Keywords Left atrial function - Left atrial strain - Left atrial strain rate - Left atrial volume - Two-dimensional speckle-
tracking echocardiography

Introduction

The left atrium (LA) plays an important role in the left ven-
tricle (LV) performance throughout the cardiac cycle. The
LA works as a reservoir during ventricular systole and iso-
volumic relaxation, a conduit that manages flow from the
pulmonary veins to the ventricle during early diastole, and
has an active role in the cardiac cycle by contracting dur-
ing late diastole (Fig. 1). Doppler echocardiographic indices
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(trans-mitral LV inflow velocities and tissue Doppler mitral
annular velocities) are well-known and useful parameters for
grading diastolic dysfunction. Recently, several reports have
demonstrated that three-dimensional speckle-tracking echo-
cardiography (3DSTE) can derive complicated LA geometry
precisely and reproducibly [1, 2]. The normal values and
maturational changes using 3DSTE have been reported pre-
viously [1]. Even if 3DSTE becomes popular for LA analy-
sis, the clinical practicality of two-dimensional speckle-
tracking echocardiography (2DSTE) remains unchanged.
Computed tomography (CT) and magnetic resonance imag-
ing (MRI) are also able to measure LA function; however,
they are limited by their temporal resolution [3]. Because
2DSTE is easy to perform during a short period of time
and has a good temporal resolution, it could be appropriate
for pediatric analyses. LA strain (¢) using 2DSTE has been
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Fig. 1 Schematic representa-
tion of LA functions during

the cardiac cycle. a ECG. b
Transmitral Doppler flow veloc-
ity profiles. ¢ LA strain curve.
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reported to be a predictive marker of cardiac events with
good reproducibility [4—7]. Many validated studies reported
that LA £ showed sensitive changes in LV diastolic dysfunc-
tion preceding LA volume enlargement [4-6]. LA remod-
eling due to atrial fibrillation causes changes in LV compli-
ance [8] and LA ¢ [2]. In addition, its capacity to screen LA
thrombus has been recently reported [7].

Currently, normal reference values for the three com-
ponents of LA function have been demonstrated in adults
[9-12]. However, this method has not yet been validated in
children, and the volume of data are inadequate to determine
the normal range of the LA ¢ and strain rate (SR). Moreover,
whether LA function assessed by 2DSTE can be applied to
children as well as adults because its interpretation depends
on age, body surface area (BSA) or heart rate is unclear [13].
Thus, this study aimed (1) to report the normal reference
values for LA £ and SR in healthy school children and (2) to
investigate methods of interpreting LA functions according
to maturational changes using 2DSTE.

Materials and methods

Subjects

This was a cross-sectional single-center trial conducted from
May 2016 to December 2017. We recruited 153 patients (age

range 6—16 years) who were screened for heart murmur, non-
specific chest pain, and palpitation. They were investigated if
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their medical history and physical examination results indi-
cated that they were free of cardiac disease. We excluded 13
patients (8.4%) who were found to have heart disease (n="7)
or abnormal ECGs (n=6) after cardiac screenings. The
data of the remaining 140 patients with normal echocardio-
graphic findings were included. Demographic and echocar-
diographic parameters were collected. Blood pressure was
measured in the supine position at the beginning of the echo-
cardiography. BSA was calculated using the DuBois formula
[14]. The research protocol was approved by our institutional
ethics committee, and the requirement for informed consent
was waived on the condition that the project opt-out was
disclosed on the internet (RK-171212-07).

Echocardiography

Studies were performed using Artida (CANON Medical Sys-
tems, Tochigi, Japan) at high frame rates (mean 93.5+21
frames/s) using a 2.5-5 MHz transducer. All 2D data sets
were able to be obtained without sedation. Left ventricular
(LV) ejection fraction (LVEF) was calculated in the apical
four-chamber view using the biplane modified Simpson’s
method and the diameter of the LV outflow tract (LVOT)
was measured in the parasternal long-axis view in mid-sys-
tole. In the apical four-chamber view, peak E (early diastolic
filling) and A (late diastolic filling) wave velocities were
recorded from the LV inflow waveforms obtained during
pulsed-Doppler echocardiography. Tissue Doppler imaging
was used to measure the lateral mitral annular velocity (E").
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The mitral annular plane systolic excursion (MAPSE) was
extracted from the lateral mitral annulus by M mode echo-
cardiography in the same view. Pulsed-Doppler interrogation
of time-velocity integrals (VTI) in the LVOT was manipu-
lated while maintaining the beam axis at an angle that was
as close as possible to parallel with the LVOT flow in the
apical five-chamber view. Stroke volume (SV) was estimated
using the following formula [15]:

