非光合成細菌が保有する

光応答性転写調節蛋白質に関する研究

日本大学大学院生物資源科学研究科応用生命科学専攻 博士後期課程

角悟

2018

目次

緒言1
第1章 経緯と目的 3
第1節 細菌で発見された真核生物型光センサー
第2節 非光合成細菌に特有の光センサーLitR/CarH7
第3節 非B ₁₂ 型 LitR の光応答15
第 4 節 <i>Burkholderia</i> 属細菌19
第 5 節 研究の目的22
第2章 材料と方法
第3章 結果と考察
第1節 光応答性転写調節蛋白質の多様性に関する解析52
第1項 光応答性転写調節蛋白質の分子系統解析52
第2項 RNA seq による光応答性細菌のトランスクリプトーム解析74
第3項小括131
第2節 クラス Ⅲ LitR における光誘導性遺伝子の役割の検証132
第1項 光誘導性遺伝子の転写解析132
第 2 項 光誘導性遺伝子のプロモーター構造に関する解析149

	第 3	項	葉酸合成の光促進1	162
	第 4	項	小括1	175
第	3節	ク	′ ラス Ⅲ LitR の機能の検証1	176
	第 1	項	光サイクル反応の観測1	176
	第 2	項	光感知ドメインの分子構造1	192
	第 3	項	小括2	220
第 4	章	総括	舌	221
参考	文献			224
謝辞				239

緒言

光は地球上の生物の生命活動に欠かせない環境因子の一つである。植物を はじめとする光合成生物は光を利用してグルコースなどの生命活動のエネル ギー源を産生し、それを動物などの従属栄養生物が栄養分として要求する。 また、動物は視覚によって光を情報として処理し、それに準じた運動ができ る。このような高等生物の光センシングメカニズムの解析は進められてきた。 一方、我々の肉眼では見えないような微生物においても高等生物が有するも のに類似する光センサー蛋白質が分布しており、同様に光に応答するシステ ムを有していることが明らかにされている。例えば、光回復酵素-クリプトク ロームファミリーは、はじめバクテリアの光依存的な DNA 修復酵素として 発見されたが、動物・植物では概日リズムに関与する時計遺伝子の一部とし て機能することが明らかになっている。このように、ほとんどの光センサー は生物界に広く分布し、その生命活動に重要な役割を果たしている。さらに、 ロドプシンがオプトジェネティクス技術として応用利用されることから、光 応答メカニズムの研究は基礎と応用面においても重要である。

LitR/CarH ファミリーは、ビタミン B₁₂ をクロモフォアとするバクテリア に特有の光センサーである。当初、放線菌 Streptomyces coelicolor A3(2)の 光依存的なカロテノイド (Crt) 生産を制御する蛋白質として同定され、その 後の研究で様々な非光合成細菌における Crt 生産の光誘導に関与することが 明らかになった。興味深いことに、この類似蛋白質は一部の非光合成細菌群 にしか分布していない。さらに、その光感知ドメインは多様であり、その領 域の推定機能が未知であることから新しい光センシングメカニズムの存在を 示唆している。

本研究は、非光合成細菌が保有する光応答性転写調節蛋白質の多様性に関 する解析をしたうえで、新規な光応答メカニズムを解明することを目的とし た。本論文の第1章では細菌における光応答メカニズムに関する知見を中心 に概説し、第3章第1節ではLitRファミリーなどの光センサー蛋白質の分 類とそれらを保有する細菌群のトランスクリプトーム解析の結果を記述した。 その結果を踏まえ、クラス III LitR を保有するグラム陰性の土壤細菌 Burkholderia multivorans を分子生物学的なモデルに選定し、本菌を対象とし て実施した遺伝生化学的研究の成果と考察を第3章第2節以降に記述した。

第1章 経緯と目的

第1節 細菌で発見された真核生物型光センサー

光は、多くの生物の生命活動に重要な役割を果たしている。植物や光合成 細菌のような光合成能を持つ生物は光エネルギーを得ることにより生命を維 持できる。また、動物は、眼で可視光を受容することにより周囲の情報を得 ることができ、それに準じた行動をとることができる。一方、太陽光に含ま れる紫外線はピリミジンダイマーを生じさせることによる DNA 損傷を引き 起こし、変異した細胞を生じさせる。また、細胞内のフラビンやポルフィリ ンなどの光増感作用を持つ物質が光照射によって活性酸素の一種である一重 項酸素を発生させる¹。それは、蛋白質や脂質、核酸のような高分子化合物を 破壊し、細胞に対してダメージを与える。動物や植物ではメラニンやカロテ ノイドなど色素を生産してその酸化ストレスに対抗していることが考えられ る。

光受容に関する分子生物学的検討は、真核生物や光合成細菌の光センサー 分子の解析を中心に進められてきた。植物などが行う光合成にはクロロフィ ル分子が、動物の視覚にはロドプシンが光受容に重要な役割を果たすことが 明らかになっている。光合成を行うバクテリア *Rhodobacter spaheroides* で は、LOV (light-oxygen-volatge) 型光センサーPpsR と BLUF (blue-light) sensing using flavin)型光センサーAppA によって光合成に関与する遺伝子 群やカロテノイド合成遺伝子群の転写調節を担うことが明らかされてきた ^{2,3}。また、大腸菌や放線菌などで発見された光回復酵素は光エネルギーを利 用して DNA 損傷を修復する機能を持つが、それに類似の蛋白質クリプトク ロームは動物や植物などの概日リズムに関与することが知られている 4。 さらに、一部の細菌は真核生物で発見された光センサーを有しており、そ れを介した光応答を示すことが明らかになりつつある。これまでにバクテリ アで特定された光センサーには6つのタイプがある5(図 1-1)。バクテリオ ロドプシンは、海洋性細菌やアーキアで発見された動物の視覚を司るロドプ シンに類似な蛋白質であり、光依存的なプロトンポンプとして機能する。赤 色光センサー蛋白質フィトクロムや青色光受容体 LOV、BLUF は植物で発見 された光センサーであるが、それらは様々なバクテリアの光誘導的な色素生 産や形態変化、走光性などに関与することが明らかにされている。多くの光 センサー蛋白質は生物ドメインを超えて分布し、それに従った光応答を示す ことが明らかになっている。一方、一部の非光合成細菌で見出された光セン サーLitR (Light-induced transcription, Regulator) は、光合成細菌や真核生物

に認められない独自のものであることが明らかになりつつある。

図 1-1 バクテリアで発見された光センサー

第2節 非光合成細菌に特有の光センサーLitR/CarH

LitR/CarHは、放線菌 Streptomyces coelicolor A3(2)⁶や好熱性細菌 Thermus thermophilus⁷、グラム陽性の土壌細菌 Bacillus megaterium⁸、グラム陰性の 粘性細菌 Myxococcus xanthus⁹における黄色色素カロテノイド(Crt)生産の 光誘導に関与する MerR型の転写調節因子である。本蛋白質は N 末端領域に DNA 結合ドメインを、C 末端領域に B₁₂結合ドメインを保有し、光依存的な Crt 生産の調節に重要な役割を担う。その生理学的な意義は、Crt の抗酸化作 用による光酸化ストレスへの防御^{10,11}と暗条件でその生産を抑制することに よるエネルギーの節約であることが考えられる。

生化学的および構造学的な解析により LitR は B₁₂(アデノシル B₁₂: AdoB₁₂) をクロモフォアとする新規な光センサーであることが明らかになった^{8,9,12} (図 1-2 および 1-3)。暗条件下では LitR-AdoB₁₂ 複合体が標的遺伝子のオペ レーター上に結合してその転写を抑制する (図 1-4)。緑から青の波長帯の光 が照射されることで、ヒドロキシ B₁₂ (OHB₁₂)に光分解されて構造変化を引 き起こす。これによって、本複合体の標的プロモーターDNA への親和性が低 下し、そこに RNA ポリメラーゼがリクルートされることによって光誘導性 遺伝子の転写を開始させる。 *B. megaterium*の遺伝子制御メカニズムは単純であり、LitR-AdoB₁₂複合体 と生育に必須な RNA ポリメラーゼシグマ因子 σ^A を含む RNA ポリメラーゼの みで光依存的な転写調節スイッチが構成される⁹。一方、*S. coelicolor や M. xanthus* ではまず LitR の機能によってそれぞれ σ^{LitS} と σ^{CarQ} の光依存的な発 現がおこり、次にそれらを含む RNA ポリメラーゼによって光誘導性遺伝子 群の転写が開始される^{6,13}。また、*T. thermophilus* では、LitR によって発現 誘導される転写活性化因子 LdrP が Crt 合成遺伝子群の転写開始を担うこと が明らかになっている¹⁴。

近年、ゼブラフィッシュ,やヒト細胞, モデル植物シロイヌナズナなどの高 等生物で LitR が制御技術に応用されている^{15,16}。また、細胞組織培養などに 用いられるエアロゾル (成形可能な高分子材料)に LitR が利用されているこ とも報告されている¹⁷。

この LitR に相同性を示す蛋白質はグラム陽性・陰性を問わず広範な非光合成細菌種に分布し(図 1-5)、その多くは C 末端領域に B₁₂結合ドメインを有している^{18,19}(図 1-6)。一方、一部の LitR のその領域は部分的な B₁₂結合ドメインが推定されている、あるいは、機能既知のドメインと相同性を示さないものが含まれる。これは、LitR ファミリーの光感知ドメインの構造が多様

であることを示唆している。それらの中には、これまでに知られていない光

感知機構の存在が示唆される。

Nature 526:536,2015

図 1-2 LitR/CarH の立体構造

Co-C bond は光、熱などに感受性

図 1-3 ビタミン B₁₂の化学構造

J Bacteriol. 197:2301, 2015

図 1-4 LitR の光応答メカニズム

図 1-5 LitR に相同性を示す蛋白質の分布

1. B₁₂-binding domain

図 1-6 LitR における光感知ドメインの多様性

第3節 非 B₁₂型 LitR の光応答

予備調査において、非 B₁₂型 LitR を保有するグラム陰性細菌 Burkholderia *multivorans* LMG17588 (ATCC 17616)が光に応答することが判明した²⁰。本 菌は LitR 類似蛋白質を保有するが、その C 末端領域は機能既知のドメイン と相同性を示さない。また、本菌では光照射による色素生産あるいは形態的 な変化が認められない。そこで、DNA マイクロアレイを用いた予備調査を行 い(表 1-1)、32 個の遺伝子の転写が光照射によって 2 倍以上上昇し、その うちの 19 個は LitR 類似蛋白質をコードする BM5678 の周辺にコードされて いることを明らかにした。それらの遺伝子群には転写調節に関与する ECF 型 シグマ因子遺伝子 litS や光回復酵素遺伝子 phrB、葉酸合成関連遺伝子 folE、 シクロプロパン環脂肪酸合成酵素遺伝子 cfaB などが含まれていた。半定量 RT-PCR の結果から、青色光は特異的にこれらの遺伝子群の転写を上昇させ ることが判明した(図 1-7)。さらに、GST タグを融合させた B. multivorans の LitR 組換え蛋白質は 280 nm と 340 nm の 2 つの極大吸収を有する特徴的 なスペクトルを示すことが観察された²⁰(図 1-8)。その吸収スペクトルは B₁₂ のものとは異なることから、新規な光感知メカニズムを有することが示唆さ れた。

表 1-1 DNA マイクロアレイ解析で特定された B. multivorans の光誘導性

	Gene name	Expression Light/Dark	Direction	Annotation for product
	BMULJ_05674	5.8	+	hypothetical protein
phrB2	BMULJ_05675	12.0	-	deoxyribodipyrimidine photo-lyase
	BMULJ_05676	6.7	-	hypothetical protein
	BMULJ_05677	5.0	+	putative esterase/lipase
litR	BMULJ_05678	2.9	-	MerR family transcriptional regulator
cryB	BMULJ_05679	7.5	+	deoxyribodipyrimidine photolyase- related protein
	BMULJ_05681	4.3	+	putative short-chain alcohol dehydrogenase
	BMULJ_05682	3.4	+	hypothetical protein
litS	BMULJ_05687	12.6	-	ECF subfamily RNA polymerase sigma-70 factor
foIE2	BMULJ_05688	19.1	-	GTP cyclohydrolase I
	BMULJ_05689	10.2	-	hypothetical protein
	BMULJ_05690	3.2	-	hypothetical protein
	BMULJ_05691	18.5	-	hypothetical protein
cfaB1	BMULJ_05692	23.0	-	cyclopropane-fatty-acyl-phospholipid synthase
	BMULJ_05693	22.4	-	hypothetical protein
	BMULJ_05694	21.9	-	predicted NAD/FAD-binding protein
	BMULJ_05695	26.0	-	outer membrane lipocalin-like protein
cfaB2	BMULJ_05696	26.1	-	cyclopropane-fatty-acyl-phospholipid synthase
	BMULJ_05697	12.1	-	predicted membrane protein

遺伝子

図 1-7 青色光に特異的な光誘導性遺伝子群の転写上昇

図 1-8 B. multivorans 由来の LitR 組換え蛋白質の吸収スペクトル

第4節 Burkholderia 属細菌

B. multivorans はβ-プロテオバクテリアに属するグラム陰性細菌で、B. cepacia や B. cenocepacia、 B. vietnamiensis などが含まれる Burkholderia cepacia complex (BCC)に属する²¹。BCC は動物や植物、川、土壌、根圏、 化学汚染土壌を含む様々な環境から単離され、それらの環境に適応するため に優れた代謝能を有する。

B. multivorans LMG17588(ATCC 17616)は、アントラニル酸を豊富に 含んだ土壌から単離され²²、この細菌の全ゲノム配列は2つのグループに よって決定された^{23,24}。本菌は3.4Mb、2.4Mb および0.9Mbの3つの環状 染色体および1.6MbのプラスミドpTGL1を有する。*B. multivorans*のゲノ ム情報には、サリチル酸塩、安息香酸塩、フタル酸塩、4-ヒドロキシ安息香 酸塩、4-ヒドロキシフェニルピルビン酸塩などの芳香族化合物の炭素代謝お よび同化に関与する遺伝子を含んでいる²⁵。このことから、難分解性の汚染 土壌の浄化へ利用されることが期待されている。

一部の Burkholderia 属細菌は LitR 類似蛋白質を保有し、その遺伝子の周辺に B. multivorans の DNA マイクロアレイ解析で特定された光誘導性遺伝

子群が分布している(図 1-9)ことから、それらの細菌種も B. multivorans

と同様な光応答を示すことが予想される。

図 1-9 Burkholderia 属細菌における LitR の分布

第5節 研究の目的

本研究はLitRファミリーの分子系統的な解析を行い、新規な光センサーと 予想されるものを見出すことを第一の目的とした。また、予備調査で光応答 に関与すると考えられる MarR型転写調節蛋白質 LimR と TetR型転写調節蛋 白質の分類も行った。次に、新規な光センシング機構を有すると予想された 細菌種の光応答をトランスクリプトーム解析によって光応答を確証すること を試みた。

さらに、選抜したモデル株の分子生物学的な検証を詳細に行うことで、新 規な光応答メカニズムの解明を試みた。これらによって、非光合成細菌の光 応答メカニズムの多様性と潜在性を提唱することを目指した。

第2章 材料と方法

使用菌株

Burkholderia multivorans LMG17588 (野生株)

- B. multivorans $\Delta litR$
- B. multivorans ∆litR/litR
- B. multivorans $\Delta litS$
- B. multivorans ∆litS/litS

Escherichia coli HST08

- *E. coli* S17-1 λpir
- E. coli Rosetta2(DE3)pLysS
- E. coli Rosetta2(DE3)pLysS/pGEX-6P-2::litRbmj-His
- E. coli XL1-Blue MRF' Kan
- E. coli BacterioMatch II Validation Reporter

Enterococcus hirae NBRC 3181

Vibrio campbellii ATCC BAA-1116

V. campbellii ∆luxA

Chromobacterium violaceum ATCC 31532

Erwinia tasmaniensis ET1/99

Pseudomonas aeruginosa PAO1

Burkholderia plantarii NBRC 104884T

Rhodococcus jostii RHA1

E. coli Rosetta2(DE3)pLysS/pGEX-6P-2::litRvha-His

使用プラスミドと DNA

Burkholderia vietnamiensis G4 由来染色体 DNA (Deutsche Samlung von

Mikroorganismen und Zellkulturen)

pK18mobsacB

pGEX-6P-2

pGEX-6P-2::*litRbmj*-His

pET26b(+)

pUTmini-Tn5 Cm

pTRG

pROMOTER

Name	Sequence (5'-3') ^a	Restriction enzyme ^b
DisfolE2F	TGAGCATTGCAGAACGAAGTC	-
DisfolE2R	TGAATCACGCTGTTGGTCATC	-
DisfolE1F	GGTACCCGGGGATCCCTACGACGAAATGATCGTG	-
DisfolE1R	GCCAGTGCCAAGCTTACGTATTCGTCAGGTTCAC	-
P5689cmpF	<u>GCGGCCGC</u> TGACTCAAACATGATGCATG	Notl
P5689cmpMR(Bm)	CTCGAG <u>GGATCC</u> GGGGGGACTCCTTGGTCGATTC	<i>Bam</i> HI
folE2cmpMF	CTCGAG <u>GGATCC</u> ATGGGAAATCTGATCGACG	<i>Bam</i> HI
folE2cmpR	GCGGCCGCTTATGCATTCTTTCCCGGC	Not

表 2-1 プライマーリスト:遺伝子破壊株と遺伝学的相補株の作製

a制限酵素サイトを下線に示す。

bは制限酵素サイトが存在しないことを示す。

Name	Sequence (5'-3')
rpoDbmjF(QRT)	CAAAGACGACAGGCGGAAAG
rpoDbmjR(QRT)	TGGCGGAAGAAGCAGACTTG
BM5674F(QRT)	GCACACGGTTCGCATTGTC
BM5674R(QRT)	TCGCAGCTTGCCCAGATAAC
phrB2bmjF(QRT)	CAGGCTCTCGCCGTATCTTC
phrB2bmjR(QRT)	ACACCTGCCGAACCGATATG
BM5677F(QRT)	ACAGATAGCCGCCTTGCTTG
BM5677R(QRT)	AGCGGCAAGAAGTCATACGC
litRbmjF(QRT)	ATTGACGACGCGAGCGAAC
litRbmjR(QRT)	GAGCTGCGACACGACATCTTC
cryBF(QRT)	CGCATCGAGTACCTGCTGTC
cryBR(QRT)	CGCGTCGTGTAGAAATGTCC
BM5680F(QRT)	GGATCGCCCATGACACATC
BM5680R(QRT)	CGCTTCCAGATGAGCCTGAC
BM5681F(QRT)	TTCAACGCTGCTCACTGCAC
BM5681R(QRT)	ACAACGTCTCCGCAAGAACG
BM5682F(QRT)	CGTCGCGTCACGATGTTTAC
BM5682R(QRT)	GAATCACGCTCCACCCGTAG
litSbmjF(QRT)	CCGTTCTGCCTGACGAAGC
litSbmjR(QRT)	CAGCAAGCGGTCGAGTTCC
folE2bmjF(QRT)	CCTCTGTCGCTCATCATTCG
foIE2bmjR(QRT)	TGTTGTCGTTGGCATGGAAG
BM5689F(QRT)	AACACGCAATCACGCCATC
BM5689R(QRT)	ACGCCCGATCAATGAAGC
BM5694F(QRT)	GCGGTGCTCCATACCGATAC
BM5694R(QRT)	CCGCTCAGGTAGTTCCATGC
cfaB2bmjF(QRT)	GCTTCTTCGAGGCCCATCTC
cfaB2bmjR(QRT)	CGTTGCCGTTCGGGTAATAG
dnaAbmjF(QRT)	GGCGTTCGACGATTTCAAGC
dnaAbmjR(QRT)	CGAACGCGTAGAAGAATTCC

表 2-2 プライマーリスト:定量 RT-PCR

Name	Sequence (5'-3')
litRbmjF(semi)	CTCCACGAAGATGTCGTGTC
litRbmjR(semi)	ACTCACACTTGACGGTGGTG
phrB2bmjF(semi)	CTCCGAATTGCCGTATGAAT
phrB2bmjR(semi)	GGTGTGCGCTTTCGAGTAAC
litSbmjF(semi)	CAAGACGTGTTCACGACAGC
litSbmjR(semi)	CGAATCCAGCTCTTCATCGT
folE2bmjF(semi)	GCATTGCAGAACGAAGTC
folE2bmjR(semi)	CGTCCATACTTCGACAGG
cfaB2bmjF(semi)	TGCTGTCGATCGAGATGTTC
cfaB2bmjR(semi)	CGTAGACGGTGTCGAAAATG
rpoDbmjF(semi)	AGGAAACCAACCGTCAGATG
rpoDbmjR(semi)	TCGTCTCGATCATGTGAACC
cfaAbmjF(semi)	ACTTCAATCACACGAAGAGC
cfaAbmjR(semi)	GAGATCGACTGGTTCTGC
cfaB1bmjF(semi)	TATACTTCAACACGCTCAGG
cfaB1bmjR(semi)	GCAATAGGCGAGATAGAGC
phrB1bmjF(semi)	TCATCTGCTCTACCACTTCC
phrB1bmjR(semi)	GGTTCTTGGTCAGAAAGCTC
cryBbmjF(semi)	CTACAGCGACTCGATATTCC
cryBbmjR(semi)	GATGAGCAATTACTGCAAGG
folE1bmjF(semi)	CTACGACGAAATGATCGTG
folE1bmjR(semi)	GTCATCTTTTCCTGGATCTG
folB1bmjF(semi)	CTACGAGGTGCACATCAAC
folB1bmjR(semi)	GTTTCCTGCAGATGGATG
folB2bmjF(semi)	GGATCGATTACGACGGCTAC
folB2bmjR(semi)	CGTCCACCGCAGGTAATC
folKbmjF(semi)	GAAGATCGAACATCACTTCG
folKbmjR(semi)	GTCTGCACCTTCTCGATG
folPbmjF(semi)	ACTTGATCAACGACATCTGG
folPbmjR(semi)	CAGCAGCGCATAGTTGTC
folCbmjF(semi)	GGGCTTCTTTCCGTACAC
folCbmjR(semi)	TTCTCGGATGCTCTTTTAG

表 2-3 プライマーリスト:半定量 RT-PCR

Name	Sequence (5'-3')	
folAbmjF(semi)	GAAACTTCCCGAAGACCTC	
folAbmjR(semi)	GTGACGATCAGCTTGTCC	

Name	Sequence (5'-3') ^a
litSbmjF(pTGR)	AGAAACCAGAGGCGGCCGGATCC ATGAACCGTTCGCACGAAT
litSbmjR(pTGR)	GAGCGCCAGCTCAGACTGAATT TTACTGCTCCAGATAGATCT
PrpoDbmjF	GAAAAAGTGGGGGGATCCGAATT
(pROMOTER)	TGGACTATGATGAAAACGTC
PrpoDbmjR	ATCTTCGACAAGGATCCTCTAG
(pROMOTER)	CATCGCGAATCTCGCCTCT
PlitRbmjF	GAAAAAGTGGGGGATCCGAATT
(pROMOTER)	CATGGGACGCTCCGCCATG
PlitRbmjR	ATCTTCGACAAGGATCCTCTAG
(pROMOTER)	CATCGTTGTTCTCCTGAAG
P5676F	GAAAAAGTGGGGGATCCGAATT
(pROMOTER)	CATTCAAATCTCCGTAACG
P5676R	ATCTTCGACAAGGATCCTCTAG
(pROMOTER)	CATGATCGCGCGGGATGC
P5677F	GAAAAAGTGGGGGATCCGAATT
(pROMOTER)	GGATGCACGATTGGGAAA
P5677-	ATCTTCGACAAGGATCCTCTAG
(pROMOTER)	CATTCAAATCTCCGTAACG
P5679F	GAAAAAGTGGGGGATCCGAATT
(pROMOTER)	CATCGTTGTTCTCCTGAAG
P5679R	ATCTTCGACAAGGATCCTCTAG
(pROMOTER)	CATGGGACGCTCCGCCAT
P5689F	GAAAAAGTGGGGGATCCGAATT
(pROMOTER)	TGACTTCGCGTTGACGCA
P5689R	ATCTTCGACAAGGATCCTCTAG
(pROMOTER)	CACGGGGGGACTCCTTGGT
P5697F	GAAAAAGTGGGGGATCCGAATT
(pROMOTER/SLic)	CATCCCGTTTCATCTCCAC
P5697R	ATCTTCGACAAGGATCCTCTAG
(pROMOTER)	CATACGGGCTCCGGGGGC

表 2-4 プライマーリスト: One-hybrid システム法

Name	Sequence (5'-3') ^a	Restriction enzyme ^b
litRbmj-F	CTCGAG <u>GGATCC</u> ATGCCCCCTCGCAAGGATCGC	<i>Bam</i> HI
litRbmj-His6-R	CTCGAG <u>GGATCC</u> TAGTGGTGGTGGTGGTGGTG CTGCGCTTTCAGGTCCGG	<i>Bam</i> HI
litRbmjF(81-323)	CTCGAG <u>GGATCC</u> GAGGAGCTCGAGGCGATGT	<i>Bam</i> HI
litRbmjF(100-323)	CTCGAG <u>GGATCC</u> GGCGTGAGCCTCGCGGTC	<i>Bam</i> HI
litRbmjF(200-323)	CTCGAG <u>GGATCC</u> CAGACCAATCCTGCGTCCATC	<i>Bam</i> HI
litRbmj-His6-R (200-323)	CTCGAG <u>GGATCC</u> TAGTGGTGGTGGTGGTGGTG CTGACCTTCCGTCGAGCG	<i>Bam</i> HI
litRbviF(6P2)	GGATCCATGTCCGCTCGCAAGGATCG	<i>Bam</i> HI
litRbviR(6P2)	GAATTC TAGACCGACTTCGGCGCTT	EcoRI
RC251AMR	CGGGCACTCAGCCTTGAC	-
RC251AMF	GTCAAGGCTGAGTGCCCG	-
RC253AMR	GTGACGCGGAGCCTCACA	-
RC253AMF	TGTGAGGCTCCGCGTCAC	-
RC274AMR	GCGCGATACAGCTTCGTC	-
RC274AMF	GACGAAGCTGTATCGCGC	-
RC251SMR	CGGGCACTCAGACTTGAC	-
RC251SMF	GTCAAGTCTGAGTGCCCG	-
RC253SMR	GTGACGCGGGGACTCACA	-
RC253SMF	TGTGAGTCCCCGCGTCAC	-
RC274SMR	GCGCGATACGGTTTCGTC	-
RC274SMF	GACGAATCCGTATCGCGC	-
RW228AMR	GAGCGCAGAGCCAGCCCG	-
RW228AMF	CGGGCTGGCTCTGCGCTC	-
RF267AMR	GTATCGCTCGGCCGCACTGAG	-
RF267AMF	CTCAGTGCGGCCGAGCGATAC	-
RY271AMR	TCGTCGCTGGCTCGCTCGAAC	-
RY271AMF	GTTCGAGCGAGCCAGCGACGA	-
RF267WMR	GTATCGCTCCCACGCACTGAG	-
RF267WMF	CTCAGTGCGTGGGAGCGATAC	-

表 2-5 プライマーリスト:蛋白質発現用ベクター

a制限酵素サイトを下線に示す。

▶は制限酵素サイトが存在しないことを示す。

Name	Sequence (5'-3') ^a	Restriction enzyme ^b
RF267YMR	GTATCGCTCGTACGCACTGAG	-
RF267YMF	CTCAGTGCGTACGAGCGATAC	-
RY271WMR	TCGTCGCTCCATCGCTCGAAC	-
RY271WMF	GTTCGAGCGATGGAGCGACGA	-
RY271FMR	TCGTCGCTGAATCGCTCGAAC	-
RY271FMF	GTTCGAGCGATTCAGCGACGA	-

表 2-5(続き) プライマーリスト:蛋白質発現用ベクター

a制限酵素サイトを下線に示す。

bは制限酵素サイトが存在しないことを示す。

Name	Sequence (5'-3') ^a	Restriction enzyme ^b
pMD19F(Cy5)	Cy5-TACGCGCGGATCTTCCAGAG	-
pMD19R	TTTGCACGCCTGCCGTTCGAC	-
PrpoDF	CTCGAG <u>GAATTC</u> TGGACTATGATGAAAACGTC	EcoRI
PrpoDR	CTCGAG <u>GGATCC</u> TGTGACCTTCTTGGTCGGCTC	<i>Bam</i> HI
PlitRF	CTCGAG <u>GAATTC</u> ACCATGCTGCACCGGCAGTTG	EcoRI
PlitRR	CTCGAG <u>GGATCC</u> TCAGCGTGGCTGCTGGCATGC	BamHI
PBM5689F	CTCGAG <u>GAATTC</u> ATGCATGATTCAACGTTCTC	EcoRI
PBM5689R	CTCGAG <u>GGATCC</u> GCCCGATCAATGAAGCTG	BamHI
PBM5676F	CTCGAG <u>GAATTC</u> AAACGATACGAAAACCGATC	EcoRI
PBM5676R	CTCGAG <u>GGATCC</u> AGATAAACGTACGTGCGAGC	<i>Bam</i> HI
PBM5697F	CTCGAG <u>GAATTC</u> AACGATAAGTCGCTTCATCC	EcoRI
PBM 5697R	CTCGAG <u>GGATCC</u> ATCCACACTGCCGTGAAGGAC	BamHI
PlitRR2	CGTTGTTCTCCTGAAGTCGA	-
PlitRR3	GCAGTCTGGATTAAATATG	-
PlitRR4	TTAAATATGAAGCAGGAAGG	-
PlitRR5	AGCAGGAAGGCGATTCAAT	-
PlitRR6	CGATTCAATGTGCGGAAAT	-
PlitRR7	TGCGGAAATGTCGTCCGGG	-
PlitRR8	GTCGTCCGGGAGGTGTTTC	-
PlitRR9	TGTGGCTGGAATGCTGCAC	-

表 2-6 プライマーリスト:ゲルシフトアッセイ

a 制限酵素サイトを下線に示す。

▶は制限酵素サイトが存在しないことを示す。
実験手法

各細菌株の培養

B. multivorans は LMG17588 を野生株として使用し、LB 培地(1.0%) BactoTryptone、0.5% BactoYeast Extract、0.5% NaCI) または M9 最少培地 (0.6% Na₂HPO₄ · 12H₂O、 0.15% KH₂PO₄、 0.1% NH₄CI、 0.05% NaCl、 0.1 mM CaCl₂, 1 mM MgSO₄、0.001%チアミン、0.2%グルコース)を用いて 28℃ で培養した。各大腸菌株は、LB 培地または M9 最少培地(0.6% Na₂HPO₄・ 12H₂O、0.15% KH₂PO₄、0.1% NH₄CI、0.05% NaCI、0.1 mM CaCl₂、1 mM MgSO₄、0.001%チアミン、0.2%グルコース、20 μ M アデニン、1 μ M ZnSO₄、 20 μM ウラシル、0.077% -His DO Supplement、0.0076% L-ヒスチジン) で 37℃あるいは 28℃で培養した。RNA seq 解析で用いた B. plantarii と E. tasmaniensis、C. violaceum、R. jostii は LB 培地によって 28℃で培養した。 P. aeruginosa は LB 培地に 37℃で培養した。V. hraveyi は LM 培地(1.0%) BactoTryptone、0.5% BactoYeast Extract、2% NaCl、pH 7.8) で 28℃で培養 した。抗生物質は 20 µg/ml のカナマイシンおよび 20 µg/ml のクロラムフェ ニコール、50 µg/ml のアンピシリン 10 µg/ml テトラサイクリンの終濃度で 使用した。 全ての試薬は、特記しない限り、和光純薬工業株式会社(大阪、

分子系統解析

LitR および LimR、TetR の系統樹は次のように作成した。アミノ酸配列は KEGG (<u>http://www.genome.jp/kegg/</u>)から入手し、LitR と TetR の系統解析で は、Pfam によって推定された N 末端側の HTH ドメインを除外して残された C 末端領域のアミノ酸配列を使用した。それらのアミノ酸配列を CLUSTAL W²⁶ と MEGA 5²⁷によって解析した後、分子系統樹は近隣結合法 ²⁸によって 再構築した。距離行列は Kimura 2 パラメーターモデル ²⁹を用いて算出した。

菌体と蛋白質への光照射

細菌株を培養する際は、光照射型インキュベータ (BR-180LF、タイテック、 埼玉、日本) と白、青、緑、赤色蛍光ランプ(20W; Toshiba, Tokyo, Japan)を 用いた。蛋白質への光照射には、LED ランプと UV-A (λ_{max} = 365 nm)、青色 光 (λ_{max} = 450 nm),緑色光 (λ_{max} = 530 nm),赤色光 (λ_{max} = 660 nm) (Optocode corp., Tokyo, Japan) を用いた。 光度は、Model Li-250A Light Meter (LI-COR Inc., Lincoln, NE)を用いて測定した。

RNA 抽出と cDNA 合成

B. multivorans の野生株や変異株は、LB 液体培地で明暗条件下で 28℃振盪 培養した。0.7~1 ml の培養液を 14 時間と 21 時間に回収した。 10,000xg で 遠心した後、精製中の RNA 分解を防ぐため沈殿を 1 ml の RNAprotect Bacteria Reagent (Qiagen GmbH, Hilden, Germany)で固定し、そこから RNeasy Mini Kit を用いて総 RNA を精製した。 また、ゲノム DNA を除去す るために、DNase I (Takara Bio) 処理を行った。RNA 濃度は NanoDrop Lite (Thermo Fisher Scientific, Rockford, IL, USA)で測定した。cDNA は、2 µg の 総 RNA を用いて SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific)によって合成した。

RNA seq によるトランスクリプトーム解析

解析対象株を青色光照射下(18.55 µmol·s⁻¹·m⁻²)で液体培養し、1~2 mlを 回収した。その菌体を RNAprotect Bacteria Reagent による固定後、RNeasy Mini Kit と DNase I を用いて総 RNA を精製した。その RNA を適当なプライ マーを用いて PCR し、ゲノム DNA がほとんど検出されないことを確認した。 精製した RNA は、東京農業大学ゲノム解析センターにて HisSeq2500 を使 用して解析された。得られた各遺伝子のリード数から転写レベルを割り出し、 光照射によって上昇した転写量の倍率変化を算出した。

DNA シークエンス解析

本研究でクローン化した DNA 断片は、Eurofins Genomics K.K の配列決定サ ービス (東京、日本)、または ABI 3100 Genetic analyzer (Thermo Fisher Scientific) によってシークエンス解析をした。

遺伝子破壊株の作製

folE1 と folE2 を破壊するため、pK18msfolE1 と pK18msfolE2 を構築した。 DisfolE1F/DisfolE1R (folE1) と DisfolE2F/DisfolE2R (folE2) のプライマー (表 2-1) の組合せと PrimeSTAR HS DNA Polymerase (Takara Bio)で PCR を行い、それぞれの内側の領域を増幅した。 得られた PCR 断片を pUC118 にクローニングした。シークエンス解析で配列確定したクローンを EcoRI と HindIII で消化し、pK18mobsacB の同じサイトに挿入して pK18msfolE1 と pK18msfolE2 を完成させた。構築した 2 つのプラスミドは E. coli S17-1 λpir を用いた接合伝達法によって B. multivorans に導入した ^{24,25}。具体的には、 1 mlの *B. multivorans* 培養液と 0.5 mlの *E. coli* S17-1 λpir 培養液を混合し て LB 液体培地で 2 回洗浄後、細胞を 100 μlの LB 液体培地で懸濁して 0.22 mm フィルターが載せられた LB 固体培地に塗布した。それを 28℃で 6 時間 培養し、フィルター上の細胞を LB 液体培地で回収した。その液体を 200 γ カナマイシンと 50 γ アンピシリンを含んだ LB 固体培地に塗布して 28℃で 2~3 日間培養した。得られたカナマイシン耐性コロニーを適切なプライマー で PCR し、適性の組換え体を選別した。

相補ベクターの作成

folE2破壊株の遺伝学的な相補株を作製するため、ミニトランスポゾンとクロ ラムフェニコール耐性遺伝子を搭載したトランスポゾンpUT-miniTn5 Cm (Funakoshi, Tokyo, Japan)を基にした染色体組込み型ベクターを使用した。 folE2をプライマーセットfolE2cmpMF/folE2cmpRによって、BM5689のプロ モーター領域をプライマーセットP5689cmpF/P5689cmpMR(Bm)(表2-1)に よって増幅後、それらのPCR断片をBamHI消化してライゲーションし、 pUC118にクローニングした。次に、pUT-miniTn5 CmのNot Iサイトに挿入し、 pfolE2を取得した。これを上述の接合伝達法によってB. multivorans folE2破 壊株に導入し、得られたクロラムフェニコール耐性コロニーを適正なプライ マーを用いたPCR法によって確認した。

転写開始点(TSS)の決定

TSS は DNAFORM (Yokohama, Japan)の受託解析サービス Modified 5'RACEによって決定した。使用したRNAは、光照射した菌体から抽出した。 方法を簡潔に述べる。RNAのクオリティをバイオアナライザー(Agilent Technologies, Santa Clara, CA, USA)で解析してRIN 値 (RNA integrity number)が7.0以上とA260/280とA260/230比率が1.7以上であることを確認し た。 ライブラリー作製は次のプロトコルに従った。1 μgのRNAからrRNAを 除去するためにRibo-Zero rRNA Removal Kit を使用した。次に、cDNAを Superscript III (Thermo Fisher Scientific)で合成し、RNAをRNase Hによって 分化して一本鎖cDNAを精製した。次に、Illuminaプラットフォームに対する プライミング部位とバーコード配列を含んだアダプターを cDNAの両末端に 連結した。そのライブラリーの配列はIllumina NextSeq500を用いて解読した。 一連のデータ処理は次の通りに行った。Illumina Real-Time Analysis (RTA)ソ フトウェアをベースコールに使用した。BWA(パラメーター変更なし)を使

用して決定した配列をB. multivorans ATCC 17616の全ゲノム配列にマップ した。TSSクラスタリングと百万リード数のタグ(TPM)はCAGErを使用し て計算した³⁰。

定量 RT-PCR

光誘導性遺伝子の転写レベルを解析するため、定量 RT-PCR を行った。合成 した cDNA を PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) で反応液を調製して Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher)で解析した。反応液は 20 µl スケールとし、cDNA は 50 ng、 プライマーは終濃度 0.2 μM で使用した。PCR の反応は次のように行った: 50°C、120 s-95°C 、120 s、(95°C、15 s-60°C、60 s)x40 サイクル。 解析対象とした遺伝子のプライマーは、 Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/) を使用して設計した(表 2-3)。サンプル の標準化のため、dnaA (ハウスキーピング遺伝子)を内在性コントロールと して使用し、解析した遺伝子の相対発現を定量した。遺伝子発現の相対定量 は内在標準 として dnaA シグナルを用いた 2^{-ΔΔCt} 法 ³¹によって算出した。 全ての反応は3回実施した。

半定量RT-PCR

本解析では、GoTaq Green Master Mix, 2X (Promega Corp., Madison, WI, USA)を PCR 反応に用いた。25 µl スケールで反応液を調製し、次の PCR 反 応で行った:95°C、180 s- (95°C、30 s- 55°C、30 s-72°C、45 s) 25 サイ クル-72°C、180 s。使用したプライマーは、表 2-4 に示した。PCR 産物をア ガロース電気泳動に供し、バンドの強度を転写レベルとして検出した。

One-hybrid システム法による DNA-蛋白質間の相互作用解析

One-hybrid システム法は転写調節因子の DNA 結合に対する特異性を決定す る手法である ^{32,33}。本方法で、o^{LitS} が認識するプロモーター領域を特定する ことを試みた。光誘導性遺伝子のプロモーター配列(開始コドンから上流に 隣接する遺伝子のストップコドンあるいは開始コドン)を適切なプライマー セット(表 2-4)の PCR 法によって増幅し、pROMOTERの *Xbal-Eco*RI サイ トにクローニングした。*litS* は、プライマーセットの PCR 法によって増幅し、 pTRG の *Bam*HI-*Eco*RI にクローニングした。クローニング法は SLIC (Onestep sequence- and ligation-independent cloning)法 ³⁴によって行った。具 体的には、40 ng の精製した PCR 断片と直鎖状ベクター、0.6 U の T4 DNA polymerase (NEB)、0.1 μg の BSA、変異を防ぐため 20 ng の RecA を 10 μl の反応系で調製し、室温で2.5分の反応後、氷上で10分間インキュベートし て PCR 断片と直鎖状ベクターをアニーリングさせた。それを E. coli XL1-Blue MRF' Kan に形質転換した。シークエンス解析によって配列確定した pROMOTOR \ge pTRG $\mathcal{O} \mathcal{P} \square \neg \mathcal{V} \ge \mathcal{E}$. coli BacterioMatch II Validation Reporter にエレクトロポレーション法で導入した。次に、 σ^{Lits} とプロモータ ー配列との相互作用をレポーター遺伝子 HIS3 の活性化を指標に解析した。 得られた形質転換体を M9 最少培地で 28℃、2 日間振盪培養し、その培養液 10 μl をスクリーニング培地(0.6% Na₂HPO₄・12H₂O、0.15% KH₂PO₄、0.1% NH₄CI、0.05% NaCI、0.1 mM CaCl₂、1 mM MgSO₄、0.001%チアミン、0.2% グルコース、20 μM アデニン、1 μM ZnSO₄、20 μM ウラシル、His dropout amino acid supplement、50 μM IPTG、10 μg/ml テトラサイクリン、20 μg/ml クロラムフェニコール) に 0、1、2.5 mM 3-アミノ-1,2,4-トリアゾール (3-AT)を含んだ固体培地へ滴下し、28℃、2~3日間培養した。この方法で 3-AT に耐性を示したものを相互作用として検出した。

細胞内葉酸の抽出と定量

細胞内の葉酸を定量するため、菌体から熱水抽出して葉酸要求性細菌を用い たバイオアッセイ法によって定量した^{35,36}。B. multivorans を LB 培地で 28℃ で培養し、その菌体を遠心分離で回収後、PBS バッファー(140 mM NaCl, 2.7 mM KCl, 10 mM Na₂PO₄, and 1.8 mM KH₂PO₄)で2回洗浄し、再度 PBS バッ ファーで懸濁した。それを超音波破砕機(Astrason Ultrasonic Processor XL) で破砕し、12,000g、10分、4℃で遠心分離してその上清を得た。121℃、15 分の熱水抽出後、12,000 g、15 分、4℃で遠心分離した上清をフィルター濾 過した。次に、Difco Folic Acid Assay Medium (Becton, Dickinson and Co., Sparks, MD) の説明書通りのバイオアッセイ法で葉酸を定量した。指示菌と して用いた Enterococcus hirae NBRC 3181 は Lactobacilli Broth AOAC (Becton, Dickinson and Co.)で 37℃、16 時間で前培養した。検量線の標準と して葉酸(プテロイルグルタミン酸)を用いた。蛋白質濃度は protein assay kit (Bio-Rad Laboratories)を用いたブラッドフォード法で測定した。

LitR 組換え蛋白質発現ベクターの構築

LitR の N 末端欠失体または C 末端領域欠失体を調製するため、次の要領で 発現ベクターを構築した。表 2-5 のプライマーセットで PCR し、各 DNA 断 片を pGEX-6P-2 の BamHI サイトにクローニングした。 B.vietnamiensis G4 由来の LitRbvi 組換え蛋白質の発現ベクターについては、*litRbvi* をプライマ ーセット litRbviF (6P2) / litRbviR (6P2) の PCR によって増幅し、その断 片を pGEX-6P-2 の BamHI-EcoRI 部位に導入した。

また、アミノ残基の役割を明らかにするため、その変異 LitR の発現ベクタ ーを構築した。251 番目と 253 番目、274 番目のシステインをそれぞれアラ ニンあるいはセリンに置換するため、表 2-5 に記載した適切なプライマーを 用いた 2 段階 PCR 法によって DNA 断片を増幅し、pGEX-6P-2 の BamHI 部 位にクローニングした。また、228 番目のトリプトファンのアラニンへの置 換と 267 番目のフェニルアラニンのアラニンまたはチロシン、トリプトファ ンへの置換、271 番目のチロシンのアラニンまたはフェニルアラニン、トリ プトファンへの置換も上述と同様な手法で発現ベクターを作製した。

これによって発現する各組換え蛋白質は、N 末端領域に GST タグと C 末 端領域にポリヒスチジンタグが付加される。配列確定したそれぞれのクロー ン体は *E. coli* Rosetta2(DE3)/pLysS に導入し、以降の組換え蛋白質の精製に 使用した。

LitR 組換え蛋白質の精製

litR 発現ベクターを保有する E. coli Rosetta2(DE3)/pLysS をクロラムフェニ コールとアンピシリンが含まれた LB 液体培地で 16 時間、28℃で前培養し た。500-mL バッフル付フラスコ中の 100 ml の LB 液体培地、あるいは、5-L バッフル付フラスコ中の11のLB液体培地に前培養液を終濃度1%になるよ うに植菌した。それを 135 rpm、3 時間、28℃で振盪培養した。次に、IPTG を終濃度 0.1 mM になるように添加し、さらに 135 rpm、4 時間、28℃で振 盪培養した。この大腸菌細胞を遠心分離によって回収し、 その菌体を PBS バッファー(pH 7.5) (140 mM NaCl, 2.7 mM KCl, 10 mM Na₂PO₄, and 1.8 mM KH₂PO₄)に懸濁した。PBS バッファーで 2 回洗浄した後、Astrason Ultrasonic Processor XL (Misonix Inc., Farmingdale, NY) 、または、APV 1000 Gaulin mechanical cell presser (APV Homogenizers, As, Denmark) で細胞を破砕し た。その溶液を遠心分離し、上清をフィルター濾過した。そのサンプルを ÄKTA explorer 10S (GE Healthcare, UK Ltd, Buckinghamshire, England)を用

いて GSTrap HP カラムに供した。溶出ピークを SDS-PAGE によって解析し て GST-LitR-His のバンドを確認し、バッファーA (50 mM Tris-HCI (pH 7.5), 200 mM NaCl, 200 mM L (+)-アルギニン塩酸塩, and 1 mM EDTA) で 4℃、 終夜透析した。2 mg の GST-LitR-His に対して 1 mg の PreScission Protease を添加して 4℃、4 時間インキュベートして GST タグを除去した。次に、LitR-His を 5 ml cOmplete His-Tag Purification Column (Roche, Basel, Switzerland)で精製した。IMAC 結合バッファーには 50 mM Tris-HCI (pH 7.5) と 200 mM NaCI、200 mM L-アルギニン塩酸塩を使用した。IMAC 溶出バッ ファーには 50 mM Tris-HCI (pH 7.5)と 200 mM NaCI、200 mM L-アルギニン 塩酸塩、500 mM imidazole を使用した。LitR-His に対応する溶出画分を IMAC 結合バッファーで4℃、終夜透析した。そのサンプルを15,000 rpm、15 min、 4℃で遠心分離し、得られた上清を以降の生化学的な解析に使用した。蛋白質 濃度は Bio-rad protein assay kit (Bio-rad, Laboratories, Hercules, CA)を用い て測定し、吸収スペクトルを Multiskan GO spectrophotometer (Thermo Fisher Scientific)で測定した。

ゲルシフトアッセイによる DNA-蛋白質間の相互作用解析

LitR 蛋白質の DNA 結合能はゲルシフトアッセイによって解析した。プロモ ーター領域を含んだ DNA 断片は表 2-6 に示したプライマーを用いた PCR 法 で増幅した。各々の DNA 断片は pMD19 (Takara Bio)に TA クローニングし た。5'末端を Cy-5 標識したプローブ DNA を調製するため、 Cy-5 標識プラ イマーpMD19F(Cy5)と非標識プライマーpMD19Rで PCR して増幅した。両 プライマーは pMD19 ベクターのクローニングサイトの外側にアニールする ように設計した。精製した LitR (0-80 fmol)と DNA プローブ(10 fmol) を 10 mM Tris-HCI (pH 7.2), 50 mM NaCl, 1 mM EDTA, 10% グリセロールと 0.5 µg poly(dl-dC)反応液中で 28℃、30 分間反応させた後、6%非変性ポリアクリ ルアミドゲルにアプライした。LitR 蛋白質の光照射は、UV-A 光(λmax = 365 nm)で 180 秒間行った。泳動したポリアクリルアミドゲルは Typhoon FAL9500 image analyzer (GE Healthcare)でスキャンした。