SV = Cross-sectional area of the LVOT (cm?) x LVOT VTI (cm)

LA volumes were measured using the biplane-area-length
method. Maximum LA volume (LAV max) and minimum
LA volume (LAV min) were calculated in the apical four-
and two-chamber views at ventricular end-systole and end-
diastole, respectively [16]. These values were corrected
according to each patient’s BSA [left atrial volume index
(LAVI max) and minimum left atrial volume index (LAVI
min)].

All Doppler measurements were averaged over three con-
secutive cardiac cycles to account for respiratory variation
in accordance with the ASE guidelines [17].

Echocardiographicimaging and 2DSTE analysis

Two-dimensional image clips of five consecutive cardiac
cycles (as raw data) obtained from the apical four-chamber
view were acquired in the Digital Imaging and Communica-
tions in Medicine format for further analysis. The following
precautions were taken to acquire good LA images: (1) to
ensure inclusion of the LA wall, the image was obtained in
the left lateral recumbent position; (2) to optimize endocar-
dial definition, the gain was set at a slightly higher level;
(3) to maintain an identical frame rate and heart rate (HR),
the depth and sector size were controlled, thus reducing the
amount of information that needed to be processed. As for
those children who were able to hold their breath, images
were acquired during the end-expiratory phase with hold-
ing breath. LA & and SR were analyzed offline using 2D
software (2D Cardiac Performance Analysis, TomTec Imag-
ing system, Munich, Germany). The LA was visualized as
shown in Fig. 2a. Three points (septal and lateral corners
of the mitral annulus and LA roof) were plotted manually
using a point-and-click technique followed by automatic
tracing of the endocardial LA borders. The epicardial line
was the region of interest which was divided into three
regions as follows: lateral wall, medial wall, and roof. The
atrial appendage and pulmonary veins were excluded from
the LA cavity. The image quality was visually checked using
animation. We excluded the subjects if we could not track all
segments, and we modified the method to retrace any seg-
ments not tracked in any part of the endocardial LA wall to
obtain good images. The global longitudinal LA & curve was

displayed, which was set to start at the beginning of the QRS
wave by default. The most suitable cardiac cycle was chosen
for analysis and was set to change the reference point of the
trigger as the P wave (Fig. 2b). Based on the LA volume
curve which was derived simultaneously, the marker of end-
systole (eS) was moved to the maximum LA cavity and the
marker of end-diastole (eD) was shifted to the beginning of
the P wave on the ECG. Because the P trigger was adopted
as the calculation for LA ¢, asymmetric sinusoidal curves
with two peaks were recorded. The first negative peak and
the second positive peak were measured as the contractile
¢ (& CT: atrial contraction) and conduit £ (¢ CD: LV fill-
ing), respectively. The reservoir € (¢ RS) was calculated as
the sum of these two strains. Each of the three segments
and an average of these SR curves were measured at the
same time (Fig. 2c). SR in late diastole (SR y), ventricular
systole (SRpg), and early diastole (SRpy) were measured
along the average SR curve as the parameters of contractile,
reservoir, and conduit function, respectively. Three consecu-
tive cardiac cycles were analyzed in each data set, and the
mean of these measurements was used for further analysis
to minimize random error.

Intraobserver and interobserver variability

The intraobserver agreements, interobserver agreements,
and test-retest variability were assessed using intraclass
correlation coefficients (ICC) in 20 randomly selected sub-
jects. The parameters of LA volume, LA ¢, and SR were
re-measured by the same observer over 1 month after the
initial evaluation and a second observer performed the same
measurements on separate occasions without knowledge of
the results of the first observer. To determine test—retest vari-
ability, 2D data sets acquired by the same methodology were
reanalyzed 1 h after the initial study.