吸収スペクトルの測定

LitR 組換え蛋白質の吸収スペクトルは Cary 60 UV-Vis 分光光度計 (Agilent Technologies)で測定した。光依存的な吸収変化を測定するため、アフィニテ

ィークロマトグラフィーで精製した組換え LitR 蛋白質に UV-A (λ_{max} = 365 nm)を照射した。UV-A (光度: 0.06 μmol·s⁻¹·m⁻²) を 60 秒と 180 秒照射し、
その吸収スペクトルを記録した。次に、暗条件下で 60 分と 120 分間室温で
インキュベートした吸収スペクトルを測定した。他の波長の光照射は 0.06
(λ_{max} = 365 nm)、 60.41 (450 nm)、14.02 (470 nm)、22.13 (505 nm)、21.76
(595 nm)、75.93 (630 nm) の光度(μmol·s⁻¹·m⁻²)で 180 秒行った。

ゲル濾過カラムクロマトグラフィー

LitR 蛋白質の相対分子量(Mr)を算出するため、アフィニティークロマトグラ フィーによって精製した各 LitR 蛋白質を ÄKTA explorer 10S system と Superdex 200 10/300 GL column (GE Healthcare)で解析した。カラムは 50 mM Tris-HCI (pH 7.5), 200 mM NaCl, and 200 mM L-アルギニン塩酸塩で流 速 0.2 ml/min で平衡化した。L-アルギニン塩酸塩は LitR の凝集を防ぐために 添加した ³⁷。分子量マーカーとして Gel Filtration Calibration Kit LMW (GE Healthcare. Kit: Ribonuclease A: Mr 13,700 と Carbonic anhydrase: Mr 29,000、 Ovalbumin: Mr 43,000、Conalbumin: Mr 75,000)と Gel Filtration Calibration Kit HMW (GE Healthcare. Kit: Aldolase: Mr 158,000、 と Ferritin: Mr 440,000) を使用した。サンプルは Superdex 200 10/300 GL column にア プライする前に 180 秒の UV-A 光 (365 nm、光度:約 0.06 µmol·s⁻¹·m⁻²) を 照射した。LitR の相対分子量は分子量マーカーに基づいて算出した。溶出さ れた蛋白質は SDS-PAGE と銀染色で解析し、LitR のバンドを検出した。

LitR 蛋白質からの低分子化合物の単離

LitRに何らかの低分子化合物が結合していると想定して熱処理によってその 抽出を試みた。LitR蛋白質溶液を 37℃または 55℃で 30 分間、あるいは 95℃ で 10 分間加熱し、15,000 rpm、10 分で遠心分離してその上清を得た。また、 還元剤であるβ-メルカプトエタノール(β-ME)と DTT をそれぞれ終濃度 1 mMになるように添加し、同様の加熱処理と遠心分離を行って上清を得た。 それらの吸収スペクトルを Cary 60 UV-Vis 分光光度計で測定した。また、 LitRと酢酸エチルを 1:1 の割合で混合して静置させ、その上清の吸収スペ クトルを測定した。

リフォールディングによるアポ体の調製

LitR 蛋白質を変性させるために、6 M グアニジン塩酸塩溶液 (50 mM Tris-HCI (pH 7.5)、200 mM NaCI) で2時間、室温で透析した後、β-ME を添加し て室温、終夜インキュベートした。次に、グアニジン塩酸塩の濃度を段階的 に薄くして蛋白質の構造の巻き戻しを試みた。具体的には、6 M グアニジン 塩酸塩溶液(50 mM Tris-HCI (pH 7.5)、200 mM NaCI)で12時間、4℃で透 析し、3 M グアニジン塩酸塩溶液(50 mM Tris-HCI (pH 7.5)、200 mM NaCI) で12時間、4℃で透析した。次に、凝集抑制のため400 mM L-アルギニン塩 酸塩とジスルフィド結合を促進させるために 2 mM システインと 0.2 mM シ スチンを含んだ1Mグアニジン塩酸塩溶液(50 mM Tris-HCI (pH 7.5)、200 mM NaCI) で 12 時間、4℃で透析した。0.5 M グアニジン塩酸塩溶液(50 mM Tris-HCI (pH 7.5)、200 mM NaCI、300 mM L-アルギニン塩酸塩)で12時間、 4℃で透析した後、50 mM Tris-HCI (pH 7.5)、200 mM NaCI、200 mM L-アル ギニン塩酸塩を含んだバッファーで2時間、4℃の透析を3回繰り返した。 透析膜から回収した LitR 溶液の吸収スペクトルを測定してアポ体の確認を 行った。アポ体とアンテナ候補分子 NADH と葉酸との相互作用解析は透析法 によって行った。10 倍のモル量の NADH あるいは葉酸をアポ体と混合して

28℃、30分間インキュベートした。次に、バッファー(50 mM Tris-HCl (pH 7.5)、200 mM NaCl、200 mM L-アルギニン塩酸塩)で終夜、4℃で透析した。 それらの吸収スペクトルを測定してその結合を評価した。

LitR 蛋白質の元素分析

測定に必要なガラス器具(トーチ)は0.3 M HCIで一晩浸漬し、超純水で十 分にすすいだ後、よく乾燥させた。精製した LitR 蛋白質溶液約7 ml をバッ ファー (50 mM Tris-HCI (pH 7.5)、200 mM NaCI、200 mM L (+)-アルギニン 塩酸塩)で透析し、その LitR 蛋白質溶液と透析に用いた外液を測定試料とし た。検量線用として ICP 汎用混合試薬を 0.1 M 硝酸水溶液で希釈し、0.2, 0.5, 1, 2, 5, 10, 20 ppm の各濃度溶液を調製した。 ICP 測定専用のポリプロピレ ンチューブに測定試料を入れ、キャップを閉めた。マルチタイプ ICP 発光分 光分析装置(ICPE-9000)(島津)を用いて検量線用の標準試料を測定した。 検量線の作成と測定波長の校正を行った後に、試料の測定を行った。各試料 の測定は3回行い、その平均を算出した。さらに、LitR 溶液中の元素のモル 濃度から透析液中の値を引いて LitR 蛋白質のモル濃度で割り算し、その元素 含量を割り出した。

変性実験

光センサー蛋白質の光吸収帯はクロモフォアに由来する。LitR蛋白質に見ら れる 340 nmの極大吸収が何らかのリガンド分子に由来する可能性を検証す るため、SDSを用いた変性実験を行った。LitRに終濃度 2%の SDS を添加し て泡立たないようにピペッティングで混合した。また、β-ME は終濃度 6%に なるように添加した。室温で 5 分間放置した後、吸収スペクトルを測定した。 また、1 mg/mlのトリプシン (Sigma-Aldrich)を精製した 20 μM LitR に添加 して室温でインキュベート後、その吸収スペクトルを測定した。

第3章 結果と考察

第1節 光応答性転写調節蛋白質の多様性に関する解析

第1項 光応答性転写調節蛋白質の分子系統解析

目的

LitR ファミリー蛋白質の光感知ドメインの多くは、B₁₂ 結合ドメインが推 定される一方、一部の LitR では部分的な B₁₂ 結合ドメインあるいは機能既知 ドメインに相同性を示さないものが含まれる。これは、LitR ファミリーに B₁₂ によるものとは異なった光感知システムを有するグループが存在することを 示唆している。また、 Corynebacterium 属細菌と青色色素生産菌 Chromobacterium violaceum の光応答に関与する MarR 型転写調節蛋白質 LimR と TetR 型転写調節蛋白質は LitR と同様な光センサーとして機能する ことが考えられるが、その光感知機構は明らかにされていない。そこで、そ れらの蛋白質の分子系統的な解析によって明確に分類し、新しい光感知機構 を持つ光応答性転写調節蛋白質の存在を提示することを目的とした。

結果

LitR ファミリーの分類

はじめに、LitR ファミリー蛋白質を Pfam によって機能既知ドメインを推 定し、N 末端領域側の DNA 結合ドメインを削除して光感知ドメインを抽出 した(図 **3-1-1-1**、第2章参照)。それらの配列を用いて分子系統解析したと ころ、少なくとも5つのクラスに分類されることが推測された(図 3-1-1-2)。 クラス | はアデノシル B₁₂をクロモフォアに利用する光センサー蛋白質で あることが複数の研究によって示されている^{8,9,12}。本クラスには、放線菌 Streptomyces 属や Bacillus 属、好熱性細菌 Thermus-Deinococcus、粘性細菌 Myxococcus 属細菌に分布するものが含まれており、これらの細菌では実際 に光照射による黄色色素カロテノイド生産が観察されることが報告されてい る ⁶⁻⁹。 クラス I LitR は 2 つのドメインから構成される B₁₂ 結合ドメインを有 している (図 1-6)。Rossmann fold domain (Pfam definition, B₁₂-binding domain)には、B₁₂との結合に重要な His 残基が保存され、B₁₂内のコバルト 原子と結合する。4-helix bundle domain (Pfam definition, B12-binding_2) domain)は Rossmann fold domain の N 末端側によく見つかる。一方、 Oceanospirillales 属細菌のクラス I LitR は Rossmann fold domain 中の His

残基が保存されていないが、 B_{12} と結合することが報告されている³⁵。従って、His 残基が保存されているものを la、されていないものを lb と分類した。 Oceanospirillales 属細菌の LitR は lb とした。

クラス II は 4-helix bundle domain しか有していないため、B₁₂をクロモフ ォアとするクラス Iとは異なることを意味している。これには Pseudomonas 属細菌が主に分布しており、青色光受容体 LOV と相互作用することが明らか になっている(未発表データ)。クラス III と IV、V には Burkholderia 属と Vibrio 属、Micrococcus 属細菌が分布しているが、それぞれの C 末端領域中 のアミノ酸配列は B₁₂ 結合ドメインと相同性を有していない。さらに、機能 既知ドメインとも相同性を示さない。このことから、クラス III~V は新しい 光センサー蛋白質であることが予想された。一方で、クラス lb とクラス llの 間には一部の Pseudomonas 目細菌由来のクレードが存在するが、これの明 確な属性はわからない。また、クラス II から IV の間に位置する Alteromonas 目細菌や Aeromonas 目細菌、Enterobacteria 目細菌とクラス V とクラス III の間の Chromatia 目細菌も同様にそのクラス分けは不明である。

予備試験においてクラス III に属する Burkholderia multivorans 由来の LitR 組換え蛋白質は 280 nm と 340 nm に 2 つの極大吸収を有しており(図 1-7)、 その吸収スペクトルは B₁₂をクロモフォアとするクラス I LitR とは異なるこ とから、新規な光応答メカニズムを有することが予想された。そこで、他の クラスの LitR の光吸収を調査するため、クラス IV に属する Vibrio harveyi 由 来の LitR 組換え蛋白質を精製した。その吸収スペクトルを測定したところ、 蛋白質由来のピークのみが検出された(図 3-1-1-3)。

クラス la を保有する細菌群では光誘導的なカロテノイド生産が観察され、 その合成遺伝子が LitR によって制御されることが明らかにされている。一 方、クラス lb では葉酸とシクロプロパン環脂肪酸の生産量が光によって増加 することが報告されている³⁸。これらの合成遺伝子はクラス II~V や他のクレ ードを保有する菌のゲノム上で *litR* の周辺にコードされていることから(図 1-8、図 3-1-1-4 から 3-1-1-7 まで)、それらのバクテリアにおいても同様な現 象が起きていると考えられる。以上のことから、LitR ファミリーはその光感 知機構だけでなく、制御される遺伝子も複数のグループがあることが推測さ れた。

55

TetR 型光応答性転写調節蛋白質の分類

青色色素生産菌 Chromobacterium violaceum では、シクロプロパン環脂肪 酸合成遺伝子 cfa や光回復酵素遺伝子 phr などの転写が光で誘導されるが(図 3-1-1-8)、本菌は LitR 類似蛋白質を保有していない。分子遺伝学的な解析か らそのオペロンに隣接する TetR(Tetracycline resistance Regulator)型転写調 節蛋白質がそれら遺伝子に対して光依存的な転写調節を行うと推測される。 この TetR は、N 末端領域に DNA 結合ドメインを持ち、約 100 アミノ酸程度 からなる C 末端領域は機能既知のドメインと相同性を有さない(図 3-1-1-1)。 それに類似の蛋白質は、一部の Neisseria 目や Burkholderia 目細菌に分布し ている (図 3-1-1-9)。本研究はそれらの TetR も新しい光センサーであると 予想した。

そこで、LitR と同様に N 末端領域側の DNA 結合ドメインを排除した C 末端アミノ酸配列の分子系統解析を行ったところ、3 つのクレードに分類されることが推測された(図 3-1-1-10)。また、それの分類が 16S rRNA の系統樹に似ていることから、生物種の進化に従って TetR が分類されることが示唆された。

56

LimR(Light induced MarR, Regulator)の分類

当研究室で行われた光応答性細菌のスクリーニングから、Corynebacteria 目や Micrococcus 目細菌が光照射による黄色色素生産を観察してきたが、そ れらの細菌群は LitR 類似蛋白質や既知の光センサー遺伝子を保有していな い。アミノ酸生産菌 Corynebacteria glutamicum をモデルにした分子遺伝学 的な解析から MarR(Multi-antibiotic resistance, Regulator)型転写調節蛋白質 LimR が、カロテノイド合成遺伝子の転写制御を介してその光誘導的な生産 制御に関与していることが明らかになっている(未発表データ)。それに相同 性を示す蛋白質は一部のグラム陰性細菌やアーキアにも分布していることか ら (図 3-1-1-11)、LimR ファミリーにも多様性があると予想された。

LimRは、LitRとは異なり全アミノ酸配列の中央に DNA 結合ドメインが認 められ、その両末端側のアミノ酸配列は機能を有しているかはわからない(図 3-1-1-1)。そのため、本ファミリーの分子系統解析にはアミノ酸配列全長を 用いた。その系統解析の結果、5 つのクレードに分類され、大きく分けてグ ラム陽性細菌 (Actinobacteria) とグラム陰性細菌 (Bacteroides)、アーキア の 3 つのグループで成り立つことが推測された (図 3-1-1-12)。グラム陽性 細菌のグループには、黄色色素の光誘導が観察された Corynebacterium 属細 菌や Micrococcus 目細菌のクレードと Mycobacterium 属細菌、Stretomyces 属細菌の 3 つのクレードに分類された。Corynebacterium 目細菌の LimR で は、Corynebacterium 属細菌と Mycobacterium 属細菌はそれぞれ異なった光

応答メカニズムを有していることが示唆された。

考察

(1) 光応答性転写調節蛋白質の分類

本研究では、LitR 類似蛋白質の光感知ドメインを分類し、それらが少なく とも5つのクラスに分類されることを見出した。 B₁₂をクロモフォアとする クラス I はグラム陽性・陰性細菌の両方に広く分布し、LitR の主要な形態で あることを示している。一方、クラス II-V の分布は特定の属と目に限定され ているようであり、これらは特定の系統または環境への適応に基づいて進化 したものであると推測される。また、TetR 型光応答性転写調節蛋白質や LimR の分類についてもそれと同様なことが考えられる・

クラス II-V LitR の光感知ドメインと予想される C 末端領域のアミノ酸配 列は、既知の機能のドメインと相同性を示さない。これは、クラス II-V が、 既知のものとは異なる光感知メカニズムを有していることを示唆している。 この光感知メカニズムの多様性とそれらを保有する細菌群の系統の相関関係 は、対応する細菌種の生息環境を反映していると考えられる。

さらに、クラス III LitR はクラス I^{8,12} とは異なる吸収スペクトルを示すこ とから、それとは異なる光感知メカニズムを有していることが予想された。 一方、クラス IV LitR の吸収スペクトルは蛋白質由来のピークのみが認められたことから、これが新規な光応答メカニズムを有しているかは不明である。

(2) 光誘導性遺伝子

クラス | LitR では光に誘導されたカロテノイドが光照射で生じた酸化スト レスへの防御機構として働くことが考えられる^{10,11}。一方、クラス II-V やク ラス分けされていないクレードではシクロプロパン環脂肪酸合成遺伝子の転 写を光依存的に制御すると予想される。光合成細菌 Rhodobacter sphaeroides では、それに相同性を示す酵素の遺伝子発現が光酸化ストレス 応答システム ChrR-RpoE によって調節され、酸素原子を含んだ 5 環構造を もつフラン脂肪酸の合成に関与することが知られている³⁹。その脂肪酸の役 割は、光照射で生じる活性酸素を除去することが考えられている。LitR 類似 蛋白質を保有する Shewanella oneidensis では、フラン脂肪酸の生産が光照 射によって2倍増加することが報告されている40。その合成酵素に相同性を 示す遺伝子は litR の周辺にコードされることから、それに制御されることが 予想される。これらのことから、クラス II-V などを保有する細菌群では脂肪

酸の合成を制御し、それがカロテノイドと同様な抗酸化作用を持つことが予想される。

上述の ChrR-RpoE はα-プロテオバクテリアとγ-プロテオバクテリアに分 布し⁴¹、主に脂肪酸合成遺伝子の転写調節に関与すると考えられる。一方で、 Azospirillum brasilense Sp7 ではカロテノイドの生産が ChrR-RpoE によって 制御されることが報告されている⁴²。LitR ファミリーも同様にカロテノイド と脂肪酸の 2 つのグループに分けられることから、それらの転写調節因子と それに制御される遺伝子は進化の過程で何らかの因果関係を持つことが考え られる。

図 3-1-1-1 光応答性転写調節蛋白質のドメイン構成

図 3-1-1-2 LitR ファミリーの分子系統樹

図 3-1-1-3 V. harveyi 由来のクラス IV LitR 組換え蛋白質の 吸収スペクトル

図 3-1-1-4 Pseudomonas 属細菌における litR 周辺の遺伝子図

図 3-1-1-5 γ-プロテオバクテリアが有する litR 周辺の遺伝子図

litR phr cfa

図 3-1-1-6 クラス IV LitR を有する Vibrio 属細菌の litR 周辺の遺伝子図

図 3-1-1-7 クラス V LitR 保有細菌における *litR* 周辺の遺伝子図

A. TetR型光応答性蛋白質を介した転写制御機構

B. 半定量RT-PCRを用いた転写解析

図 3-1-1-8 TetR を介した C. violaceum の光応答機構

図 3-1-1-9 光応答性 TetR 蛋白質の分布

NJ-Poisson, 17 sequences

図 3-1-1-10 光応答性 TetR 蛋白質と 16S rRNA の系統樹

図 3-1-1-11 LimR 蛋白質の分布

0.2

図 3-1-1-12 LimR の分子系統樹

第2項 RNA seg による光応答性細菌のトランスクリプトーム解析

目的

LitR ファミリーの系統解析から多様な光センシング機構が存在することが 示唆された。クラス I や II を保有する細菌群が分子生物学的な解析から光に 応答することが明らかになっている。一方、他のクラスを保有するバクテリ アの光応答は不明である。本章では、LitR 類似蛋白質などを保有する細菌群 を用いた RNA seq によるトランスクリプトーム解析を行い、転写レベルでの 光応答を見出すこと目的とした。なお、本解析は東京農業大学生物資源ゲノ ム解析センター(平成 28 年度共同利用・共同研究拠点採択課題)の採択課題 として行われた。

結果と考察

青色光照射下で培養した計7株の細菌から抽出した RNA を RNA seq によ って解析した。その結果、7株とも光による転写上昇を示した遺伝子が確認 されたが、全遺伝子中の5%以上の遺伝子が光誘導を受ける細菌種や0.5%前 後と光誘導性遺伝子が少ないものが存在した。このことから、細菌種によっ て光誘導を受ける遺伝子数が大きく異なることがわかった。

RNA seq の結果は光によって 2 倍以上に転写上昇した遺伝子を表 3-1-2-1 から 3-1-2-6 にまとめた。本研究では、光誘導性遺伝子群の転写制御や生理 学的な意義について考察した。以下に、各細菌種の結果と考察を述べる。

海洋性発光細菌 Vibrio harveyi ATCC BAA-1116

V. harveyi (Vibrio cambellii) は、海洋に生息するグラム陰性のγ-プロテオ バクテリアである。本菌は、バクテリオルシフェラーゼによる青白い発光を することで知られている。RNA seqでは、野生株と非発光性の変異株(ΔluxA) を光照射下で培養し、それらの転写レベルを比較した。光照射によって2倍 以上転写上昇した遺伝子数は野生株では82個であり、luxA破壊株では86個 であった(表 3-1-2-1)。これら遺伝子群には、クラス IV LitR をコードする VHA5121 や光酸化ストレス応答システム ChrR-RpoE が含まれていたことか ら、それらが V. harveyi の光依存的な転写調節を担っていることが予想され た。ヒト病源菌 Vibrio cholerae ではクラス IV LitR と予想される MerR 型転 写調節蛋白質と ChrR-RpoE が光依存的な転写調節を担っていることが報告 されており、光照射で生じる活性酸素が転写を誘導することを明らかにして いる ⁴³。このことから、V. harveyi も同様に光酸化ストレスが光誘導性遺伝 子の転写を誘導すると考えられる。本菌の光誘導性遺伝子群には、DNA 修復 に関与する 4 つの光回復酵素や脂肪酸合成酵素、シトクロームオキシダーゼ などをコードする遺伝子が含まれ、それらが光ストレスへの防御に関係して いると考えられる。

青色色素生産菌 Chromobacterium violaceum

青色色素ビオラセインを生産するグラム陰性細菌 C. violaceum は、LitR 保 有菌で見られるような phrB と cfaB の遺伝子群を有し、半定量 RT-PCR によ る予備試験でそれらの遺伝子発現が光照射によって上昇することが判明して いる (図 3-1-1-7)。そこで、RNA seq によってさらに光誘導性遺伝子を見出 すことを試みたところ、44 遺伝子の転写レベルが 2 倍以上に上昇した (表 31-2-2)。予備試験で光誘導が確認された Cv017_17815~17855の転写レベルは 17.0~28.6 倍と顕著に上昇していた。また、アセチル CoA の代謝に関与 する遺伝子群の転写レベルが 4 倍までに上昇していた。

C. violaceum は LitR などに相同性を示す光センサー蛋白質を保有してい ない。一方、phrB-cfaB クラスター付近に TetR 型の転写調節因子がコードさ れており、それが光依存的な転写制御を担うことが考えられる。予備調査に おいて、それの破壊は暗条件下においても phrB や cfaB の高い転写レベルを 引き起こすことが判明している。この光センシング機構は明らかではないが、 C. violaceum は TetR 型転写調節蛋白質による新規な光応答メカニズムを有 していることが推測される。

植物共生細菌 Erwinia tasmaniensis Et1/99

E. tasmaniensis は、オーストラリアのリンゴの木から分離されたグラム陰 性細菌である。本菌は、大腸菌の光応答に関与する転写調節因子 BluR に相 同性を示す蛋白質を保有している⁴⁴。光照射による転写上昇した遺伝子数は 全 3,622 遺伝子中 22 個であった(表 3-1-2-3)。BluR 類似蛋白質と思われる 光応答は確認されなかったが、硫酸の取込みや資化に関与する遺伝子群やシ ステインの転写調節に関わる遺伝子の転写が光誘導されていたことが特徴的 であった(図 3-1-2-1)。このことから、細胞内のシステイン量が増加するこ とが考えられた。

稻苗胴枯病菌 Burkholderia plantarii MAFF301723

B. plantariiはβ-プロテオバクテリアに属するグラム陰性細菌であり、稲苗 胴枯病を引き起こす植物病原菌である。本菌はクラス Ⅲ LitR を保有するこ とから、それによる光応答を示すことが予想された。なお、本株はゲノム DNA の配列情報が不明であったため、アノテーションには ATCC 43733 のものを 使用した。光照射によって転写が誘導された遺伝子数は、全 6,457 遺伝子中 29 個であった(表 3-1-2-4)。その転写倍率は最大で 4 倍と光照射による影響 が小さかった。クラス III LitR のレギュロンと予想される遺伝子群の転写倍 率は 1.1~2.4 倍であり、光による誘導は低かった。このことから、B. plantarii のクラス III LitR は機能しない、あるいは、転写リプレッサー活性が強力であ ることが考えられた。一方、呼吸鎖に関与するシトクロームオキシダーゼを コードする遺伝子 bpln 2g03750~2g03780 の転写レベルは 3 倍に上昇し、 これが本菌では特徴的であった。

緑膿菌 Pseudomonas aeruginosa PAO1

P. aeruginosa は、環境中に広く分布するγ-プロテオバクテリアであり、メ ジャーな日和見感染菌である。本菌では 204 遺伝子の転写レベルが光照射に よって上昇したが、その多くは 2~5 倍の低いレベルの転写誘導であった(表 3-1-2-5)。P. aeruginosa は LitR 類似蛋白質を保有し、それを含んだ遺伝子ク ラスターの転写レベルは光によって 7~14 倍に上昇した。その他に、呼吸鎖 に関与する遺伝子 nuoADEHJK や sdhADC、ccoP2Q2A2ZN2、cyoABCDE(図 3-1-2-2) やプロファージ領域と予想される遺伝子群 PA0163~PA0645 の転 写が光誘導を受けることが確認された。

Rhodococcus jostii RHA1

R. jostii は Corynebacteria 目に属するグラム陽性細菌である。本菌は、難 分解性物質ポリ塩化ビニフェルの分解能を持つことで知られている。本菌は クラス V LitR を保有しているが、そのレギュロンと予想される遺伝子 RHA6292-6293 の転写倍率は 0.5~0.9 であったため、それによる光応答は認 められなかった。このことから、*R. jostii* のクラス V LitR は光センサーとし て機能しない、あるいは、青色光以外に応答することが考えられる。 R. jostii の光誘導性遺伝子は 480 個であり、全遺伝子数の 5.2%を占めた (表 3-1-2-6)。ほとんどの遺伝子群は 2~5 倍程度の低い誘導レベルであっ た。それらには、硫黄代謝やビオチンの取込みと合成、B₁₂や葉酸、チアミン、 パントテン酸の生合成、解糖系、アミノ酸代謝に関与する酵素の遺伝子群が 含まれていた(図 3-1-2-3 から 3-1-2-11 まで)。これらの遺伝子群を低いレベ ルで発現誘導することで、その関連代謝を微調整して光ストレスに対応する と考えられる。

また、多くのリボソーム蛋白質や蛋白質のフォールディングに関与する groL12の遺伝子発現が光によって誘導されていた。Streptomyces coelicolor では一部のリボソーム遺伝子の転写が酸化レギュレーターRsrA-SigR に制御 されることが知られていることから⁴⁵、*R. jostii*の光誘導性リボソーム遺伝 子群は光酸化ストレスに関与すると予想される。

RHA1_ro02555~02561の転写倍率が 5.8~7.5 と比較的高く、それに隣接 するアンチシグマ因子-シグマ因子 RskA-SigK がその遺伝子群の転写を調節 することが予想された。RskA-SigK は、結核菌 Mycobacterium tuberculosis のレドックス応答性転写調節因子であり、病原遺伝子や細胞膜を構成するミ コール酸合成遺伝子などの遺伝子発現を調節することが明らかになっている ^{46,47}。RskA-SigK の転写メカニズムは *M. tuberculosis*のみ報告されているが、 光による制御の報告例はない。このことから、*R. jostii*の RskA-SigK メカニ ズムは *M. tuberculosis* のものとは異なり、光または光酸化に応答すると考え られた。

以上より、RNA seq によるトランスクリプトーム解析をした全ての細菌種 で光照射による転写上昇を確認することができた。多くの細菌種で光回復酵 素 phr やシクロプロパン環脂肪酸合成酵素、呼吸鎖関連酵素遺伝子群が光誘 導されることが見出された一方、細菌種によって光誘導性遺伝子が異なるも のも多く見つかった。すなわち、これらの結果は光誘導性遺伝子の共通性と 多様性を示唆させるものであり、それは細菌種の環境適応と進化に基づいて いると予想させる。

また、本解析によって新規な光誘導的な転写制御機構の存在を示唆する結 果が得られた。一方、新しい光センサーと予想されたクラス V LitR などの光 応答は確認できなかったが、本解析では青色光の条件下であったため、他の 波長に反応する可能性が残されている。解析した細菌種の光感知メカニズム は明らかではないが、今後の研究によってそれらが解明されることを期待す

る。

Direction	ection Gene number Difinition	Fold change (Light/Dark)		
				∆luxA
+	VIBHAR_00151	superoxide dismutase, Fe-Mn family	3.74	2.28
+	VIBHAR_00286	hypothetical protein	4.17	7.06
+	VIBHAR_00352	membrane protein	6.30	3.18
+	VIBHAR_00353	hypothetical protein	6.08	4.57
+	VIBHAR_00509	spermidine export protein MdtJ	3.65	7.25
+	VIBHAR_00510	spermidine export protein Mdtl	3.13	7.11
+	VIBHAR_00796	hypothetical protein	25.92	16.23
+	VIBHAR_01814	transcriptional regulator	2.03	4.17
+	VIBHAR_01815	short-chain dehydrogenase	2.69	4.62
+	VIBHAR_01816	amine oxidase	3.06	3.62
+	VIBHAR_01817	plasmid partition ParA protein	3.30	2.85
+	VIBHAR_01818	cyclopropane-fatty-acyl- phospholipid synthase	4.08	4.31
+	VIBHAR_01819	zinc ABC transporter permease	5.45	6.99
+	VIBHAR_01820	putative periplasmic protein	10.36	7.61
+	VIBHAR_01821	lipoprotein	11.09	9.16
-	VIBHAR_01822	adenylosuccinate lyase	3.21	3.14
+	VIBHAR_02160	bacteriorhodopsin	2.63	3.58
-	VIBHAR_02225	glycosyltransferase	1.97	2.28
-	VIBHAR_02226	galactosyltransferase	3.37	2.79
-	VIBHAR_02235	hypothetical protein	2.68	2.22
-	VIBHAR_02393	propionyl-CoA synthetase	1.88	3.42
-	VIBHAR_02394	2-methylaconitate isomerase	1.47	4.98
-	VIBHAR_02395	2-methylcitrate dehydratase	1.71	5.13
-	VIBHAR_02396	2-methylcitrate synthase	2.19	4.38
-	VIBHAR_02397	methylisocitrate lyase	2.29	5.90
-	VIBHAR_02398	GntR family transcriptional regulator	2.00	1.58
-	VIBHAR_02420	aldehyde dehydrogenase	2.45	5.02
-	VIBHAR_02449	serine protease	2.58	2.14
-	VIBHAR_03282	hypothetical protein	8.38	7.23

表 3-1-2-1 V. harveyi の光誘導性遺伝子群

Direction	Gene number	Difinition	Fold c (Liaht	hange /Dark)
Direction		Dimilion	WT	∆luxA
-	VIBHAR_03283	putative transcriptional regulator (ChrR)	12.16	6.36
-	VIBHAR_03284	RNA polymerase sigma-70 factor, ECF subfamily (RpoE)	10.73	5.84
-	VIBHAR_03285	2-dehydropantoate 2-reductase	4.90	4.58
-	VIBHAR_03286	ATP-dependent protease	21.21	27.32
+	VIBHAR_03583	XTP/dITP diphosphohydrolase	2.16	2.04
+	VIBHAR_03584	HemN family oxidoreductase	2.05	1.85
-	VIBHAR_04755	glyoxalase	8.67	2.32
-	VIBHAR_04781	putative protease	1.81	2.14
-	VIBHAR_04782	hypothetical protein	24.42	19.70
+	VIBHAR_04796	major type 1 subunit fimbrin (pilin)	3.05	3.24
+	VIBHAR_04941	hypothetical protein	6.15	7.06
+	VIBHAR_04942	GTPases - Sulfate adenylate transferase	3.15	2.37
-	VIBHAR_05020	hypothetical protein	4.94	6.70
-	VIBHAR_05022	hypothetical protein (Methylenetetrahydrofolate reductase)	2.63	2.79
+	VIBHAR_05120	hypothetical protein	5.63	2.99
+	VIBHAR_05121	LitR	3.47	3.90
+	VIBHAR_05122	deoxyribodipyrimidine photo-lyase	3.26	4.17
+	VIBHAR_05123	L,D-transpeptidase YcfS	1.77	2.30
-	VIBHAR_05308	hypothetical protein	2.93	2.27
-	VIBHAR_05309	glutathione peroxidase	4.37	3.77
-	VIBHAR_05323	magnesium transporter	2.77	2.19
-	VIBHAR_05324	ubiquinol-cytochrome C reductase	7.06	3.51
-	VIBHAR_05464	cytochrome C	4.94	4.73
-	VIBHAR_05465	cytochrome oxidase	4.70	4.72
-	VIBHAR_05466	cytochrome oxidase subunit I	5.39	6.59
-	VIBHAR_05467	cytochrome C553	7.98	10.18

表 3-1-2-1 V. harveyi の光誘導性遺伝子群(続き)

Direction	Gene number	Difinition	Fold c (Liaht	hange /Dark)
		Dimilion	WT	∆luxA
+	VIBHAR_05528	arginine transport system ATP- binding protein	2.25	5.09
+	VIBHAR_05529	arginine transport system substrate- binding protein	2.32	3.06
+	VIBHAR_05530	arginine transport system permease protein	2.22	2.40
+	VIBHAR_05567	hypothetical protein	2.22	3.20
-	VIBHAR_05568	Putative lipoprotein	1.84	2.65
-	VIBHAR_05569	Putative lipoprotein	2.27	2.24
-	VIBHAR_05665	putative deacylase	2.56	2.61
+	VIBHAR_05687	uroporphyrin-III methyltransferase	2.19	2.14
-	VIBHAR_05688	hypothetical protein	2.17	2.23
+	VIBHAR_05891	hypothetical protein	2.41	2.28
+	VIBHAR_06101	hypothetical protein	5.31	9.28
-	VIBHAR_06102	putative riboflavin deaminase	6.35	11.15
+	VIBHAR_06567	lipoprotein	2.04	2.61
-	VIBHAR_06658	hypothetical protein	5.33	3.40
+	VIBHAR_06659	deoxyribodipyrimidine photo-lyase	4.02	3.17
+	VIBHAR_06660	fasciclin	17.49	27.07
+	VIBHAR_06661	flavin oxidoreductase	5.23	6.27
-	VIBHAR_06662	phospholipase	2.33	2.18
+	VIBHAR_06690	peptide methionine sulfoxide reductase msrA/msrB	7.65	6.64
-	VIBHAR_06691	C factor cell-cell signaling protein	8.07	6.09
-	VIBHAR_06692	deoxyribodipyrimidine photolyase- related protein	5.60	5.24
-	VIBHAR_06693	deoxyribodipyrimidine photo-lyase	10.36	8.33
-	VIBHAR_06712	Na(+)-translocating NADH-quinone reductase subunit B	18.59	13.09
-	VIBHAR_06863	glycerate 2-kinase	2.11	3.38

表 3-1-2-1	V. harveyi の光誘導性遺伝子群	(続き)
-----------	----------------------	------

Direction	Gene number	Difinition	Fold c (Light	hange /Dark)
			WT	∆luxA
-	VIBHAR_06887	hypothetical protein	2.15	2.04
-	VIBHAR_06888	hypothetical protein	6.17	8.44
+	VIBHAR_07021	putative redox protein	21.63	13.26
+	VIBHAR_07022	methyl-accepting chemotaxis protein	2.93	2.01

表 3-1-2-1	V. harvey	<i> </i> の光誘導性遺伝子群	(続き)
	/		

Direction	Gene number	Definition	Fold change (Light/Dark)
+	Cv017_00350	methylcrotonoyl-CoA carboxylase	3.30
+	Cv017_00355	enoyl-CoA hydratase	2.58
+	Cv017_00360	3-methylcrotonyl-CoA carboxylase	2.81
-	Cv017_01790	hypothetical protein	2.37
+	Cv017_01800	protein mbtH	2.29
+	Cv017_02905	ABC transporter permease	2.55
+	Cv017_02910		11.58
-	Cv017_03735	indolepyruvate ferredoxin oxidoreductase	3.68
+	Cv017_04135	aldehyde dehydrogenase	3.13
+	Cv017_09530	TonB-dependent receptor	3.11
+	Cv017_09535	hemin degrading factor	4.08
+	Cv017_09540	hypothetical protein	3.57
-	Cv017_10400	acetyl-CoA acetyltransferase	3.96
-	Cv017_10405	MerR family transcriptional regulator	2.80
+	Cv017_10410	3-hydroxybutyryl-CoA dehydrogenase	3.22
+	Cv017_10415	methylmalonate-semialdehyde dehydrogenase	3.53
+	Cv017_10420	acyl-CoA dehydrogenase	4.12
+	Cv017_10425	enoyl-CoA hydratase	3.25
+	Cv017_10430	enoyl-CoA hydratase	2.96
-	Cv017_11935	C4-dicarboxylate transporter	3.17
-	Cv017_12620	hypothetical protein	4.05
+	Cv017_15080	hypothetical protein	2.45
+	Cv017_17570	hypothetical protein	2.73
-1	Cv017_17810	TetR family transcriptional regulator	3.98
+	Cv017_17815	NADH-ubiquinone oxidoreductase subunit 6	24.18
+	Cv017_17820	cyclopropane fatty acid synthase	17.03
+	Cv017_17825	cyclopropane-fatty-acyl-phospholipid synthase	23.83
+	Cv017_17830	hypothetical protein	28.56

表 3-1-2-2 C. violaceum の光誘導性遺伝子群

Direction	Gene number	Definition	Fold change (Light/Dark)
+	Cv017_17835	short-chain dehydrogenase	24.20
+	Cv017_17840	isomerase	18.91
+	Cv017_17845	deoxyribodipyrimidine photolyase	21.42
+	Cv017_17850	lipocalin	19.26
+	Cv017_17855	hypothetical protein	26.75
+	Cv017_17860	diguanylate cyclase	2.78
+	Cv017_17940	C4-dicarboxylate ABC transporter	4.00
+	Cv017_17945	C4-dicarboxylate ABC transporter permease	2.30
-	Cv017_18945	3-hydroxyisobutyrate dehydrogenase	4.58
+	Cv017_19080	2-methylisocitrate lyase	2.40
+	Cv017_19085	2-methylcitrate synthase	6.21
+	Cv017_19090	hypothetical protein	5.02
+	Cv017_19095	Fe/S-dependent 2-methylisocitrate dehydratase AcnD	3.70
+	Cv017_19100	3-methylitaconate isomerase	3.41
-	Cv017_20470	acyl-CoA dehydrogenase	2.23
-	Cv017_21445	glycerol kinase	3.31

表 **3-1-2-2** *C. violaceum* の光誘導性遺伝子群(続き)

Direction	Gene name	Definition	Fold change (Light/Dark)
+	ETA_01100	hypothetical protein	2.06
-	ylaC	Putative inner membrane protein YlaC	2.23
+	ETA_04750	Probable ABC transporter, periplasmic- binding protein	2.44
+	gltL	GItL protein	2.74
+	gltJ	GltJ protein	3.48
+	ETA_05380	Potential ORFB-specific chaperone, encodes a homolog of virulence/avirulence effector proteins secreted via the type III pathway	3.06
+	cysP	Thiosulfate-binding protein	3.71
+	cysT	Sulfate ABC transporter permease	2.88
+	cysW	Sulfate transport system permease protein	3.56
+	cysA	Sulfate/thiosulfate import ATP-binding protein	3.18
-	cysK	Cysteine synthase A	2.31
+	cbl	Transcriptional regulator cys regulon	3.73
-	yciW	Conserved hypothetical protein YciW	2.16
+	ydjN	Putative symporter YdjN	3.54
-	cysC	Adenylylsulfate kinase	2.49
-	cysN	Sulfate adenylyltransferase subunit 1	3.08
-	cysD	Sulfate adenylyltransferase subunit 2	6.10
-	cysG	uroporphyrin-III C-methylase, siroheme synthase	9.59
+	ETA_27130	Putative amino-acid transport system permease protein	3.19
+	ETA_27140	Putative amino-acid ABC transporter, ATP-binding protein	2.60
+	ETA_27150	Putative amino-acid ABC transporter, periplasmic amino acid-binding protein	2.81
-	lysA	Diaminopimelate decarboxylase	2.93

表 3-1-2-3 E. tasmaniensis の光誘導性遺伝子群

Sulfur metabolism

図 3-1-2-1 E. tasmaniensis の硫黄代謝関連遺伝子

Direction	Gene number	Definition	Fold change (Light/Dark)
-	bpln_1g12250	putative superoxide dismutase	2.27
-	bpln_1g15950	collagen triple helix repeat protein	2.49
-	bpln_1g15960	pseudo gene	4.22
+	bpln_1g15970	pseudo gene	2.69
+	bpln_1g15990	Peptidase A24A, prepilin type IV	2.14
+	bpln_1g16000	TadE-like protein	2.31
-	bpln_2g03740	GntR family transcriptional regulator	2.37
+	bpln_2g03750	cytochrome o ubiquinol oxidase, subunit II	3.45
+	bpln_2g03760	cytochrome o ubiquinol oxidase, subunit l	3.33
+	bpln_2g03770	cytochrome o ubiquinol oxidase, subunit III	3.20
+	bpln_2g03780	cytochrome o ubiquinol oxidase subunit IV	3.37
+	bpln_2g03940	methylmalonyl-CoA mutase	2.40
-	bpln_2g03950	hypothetical protein	2.76
-	bpln_2g03960	nitrite/sulfite reductase hemoprotein beta subunit	2.65
-	bpln_2g06080	RND efflux system, outer membrane lipoprotein, NodT	2.12
-	bpln_2g06140	delta 12 desaturase	2.14
-	bpln_2g06190	pyoverdine synthetase	2.28
+	bpln_2g08560	electron transfer flavoprotein subunit beta	2.42
+	bpln_2g08880	Acyl-CoA dehydrogenase	2.26
+	bpln_2g08890	Acyl-coenzyme A synthetase	2.22
+	bpln_2g08900	Methylmalonate-semialdehyde dehydrogenase	2.38
+	bpln_2g08910	3-hydroxyisobutyrate dehydrogenase	2.29
+	bpln_2g08920	Enoyl-CoA hydratase/carnithine racemase	2.46
+	bpln_2g08930	Enoyl-CoA hydratase/isomerase family protein	2.49
+	bpln_2g15500	Alcohol dehydrogenase zinc-binding domain protein	2.90

表 3-1-2-4 B. plantarii の光誘導性遺伝子群

Direction	Gene number	Definition	Fold change (Light/Dark)
-	bpln_2g17970	hypothetical protein	2.11
-	bpln_2g17980	hypothetical protein	2.38
+	bpln_2g23570	triple helix repeat-containing collagen	2.91
+	bpln_2g24240	Response regulator receiver protein	2.99

表 3-1-2-4 B. plantarii の光誘導性遺伝子群(続き)

Direction	Name	Difinition	Fold change (Light/Dark)
+	plcB	phospholipase C, PlcB	2.00
+	PA0028	hypothetical protein	2.64
+	osmC	osmotically inducible protein OsmC	2.17
-	PA0205	probable permease of ABC transporter	2.10
-	PA0445	probable transposase	2.08
-	glcB	malate synthase G	3.92
-	PA0483	probable acetyltransferase	2.62
+	PA0560	conserved hypothetical protein	2.01
+	prtN	transcriptional regulator PrtN	2.26
+	ptrB	repressor, PtrB	2.56
+	PA0613	hypothetical protein	2.58
+	PA0614	hypothetical protein	4.31
+	PA0615	hypothetical protein	2.46
+	PA0616	hypothetical protein	2.61
+	PA0617	probable bacteriophage protein	3.15
+	PA0618	probable bacteriophage protein	3.32
+	PA0619	probable bacteriophage protein	2.57
+	PA0620	probable bacteriophage protein	2.25
+	PA0622	probable bacteriophage protein	3.31
+	PA0623	probable bacteriophage protein	2.93
+	PA0624	hypothetical protein	2.35
+	PA0625	hypothetical protein	2.68
+	PA0626	hypothetical protein	2.27
+	PA0627	conserved hypothetical protein	2.54
+	PA0628	conserved hypothetical protein	3.18
+	PA0629	conserved hypothetical protein	2.63
+	PA0630	hypothetical protein	2.45
+	PA0631	hypothetical protein	3.03
+	PA0632	hypothetical protein	4.40
+	PA0633	hypothetical protein	3.31
+	PA0634	hypothetical protein	2.82
+	PA0635	hypothetical protein	3.42

表 3-1-2-5 P. aeruginosa の光誘導性遺伝子群

	11、0-1-2	2-5 F. aciuyinusa 沙儿讷等性息位于叶(脱)	¢/
Direction	Name	Difinition	Fold change (Light/Dark)
+	PA0636	hypothetical protein	2.97
+	PA0637	conserved hypothetical protein	2.25
+	PA0638	probable bacteriophage protein	2.37
+	PA0639	conserved hypothetical protein	2.23
+	PA0640	probable bacteriophage protein	2.88
+	PA0641	probable bacteriophage protein	2.29
+	PA0642	hypothetical protein	4.33
+	PA0643	hypothetical protein	2.18
+	PA0645	hypothetical protein	2.00
+	PA0713	hypothetical protein	3.22
+	PA0789	probable amino acid permease	2.18
+	acsA	acetyl-coenzyme A synthetase	2.10
-	PA0908	hypothetical protein	3.15
-	PA0909	hypothetical protein	3.27
-	PA0910	hypothetical protein	3.16
-	PA0911	hypothetical protein	2.98
-	PA1123	hypothetical protein	2.66
+	PA1203	hypothetical protein	2.05
+	cyoA	cytochrome o ubiquinol oxidase subunit II	4.07
+	суоВ	cytochrome o ubiquinol oxidase subunit l	2.76
+	cyoC	cytochrome o ubiquinol oxidase subunit III	2.95
+	cyoD	cytochrome o ubiquinol oxidase subunit IV	3.06
+	cyoE	cytochrome o ubiquinol oxidase protein CyoE	2.86
-	PA1333	hypothetical protein	3.44
+	ccmB	heme exporter protein CcmB	2.25
-	PA1540	conserved hypothetical protein	2.01
-	PA1541	probable drug efflux transporter	2.27
+	PA1550	hypothetical protein	2.21
+	PA1551	probable ferredoxin	2.77

表 **3-1-2-5** *P. aeruginosa* **の光誘導性遺伝子群(続き)**

	云 0 -1-5		Eold change
Direction	Name	Difinition	Light/Dark)
-	ccoP2	Cytochrome c oxidase, cbb3-type, CcoP subunit	2.19
-	ccoQ2	Cytochrome c oxidase, cbb3-type, CcoQ subunit	2.13
-	ccoO2	Cytochrome c oxidase, cbb3-type, CcoO subunit	2.31
-	ccoN2	Cytochrome c oxidase, cbb3-type, CcoN subunit	2.38
+	gltA	citrate synthase	2.04
+	sdhC	succinate dehydrogenase (C subunit)	2.41
+	sdhD	succinate dehydrogenase (D subunit)	2.32
+	sdhA	succinate dehydrogenase (A subunit)	2.26
-	PA1602	probable oxidoreductase	2.39
+	PA1673	(bacteriohemerythrin)	2.09
-	PA1848	probable major facilitator superfamily (MFS)transporter	2.18
-	PA1849	conserved hypothetical protein	2.58
-	PA1850	probable transcriptional regulator	2.57
-	PA1852	hypothetical protein	4.61
-	PA1853	probable transcriptional regulator	2.33
-	PA1854	conserved hypothetical protein	2.04
+	PA1870	hypothetical protein	2.14
	PA1935	hypothetical protein	2.07
+	PA1937	conserved hypothetical protein	2.00
+	pqqF	pyrroloquinoline quinone biosynthesis protein F	2.79
+	PA1975	hypothetical protein	4.67
+	ercS'	ErcS'	3.13
-	eraS	sensor kinase, EraS	4.06
-	eraR	response regulator EraR	4.20
-	PA1981	hypothetical protein	2.18

表 3-1-2-5 P. aeruginosa の光誘導性遺伝子群(続き)