Statistical analysis

All continuous data are presented as means =+ standard
deviations (SD) or as median with interquartile ranges if
it shows skewed distribution. The categorical variables are
expressed in percentages. The Kolmogorov—Smirnov test
was used to check the normal distribution of the variables.
Normally distributed continuous data were compared with
the unpaired Student’s ¢ test and the continuous data with
skewed distribution were assessed by Mann—Whitney U test
for statistical significance. To compare the LA strains and
the pulsed-Doppler echocardiographic indices or LA vol-
umes, Pearson’s correlation coefficient was used for data
with normal distributions and Spearman’s correlation coef-
ficient was used for data with skewed distributions.
Comparisons of clinical characteristics and echocardio-
graphic parameters, along with LA & and SR among the
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Fig.2 LA functional analysis using the 2D speckle tracking method
obtained from an apical four-chamber view. a Two-dimensional
images obtained from the apical four-chamber view were acquired for
analysis. Three points (septal and lateral corners of the mitral annu-
lus and LA roof) were plotted manually using a point-and-click tech-
nique followed by automatic tracing of the endocardial LA borders.
The epicardial line was created as the region of interest which was
divided into the following regions: lateral wall, medial wall, and roof.

three age groups, were analyzed using a one-way analy-
sis of variance (ANOVA) for normally distributed data or
Kruskal-Wallis test for data with skewed distribution. In
this study, the lambda-mu-sigma (LMS) method was used
for the description of pediatric anthropometric data, allow-
ing the calculation of percentiles and accurately normal-
ized Z-scores and accounting for nonlinearity and a skewed
distribution of reference data sets [18]. The LMS method
describes the distribution of the measurement Y by its
median (M), the coefficient of variation (§), and a measure
of skewness (L) required to transform the data to normality,
and the Z-score is calculated as follows:

Z-score = {[Y/M®IL{®) — 1} /IL{) X S(1)].
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(b, Top) the LA global strain (yellow line) curve. (b, Bottom) the LA
volume curve (red line). To match the phase of the cardiac cycle, the
end systole line was fixed to the maximum LA volume along the LA
volume curve. The end diastole line was set to the beginning of the P
wave as P trigger. The blue line shows the derived LA volume with
respect to time. ¢ The strain rate (SR) for each segment was obtained.
The longitudinal average strain rate is shown on the white line

In this equation, Y is the individual LA strain measure-
ment, and L, M, and S originate from the specific reference
values for age, BSA, and HR (7), respectively. We describe
the Z-score curves for each LA strain with lines indicating
the — 2.5, — 2.0, — 1.0, 0, 1.0, 2.0, and 2.5 SD boundaries
(corresponding to the 0.6, 2.3, 15.9, 50.0, 84.1, 97.7, and
99.4 percentiles, respectively). Detailed methods for devel-
oping the LMS models were previously reported [19]. The
model with the lowest Akaike information criterion value
was selected as the best model. Data analyses and calcu-
lations were performed using commercially available soft-
ware, EZR (Saitama Medical Center, Jichi Medical Uni-
versity, Saitama, Japan) [20] and R version 3.4.0 (The R
Foundation for Statistical Computing Vienna, Austria). A p
value < 0.05 was considered statistically significant.
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Table 1 Clinical and echocardiographic characteristics of the study

populations (n=112)

Variables Value

Age (years) 13 [10-14]
Male (%) 52 (46.4)
Height (cm) 153.9 [140.2-162.4]
BW (kg) 425+12.7
BSA (m?) 1.3+0.3
HR (beats/min) 69.0+11.8
Systolic BP (mmHg) 107.6+10.2
Diastolic BP (mmHg) 61.2+7.8
LVEF (%) 79.0+5.3
Mitral E/A 1.8+0.4
Mitral E/e' 57+13
MAPSE (mm) 16.1+2.4
SVI (ml/m?) 43.8+8.1
LAVI max (ml /m?) 254439
LAVI min (ml/ m?) 9.8+2.6

Data are expressed as mean+SD, median [interquartile range] or n

(%)

BSA body surface area, BP blood pressure, HR heart rate, LAVI max
maximum left atrial volume indexed to BSA, LAVI min minimum left
atrial volume indexed to BSA, LVEF Left ventricular ejection frac-
tion, MAPSE mitral annular plane systolic excursion, SVI stroke vol-

ume indexed to BSA

Results

LA ¢ and SR measurements were obtained from 140
patients; however, measurements of 28 patients were elimi-
nated due to poor echocardiographic image quality. The final
study population included 112 patients (median 12.0 years,
range 6-16 years). Their demographic and echocardio-
graphic data are shown in Tables 1, 2 and 3. There were no
sex-specific differences in age, BSA, HR, LA ¢, or LA SR.