Direction	Name	Difinition	Fold change (Light/Dark)
+	pqqA	pyrroloquinoline quinone biosynthesis protein A	2.82
+	pqqB	pyrroloquinoline quinone biosynthesis protein B	2.76
+	pqqC	pyrroloquinoline quinone biosynthesis protein C	2.69
+	pqqD	pyrroloquinoline quinone biosynthesis protein D	2.70
+	pqqE	pyrroloquinoline quinone biosynthesis protein E	2.75
+	pqqH	PqqH	2.99
-	bdhA	3-hydroxybutyrate dehydrogenase	2.14
-	PA2004	conserved hypothetical protein	2.00
+	PA2134	hypothetical protein	2.11
+	PA2135	probable transporter	2.07
+	PA2136	hypothetical protein	3.17
+	PA2137	hypothetical protein	2.85
+	PA2138	probable ATP-dependent DNA ligase	2.18
-	PA2146	conserved hypothetical protein	3.35
-	PA2148	conserved hypothetical protein	2.19
-	PA2149	hypothetical protein	2.00
-	PA2150	conserved hypothetical protein	2.06
-	PA2151	conserved hypothetical protein	2.01
-	PA2154	conserved hypothetical protein	2.12
+	PA2160	probable glycosyl hydrolase	2.15
+	PA2161	hypothetical protein	2.32
+	PA2162	probable glycosyl hydrolase	2.28
+	PA2163	hypothetical protein	2.02
+	PA2165	probable glycogen synthase	2.13
+	PA2166	hypothetical protein	3.43
+	PA2173	hypothetical protein	2.12
-	PA2184	conserved hypothetical protein	3.49

表 3-1-2-5 *P. aeruginosa* の光誘導性遺伝子群(続き)

	☆ J-1-Z-J	F. aciuginusa 0几两导庄圆位于杆	(形で)
Direction	Name	Difinition	Fold change (Light/Dark)
+	PA2187	hypothetical protein	2.10
+	PA2190	conserved hypothetical protein	2.39
-	psIN	hypothetical protein	2.01
+	PA2319	probable transposase	2.17
+	PA2381	hypothetical protein	2.25
+	idh	isocitrate dehydrogenase	4.34
+	aceA	isocitrate lyase	2.26
+	nuoA	NADH dehydrogenase I chain A	2.51
+	nuoD	NADH dehydrogenase I chain C,D	2.23
+	nuoE	NADH dehydrogenase I chain E	2.29
+	nuoH	NADH dehydrogenase I chain H	2.11
+	nuoJ	NADH dehydrogenase I chain J	2.01
+	nuoK	NADH dehydrogenase I chain K	2.11
-	PA2679	hypothetical protein	5.82
-	PA2690	probable transposase	2.16
-	PA2745	probable hydrolase	3.25
-	PA2747	hypothetical protein	2.71
+	PA2753	hypothetical protein	2.05
+	PA2880	hypothetical protein	4.40
-	sth	soluble pyridine nucleotide transhydrogenase	3.76
+	PA3174	probable transcriptional regulator	2.95
-	PA3231	hypothetical protein	2.51
-	PA3232	probable nuclease	2.13
-	PA3270	hypothetical protein	2.01
-	PA3271	probable two-component sensor	3.22
+	PA3369	hypothetical protein	2.21
+	PA3370	hypothetical protein	2.21
-	PA3434	probable transposase	2.10
-	rhlA	rhamnosyltransferase chain A	2.04
+	PA3614	hypothetical protein	3.42
+	PA3660	probable sodium/hydrogen antiporter	2.43

表 3-1-2-5 P. aeruginosa の光誘導性遺伝子群(続き)

Direction	Direction Name Difinition		Fold change (Light/Dark)
-	adk	adenylate kinase	2.29
-	PA3766	probable aromatic amino acid transporter	2.19
-	PA3791	hypothetical protein	2.33
-	PA3928	hypothetical protein	2.37
-	cioB	cyanide insensitive terminal oxidase	2.30
-	cioA	cyanide insensitive terminal oxidase	2.93
-	tesB	acyl-CoA thioesterase II	2.13
+	PA3993	probable transposase	2.08
+	PA4013	conserved hypothetical protein	2.27
+	PA4014	hypothetical protein	2.10
+	oprG	Outer membrane protein OprG precursor	2.07
+	PA4131	probable iron-sulfur protein	2.68
-	PA4171	probable protease	2.08
-	PA4172	probable nuclease	2.16
+	PA4289	probable transporter	2.32
+	PA4290	probable chemotaxis transducer	4.16
+	PA4291	hypothetical protein	2.26
+	xenB	xenobiotic reductase	2.03
-	PA4359	(ferrous iron transporter A)	2.22
-	PA4400	probable pyrophosphohydrolase	2.51
-	PA4438	conserved hypothetical protein	5.08
-	PA4548	probable D-amino acid oxidase	2.51
+	ccpR	cytochrome c551 peroxidase precursor	2.38
-	PA4596	probable transcriptional regulator	2.26
-	PA4620	hypothetical protein	2.09
-	PA4621	probable oxidoreductase	3.00
+	mqoB	malate:quinone oxidoreductase	2.83
-	hemH	ferrochelatase	2.25
-	PA4656	conserved hypothetical protein	2.49
+	PA4658	hypothetical protein	13.52
+	litR	probable transcriptional regulator	14.18
+	phr	deoxyribodipyrimidine photolyase	7.27

表 3-1-2-5 P. aeruginosa の光誘導性遺伝子群(続き)

	X J-1	-2-5 T. aciuginosa ⁽) 几时 寻江厦口 1 件(Mu	27
Direction	Name	Difinition	Fold change (Light/Dark)
+	pagL	Lipid A 3-O-deacylase	2.30
-	PA4738	conserved hypothetical protein	3.08
-	PA4739	conserved hypothetical protein	2.90
-	PA4797	probable transposase	2.00
+	PA5030	probable major facilitator superfamily (MFS) transporter	2.08
+	PA5085	probable transcriptional regulator	2.01
+	hutG	N-formylglutamate amidohydrolase	2.28
+	hutl	imidazolone-5-propionate hydrolase Hutl	2.43
+	PA5093	probable histidine/phenylalanine ammonia-lyase	2.59
+	PA5094	probable ATP-binding component of ABC transporter	3.03
+	PA5095	probable permease of ABC transporter	3.39
+	PA5096	probable binding protein component of ABC transporter	7.56
+	PA5097	probable amino acid permease	14.19
+	hutH	histidine ammonia-lyase	19.46
+	PA5099	probable transporter	16.12
+	hutU	urocanase	31.53
-	PA5104	conserved hypothetical protein	6.62
-	hutC	histidine utilization repressor HutC	9.35
-	PA5106	conserved hypothetical protein	20.86
+	PA5194	hypothetical protein	2.07
-	argA	N-acetylglutamate synthase	2.86
+	poxB	pyruvate dehydrogenase (cytochrome)	2.32
+	PA5395	conserved hypothetical protein	4.30
+	PA5445	probable coenzyme A transferase	7.12
-	PA5475	hypothetical protein	2.05
+	PA5480	hypothetical protein	3.39
+	PA5481	hypothetical protein	2.51
+	PA5482	hypothetical protein	2.50

表 3-1-2-5 P. aeruginosa の光誘導性遺伝子群(続き)

Oxidative phosphorylation

図 3-1-2-2 P. aeruginosa の呼吸鎖関連遺伝子

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro00154	conserved hypothetical protein	3.11
-	RHA1_ro00171	cobaltochelatase	2.13
+	groL1	60 kDa chaperonin GroEL	2.08
-	RHA1_ro00572	repressor LexA	2.09
-	RHA1_ro00596	probable transcriptional regulator, GntR family protein	2.17
+	RHA1_ro00607	hypothetical protein	8.69
-	RHA1_ro00608	possible transposase	4.01
+	RHA1_ro00616	probable ATP-dependent Clp protease ATP-binding subunit	2.14
+	RHA1_ro00617	conserved hypothetical protein	2.93
-	RHA1_ro00851	probable S-adenosylmethionine- dependent methyltransferase	2.12
-	hisl	phosphoribosyl-ATP diphosphatase	2.33
-	RHA1_ro00857	conserved hypothetical protein	2.07
-	argC	N-acetyl-gamma-glutamyl-phosphate reductase	2.03
-	RHA1_ro00960	tRNA/rRNA methyltransferase	2.03
-	suhB	inositol-1(or 4)-monophosphatase	2.35
-	RHA1_ro01028	hypothetical protein	2.08
-	nadB	L-aspartate oxidase	2.05
-	RHA1_ro01043	possible biotin synthase, C-terminal	8.06
-	bioD	dethiobiotin synthetase	3.89
-	bioF	8-amino-7-oxononanoate synthase	5.62
+	bioA1	adenosylmethionine-8-amino-7- oxononanoate aminotransferase	2.03
-	murE1	UDP-N-acetylmuramoylalanyl-D- glutamate2,6-diaminopimelate ligase	2.18

表 3-1-2-6 R. jostii の光誘導性遺伝子群

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro01100	conserved hypothetical protein	2.09
+	RHA1_ro01101	probable beta-carotene ketolase	2.84
+	RHA1_ro01102	possible caratenoid biosynthesis protein	2.66
-	RHA1_ro01113	conserved hypothetical protein	2.73
-	RHA1_ro01118	arsenite transporting ATPase	2.11
-	RHA1_ro01123	conserved hypothetical protein	2.27
-	RHA1_ro01124	probable protein p60 precursor	2.37
+	cobU	bifunctional adenosylcobinamide kinase/ adenosylcobinamide phosphate guanylyltransferase	2.18
+	cobT	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	2.08
+	aceE1	pyruvate dehydrogenase E1 component	2.05
-	RHA1_ro01215	probable lipase precursor	2.04
-	RHA1_ro01219	conserved hypothetical protein	2.52
-	RHA1_ro01243	hypothetical protein	3.37
-	RHA1_ro01244	possible lipase/esterase	2.44
-	RHA1_ro01245	conserved hypothetical protein	2.11
+	RHA1_ro01251	ferredoxinnitrite reductase	3.03
+	cysH	phosphoadenylyl-sulfate reductase (thioredoxin)	2.16
+	RHA1_ro01253	sulfate adenylyltransferase small subunit	2.20
+	RHA1_ro01255	conserved hypothetical protein	2.42
-	RHA1_ro01272	ABC sulfate/ thiosulfate porter, permease component	2.69
-	RHA1_ro01273	ABC sulfate/ thiosulfate porter, substrate binding component	2.46
+	RHA1_ro01274	hypothetical protein	2.87
+	rpsT	30S ribosomal protein S20	2.00
-	RHA1_ro01293	conserved hypothetical protein	2.09

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

Direction	gene	Difinition	Fold change (Light/Dark)
-	RHA1_ro01294	conserved hypothetical protein	2.21
-	RHA1_ro01295	probable phosphoglycerate mutase	2.01
-	RHA1_ro01296	conserved hypothetical protein	2.23
-	proB	glutamate 5-kinase	2.51
-	RHA1_ro01311	probable GTP-binding protein, GTP1/Obg family protein	2.27
-	rpmA	50S ribosomal protein L27	3.15
-	rplU	50S ribosomal protein L21	3.32
+	RHA1_ro01359	glucokinase	3.25
+	RHA1_ro01360	conserved hypothetical protein	3.72
-	RHA1_ro01361	sugar transporter, MFS superfamily protein	2.62
-	RHA1_ro01378	probable ribose 5-phosphate isomerase	2.02
+	RHA1_ro01390	conserved hypothetical protein	2.02
-	RHA1_ro01406	hypothetical protein	2.67
-	RHA1_ro01425	holo-[acyl-carrier-protein] synthase	2.91
-	RHA1_ro01426	probable fatty-acyl-CoA synthase	3.94
+	RHA1_ro01444	probable ATP-dependent helicase	2.07
+	RHA1_ro01451	probable D-galactonate transporter, MFS superfamily protein	2.14
-	RHA1_ro01485	transcription termination factor Rho	3.22
-	RHA1_ro01538	probable enoyl-CoA hydratase	6.21
-	mmsB1	3-hydroxyisobutyrate dehydrogenase	6.29
-	RHA1_ro01540	possible enoyl-CoA hydratase	7.19
-	RHA1_ro01541	probable acyl-CoA dehydrogenase	7.58
-	mmsA2	methylmalonate-semialdehyde dehydrogenase (acylating)	6.84
-	RHA1_ro01546	copper homeostasis protein	2.41
-	RHA1_ro01547	glucosamine-6-phosphate deaminase	2.79

表 **3-1-2-6** *R. jostii* **の光誘導性遺伝子群(続き)**

Direction	gene	Difinition	Fold change (Light/Dark)
-	RHA1_ro01548	N-acetylglucosamine-6-phosphate deacetylase	3.36
-	RHA1_ro01549	phosphoenolpyruvateprotein phosphotransferase	3.34
-	RHA1_ro01550	protein-N(pi)-phosphohistidinesugar phosphotransferase	2.37
+	RHA1_ro01552	protein-N(pi)-phosphohistidinesugar phosphotransferase	2.12
-	RHA1_ro01554	conserved hypothetical protein	2.23
-	RHA1_ro01563	probable sufite oxidase	3.63
-	RHA1_ro01572	benzoate membrane transport protein BenE	3.17
+	RHA1_ro01577	pyruvate dehydrogenase	2.52
+	RHA1_ro01578	dihydrolipoyllysine-residue succinyl- transferase	3.23
+	RHA1_ro01597	possible transcriptional activator TenA	2.94
+	RHA1_ro01598	probable ABC transporter, permease component	2.36
+	RHA1_ro01599	ABC transporter, permease component	2.62
+	RHA1_ro01605	possible mucin precursor	2.13
+	RHA1_ro01606	possible PPE family protein	2.11
-	RHA1_ro01671	possible transposase	3.15
-	RHA1_ro01719	conserved hypothetical protein	2.35
+	RHA1_ro01796	probable glutamate synthase large subunit	2.09
+	cysJ	sulfite reductase [NADPH] flavoprotein alpha-component	2.11
+	RHA1_ro01832	conserved hypothetical protein	2.62
+	RHA1_ro01874	cyclohexanone monooxygenase	4.75
-	RHA1_ro01875	acyl-CoA dehydrogenase	5.75
-	RHA1_ro01876	acetyl-CoA C-acetyltransferase	5.36
-	rpsL	30S ribosomal protein S12	2.27

表 3-1-2-6	R. ic	stii の光誘導性遺伝子群	(続き)
	· · · j •		
Direction	gene	Difinition	Fold change (Light/Dark)
-----------	--------------	---	-----------------------------
+	RHA1_ro01943	probable transcriptional regulator	2.19
-	RHA1_ro01947	transcriptional regulator, MarR family protein	2.29
-	rplL	50S ribosomal protein L7/L12	3.72
-	rplJ	50S ribosomal protein L10	4.94
-	rplA	50S ribosomal protein L1	2.24
-	RHA1_ro01980	transcription antitermination protein	2.04
-	RHA1_ro01981	probable protein translocation complex preprotein translocase subunit	3.06
-	trnW	tRNA-Trp	3.04
-	RHA1_ro01983	possible fatty acid synthase beta subunit	2.45
-	RHA1_ro01984	conserved hypothetical protein	2.71
-	rpmG1	50S ribosomal protein L33 type 2	3.07
-	trnM_2	tRNA-Met	2.99
+	RHA1_ro01999	probable siderophore interacting protein	2.08
-	RHA1_ro02000	conserved hypothetical protein	2.08
+	RHA1_ro02019	transcriptional regulator, IclR family protein	2.60
-	RHA1_ro02025	possible acyltransferase	2.02
-	RHA1_ro02081	possible transcriptional regulator, ROK family protein	2.10
+	RHA1_ro02089	conserved hypothetical protein	2.45
-	dldH1	dihydrolipoyl dehydrogenanse	2.99
-	groL2	60 kDa chaperonin GroEL	3.39
+	RHA1_ro02165	probable multisubunit Na+:H+ antiporter MnhB subunit	2.01
+	RHA1_ro02166	probable multisubunit Na+:H+ antiporter MnhC subunit	2.31
-	RHA1_ro02237	O-succinylhomoserine sulfhydrylase	2.09
-	RHA1_ro02238	conserved hypothetical protein	2.28
-	RHA1_ro02239	conserved hypothetical protein	2.37

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro02264	transcriptional regulator	2.31
+	RHA1_ro02305	transcriptional regulator, Lacl family protein	4.09
-	RHA1_ro02306	possible long-chain-fatty-acid-CoA ligase	3.92
-	RHA1_ro02315	conserved hypothetical protein	2.27
+	RHA1_ro02320	ABC Fe(3+) transporter, substrate binding component	2.08
+	RHA1_ro02333	hypothetical protein	2.39
-	RHA1_ro02365	sugar transporter, MFS superfamily protein	16.92
+	RHA1_ro02450	conserved hypothetical protein	2.84
+	RHA1_ro02451	conserved hypothetical protein	2.30
+	RHA1_ro02453	hypothetical protein	2.00
+	RHA1_ro02456	possible potassium uptake channel	6.16
-	RHA1_ro02457	conserved hypothetical protein	2.13
+	RHA1_ro02503	possible transcriptional regulator, AsnC family protein	2.54
+	catA2	catechol 1,2-dioxygenase	2.06
+	RHA1_ro02516	possible hydrolase	2.30
+	RHA1_ro02526	conserved hypothetical protein	2.25
+	RHA1_ro02549	conserved hypothetical protein	2.25
-	RHA1_ro02554	probable bacterial lipocalin protein	3.42
+	RHA1_ro02555	possible cell surface protein	7.53
+	RHA1_ro02556	conserved hypothetical protein	6.10
+	RHA1_ro02557	possible amine oxidase	5.78
+	RHA1_ro02558	conserved hypothetical protein	5.93
+	RHA1_ro02559	cyclopropane-fatty-acyl-phospholipid synthase	6.16
+	RHA1_ro02560	possible cyclopropane-fatty-acyl- phospholipid synthase	5.84
+	RHA1_ro02561	possible membrane protein	6.61
-	pyk2	pyruvate kinase	2.99

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro02617	possible transcriptional regulator, WhiB family protein	2.29
-	RHA1_ro02731	probable NADP-dependent oxidoreductase	2.03
-	RHA1_ro02732	possible ketosteroid isomerase-related protein	2.25
+	nos	nitric oxide synthase oxygenase	2.73
-	RHA1_ro02852	probable amidase	2.32
-	RHA1_ro02868	probable NADH dehydrogenase/NAD(P)H nitroreductase	2.19
+	RHA1_ro03026	4-coumarateCoA ligase	5.10
+	RHA1_ro03027	acyl-CoA dehydrogenase	2.17
-	RHA1_ro03078	conserved hypothetical protein	2.02
-	RHA1_ro03158	hypothetical protein	2.29
-	RHA1_ro03159	resolvase	2.33
-	RHA1_ro03177	possible tyrosine recombinase	3.00
-	RHA1_ro03178	conserved hypothetical protein	2.62
-	RHA1_ro03232	possible transcriptional regulator, GntR family protein	3.30
+	RHA1_ro03297	transcriptional regulator, LysR family protein	2.35
-	RHA1_ro03317	transposase	2.55
-	dldH3	dihydrolipoyl dehydrogenanse	2.02
-	pdhC	dihydrolipoyllysine-residue acetyltransferase, E2 component of pyruvate dehydrogenase complex	2.14
-	pdhB1	pyruvate dehydrogenase E1 component beta subunit	2.35
-	pdhA2	pyruvate dehydrogenase E1 component alpha subunit	2.61
+	RHA1_ro03394	conserved hypothetical protein	2.79

	☆ J-1-2-0		
Direction	gene	Difinition	Fold change (Light/Dark)
-	gap1	glyceraldehyde 3-phosphate dehydrogenase	2.19
-	rpll	50S ribosomal protein L9	2.03
-	rpsR1	30S ribosomal protein S18	2.01
-	RHA1_ro03431	single-strand binding protein	2.02
-	rpsF	30S ribosomal protein S6	2.74
+	RHA1_ro03439	conserved hypothetical protein	2.23
-	RHA1_ro03440	possible membrane protein	2.23
-	RHA1_ro03441	peptidoglycan glycosyltransferase	2.00
-	RHA1_ro03454	ABC sugar transporter, ATP-binding component	2.31
-	RHA1_ro03493	probable carbohydrate diacid regulator	2.38
+	RHA1_ro03538	conserved hypothetical protein	2.11
+	RHA1_ro03580	conserved hypothetical protein	2.85
-	RHA1_ro03581	conserved hypothetical protein	2.04
+	RHA1_ro03615	transcriptional regulator, TetR family protein	2.11
+	RHA1_ro03616	probable drug/metabolite transporter protein	2.77
+	RHA1_ro03624	conserved hypothetical protein	2.86
-	RHA1_ro03663	conserved hypothetical protein	2.08
-	RHA1_ro03664	ribonuclease P	2.36
+	RHA1_ro03671	possible metal-dependent hydrolase	2.27
+	RHA1_ro03705	hypothetical protein	2.07
-	RHA1_ro03712	conserved hypothetical protein	2.64
-	RHA1_ro03713	possible glycoprotein	2.02
-	RHA1_ro03721	possible transcriptional regulator, TetR family protein	3.54
+	RHA1_ro03847	possible transposase	2.20
+	RHA1_ro03877	transcriptional regulator, AraC family protein	2.14

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

	1 5-1-2-0		
Direction	gene	Difinition	Fold change (Light/Dark)
-	RHA1_ro03886	probable inositol 2-dehydrogenase	2.51
+	RHA1_ro03901	conserved hypothetical protein	2.59
-	RHA1_ro03924	hypothetical protein	6.22
+	RHA1_ro03932	ABC oligopeptide transporter, ATP- binding protein	2.03
-	RHA1_ro03947	probable O-succinylbenzoateCoA ligase	2.64
-	RHA1_ro03948	possible enoyl-CoA hydratase	2.33
-	RHA1_ro03949	probable NADPH:quinone reductase	2.05
+	RHA1_ro03952	3-hydroxyacyl-CoA dehydrogenase	2.51
+	RHA1_ro03961	probable sugar efflux transporter, MFS superfamily protein	2.65
+	RHA1_ro03997	conserved hypothetical protein	2.27
+	RHA1_ro04025	conserved hypothetical protein	2.04
-	RHA1_ro04046	conserved hypothetical protein	2.31
+	RHA1_ro04048	1-acyl-sn-glycerol-3-phosphate acyltransferase	2.35
+	RHA1_ro04057	conserved hypothetical protein	2.03
+	RHA1_ro04059	probable antigen 85 complex protein	2.57
+	RHA1_ro04063	FMN reductase	2.17
-	RHA1_ro04067	conserved hypothetical protein	2.14
-	RHA1_ro04113	possible glycosyl transferases	2.26
+	RHA1_ro04140	probable phosphoglycerate dehydrogenase	2.46
-	tyrA	prephenate dehydrogenase	2.23
-	RHA1_ro04174	possible membrane protein	2.06
-	RHA1_ro04175	possible membrane protein	2.06
-	RHA1_ro04191	hypothetical protein	3.75
+	RHA1_ro04193	conserved hypothetical protein	2.20
+	RHA1_ro04212	probable transcriptional regulator	2.13
-	RHA1_ro04222	probable acetyl/propionyl-CoA carboxylase alpha subunit	6.06

表 3-1-2-6	R. jostii の光誘導性遺伝子群	(続き)

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro04409	dihydropteroate synthase	2.12
+	RHA1_ro04410	dihydroneopterin aldolase	2.13
+	RHA1_ro04411	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine diphosphokinase	2.37
+	RHA1_ro04412	conserved hypothetical protein	2.10
+	RHA1_ro04418	possible cysteine dioxygenase	2.53
+	RHA1_ro04425	probable transcriptional regulator	2.47
+	RHA1_ro04456	conserved hypothetical protein	2.31
-	radA	possible DNA repair protein RadA: lon protease	2.67
-	RHA1_ro04458	conserved hypothetical protein	2.11
+	RHA1_ro04461	2-C-methyl-D-erythritol 2,4- cyclodiphosphate synthase	2.24
-	RHA1_ro04467	possible transcriptional regulator	2.05
+	RHA1_ro04475	hypothetical protein	2.06
-	RHA1_ro04477	ABC metal ion transporter, permease component	3.41
-	RHA1_ro04478	ABC transporter, ATP-binding component	3.23
+	RHA1_ro04560	probable transporter, MFS superfamily protein	2.18
+	RHA1_ro04598	possible transcriptional regulator	2.39
+	RHA1_ro04599	probable acetyl-CoA C-acetyltransferase	2.15
+	RHA1_ro04613	probable transcriptional regulator, TetR family protein	2.22
+	RHA1_ro04647	conserved hypothetical protein	2.48
+	RHA1_ro04734	hypothetical protein	3.62
-	RHA1_ro04735	hypothetical protein	2.60
+	RHA1_ro04760	conserved hypothetical protein	2.82
+	RHA1_ro04761	conserved hypothetical protein	2.38
-	RHA1_ro04789	conserved hypothetical protein	2.02