Table 4 summarizes the correlations between each strain
parameters and pulsed-Doppler indices or LA volumes.
Among the pulsed-Doppler index results, the E/A ratio
showed that a modest negative correlation with SRy . E/e’
was negatively correlated with £ RS and € CD. No signifi-
cant association was observed between E/e’ and the three
SR. MAPSE was positively correlated with € RS, ¢ CD, and
SRpos respectively (p <0.01, r=0.36, 0.36, 0.32, respec-
tively). SRy was modestly correlated with the stroke vol-
ume index (SVI) and LAVI max or LAVI min (p=0.02,
r=—0.21, - 0.22, — 0.22, respectively). SR; 5y was modestly
correlated with the LAVI min (p <0.01, r=—0.24).

The Z-score curves are shown in Fig. 3. With increasing
age and BSA, the three £ showed slightly falling lines or flat
lines. The three SR also showed a negative correlation with
these parameters, and these slopes were steeper than those of

Table 2 Clinical characteristics and reference value of echocardiographic parameters by age groups

Variables Age P value
6-9 years (n=25: M13/F12) 10-12 years (n=28: M14/F14) 13-16 years (n=59: M25/F34)
Age (years) 87, 8] 12 [11, 12] 14 [13, 14] <0.01*
Height (cm) 126.1 [121.0-134.6] 151.0 [145.2-154.3] 161.0 [156.1-166.6] <0.01*
BW (kg) 26.1+6.0 40.5+8.4 50.3+9.0 <0.01%*
BSA (m?) 0.96+0.1 1.3+0.2 1.51+0.1 <0.01%*
HR (beats/min) 77.4+10.7 72.5+124 63.7+9.0 <0.01*
Systolic BP (mmHg) 101.7+9.3 107.2+10.1 110.4+9.6 <0.01%*
Diastolic BP (mmHg) 57.8+7.1 62.3+7.4 62.2+7.9 0.04*
LVEF (%) 79.3+£5.3 782+5.8 79.2+5.1 0.67
Mitral E/A 1.7+0.4 1.7+04 1.9+04 0.25
Mitral E/e’ 59+1.7 5.6+1.3 5.8+1.1 0.61
SVI (ml/ m?) 40.4+6.8 444+84 449+8.2 0.06
MAPSE (mm) 14.8+2.5 16.4+2.4 16.5+2.2 <0.01*
LAVI max (ml/m?) 22.5+4.6 259435 26.4+3.2 <0.01*
LAVI min Total (ml/ m?)  8.5+2.1 104+3.0 10.1+2.5 0.02%

BSA body surface area, BP blood pressure, F female, HR heart rate, LAVI max maximum left atrial volume indexed to BSA, LAVI min minimum
left atrial volume indexed to BSA, LVEF left ventricular ejection fraction, M male, MAPSE mitral annular plane systolic excursion, SVI stroke

volume indexed to BSA

*Statistically difference among groups. Data are expressed as mean + SD or median [interquartile range]
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Table 3 Reference value of LA & and SR parameters by age groups

Variables Age P value
6-9 years (n=25: M13/F12) 10-12 years (n=28: M14/F14) 13-16 years (n=59: M25/F34)
eRS (%) 345+78 345+8.6 31.3+£7.5 0.10
£CD (%) 26.0+7.6 26.0+£9.0 237+7.1 0.31
eCT (%) -8.6+29 —-85+28 —-7.6+26 0.19
SRpps (S7H 13403 12+0.3 1.1+03 0.03*
SRpy (S7H - 1.7£05 -13+£04 -1.2+£03 <0.01%*
SRy (S7H —0.7[- 0.8 to - 0.6] —-0.5[-0.6t0—04] —-0.5[-0.6t0—0.4] <0.01%*

& CD conduit strain, ¢ CT contractile strain, £ RS reservoir strain, F' female, M male, SRy early negative strain rate, SR,y late negative strain

rate, SRp(g positive strain rate

“Statistically significance among groups. Data are expressed as mean + SD or median [interquartile range]

Table 4 Correlations of LA strains (¢) and strain rate (SR) with Doppler echocardiographic indices and LA volumes

LA & r(p) SR: r (p)

eRS eCD eCT SRpos SRen SR x
E/A 0.08 (0.43) 0.07 (0.42) 0(0.98) 0.13 (0.19) 0.03 (0.76) —0.2(0.04) *
Ele' —0.21 (0.03)* —0.20 (0.03)* —0.02 (0.82) 0.02 (0.82) —0.01(0.9) —0.13(0.19)
SVI —0.06 (0.55) —0.06 (0.56) 0(0.94) —0.17 (0.07) —0.21(0.02) * —0.14 (0.15)
MAPSE 0.36 (<0.01)* 0.36 (<0.01)* 0.01 (0.94) 0.32 (<0.01)* —0.09 (0.36) —0.07 (0.48)
LAVI max —0.03 (0.72) —0.07 (0.50) 0.08 (0.38) 0 (0.98) -0.22 (0.02) * —0.04 (0.66)
LAVI min —0.13(0.16) —0.1(0.28) —0.1(0.3) —0.18 (0.06) —0.22 (0.02)* —0.24 (<0.01) *

Pearson’s correlation coefficient or spearman’s rank correlation coefficient *Statistically different

£ CD, £ CT, and SR; y are expressed as absolute values

LAVI max maximum left atrial volume indexed to BSA, LAVI min minimum left atrial volume indexed to BSA, MAPSE mitral annular plane sys-

tolic excursion, SVI stroke volume indexed to BSA

&. In the part of higher HR, SRy and SR, \ were more likely
to have higher values. The £ CT showed the same tendency.
However, € RS, € CD, and SRpog were less affected by the
change in HR.

The reproducibility of LA volume, LA strains, and SR
is shown in Table 5. All parameters showed good favorable
agreement; however, the LAV min had the lowest interob-
server variability.

Discussion

In this study, we demonstrated the normal reference values
for LA £ and SR in healthy school children using vendor-
independent 2DSTE software (TomTec), which was devel-
oped for the LA analysis in this study. To the best of our
knowledge, no previously published data exist on the normal
reference values of the three components of LA ¢ and SR
using Z-score models in this age range.

@ Springer

Previous studies

To date, there have been three published reports about
the normal range of LA ¢ and SR in children [1, 13, 21].
According to these works, ¢ RS was affected by age; one
study reported that LA ¢ increased with age [21] and the
other showed controversial results [1]. This might have been
caused by differences in the modality or LA analysis soft-
ware, which is still an issue when interpreting LA ¢ and SR.
In this study, we could show that €RS did not increase with
age and that it decreased slightly in this cohort using 2D
vendor-independent software. Moreover, there seemed to be
a drastic change of LA ¢ and SR at the younger age group
especially in children below 5 years old [13]. Even if HR
variability was reported to affect LA ¢ and SR, it is unknown
whether this trend could be explained only by the matura-
tional change. For these reasons, we excluded the younger
age group (younger than 5 years) including neonates from
this study because of the difficulty in obtaining good images
for analysis and because fluctuation may occur even without
sedation.
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Fig.3 Z-score curves of the LA & and SR using the LMS models strain and SR with lines indicate the — 2.5, — 2.0, — 1.0, 0, 1.0, 2.0,
based on age, BSA, and HR. BSA body surface area, HR heart rate, and 2.5 standard deviation (SD) boundaries, respectively
LA left atrium, LMS lambda-mu-sigma. Z-score curves for each LA
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Table 5 Intraclass correlation

g Variable Intraobserver Interobserver Test—retest

coefficients of the LA volume,

LA strain (¢), and LA strain ICC 95% CL ICC 95% CL ICC 95% CL

rate (SR)
LAV max 0.969 0.926-0.988 0.900 0.765-0.959 0.952 0.856-0.985
LAV min 0.889 0.746-0.954 0.711 0.406-0.874 0.741 0.361-0.912
¢RS 0.921 0.771-0.975 0.869 0.626-0.958 0.937 0.814-0.98
eCD 0.882 0.671-0.962 0.834 0.538-0.946 0.898 0.709-0.967
eCT 0.849 0.589-0.951 0.797 0.454-0.934 0.84 0.571-0.948
SRpos 0.917 0.759-0.974 0.832 0.55-0.945 0.870 0.625-0.956
SRex 0.899 0.713-0.968 0.791 0.456-0.931 0.879 0.661-0.961
SR x 0.848 0.588-0.951 0.809 0.483-0.938 0.804 0.49-0.935

CL confidence limits, € CD conduit strain, £ CT contractile strain, £ RS reservoir strain, /CC intraclass cor-
relation coefficients, LAV max maximum left atrial volume, LAV min minimum left atrial volume, SRy
early negative strain rate, SR, late negative strain rate, SR ¢ positive strain rate