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

Direction	gene	Difinition	Fold change (Light/Dark)
+	purC	phosphoribosylaminoimidazolesuccino- carboxamide synthase	2.04
-	RHA1_ro04820	regulator relate	2.05
-	RHA1_ro04851	conserved hypothetical protein	2.18
+	pstS	ABC phosphate transporter, substrate- binding component	3.37
+	trnD	tRNA-Asp	2.47
+	RHA1_ro04900	short-chain dehydrogenase	2.08
+	RHA1_ro04901	monooxygenase	2.24
+	RHA1_ro04931	3-deoxy-7-phosphoheptulonate synthase	2.68
+	RHA1_ro04964	probable cold shock protein	2.05
+	RHA1_ro04969	conserved hypothetical protein	2.08
+	RHA1_ro05029	conserved hypothetical protein	2.21
-	RHA1_ro05056	ABC transporter, ATP-binding component	2.03
-	RHA1_ro05069	O-acetylhomoserine aminocarboxypropyltransferase	2.03
-	RHA1_ro05070	conserved hypothetical protein	2.39
+	RHA1_ro05105	probable Mg(2+) and Co(2+) transporter	2.98
+	RHA1_ro05114	ABC sugar transporter, permease component	3.03
-	RHA1_ro05185	glucokinase	2.41
-	RHA1_ro05186	possible methyltransferase	2.90
-	RHA1_ro05188	conserved membrane protein	2.68
+	RHA1_ro05239	conserved hypothetical protein	4.48
+	RHA1_ro05251	possible oxidoreductase	2.04
+	RHA1_ro05255	conserved hypothetical protein	3.02
+	RHA1_ro05256	synthetase	5.85
+	RHA1_ro05257	probable acetyl-CoA C-acetyltransferase	2.38
+	RHA1_ro05258	ABC cobalt transporter, ATP-binding component	2.32
+	RHA1_ro05259	conserved hypothetical protein	2.66

表 3-1-2-6	R.	jostii の光誘導性遺伝子群	(続き)
-----------	----	------------------	------

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro05260	probable O-succinylbenzoateCoA ligase	2.52
-	RHA1_ro05261	conserved hypothetical protein	2.00
+	RHA1_ro05430	non-ribosomal peptide synthetase	3.05
+	RHA1_ro05431	possible antigenic 85 complex protein	2.06
+	RHA1_ro05434	undecaprenyl-phosphate galactose phosphotransferase	2.27
+	RHA1_ro05435	probable mannose-1-phosphate guanylyltransferase	2.11
+	manA1	mannose-6-phosphate isomerase	2.27
-	RHA1_ro05442	probable glycosyltransferase	2.36
-	RHA1_ro05443	possible N- acetylglucosaminyldiphosphoundecaprenol N-acetyl-beta-D-mannosaminyltransferase	2.93
+	RHA1_ro05444	GDP-mannose 4,6-dehydratase	2.17
+	RHA1_ro05445	GDP-L-fucose synthase	2.38
+	RHA1_ro05446	UDP-glucose 6-dehydrogenase	2.16
+	RHA1_ro05447	conserved hypothetical protein	2.09
-	RHA1_ro05450	hypothetical protein	2.14
-	RHA1_ro05451	conserved hypothetical protein	2.12
+	RHA1_ro05452	non-ribosomal peptide synthetase	2.14
+	RHA1_ro05453	probable protein-tyrosine kinase	2.02
-	RHA1_ro05482	possible protease	2.48
+	RHA1_ro05510	probable flavohemoprotein	2.06
+	RHA1_ro05529	conserved hypothetical protein	2.03
+	RHA1_ro05530	probable RNA methyltransferase	2.34
-	RHA1_ro05550	conserved hypothetical protein	2.27
-	RHA1_ro05571	possible lipoprotein	2.19
+	purN	phosphoribosylglycinamide formyltransferase 2	2.31
	RHA1_ro05610	conserved hypothetical protein	3.33

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro05626	conserved hypothetical protein	4.10
+	RHA1_ro05627	conserved hypothetical protein	3.41
+	RHA1_ro05666	conserved hypothetical protein	2.00
-	glnQ	glutamine transport ATP-binding protein GlnQ	2.12
-	RHA1_ro05668	probable glutamine transport system permease protein	2.24
+	RHA1_ro05670	conserved hypothetical protein	2.25
+	RHA1_ro05671	probable rRNA dimethyladenosine transferase	2.45
-	RHA1_ro05672	hypothetical protein	3.51
+	RHA1_ro05673	cold shock protein	2.61
-	RHA1_ro05674	hypothetical protein	2.68
+	RHA1_ro05684	4-(cytidine 5'-diphospho)-2-C-methyl-D- erythritol kinase	2.48
+	RHA1_ro05685	ABC drug resistance transporter, ATP- binding protein	2.19
-	rplY	50S ribosomal protein L25	3.37
-	RHA1_ro05719	cytochrome P450 CYP130	2.00
-	RHA1_ro05720	hypothetical protein	3.01
-	RHA1_ro05721	hypothetical protein	2.56
+	RHA1_ro05755	possible acyl carrier protein	2.27
+	RHA1_ro05758	conserved hypothetical protein	2.09
+	RHA1_ro05759	probable O-glycosyl hydrolase	2.21
-	coaA	pantothenate kinase	2.64
-	RHA1_ro05880	probable multidrug resistance transporter, MFS superfamily protein	2.38
+	RHA1_ro05894	G/U mismatch-specific DNA glycosylase	2.13
+	RHA1_ro05897	conserved hypothetical protein	5.36
+	RHA1_ro05946	possible ferredoxin	2.53
+	RHA1_ro05947	probable aspartate aminotransferase	3.07

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

	衣 5-1-2-0	N. JOSUI 97 LI的等任息位于件(机合)	
Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro05948	conserved hypothetical protein	2.06
+	RHA1_ro05953	conserved hypothetical protein	2.59
-	RHA1_ro05982	conserved hypothetical protein	3.29
-	RHA1_ro06011	ABC transporter, ATP-binding component	2.31
+	RHA1_ro06087	metabolite transporter, MFS superfamily protein	2.15
+	rpsJ	30S ribosomal protein S10	3.39
+	rpIC	50S ribosomal protein L3	2.72
+	rpID	50S ribosomal protein L4	2.47
+	rplB	50S ribosomal protein L2	2.19
+	rplV	50S ribosomal protein L22	2.05
+	rpsC	30S ribosomal protein S3	2.26
+	rpIP	50S ribosomal protein L16	2.31
+	rpmC	50S ribosomal protein L29	2.33
+	rpsQ	30S ribosomal protein S17	2.14
+	rplN	50S ribosomal protein L14	2.81
+	rplX	50S ribosomal protein L24	2.87
+	rplE	50S ribosomal protein L5	2.44
+	rpsN2	30S ribosomal protein S14	2.36
+	rpsH	30S ribosomal protein S8	2.71
+	rplF	50S ribosomal protein L6	3.18
+	rplR	50S ribosomal protein L18	3.09
+	rpsE	30S ribosomal protein S5	3.29
+	rpmD	50S ribosomal protein L30	2.98
+	rplO1	50S ribosomal protein L15	3.00
+	adk1	adenylate kinase	2.25
+	RHA1_ro06155	methionyl aminopeptidase	2.53
-	RHA1_ro06156	D-tyrosyl-tRNA(Tyr) deacylase	3.47
+	infA	translation initiation factor IF1	2.63
+	rpmJ	50S ribosomal protein L36	3.48
+	rpsM	30S ribosomal protein S13	3.76

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

	₹ J-1-2-0	N. JOSU 97 L 05 等 L 億 口 1 件(M.C)	
Direction	gene	Difinition	Fold change (Light/Dark)
+	rpsK	30S ribosomal protein S11	3.23
+	rpsD	30S ribosomal protein S4	2.92
+	rpoA	DNA-directed RNA polymerase alpha subunit	2.57
+	rplQ	50S ribosomal protein L17	3.48
+	RHA1_ro06164	pseudouridylate synthase	2.36
+	rpIM	50S ribosomal protein L13	2.86
+	rpsl	30S ribosomal protein S9	2.83
+	RHA1_ro06172	possible 30S ribosomal subunit	2.49
+	RHA1_ro06175	conserved hypothetical protein	2.99
+	RHA1_ro06189	10 kDa chaperonin	3.50
+	RHA1_ro06190	chaperone protein	3.88
+	RHA1_ro06212	conserved hypothetical protein	2.21
+	RHA1_ro06223	probable ABC iron transporter, substrate- binding component	14.97
+	RHA1_ro06224	ABC iron transporter, permease component	11.69
+	RHA1_ro06225	ABC Fe(3+)-transporter, ATP-binding component	10.50
+	RHA1_ro06226	conserved hypothetical protein	6.34
+	dnaE2	DNA-directed DNA polymerase alpha subunit (DNA polymerase III alpha subunit)	3.51
+	RHA1_ro06238	isocitrate dehydrogenase (NADP+)	3.23
+	rplV	50S ribosomal protein L22	2.05
+	rpsC	30S ribosomal protein S3	2.26
+	rpIP	50S ribosomal protein L16	2.31
+	rpmC	50S ribosomal protein L29	2.33
+	rpsQ	30S ribosomal protein S17	2.14
+	rplN	50S ribosomal protein L14	2.81
+	rplX	50S ribosomal protein L24	2.87
+	rpIE	50S ribosomal protein L5	2.44

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

Direction	gene	Difinition	Fold change (Light/Dark)
+	rpsN2	30S ribosomal protein S14	2.36
+	rpsH	30S ribosomal protein S8	2.71
+	rplF	50S ribosomal protein L6	3.18
+	rplR	50S ribosomal protein L18	3.09
+	rpsE	30S ribosomal protein S5	3.29
+	rpmD	50S ribosomal protein L30	2.98
+	rplO1	50S ribosomal protein L15	3.00
+	adk1	adenylate kinase	2.25
+	RHA1_ro06155	methionyl aminopeptidase	2.53
-	RHA1_ro06156	D-tyrosyl-tRNA(Tyr) deacylase	3.47
+	infA	translation initiation factor IF1	2.63
+	rpmJ	50S ribosomal protein L36	3.48
+	rpsM	30S ribosomal protein S13	3.76
+	rpsK	30S ribosomal protein S11	3.23
+	rpsD	30S ribosomal protein S4	2.92
+	rpoA	DNA-directed RNA polymerase alpha subunit	2.57
+	rplQ	50S ribosomal protein L17	3.48
+	RHA1_ro06164	pseudouridylate synthase	2.36
+	rplM	50S ribosomal protein L13	2.86
+	rpsl	30S ribosomal protein S9	2.83
+	RHA1_ro06172	possible 30S ribosomal subunit	2.49
+	RHA1_ro06175	conserved hypothetical protein	2.99
+	RHA1_ro06189	10 kDa chaperonin	3.50
+	RHA1_ro06190	chaperone protein	3.88
+	RHA1_ro06212	conserved hypothetical protein	2.21
+	RHA1_ro06223	probable ABC iron transporter, substrate- binding component	14.97
+	RHA1_ro06224	ABC iron transporter, permease component	11.69

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro06225	ABC Fe(3+)-transporter, ATP-binding component	10.50
+	RHA1_ro06226	conserved hypothetical protein	6.34
+	dnaE2	DNA-directed DNA polymerase alpha subunit (DNA polymerase III alpha subunit)	3.51
+	RHA1_ro06238	isocitrate dehydrogenase (NADP+)	3.23
+	rpoA	DNA-directed RNA polymerase alpha subunit	2.57
+	rplQ	50S ribosomal protein L17	3.48
+	RHA1_ro06164	pseudouridylate synthase	2.36
+	rpIM	50S ribosomal protein L13	2.86
+	rpsl	30S ribosomal protein S9	2.83
+	RHA1_ro06172	possible 30S ribosomal subunit	2.49
+	RHA1_ro06175	conserved hypothetical protein	2.99
+	RHA1_ro06189	10 kDa chaperonin	3.50
+	RHA1_ro06190	chaperone protein	3.88
+	RHA1_ro06212	conserved hypothetical protein	2.21
+	RHA1_ro06223	probable ABC iron transporter, substrate- binding component	14.97
+	RHA1_ro06224	ABC iron transporter, permease component	11.69
+	RHA1_ro06225	ABC Fe(3+)-transporter, ATP-binding component	10.50
+	RHA1_ro06226	conserved hypothetical protein	6.34
+	dnaE2	DNA-directed DNA polymerase alpha subunit (DNA polymerase III alpha subunit)	3.51
+	RHA1_ro06238	isocitrate dehydrogenase (NADP+)	3.23
+	RHA1_ro06289	probable multidrug efflux transport protein	2.10
+	purK	phosphoribosylaminoimidazole carboxylase ATPase subunit	2.11

Direction	gene	Difinition	Fold change (Light/Dark)
+	purE	phosphoribosylaminoimidazole carboxylase catalytic subunit	2.14
-	RHA1_ro06355	conserved hypothetical protein	2.02
-	RHA1_ro06391	conserved hypothetical protein	2.55
+	RHA1_ro06410	conserved hypothetical protein	2.73
+	RHA1_ro06424	reductase	2.51
-	RHA1_ro06425	ATP-dependent RNA helicase	2.81
+	RHA1_ro06448	conserved hypothetical protein	2.12
-	RHA1_ro06475	conserved hypothetical protein	2.66
-	RHA1_ro06483	cationic amino acid transport protein	3.05
-	RHA1_ro06491	transporter, MFS superfamily protein	5.17
-	RHA1_ro06497	conserved hypothetical protein	5.22
-	RHA1_ro06498	transcriptional regulator	7.24
+	leuC2	3-isopropylmalate dehydratase large subunit	8.12
+	leuD2	3-isopropylmalate dehydratase small subunit	7.73
-	RHA1_ro06508	conserved hypothetical protein	2.01
+	thiL	thiamine-phosphate kinase	2.06
-	rpmB2	50S ribosomal protein L28	2.38
+	RHA1_ro06522	ribonuclease III	2.25
+	RHA1_ro06523	DNA-formamidopyrimidine glycosylase	3.12
+	rpsP	30S ribosomal protein S16	2.74
+	RHA1_ro06536	conserved hypothetical protein	3.26
+	RHA1_ro06537	16S rRNA processing protein	3.79
+	trmD	tRNA (guanine-N(1)-)-methyltransferase	5.27
+	rpIS	50S ribosomal protein L19	2.39
+	RHA1_ro06565	conserved hypothetical protein	2.41
+	rpsB	30S ribosomal protein S2	2.25
+	RHA1_ro06598	probable acetateCoA ligase	2.16
+	RHA1_ro06614	magnesium chelatase	2.12

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

Direction	gene	Difinition	Fold change (Light/Dark)
+	RHA1_ro06615	cob(l)yrinic acid a,c-diamide adenosyl- transferase	2.93
+	cobB	cobyrinic acid a,c-diamide synthase	3.55
-	RHA1_ro06622	sensory histidine kinase	2.03
-	RHA1_ro06639	conserved hypothetical protein	2.05
-	RHA1_ro06640	conserved hypothetical protein	2.16
+	RHA1_ro06645	conserved hypothetical protein	2.16
+	RHA1_ro06648	probable DNA-damage-inducible protein F (probable multi antimicrobial extrusion protein MatE)	2.29
+	RHA1_ro06651	pseudouridylate synthase	2.02
+	RHA1_ro06779	conserved hypothetical protein	2.96
-	trnC_2	tRNA-Cys	2.01
+	RHA1_ro06876	conserved hypothetical protein	3.09
-	RHA1_ro06889	conserved hypothetical protein	2.23
+	ruvC	crossover junction endoribonuclease	2.46
+	RHA1_ro07060	conserved hypothetical protein	2.21
-	RHA1_ro07071	probable enoyl-CoA hydratase	2.47
-	RHA1_ro07072	probable enoyl-CoA hydratase	3.23
-	RHA1_ro07073	acyl-CoA dehydrogenase	8.32
-	RHA1_ro07076	probable formyl-CoA transferase	3.83
+	RHA1_ro07088	multidrug resistance transporter, MFS superfamily protein	3.28
+	RHA1_ro07139	conserved hypothetical protein	2.53
+	RHA1_ro07159	probable primosomal protein N	2.47
-	RHA1_ro07193	ABC drug resistance transporter, ATP- binding component	2.13
-	RHA1_ro07221	possible aminotransferase, C-terminal	2.97
-	iunH	purine nucleosidase	2.59
-	RHA1_ro07237	possible redox protein	2.10
-	RHA1_ro07247	possible ATP-dependent RNA helicase	3.21

Direction	gene	Difinition	Fold change (Light/Dark)
-	RHA1_ro07262	conserved hypothetical protein	3.05
-	RHA1_ro07263	possible branched-chain amino acid transporter	3.05
-	ndh2	NADH dehydrogenase	2.22
-	RHA1_ro08002	conserved hypothetical protein	2.67
+	RHA1_ro08007	conserved hypothetical protein	3.69
+	RHA1_ro08008	possible tetracycline resistance protein	2.87
-	RHA1_ro08014	conserved hypothetical protein	4.63
-	RHA1_ro08015	conserved hypothetical protein	5.93
-	RHA1_ro08016	conserved hypothetical protein	8.10
-	RHA1_ro08026	RNA-directed DNA polymerase (reverse transcriptase)	2.59
-	RHA1_ro08032	conserved hypothetical protein	4.12
-	RHA1_ro08116	conserved hypothetical protein	2.87
+	RHA1_ro08118	possible beta-lactamase	3.27
+	RHA1_ro08198	conserved hypothetical protein	2.94
+	RHA1_ro08199	conserved hypothetical protein	2.51
-	RHA1_ro08406	possible N-formylglutamate aminohydrolase	2.00
-	RHA1_ro08421	probable secretory lipase	2.15
+	RHA1_ro08478	probable transcriptional regulator, IclR family protein	2.54
+	sfuA2	ABC Fe(3+) transporter, substrate binding protein SfuA	2.18
+	sfuC2	Fe(3+)-transporting ATPase protein SfuC	2.12
+	RHA1_ro08546	methyltransferase	2.75
-	RHA1_ro08681	conserved hypothetical protein	2.95
+	RHA1_ro08760	conserved hypothetical protein	3.07
-	RHA1_ro08767	conserved hypothetical protein	2.13
-	RHA1_ro08768	hypothetical protein	3.93
-	RHA1_ro08769	hypothetical protein	5.16

表 3-1-2-6 R. jostii の光誘導性遺伝子群(続き)

Direction	gene	Difinition	Fold change (Light/Dark)
-	RHA1_ro08859	hypothetical protein	2.08
-	RHA1_ro09033	hypothetical protein	2.15
+	RHA1_ro09095	conserved hypothetical protein	2.45
+	RHA1_ro09106	conserved hypothetical protein	2.20
+	RHA1_ro09130	conserved hypothetical protein	2.47
-	RHA1_ro10005	conserved hypothetical protein	2.17
-	RHA1_ro10030	hypothetical protein	2.32
-	RHA1_ro10109	conserved hypothetical protein	3.10
+	RHA1_ro10139	possible ketosteroid isomerase-related protein	2.06
-	RHA1_ro10234	conserved hypothetical protein	3.63
+	RHA1_ro10282	hypothetical protein	2.28
+	RHA1_ro10380	conserved hypothetical protein	2.79
-	RHA1_ro11050	conserved hypothetical protein	2.43
-	RHA1_ro11057	conserved hypothetical protein	2.02
+	RHA1_ro11071	3-hydroxyacyl-CoA dehydrogenase	2.45
-	RHA1_ro11075	conserved hypothetical protein	2.36
-	RHA1_ro11085	hypothetical protein	2.15
-	RHA1_ro11253	conserved hypothetical protein	2.12
-	RHA1_ro11255	conserved hypothetical protein	2.16

表 3-	1-2-6 F	2. jostii の光誘導性遺伝子群	(続き)

Sulfur metabolism

図 3-1-2-3 R. jostii の硫黄代謝関連遺伝子

Biotin metabolism

図 3-1-2-4 R. jostii のビオチン代謝関連遺伝子

Cobalamin biosynthesis

図 3-1-2-5 R. jostii のビタミン B₁₂合成関連遺伝子

Folate biosynthesis

図 3-1-2-6 R. jostii の葉酸合成関連遺伝子

Thiamine metabolism

図 3-1-2-7 R. jostii のチアミン合成関連遺伝子

Pantothenate and CoA biosynthesis

図 3-1-2-8 R. jostii のパントテン酸と CoA 関連遺伝子

Glycolysis

図 3-1-2-9 R. jostii の解糖系関連遺伝子

Biosynthesis of Amino Acid

図 3-1-2-10 R. jostii のアミノ酸代謝関連遺伝子

Purine metabolism

図 3-1-2-11 R. jostii のプリン代謝関連遺伝子

第3項 小括

LitR ファミリーの分子系統解析を行ったところ、少なくとも 5 つのクラ スに分類されることが推測された。そのうちの、クラス III~V とクラス分け がされていないクレードの LitR は新しい光センサーであることが予想され る。また、その分岐が属レベルに従っていることから、LitR の多様性は細菌 種の進化とその生息環境に適応していることが考えられた。また、TetR や LimR の分類も同様の理由であることが考えられる。

RNA seq による計 7 種のトランスクリプトーム解析によって、新規な光応 答メカニズムの存在を示唆する結果が得られた。それらの光感知機構は細菌 種で異なることが考えられ、光誘導性遺伝子には共通性と多様性が存在する ことが考えられた。これらの光感知機構と多くの光誘導性遺伝子の役割は明 らかではないが、新規な光応答メカニズムであることが予想された。

第2節 クラス III LitR における光誘導性遺伝子の役割の検証

第1項 光誘導性遺伝子の転写解析

目的

LitRの分子系統解析や新規な光応答メカニズムを有すると予想した細菌群 のトランスクリプトーム解析などの結果から、*B. multivorans* が保有するク ラス III LitR を詳細な解析対象として選定した。本菌を用いた DNA マイクロ アレイ解析によって、*litR* とその周辺遺伝子を含む 19 遺伝子が青色光照射に よって転写誘導されることがわかった(第 1 章第 4 節)。それらの遺伝子群 には、MerR 型転写調節蛋白質をコードする *litR* と ECF 型シグマ因子をコー ドする *litS* が含まれることから、その両者によって光誘導的な転写調節が行 われていると予想した。そこで、それらの遺伝子の破壊株および遺伝的相補 株を用いた定量 RT-PCR による転写解析を行うことで、2 つの転写調節蛋白 質の役割とその転写調節メカニズムを明らかにすることを目的とした。 B. multivorans の光誘導性遺伝子の転写量を定量 RT-PCR で測定し、その 転写量について暗条件下を1とした場合の青色光照射下における倍率変化を ΔΔCT 法によって算出した。ΔΔCT 法による解析を行うにあたり、解析対象用 のプライマーと内在性コントロール用のプライマーのそれぞれについて PCR 効率を確認し、適切であることを確認した(表 3-2-1-1)。本解析には、 13の光誘導性遺伝子(BM5674, phrB2, BM5677, litR, cryB, BM5680, BM5681, BM5682, litS, folE2, BM5689, BM5694, cfaB2)と生育に必須なシグマ因子 rpoD を対象とした。その際、内在性コントロールとして使用した dnaA の転 写レベルを補正して倍率変化を算出した。

各株における rpoD の転写倍率は、0.7~1.9 倍を示し、光照射によって大きな影響を受けないことがわかった。野生株における光誘導性遺伝子の転写レベルは、培養 14 時間目で 2.0 から 26.7 倍、培養 21 時間目で 1.5 から 23.3 倍に光照射によって上昇した(図 3-2-1-1 および 3-2-1-2)。次に、litR 破壊株の転写レベルを解析したところ、0.7 から 1.6 倍の転写倍率を示した。また、litR 破壊株の転写レベルを野生株のそれと比較したところ、明暗両条件下で顕著に高い値が認められた(図 3-2-1-3 および 3-2-1-4)。一方、litR 破壊株の

遺伝的相補株では、野生株と同様に光誘導性遺伝子の光による転写誘導が確認された(図 3-2-1-1 および 3-2-1-2)。これらのことから、LitR が転写抑制能を持ち、それが光依存的に解除されることが推測された。