There were several matters of concern about the LA £ and
SR measurements, and LA ¢ was reported as a useful param-
eter when evaluating cardiac dysfunction in children with
atrial septal defect [22], valve aortic stenosis [23], Kawasaki
disease [24], and diseases that cause LA enlargement [25].
Even in complex heart structures, strains have been reported
as a sensitive marker of single ventricle function after the
Fontan procedure during follow-up [26, 27]. Additionally,
the possibility of their clinical applicability for monitoring
the health of obese children [28] and athletes [29] has been
reported. Our study showed that SR had a better tempo-
ral resolution than &. Furthermore, ¢ has been reported that
to respond to loading conditions to some extent [30, 31];
however, it would be useful to evaluate the deformation of
the myocardium in the age group in which HR could be
kept constant. On the contrary, our study might suggest that
SR would be a suitable parameter for the assessment of the
younger age group which would show a higher HR with
great maturational changes. To apply the LA mechanics of
children in clinical use, continuous assessments of LA ¢ and
LA SR are crucial. The three SR segments were not vali-
dated in this study; however, their values may enable a better
understanding of the adaptation of LA function [32]. Future
studies are needed to evaluate these parameters in detail.

There are many reports on the measurement of the phasic
LA volume curve using the 2DSTE method [33—-37]. Nota-
bly, it enabled the volume-based assessment of LA func-
tion, which correlated with the conventional Doppler param-
eters, & and SR in the same phases of the cardiac cycle.
A good correlation was found between the data obtained
by 2DSTE and manual trace [33, 36]; however, LA volume
derived from 2DSTE has been reported to be greater than
that derived from the biplane area-length method because of
the extra inclusion of entry sites of pulmonary veins as a part
of the left atrium [37]. Therefore, LA volume was assessed
by the biplane area-length method in our study, according
to the ASE guidelines [16].
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Parameters affected by LA ¢ and SR

The LA ¢ and SR cannot be discussed without considera-
tion of the maturational changes of the LA myocardium. A
matter of concern is what factor is most affected by LA ¢ or
SR. All £ and SR in this population showed less influence on
age. As for BSA, the Z-score curves of three LA & showed
weak downward slopes with leveling off. These trends were
similar to those of age, while SRy and SR \ were decreased
with increasing BSA, and this finding may suggest that SR
would have a tendency to be influenced by HR. In this study,
we were able to evaluate the effects of HR on LA ¢ and SR
in the groups which were expected to have relatively small
fluctuations with age and BSA. SRpq and all LA &, except
& CT were less influenced by HR. In contrast, SRy and
SR  significantly increased with increased HR. The reason
why ¢ CT, SRy, and SR,  were influenced by HR was that
these parameters reflected mainly in diastole and tachycardia
would shorten the cardiac cycles more in diastole than in
systole. Careful interpretation of SR values considering HR
is needed in further study. Although healthy school children
were recruited for our study, we should consider afterload
and preload, which are affected by volume status in addi-
tion to maturational changes when evaluated in children with
heart disease. According to a previous study that reported
the cut-off value for discriminating healthy children from
those with juvenile cardiomyopathies, eRS >40.4% (sensi-
tivity, 98%; specificity, 99%) and SRPOS >1.39 57! (sensitiv-
ity, 88%; specificity, 90%) were optimal [38]. Maturational
factors were not considered throughout that study; however,
both values were between Z+0 and Z+ 1.0 in our study.
Further studies are needed to determine the cutoff on this
Z score curve.
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Application of LA analysis

A consensus is lacking regarding if a practical algorithm
for grading diastolic function in adults could be applied to
children with congenital and acquired heart disease [39].
Some validated reports, which organized the pulsed-Doppler
and tissue Doppler velocities in children are useful [39-41];
however, these have limitations regarding angle and volume
dependence. Moreover, the correlation between LVEDP
and these parameters are reportedly weak [42] and its ten-
dency is more remarkable in LV systolic dysfunction [43],
because they are easily affected by LV motion. Therefore,
many researchers have been seeking the optimal parameters
to improve the diagnostic accuracy of the diastolic dysfunc-
tion in children [25, 44]. 2DSTE could be one of the diag-
nostic tools for assessing LA phasic function although many
potential confounders like age, BSA, or HR are unavoidable
with pediatric echocardiography. We hope that this method
would facilitate the assessment of diastolic function in the
pediatric field, which may lead to favorable management of
heart disease in the future by combining it with conventional
pulse-Doppler parameters.