光誘導性遺伝子の転写が ECF 型シグマ因子をコードする *litS* によって調節されると予想し、その破壊株で転写解析を行った。8 個の光誘導性遺伝子の転写は *litS* の破壊によって影響を受けなかった一方、*BM5677 と phrB2*、 *cryB、BM5694、cfaB2*の転写レベルは低下していた(図 3-2-1-5 から 3-2-1-8 まで)。*litS* 破壊株の遺伝的相補株では、それら遺伝子に部分的な転写の光 誘導が認められた。これらのことから、σ^{LitS} は一部の光誘導遺伝子の転写開 始を担うことが示唆された。

次に、光照射(λmax=365 nm)から光誘導性遺伝子の転写が開始されるま での時間を半定量 RT-PCR によって調査した。*litR と folE2 と BM5689* は 5 分で転写が増大し、*litS* は 10 分で、*phrB2 と cfaB2* は 20 分で転写が増加し た(図 3-2-1-9)。これらのことから、σ^{RpoD} 依存性遺伝子の転写は 5~10 分の 間に、σ^{LitS} 依存性遺伝子の転写は 20 分で上昇することがわかった。

光誘導性遺伝子である phrB と folE、cfaB はそれぞれのパラログ (phrB1 と B2, cryB; folE1 と E2; cfaA と B1、B2) が B. multivorans のゲノム中に 存在する。このことから、構成型と光誘導型の2つが共存していると考えられた。そこで、それらの転写レベルを B. multivorans 野生株を用いて半定量 RT-PCR で解析した。構成的な遺伝子発現を示したものは、phrB1、folE1、 cfaA であった(図 3-2-1-10)。

考察

(1) 光誘導性遺伝子

DNA マイクアレイ解析で特定された B. multivorans の光誘導性遺伝子群 (BM5674~5682、BM5687 (litS) ~ BM5697)の遺伝子発現は、定量 RT-PCR による転写解析でも、その光による誘導が確認された。B. multivorans では、 光回復酵素をコードする phrB2 や葉酸合成酵素コードする folE2、シクロプ ロパン環脂肪酸合成酵素コードする cfaB が光による転写誘導を受けた。ク ラス la LitR では Crt 合成遺伝子を主に制御することから ⁶⁻⁹、クラス la とク ラス III ではレギュロンの構成が異なることがわかった。

folE と cfaB は好塩性細菌 Halomonas sp. HL42 の PhrR (クラス lb) によ って光依存的な転写調節を受けることが報告されている³⁸。また、両遺伝子 は Caulobacter crescentus では酸化ストレス応答型センサーChrR-RpoE に よって、放線菌 Streptomyces coelicolor では RsrA-SigK によってそれぞれ制 御されることから^{45,48}、folE と cfaB は光酸化ストレスに対する防御的な役 割を持つことが考えられる。

(2) LitR と σ^{LitS} の 役割

*litR*の破壊によって光誘導性遺伝子群は構成的な遺伝子発現を示したこと から、暗条件下で LitR は光誘導性遺伝子群に対して転写リプレッサーとして 働き、光照射によってその機能が弱くなることが推測された。*T. themophilus* や *B. megaterium*のクラス I LitR では、その破壊によって暗条件下での高い レベルの Crt 生産とその合成遺伝子の構成的な転写を引き起こすことが明ら かになっていることから^{7,8}、クラス III LitR も同様な光センサー型転写リプ レッサー蛋白質であることが示唆された。一方、*litS*の破壊は *litR や folE2* な どの転写には影響しなかったが、*phrB2 や cfaB2* などの転写レベルは野生株 よりも低下した。このことから、σ^{LitS} は一部の光誘導性遺伝子の転写開始を 担うことが考えられた。これらのことから、*B. multivorans*の光依存的な転 写は、LitR とσ^{LitS}の 2 つの転写調節因子によって制御されると推測された。

表 3-2-1-1 ΔΔCt 法に使用するプライマーの効率の確認

捶 約 注 仁 フ	対数初期濃度と∆Ct 値の
惊的退伍于	グラフにおける近似曲線の数式
BM5674	y = 0.0456x + 1.8757
phrB2	y = 0.0939x - 2.0918
BM5677	y = 0.0903x - 1.5374
litR	y = -0.0272x - 2.7061
cryB	y = -0.049x + 2.4
BM5680	y = -0.0172x - 0.9381
BM5681	y = 0.0547x - 3.6726
BM5682	y = -0.4156x + 3.0723
litS	y = -0.0461x - 2.5794
foIE2	y = 0.0019x - 4.9694
BM5689	y = 0.0456x + 1.8757
BM5694	y = 0.0362x - 1.5553
cfaB2	y = -0.0145x - 3.9806
rpoD	y = -0.092x - 1.6865

図 3-2-1-1 培養 14 時間目における *litR* 破壊株の転写倍率 (定量 RT-PCR 法)

図 3-2-1-2 培養 21 時間目における *litR* 破壊株の転写倍率 (定量 RT-PCR 法)

図 3-2-1-3 *litR*の破壊による暗条件下での転写上昇 (定量 RT-PCR 法)

図 3-2-1-4 *litR*の破壊による明条件下での転写上昇 (定量 RT-PCR 法)

図 3-2-1-5 培養 14 時間目における *litS* 破壊株の転写倍率 (定量 RT-PCR 法)

図 3-2-1-6 培養 21 時間目における *litS* 破壊株の転写倍率 (定量 RT-PCR 法)

図 3-2-1-7 *litS*の破壊による暗条件下での転写降下 (定量 RT-PCR 法)

図 3-2-1-8 *litS*の破壊による明条件下での転写降下 (定量 RT-PCR 法)

光照射時間

図 3-2-1-9 光照射開始から転写が開始されるまでに要する時間 (半定量 RT-PCR 法)

図 3-2-1-10 光誘導型と構成型の遺伝子発現(半定量 RT-PCR 法)

第2項 光誘導性遺伝子のプロモーター構造に関する解析

目的

転写解析の結果(第3章第2節第1項)から、*B. multivorans*の光誘導性 遺伝子は4つのモノシストロニックな遺伝子(BM5674, BM5677, *litR*, *cryB*) と4つのオペロン(*phrB2*オペロン、BM5681-BM5682 オペロン、*folE2*オペ ロン、*cfaB2* オペロン)から構成されることが予想された。そこで、それら の転写開始点を決定し、プロモーターの構造を明らかにすることを目的とし た。さらに、2つの転写調節因子 LitR と LitS の認識配列を特定することを試 みた。

光誘導性遺伝子群の転写開始点を決定するために Modified 5'-RACE 法を 行った。その結果、PlitRは翻訳開始コドンから 31 bp、P5676は 239 bp、 P5677は46bp、P5689は30bpそしてP5697は20bpそれぞれ上流に転写 開始部位が存在することを特定した(図 3-2-2-1)。一方で、P5674と PcryB、 P5681の転写開始点は得られたシグナルが低かったため、決定できなかった。 次に、プロモーター領域間の配列を比較したところ、PlitR (TTCATA_{N16}TACAAT)と P5689 (TTCACT_{N16}TACAAT)の-10 と-35 配列は、大 腸菌の生育に必須なシグマ因子 σ⁷⁰の認識配列(TTGACA_{N16-18}TATAAT)⁴⁹ に 類似していた。このことから、対応するシグマ因子である g^{RpoD} に認識され ることが推測された。さらに、転写開始点から-30~-50にインバーテッドリ ピート配列 TGAA_{N12}TTCA が存在し、同配列はクラス III LitR を保有する他の Burkholderia 属細菌にも同様な領域で見出された(図 3-2-2-2)。このことか ら、TGAA_{N12}TTCA がクラス III LitR の認識配列であることが予想された。一 方、P5676と P5677、P5697の-10と-35 配列 TGCATCCո16CGTA は、大腸 菌 σ⁷⁰のコンセンサス配列に似ていなかった(図 **3-2-2-1**)。これらの遺伝子 の転写レベルは litS の破壊で低下したことから、σ^{LitS} によって認識されるこ

とが示唆された。また、他の Burkholderia 属細菌に保存されている BM5676 と BM5677、BM5697 のホモログ遺伝子においても TGCATCC_{N16}CGTA が対 応する領域に見出された(図 3-2-2-3)。

そこで次に、LitR と LitS のプロモーター配列との相互作用解析を行い、そ れらの認識配列を特定することを試みた。LitR は N 末端領域に MerR 型の Helix-turn-Helix DNA 結合ドメインが存在することが推定されているため、 特定の塩基配列に結合することが考えられた。そこで、各プロモーター領域 に対する DNA 結合能をゲルシフトアッセイによって解析したところ、PlitR と P5689 で特異的なバンドのシフトが確認された(図 3-2-2-4A)。一方、コ ントロールとして用いた生育に必須なシグマ因子 PrpoD と P5676、P5697 に は結合を示さなかった(図 3-2-2-4B)。次に、PlitR を上流側に向かって切り 詰めたプローブ DNA (図 3-2-2-5A) を作製してゲルシフトアッセイを行っ た。その結果、転写開始点から-45より上流の領域を含んだプローブでは相 互作用が検出されたが、それ以降の塩基配列には結合が認められなかった(図 3-2-2-5B)。このことから、TGAA_{N12}TTCA が LitR の認識配列であることが推 定された。

151

o^{LIIS}の認識配列を特定するため、それと DNA 間の相互作用解析を行った。 LitS と RpoD の組換え蛋白質の精製をアフィニティークロマトグラフィーに よって行ったが、精製できなかった。そこで、大腸菌を宿主とした One-Hybrid システム法を行った (図 3-2-2-6)。LitS を pTRG に、解析対象のプロモータ 一配列(PrpoD と PlitR、P5676、P5677、PcryB、P5689、P5697)を pROMOTOR にクローニングした (第 2 章参照)。ネガティブコントロールである、プロモ ーター配列をクローニングしていない pROMOTOR と PrpoDでは 3-AT に感 受性を示したことから、それらとの相互作用は認められなかった (図 3-2-2-7)。また、PlitR と PcryB も同様に相互作用は検出されなかった。一方、P5676 と P5677、P5689、P5697 では 3-AT に耐性を示したことから、それらと結 合することが推測された。

考察

(1) LitR の認識配列

ゲルシフトアッセイによって LitR の結合配列が TGAA_{N12}TTCA であること が示唆された。クラス I LitR の認識配列は TGTACA_{N16-18}TGTACA であること が特定されている^{8,12,19}。それは DNA 結合ドメインに存在する RXWERRY の モチーフが TnnACA を認識することが明らかになっている^{12,19}。本モチーフ は LitR ファミリーの DNA 結合ドメインに保存されており、多くのクラスの LitR において、その推定レギュロンのプロモーターと予想される領域に TnnACA_{N16-18}TnnACA が見つかる³⁸。クラス III LitR も RXWERRY のモチー フを有しているが、ゲルシフトアッセイで特定した配列に TnnACA は見つか らない。これらのことから、クラス III LitR の DNA 結合メカニズムはクラス I とは異なったものであることが考えられた。

(2) σ^{LitS}の認識配列

One-Hybrid システム法による相互作用解析から、σ^{Lits}は P5676 と P5677、
 P5689、P5697 に結合することが考えられた。*litS* 破壊株を用いた転写解析
 では、phrB2 と BM5677、BM5694、cfaB2 の転写レベルは野生株よりも低下

し、P5676 と P5677、P5697 には共通の-10 と-35 配列 TGCATCC_{N16}CGTA が存在することから、それが σ^{Lits} の認識配列であることが推測された。一方、 P5689 に σ^{Lits} が相互作用する結果になったが、TGCATCC_{N16}CGTA は見つか らないこと、-10 と-35 は大腸菌の σ^{70} に類似していることから、P5689 は σ^{Lits} に認識されないと考えられた。また、*cryB*は *litS* 破壊株でその転写レベルが 低下したことから、 σ^{Lits} に依存すると考えられた。しかし、One-Hybrid シス テム法ではそれらの相互作用が認められず、開始コドン上流の領域に σ^{Lits} の 認識配列が存在しないことから、 σ^{Lits} によって調節されないことが考えられ た。

Putative LitR-binding site $+ 1$ Image: Image site $+ 1$ Image: Image site $+ 1$ Image site $- 10$	 -50 -40 -30 -20 -10 +1 fMet TTTTCCCAATCGTGCATCGGGACGCATGCGGGCGTCGTAAGAGGTAAAA-C. (238bp).ATG-3' GCCGGCGCGCGCGCGCGGGGCGGGGGGCGGGGGCGGGTAAA-C. (45bp).ATG-3' GCCGGCGCGCGGGCGGCGGGGGCGGGGGCGGGGGGGGG
-cacatte -cacatte -ttcatte -ttcatte -co (σ ⁷⁰	-50 -TCTTTT -CGCTGCC -AGCGCA/
P <i>litR</i> 5' P5689 5'	P5676 5' P5677 5' P5697 5'

図 3-2-2-1 決定された 5 か所の転写開始点

156

図 3-2-2-3 推定される σLitS の認識配列の保存性

А

В

⊲:プローブDNA ◀:プローブDNA-蛋白質複合体

図 3-2-2-4 ゲルシフトアッセイによる LitR のオペレーターの特定

А

В

図 3-2-2-5 LitR の結合配列の推定

図 3-2-2-6 One-Hybrid システム法の原理

3-AT: 3-アミノ-1,2,4トリアゾール (HIS3の阻害剤)

図 3-2-2-7 One-hybrid システム法による σ^{LitS} とプロモーター DNA との 相互作用解析

第3項 葉酸合成の光促進

目的

B. multivorans は 2 つの GTP cyclohydrolase IA 遺伝子 (folE1 と folE2)
を有している。本蛋白質は、GTP を 7,8-ジヒドロネオプテリン 3 リン酸に変換する酵素であり、葉酸やプテリンの合成に関与することが知られている(図 3-2-3-1)。

葉酸は、プテリンと p-アミノ安息香酸、L-グルタミン酸から構成される化 合物であり、植物や細菌が合成するビタミンの 1 種である。GTP を初発の基 質として 7 段階の反応を経て合成され、メチル基やホルミル基などの炭素の 受け渡しに利用される。その生理学的な役割は、核酸のチミンやアミノ酸の セリン、グリシン、メチオニンの合成に関与する酵素の補因子としての作用 である。

folE1 は光誘導性遺伝子群に含まれていないが、folE2 は litR の近傍に位置 し、光誘導を受ける。このことから、光照射によって FolE2 が誘導発現する ことを通じて葉酸合成が促進されることが予想された。そこで、光照射下に おける細胞内の葉酸量を測定し、folE2 の役割と LitR の影響を明確にするこ とを目的とした。

結果

第3章第2節第1項での転写解析の結果、folE1は光照射とlitRの破壊に 影響されず恒常的に発現し、folE2の転写は光照射によって上昇した(図 3-2-1-1 および 3-2-1-2、3-2-1-10)。また、他の葉酸合成関連遺伝子(folA、 folB12,、folC、folK、folP)の転写レベルについても半定量 RT-PCR で解析 したところ、光照射による転写への影響は認められなかった(図 3-2-3-2)。 このことから、光照射による folE2 の転写活性化が葉酸合成に影響すると考 えられた。

そこで、光照射下で培養した B. multivorans から細胞内葉酸を熱水抽出し、 葉酸要求性細菌を用いたバイオアッセイ法によって葉酸量を測定した(第2 章参照)。野生株では暗条件下と比べて青色光照射下で最大で2.5倍まで葉酸 量が上昇した(図3-2-3-3)。一方で、緑・赤色光照射下ではその増大は認め られなかった。次に、folE2破壊株の葉酸量を測定したところ、光照射による 葉酸量の増大は認められなかった(図3-2-3-4)。しかし、folE1破壊株も同様 に光照射によって葉酸量は増大しなかった。

さらに、*litR*破壊株の葉酸量を定量したところ、野生株と比べて最大で 20.1 倍まで増大した(図 3-2-3-5)。一方、その相補株では野生株と同様な量まで

163

低下した。このことから、LitR が光依存に葉酸合成の促進を制御していることが明らかになった。

次に、葉酸の増大が B. multivorans の増殖に及ぼす影響を調査するため、 LB 培地あるいは最少培地中での増殖速度を調査した。その結果、野生株と litR 破壊株または folE2 破壊株の増殖には差が認められなかった(図 3-2-3-6 および 3-2-3-7)。これらのことから、細胞内の葉酸量の増減が B. multivorans の増殖速度に影響しないことがわかった。

考察

(1) 葉酸合成と遺伝子制御

B. multivorans の細胞内葉酸量を測定したところ、青色光照射によってその含量は 2.5 倍に増大した一方、緑と赤色光では増加が認められなかった。これは、光誘導性遺伝子群の青色光に特異的な転写上昇の結果と一致する。さらに、*litR* 破壊株における葉酸量が野生株と比べて 20 倍上昇したことは、folE2 の著しい転写レベルの上昇によるものであると考えられる。近年、Halomonas sp. HL42 が保有する PhrR (LitR ファミリークラス Ib に属する転写調節蛋白質)は葉酸とユビキノンの合成遺伝子を制御すると報告されており、phrR の欠損がテトラヒドロ葉酸量の顕著な増加を起こすことが明らかになっている ³⁸。さらに、*litR* と folE は多くの細菌ゲノムで見つかっており、それらの細菌で同様な現象が起きると考えられる。

(2) folE1 と folE2 の役割

転写解析の結果から、folE1 は構成的に働き、folE2 は光誘導型であること が考えられた。folE2 の破壊は光照射による増大を示さなかったが、構成的な 遺伝子発現を示す folE1 の破壊株においても同様な結果が得られた。これは、 一つの folE が機能しないときにもう一方が補完するように機能する、あるいは、細胞外の葉酸を取り込むことで細胞内の葉酸レベルを一定に保っていることが考えられた。

(3) folE2 活性化の生理的な意義

光照射による folE2 の転写活性化は、光ストレスに対する防御的な役割を 果たすことが考えられる。海洋性シアノバクテリア Oscillatoria sp.では、ビ オプテリングルコシドが UV-Aから細胞を防御することが報告されている ⁵⁰。 また、葉酸量の増加は、光回復酵素 (PhrB)のクロモフォアとして必要とさ れる葉酸を明条件下で補給している可能性も考えられる。PhrB は、フラビン アデニンジヌクレオチド (FAD) と 5,10-メテニルテトラヒドロ葉酸をクロモ フォアまたは光アンテナ分子して利用し、UV 照射で生じたピリミジンダイ マーを分解することで DNA 損傷を修復する酵素である ⁵¹。

また、葉酸は、シクロプロパン環脂肪酸の合成に関与することも考えられる。乳酸菌 Lactobacillus のシクロプロパン環脂肪酸含量は葉酸の添加によって上昇することが報告されている⁵²。シクロプロパン環脂肪酸は、酸や有機溶媒への耐性に関与することが知られ^{53,54}、本合成酵素をコードする遺伝子

(cfaB12)の転写が光に誘導されることから、本脂肪酸が光ストレスの防御 を担うことが予想される。本合成酵素は S-アデノシルメチオニン (SAM)を 補酵素として要求するが、葉酸合成の阻害が細胞内 SAM 量を低下させるこ とが報告されている⁵⁵。その反対に葉酸の増加が SAM の合成を促進させる ことが予想される。これらのことから、光照射による葉酸の増加は、SAM 合 成の促進を介してシクロプロパン環脂肪酸量を増やすことが考えられた。 一方で、葉酸は DNA を構成するチミンの合成に関与することから、増殖速

度に影響すると考えられた。しかし、B. multivoransの増殖速度は、光照射と litR や folE2 の破壊に影響を及ぼさなかった。このことから、光照射による 葉酸の増加は B. multivoransの増殖速度と相関しないと考えられる。

図 3-2-3-1 葉酸の構造と生合成経路

図 3-2-3-2 半定量 RT-PCR による葉酸合成遺伝子の転写解析

図 3-2-3-3 光照射による細胞内葉酸量への影響

図 3-2-3-4 folE の破壊が細胞内葉酸量に及ぼす効果

図 3-2-3-5 litR の破壊が細胞内葉酸量に及ぼす効果

図 3-2-3-6 LB 培地中での B. multivorans の増殖速度

図 3-2-3-7 各破壊株の M9 最少培地中での増殖速度

第4項 小括

遺伝子破壊株を用いた定量 RT-PCR 解析の結果から、*B. multivorans*の光 依存的な転写は LitR とそれによって誘導されるσ^{LitS} によって 2 段階的に調 節されると推測される。LitR は *litR と litS-folE2* クラスターの転写を光依存 的に直接制御し、σ^{LitS} は *phrB2* や *cfaB* などの一部の光誘導性遺伝子群にお ける転写開始を担うことが推測された。

また、LitR を介した folE2 の転写活性化によって細胞内葉酸量を増加させ ることが強く示唆された。増加した葉酸は、光照射から2段階目に発現する 光回復酵素(PhrB)やシクロプロパン環脂肪酸合成酵素(CfaB)の機能に必 要とされる葉酸を補充する役割を持つことが考えられる。これらの遺伝子は、 他のクラスのLitR を保有する細菌群にも認められることから、同様なシステ ムが備わっていることが予想される。

第3節 クラス III LitR の機能の検証

第1項 光サイクル反応の観測

目的

litR 破壊株を用いた定量 RT-PCR による解析結果から、LitR が転写抑制能 を持ち、光依存的に解除されることが推測された。また、予備試験で観察し た LitR 組換え蛋白質の吸収スペクトルには 340 nm の単一の極大吸収が認め られたことから、光センサーとして機能することも考えられた。そこで本章 は、光センサーとしての性質と DNA 結合特性を解析することで、光依存的な 転写調節蛋白質としての機能を明らかにすることを目的とした。
予備実験では GST タグが融合した LitR の吸収スペクトルを測定したため、 GST タグを除去した LitR 組換え蛋白質の精製を試みた。精製した LitR 溶液 が白濁したことから、アグリゲーションを起こしたと考えらえられた。そこ で、蛋白質の凝集抑制効果が認められるアルギニン塩酸塩³⁷をバッファー中 に添加したところ、可溶化した LitR 蛋白質を精製することに成功した(図 3-3-1-1、左端のレーン)。その吸収スペクトルを測定したところ、GST タグ融 合 LitR で検出されたように 340 nm 付近に単一の極大吸収が認められ、か つ、LOV⁵⁶ や BLUF⁵⁷ などの光センサーに特有な光サイクルを有しているこ とが判明した。すなわち、同標品に365 nmの光を照射したところ、60 秒で 約5分の1までそのピークが減少し(図3-3-1-2A)、180秒で完全に消失し た。これを暗所に戻したところ、徐々にそのピークが回復していくことが認 められた(図 3-3-1-2B)。本蛋白質は、365 nmの光照射によって 340 nmの ピークが消失する一方で、それ以上の波長ではピークの減少はほとんど認め られなかった(図 3-3-1-2C)。また、これと同様に各波長の光を野生株の B. multivorans に照射してその転写レベルを半定量 RT-PCR で解析したところ、 365 nm の光照射が litR と BM5689 の転写を誘導し、それ以上の波長の光で

は効果を示さなかった(図 3-3-1-3)。さらに、*B. multivorans* 由来 LitR に相同性 88%を有する *B. vietnamiensis* 由来の LitR を発現・精製したところ、*B. multivorans* 由来のものと同様に 340 nm の単一の極大吸収が認められ、それが光サイクル反応を示すことがわかった(図 3-3-1-4A および B)。また、UV-A 光を吸収し、青色光以上の波長にほとんど反応を示さなかった(図 3-3-1-4C)。

次に、340 nmの極大吸収が由来するアミノ酸配列の特定を行った。LitR は、 ゲノム情報上では N 末端領域に MerR 型の DNA 結合ドメインを有している ことが予測されている。そこで、DNA 結合ドメインを含んだ N 末端側の領域 を除いた LitR 蛋白質 (LitR₈₁₋₃₂₃) と C 末端側の 100-323 aa の領域のもの (LitR₁₀₀₋₃₂₃)、200-323 aa 領域のもの (LitR₂₀₀₋₃₂₃)を調製した(図 3-3-1-1)。 その結果、両者とも 340 nm の極大吸収を有していた(図 3-3-1-5)。さらに、 UV-A を照射したところ、それぞれでピークの消失が認められた。また、N 末 端領域の蛋白質を調製してその吸収スペクトルを測定したところ、その極大 吸収は認められなかった(図 3-3-1-6)。これらのことから、340 nm の極大吸 収は 200-323 aa の領域に由来することがわかった。