Two issues should be discussed for the application of LA
analysis in children. First, the zero-reference point in the
LA analysis can be determined in two ways. In our study,
we selected the P wave as a reference point because the &
CT was derived more clearly with the P trigger compared to
the R trigger. Some authors have indicated that the P trigger
is more suitable than the R trigger when analyzing the LA
strain because the R wave peak represents the electrical sig-
nal associated with LV contraction, which is not the same as
the point at which minimum LA volume should be measured
[45]. This gap might affect children more because of their
relatively higher HR. Second, there is still no consensus as
to whether 2D or 3D should be chosen for the LA analysis.
The analyses using 3DSTE obtain full volumes of images
precisely, rapidly, and with good reproducibility compared
to 2DSTE [2]. Moreover, its characteristics make it possi-
ble to evaluate not only the longitudinal strain but also the
circumferential strain [1, 2]. On the contrary, the strength of
2DSTE is its high temporal resolution, which could allow for
the analysis of rapid events, such as the isovolumic phases
and diastole when evaluating children with tachycardia [10].
Practically, the 2D analysis does not require short periods of
breath-holding to obtain adequate images, which is some-
times a challenge for children when taking 3D images.

Modelling of child growth data

In our study, we chose the LMS method to derive the Z-score
curve of LA £ and SR in children. This method has become
standard for the modeling of child growth data [46] and
has been adopted by the Centers for Disease Control and

Prevention (CDC) for assessing growth. Until now, growth
charts were established based on the cross-sectional data;
however, the LMS method can be transformed to normal-
ize the actual resource using Box—Cox power, and it avoids
bias by regression to the mean. We searched for and finally
selected the minimum Akaike information criterion for each
model to avoid overfitting models in this study. Generally,
the statistical power relies on the sample size, and the LMS
method is not an exception to this rule. Recently, the Gauss-
ian process regression (GPR) method has been reported to
detect Z-scores with good accuracy compared to the LMS
method in children [47]. In future studies, GPR with a suffi-
cient population larger than the one used for this study needs
to be investigated to determine a better prediction model.

Study limitations

We acknowledge the limitations of our study. First, there
was a relatively small number of participants, and only
those of certain ages were involved in the study. This might
have influenced the correlations between age, BSA, and
HR and LA ¢ or SR. We intended to recruit sufficient sam-
ple sizes for each age range based on the study design to
derive the Z-score curve; however, many images had to be
omitted from the study because of low image quality and
insufficient information regarding the echocardiographic
Doppler parameters. This was a retrospective single-center
study; therefore, sampling bias might have been introduced.
Moreover, we recognized that we should establish the nor-
mal value of the younger age group in a future study, as this
was not determined in this study. Second, there were actu-
ally a few subjects of the younger age group whose image
acquisition could not be performed during the end-expira-
tory phase. Both LA £ and SR can be affected by respiration
with increased LA volume during inspiration, secondary
to negative intrathoracic pressure. As respiration influ-
ences preload for the left atrium, average data were used for
analysis; however, the variation related to respiratory cycles
was inevitable. Third, the 2DSTE method generally requires
appropriate machine settings to obtain the desirable qual-
ity of the 2D images based on frame rate, grayscale, depth
of field, the region of interest, and timing of initial onset
(P wave or QRS wave). Although difficulties with machine
settings cause limitations in normal reference value compari-
sons, the analysis of LA functions using 2DSTE is expected
to promote a better understanding of LA mechanics. This
is the first study to use vendor-independent 2D software to
determine the normal range of strain and SR in the LA of
young children. Therefore, we expect that the results could
help echocardiography experts working in various centers
to validate their data.

@ Springer
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Conclusion

We provided normal reference values for the three compo-
nents for LA ¢ and SR in children using a Z-score model
derived by the LMS method. The measurements of LA ¢
and SR using the 2DSTE method were easy to perform with
good reproducibility. There were small maturational changes
in LA ¢ that were probably clinically irrelevant. However,
the LA SR should be evaluated together with changes in LA
¢ for precise evaluation of LA dysfunction, in consideration
of maturational changes including age, BSA, and HR. Future
studies will need to collect data from a greater number of
healthy children and adolescents for clinical use.
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Normal reference values for left atrial strains and strain rates in school children

assessed using two-dimensional speckle-tracking echocardiography
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