次に、光照射による LitR の DNA 結合能への影響を調査するため、ゲルシ

フトアッセイによる DNA-蛋白質の相互作用解析を行った。ネガティブコン トロールとして用いた PrpoD では、光照射に関係なく LitR との結合を示さ なかった(図 3-3-1-7)。次に、PlitR と P5689 では、暗条件で特異的な結合 が認められ、UV-A 照射下によってその結合が弱くなった。このことから、 LitR の DNA 結合能は光照射によって低下することが推測された。

LitR の相対分子量を求めるため、ゲルろ過カラムクロマトグラフィーを行った。暗条件では検量線より大きいピークと 136 kDa と推定されるピークが 検出された(図 3-3-1-8)。一方で、UV-A 照射下では単一の 131 kDa のピー クが検出された。これらの溶出画分について SDS-PAGE 解析と銀染色を行 った結果、LitR のバンドが検出された。また、LitR_{C81-323}の GST タグを除去 して精製し(図 3-3-1-1 および 3-3-1-9)、それついて同様の解析を行った。 その結果、暗条件では検量線の上限を超える大きさのピークと 107 kDa と推 定されるピークが検出され、UV-A 照射下では単一の 102 kDa のピークが検 出された(図 3-3-1-10)。

考察

(1) 光サイクル反応

B. multivorans および B. vietnamiensis 由来の LitR 組み換え蛋白質が有す る 340 nm の単一の極大吸収が光サイクル反応を示した(図 3-3-1-2 および 3-3-1-4) ことから、それはアンテナ分子に由来することが推測された。その 光感知ドメインは、N 末端欠失 LitR と C 末端欠失 LitR の吸収スペクトル測 定から、200-323 aa の領域に存在することがわかった。B. multivorans の野 生株を用いた半定量 RT-PCR の解析で UV-A (λmax= 365 nm) が顕著な転写 誘導を示したことから、340 nm のピークは、ヒスチジンタグの付加などに帰 因するアーティファクトではないと考えられた。また、大腸菌を異種宿主に して精製したことから、大腸菌においてもアンテナ分子が合成されることが 考えられた。

(2) DNA 結合能とホモ複合体の解離

LitRの DNA 結合能は UV-A 照射によって著しく低下した(図 3-3-1-7)。このことから、C 末端領域の UV-A 感知による構造変化が N 末端側の DNA 結合ドメインのコンフォメーションに影響することが考えられた。野生型 LitR

と LitR₈₁₋₃₂₃を用いたゲル濾過カラムクロマトグラフィーによる解析では、16 量体と推定されるオリゴマーが UV-A 照射によって 4 量体に解離したことか ら、UV-A を感知することによって構造変化が起こると考えられる。また、 LitR のホモオリゴマーの形成には 81-323 aa の領域のアミノ酸配列が重要で あることがわかった。

ゲル濾過カラムクロマトグラフィーで観察された光照射によるホモ複合体 の解離は、クラス I LitR でも同様なことが報告されている¹²。検量線外では あるが推定 16 量体が暗条件下で標的配列に結合することで強い転写抑制能 を発揮する一方、UV-A 照射による 4 量体への解離が DNA 結合能を低下させ ることが推測される。ただし、暗条件下でのゲル濾過カラムクロマトグラフ ィーの結果の解釈では、LitR がアグリゲーションを引き起こすことを考慮し なければならない。しかしながら、野生型 LitR と LitR₈₁₋₃₂₃の 340 nm におけ る溶出プロファイルでは、4 量体よりもオリゴマーの 340 nm の吸光度が高 い数値を示した。これは、オリゴマーが UV-A 感知に重要な構造を形成して いる可能性を考えさせる。

図 3-3-1-1 SDS-PAGE 解析による各 LitR 組換え蛋白質の精製の確認

図 3-3-1-2 B. multivorans 由来 LitR の光サイクル反応と受光範囲

Illumination for 10 min

図 3-3-1-3 B. multivorans の受光範囲

図 3-3-1-4 B. vietnamiensis 由来 LitR の光サイクル反応と受光範囲

図 3-3-1-5 N 末端欠失 LitR の吸収スペクトル

図 3-3-1-6 C 末端欠失 LitR の吸収スペクトル

図 3-3-1-7 光照射による DNA 結合能への影響

図 3-3-1-8 ゲル濾過カラムクロマトグラフィーを用いた光照射による LitRwrのホモ複合体解離の観察

図 3-3-1-9 LitR₈₁₋₃₂₃の吸収スペクトル

図 3-3-1-10 ゲル濾過カラムクロマトグラフィーを用いた LitR₈₁₋₃₂₃の 光依存的なホモ複合体の解離の観察

第2項 光感知ドメインの分子構造

目的

LitR の吸収スペクトルに見られた 340 nm の単一のピークは光センサーに 特有の光サイクル反応を示し、さらにその光依存的な DNA 結合能の変動と オリゴマーの解離が認められた。このことから、340 nm のピークがアンテナ 分子に由来することが考えられる。そこで、その分子を単離して構造を明ら かにすることで、新規な光センシング機構を明らかにすることを目的とした。 さらに、その光感知に関わるアミノ酸残基を特定することで、LitR 蛋白質-ア ンテナ分子間の相互作用によって成立すると予想される光センサー機能を明 確にすることを目指した。

340 nmの極大吸収が何らかの低分子化合物に由来すると予想し、まず LitR 蛋白質からの単離を試みた。 加熱した LitR 蛋白質を遠心分離してその上清の 吸収スペクトルを測定したところ、37℃では LitR がほとんど変性せず、55℃ と95℃では光の吸収を示さなかった(図 3-3-2-1、左端のレーン)。また、β-メルカプトエタノール (β-ME) と DTT を加えて同様の操作をしたが、その 効果は認められなかった(図 3-3-2-1、中央および右端のレーン)。さらに、 酢酸エチルの添加による抽出を行ったが、その上清の吸収スペクトルには光 の吸収が認められなかった(図 3-3-2-2)。次に、LitR 蛋白質を ICP-MS で分 析して元素の含有率を調査したところ、ほとんどの元素は 10%を下回った (表 3-3-2-1)。このことから、LitR は金属イオンと結合していないことが考 えられた。そこで、LitR蛋白質をリフォールディングさせることによって340 nmのピークが消失したアポ体の調製を試みた。β-ME 非添加条件下でリフォ ールディングを行ったところ、340 nm のピークはほとんど消失していなか った(図 3-3-2-3A および B)。グアニジン塩酸塩溶液中の吸収スペクトルを 測定したところ、340 nm のピークが検出された。このことから、SH 基が構 造形成に重要な役割を果たしていると考えられた。次に、β-MEを添加して

リフォールディングを行ったところ、グアニジン塩酸塩溶液中では 340 nm のピークは消失し、巻き戻し後のピークは 10 分の 1 程度まで減少した (図 3-3-2-3C)。このことから、不完全なアポ体の調製に成功したと考えられる。 次に、アンテナ分子の候補として 340 nm に極大吸収をもつ NADH や 360 nm に極大吸収を示す葉酸を LitR アポ体に添加し、それらとの相互作用の解析を 透析法によって行ったが (第 2 章参照)、結合を示す結果は得られなかった (図 3-3-2-4)。

これまでの試験では、LitR 蛋白質から低分子化合物あるいは金属イオンを 検出できなかったため、次に SDS を用いた変性が 340 nm に及ぼす影響を調 査した。2%の SDS を含んだ緩衝液に溶解した LitR では本ピークが 300 nm 側にシフトした(図 3-3-2-5A)。さらに、熱処理によって本ピークは消失し た。また、SDS とβ-ME を含んだものにおいても同様に本ピークは認められ なかった。これらのことから、本ピークは 340 nm に極大吸収を持つ化合物 に由来しないことが示唆された。次に、トリプシンによって LitR を部分消化 させてその吸収スペクトルを測定したところ、340 nm の極大吸収が徐々に 300 nm 側に崩れていき、120 min 後には本ピークが検出されなくなった(図 3-3-2-5B)

そこで次に、340 nm の極大吸収の形成に関与するアミノ酸の推定を行っ た。C 末端領域には 3 つのシステイン (Cys) 残基が高度に保存されており、 それらが光受容ドメインの形成に関与することが予想された(図 3-3-2-6)。 そこで、3 つの Cys 残基をそれぞれアラニン(Ala) またはセリン(Ser) に 置換した変異体を作製し(図 3-3-2-7)、その吸収スペクトルを測定した。そ の結果、野生型では 340 nm の極大吸収が認められたのに対して、Ala に置換 した 3 つの変異体全てで本ピークが検出されなかった (図 3-3-2-8)。また、 251 番目の Cys を Ser に置換した LitR では 340 nm のピークが 300 nm 側に 傾き、253 番目の Cys の Ser 置換体ではそのピークは消失し、274 番目の Cys の Ser 置換体ではピークが 322 nm にシフトしていた (図 3-3-2-9)。こ のことから、光受容ドメインの形成に3つのシステイン残基が関与している ことが明らかになった。次に、ゲルシフトアッセイによって解析したところ、 Ala 変異体では顕著に DNA 結合能が低下し、Ser 変異体では野生型よりも弱 かった(図 3-3-2-10 および 3-3-2-11)。また、Ala 変異体をゲルろ過カラムク ロマトグラフィーに供したところ、野生型では検量線外と4量体の2つのピ ークが検出されたのに対し、C251A では 171 kDa、C253A では 158 kDa、 C274A では 180 kDa の単一のピークが認められた(図 3-3-2-12 から 3-3-214 まで)。以上のことから、3 つの Cys 残基が光受容に中心的役割を果たす 構造の形成に必須の役割を有することが示された。

次に、芳香族アミノ酸の変異体を作製した。植物型光センサーUVR858,59や 線虫 C. elegans⁶⁰の LITE-1 ではトリプトファンが UV 光に対するアンテナ 分子として機能することが報告されている。そこで、C 末端領域に保存され ている 228 番目の Trp と 267 番目のフェニルアラニン (Phe)、271 番目のチ ロシン(Tyr)を Ala に置換した変異体を作出した(図 3-3-2-6 および図 3-3-2-15)。その吸収スペクトルを測定したところ、W228A では野生型と同様な 340 nm のピークが検出されたが、F267A と Y271A では 340 nm のピークが 5分の1程度までに低下した(図 3-3-2-16)。このことから、Phe²⁶⁷とTyr²⁷¹ が光感知に関与していることが推測された。次に、Phe²⁶⁷を Tyr または Trp に、Tyr²⁷¹を Phe または Trp に置換した変異体を作製した。F267W の吸収ス ペクトルは、F267A と同様に低い 340 nm のピークが検出された一方、F267Y では 340 nm のピーク強度は野生型に近いレベルを示した(図 3-3-2-17)。ま た、Y271F と Y271W の 340 nm のピークは Y271A よりも高い吸光度を示し た(図 3-3-2-18)。

考察

(1) アンテナ分子の特定:低分子化合物の検証

LitR の 340 nm のピークが低分子化合物に由来するものと予想してその単 離を行ったが、その取得には至らなかった。また、リフォールディングによ って得られた不完全なアポ LitR と NADH あるいは葉酸との相互作用解析を 行ったが、それらとの結合も認められなかった。これらのことから、クラス III LitR のアンテナ分子が低分子化合物である証拠を得ることができなかっ た。

(2) アンテナ分子の特定:金属イオンが関与する可能性の検証

一部の酸化センサー型転写調節蛋白質では、Cys 残基が金属と結合することが知られている。酸化センサー型アンチシグマ因子 RsrA は、還元状態で3つの Cys 残基と1つの His 残基が亜鉛と結合してシグマ因子 SigR の機能を抑制し、ジアミドを感知すると亜鉛が遊離して SigR を活性化させる⁶¹。
また、MerR 型転写調節因子 SoxR は4つの Cys 残基が 2Fe-2S クラスターを形成し、活性酸素がそれを破壊することで転写活性化因子として機能する
62。しかし、LitR とそれらとの蛋白質間の相同性は低く、また、Cys 残基の

保存性は認められなかった。さらに、ICPE による元素分析の結果から、LitR のアンテナ構造に金属イオンが関与する可能性が低いと考えられた。

(3) Cys 残基の役割

グアニジン塩酸塩または SDS を用いた変性実験結果から、LitR がジスル フィド結合を含んだ構造を形成することが示唆された。一方、非変性条件下 で還元剤を添加しても 340 nmの極大吸収に影響がみられなかったことから、 ジスルフィド結合は LitR 蛋白質の内側に形成されていることが考えられた。 光感知ドメイン中に保存されている 3 つの Cys 残基を Ala に置換させた LitR では、340 nm の極大吸収が検出されなかった。また、LitRc2515 と LitRc2745 では UV-A 吸収ピークは 280 nm 側にシフトしたのに対し、LitRc2535 ではそ の極大吸収が検出されなかったことから、Cys²⁵³が光感知ドメインの形成に 必須であることが明らかになった。さらに、3 つの Cys 変異体は DNA 結合 能の低下と推定 16 量体を形成しないことが認められたことから、Cys 残基 が光感知の構造と DNA 結合に必須の役割を担うことが明らかになった。

(4) アンテナ分子の特定:ビルトインの検証

クラス III LitR のアンテナ分子が低分子化合物や金属元素である可能性は 低いと考えられたことから、自身のアミノ酸残基を利用するビルトイン型で あることが考えられた。既知のビルトイン型光センサーである植物の UVR8 や線虫 C. elegans の LITE-1 では特定の Trp 残基をアンテナ分子として利用 することが報告されている ^{58~60}。クラス III LitR に保存されている Trp 残基 の変異体の吸収スペクトルは野生型と同様に 340 nm の極大吸収を有してい たが、保存されている 267 番目の Phe と 271 番目の Tyr を Ala に置換した ことでその極大吸収は低いレベルになった。このことから、Phe と Tyr がア ンテナ分子であることが示唆された。

構造が明らかになっているビルトイン型補酵素の中で、Tyr と Cys で形成 するチロシルチオエーテルが LitR のアンテナ構造として最も考えられる。チ ロシルチオエーテルはカビのガラクトースオキシダーゼではじめて報告され ⁶³、ヒトやラット由来のシステインジオキシゲナーゼもその構造を保有する ことが明らかにされている ^{64,65}。その役割は活性部位の構造を形成すること、 および、酵素活性で生じる活性酸素の発生を防ぐことが考えられている ⁶²。 オキシダーゼは触媒反応の過程で活性酸素を生じることが知られている ¹。 また、光合成色素クロロフィルも光照射によって活性酸素を発生させること が知られており、B₁₂のポルフィリンやフラビンのような光アンテナ分子も 同様なことが考えられる。クラス III LitR のアンテナがビルトイン型と仮定 した場合、その役割の一つは光感知で生じる活性酸素発生の抑制であること が予想される。

図 3-3-2-1 熱および還元処理が LitR のアンテナ分子に及ぼす影響

図 3-3-2-2 酢酸エチルによる LitR のアンテナ分子の抽出の試み

Li 0%	Be 0%	B 0%	Na 0%	Mg 0.2%
AI -5.3%	Si 0.1%	P 0.5%	S 84.6%	K 6.2%
Ca 2.1%	Sc 0%	Ti 0%	V 0%	Cr 0%
Mn 0%	Fe 0%	Co 0%	Ni 0%	Cu 0.2%
Zn 1.0%	Ga 0%	Ge 0%	As 0%	Se 0%
Rb -33.4%	Sr 0%	Y 0%	Zr 0%	Nb 0%
Mo 0%	Ru 0%	Rh -0.1%	Pd 0%	Ag 0%
Cd 0%	In 0%	Sn 0%	Sb 0%	Te -0.1%
10%	Cs 0%	Ba 0%	La 0%	Ce 0%
Pr 0%	Nd 0%	Sm -0.1%	Eu 0%	Gd 0%
Tb 0%	Dy 0%	Ho 0%	Er 0%	Tm 0%
Yb 0%	Lu 0%	Hf 0%	Ta 0.1%	W 0%
Re 0%	Os 0%	lr -0.1%	Pt 0.1%	Au 0%
Hg 0%	TI 0%	Pb 0%	Bi 0%	Th 0%
U 0%				

表 3-3-2-1 LitR 蛋白質の元素含有率

図 3-3-2-3 グアニジン塩酸塩による変性処理とリフォールディング

図 3-3-2-4 アポ LitR 蛋白質とアンテナ候補化合物との相互作用解析

図 3-3-2-5 変性処理による吸収スペクトルの変化

図 3-3-2-6 クラス III LitR のアミノ酸配列の比較

図 3-3-2-7 SDS-PAGE による Cys 変異 LitR 蛋白質の精製の確認

図 3-3-2-8 Cys を Ala に置換した LitR の吸収スペクトル

図 3-3-2-9 Cys を Ser に置換した LitR の吸収スペクトル

図 3-3-2-10 Cys を Ala に置換した LitR の DNA 結合能の解析

⊲:ブローブDNA ◀:ブローブDNA-蛋白質複合体

図 3-3-2-11 Cys を Ser に置換した LitR の DNA 結合能の解析

図 3-3-2-12 ゲル濾過カラムクロマトグラフィーによる LitRc251Aの解析

図 3-3-2-13 ゲル濾過カラムクロマトグラフィーによる LitRc253Aの解析

図 3-3-2-14 ゲル濾過カラムクロマトグラフィーによる LitRc274Aの解析

図 3-3-2-15 芳香族アミノ酸変異 LitR の精製の確認

図 3-3-2-16 保存されている芳香族アミノ酸を Ala に置換した LitR の 吸収スペクトル

図 3-3-2-17 Phe²⁶⁷を別の芳香族アミノ酸に置換した LitR の 吸収スペクトル

図 3-3-2-18 Tyr²⁷¹を別の芳香族アミノ酸に置換した LitR の 吸収スペクトル

第3項 小括

クラス III LitR は UV-A を感知し、LOV や BLUF などの光センサーに見ら れる光サイクル反応と光依存的なホモ複合体の解離を示すことが判明した。 これは B₁₂をクロモフォアとするクラス I とは異なった光感知機構であるこ とを推測させる。また、本蛋白質の DNA 結合能は UV-A 照射によって変動す ることから、UV-A の照射が C 末端側の構造変化に連動して N 末端側の DNA 結合活性に大きく影響すると考えられた。

さらに、UV-A 感知ドメインに保存されている 3 つの Cys 残基が光感知構 造の形成に必須の役割を有することが明らかになった。LitR が要求する光ア ンテナ分子を単離することができなかったことから、一つの可能性としてそ のアンテナ構造は自身のアミノ酸残基で構成されるビルトイン型であること が考えられる。既知のビルトイン型光センサーである UVR8 や LITE-1 では 特定の Trp 残基が UV 感知に利用されることが知られているが、クラス III LitR の UV-A 感知ドメインはそれらとも相同性を有していない。一方、クラ ス III LitR の芳香族アミノ酸の変異解析によって 267 番目の Phe と 271 番目 の Tyr が UV-A 感知に重要な役割を果たしていることが示唆された。

第4章 総括

本研究で得られた分子遺伝学・生化学的な解析結果から、B. multivoransの 光応答は LitR とそれによって誘導される σ^{Lits} によって 2 段階的に調節され ると推測される (図 4-1)。暗条件下では LitR の転写抑制活性によって *litR と litS-folE2* クラスターの転写を抑制する。UV-A 照射によって LitR の転写抑制 能が低下すると、まず σ^{RpoD} を含んだ RNA ポリメラーゼが *litR と litS-folE2* クラスターの転写を開始させる。これにより発現誘導される FolE2 が細胞内 の葉酸量を増加させることが明らかになった。次に、σ^{LitS} を含んだ RNA ポリ メラーゼが phrB2 や cfaB クラスターの転写を開始させる。このようにして 2 つのグループの遺伝子群を段階的に誘導発現することで、光照射ストレス に対する秩序だった防御応答が確立すると考えられる。

特に、B. multivoransの光応答は UV 照射による DNA 損傷へ重要な役割を 果たすことが考えられる。UV 照射による遺伝子発現メカニズムは SOS 応答 が知られている⁶⁶。UV 照射で生じた一本鎖 DNA を RecA が認識することで プロテアーゼ活性を発揮し、LexA を切断する。これが LexA によって転写抑 制されていた SOS 応答性遺伝子群の発現を開始し、UV によって損傷した DNA を修復する。一方、B. multivorans では、クラス III LitR が UV-A を感知 することで phrB2 の遺伝子発現を誘導し、光回復酵素活性によって DNA 損 傷を修復することが考えられる。

さらに、本研究では、B₁₂結合ドメインを持たないクラス III LitR が光セン サー型転写調節蛋白質として機能することをはじめて明らかにした。本蛋白 質は、UV-A 感知ドメインを保有し、光サイクル反応と光依存的なホモ複合体 の解離を示した。これは、クラス I のそれとは異なる光応答機構である。ア ンテナ分子の同定には至っていないが、低分子化合物や金属が検出されなか ったこと等から、本蛋白質の光アンテナは自身のアミノ酸残基で構成される ビルトイン型である可能性がある。また、クラス III LitR は、既知のビルトイ ン型光センサーUVR8 や LITE-1 との相同性を示さないことから、新規な光セ ンサーであることが強く示唆された。

本研究で得られた成果は、これまでに知られていない光センサーが細菌に おける光依存的な遺伝子発現を担っていることを具体的に示すもので、分子 生物学ならびに生態学に新たな基礎知見をもたらした。また、分子レベルの 知見がさらに集積することでオプトジェネティクスなどの応用技術にも貢献 することも期待される。

図 4-1 B. multivorans における光依存的な転写制御機構

参考文献

- 1. Ziegelhoffer EC, Donohue TJ. 2009. Bacterial responses to photooxidative stress. Nat Rev Microbiol 7:856-863.
- Moskvin OV, Gomelsky L, Gomelsky M. 2005. Transcriptome analysis of the *Rhodobacter sphaeroides* PpsR regulon: PpsR as a master regulator of photosystem development. J Bacteriol. 187: 2148-2156.
- Winkler A, Heintz U, Lindner R, Reinstein J, Shoeman RL, Schlichting I.
 2013. A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression. Nat Struct Mol Biol. 20: 859-867.
- 4. Ozturk N. 2017. Phylogenetic and Functional Classification of the Photolyase/Cryptochrome Family. Photochem Photobiol. 93: 104-111.
- Purcell EB and Crosson S 2008. Photoregulation in prokaryotes. Current Opinion in Microbiology. 11:168-178.

- Takano H, Obitsu S, Beppu T, Ueda K. 2005. Light-induced carotenogenesis in *Streptomyces coelicolor* A3(2): Identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825-1832.
- Takano H, Kondo M, Usui N, Usui T, Ohzeki H, Yamazaki R, Washioka M, Nakamura A, Hoshino T, Hakamata W, Beppu T, Ueda K. 2011. Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in *Thermus thermophilus*. J Bacteriol 193:2451-2459.
- Takano H, Mise K, Hagiwara K, Hirata N, Watanabe S, Toriyabe M, Shiratori-Takano H, Ueda K. 2015. Role and Function of LitR, an Adenosyl B₁₂-Bound Light-Sensitive Regulator of *Bacillus megaterium* QM B1551, in Regulation of Carotenoid Production. J Bacteriol 197:2301-2315.

- Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elías-Arnanz M. 2011. Light-dependent gene regulation by a coenzyme B₁₂based photoreceptor. Proc Natl Acad Sci U S A 108:7565-7570.
- 10. Edge R, McGarvey DJ, Truscott TG. 1997. The carotenoids as antioxidants - A review. J Photochem Photobiol B Biol 41:189-200.
- Armstrong GA. 1997. Genetics of eubacterial carotenoid biosynthesis: A Colorful Tale. Annu Rev Microbiol 51:629-659.
- 12. Jost M, Fernandez-Zapata J, Polanco MC, Ortiz-Guerrero JM, Chen PY, Kang G, Padmanabhan S, Elias-Arnanz M, Drennan CL. 2015. Structural basis for gene regulation by a B₁₂-dependent photoreceptor. Nature 526:536-541.
- 13. Galbis-Martínez M, Padmanabhan S, Murillo FJ, Elías-Arnanz M. 2012. CarF mediates signaling by singlet oxygen, generated via photoexcited protoporphyrin IX, in *Myxococcus xanthus* light-induced carotenogenesis. J Bacteriol 194:1427-1436.

- 14. Takano H, Agari Y, Hagiwara K, Watanabe R, Yamazaki R, Beppu T, Shinkai A, Ueda K. 2014. LdrP, a cAMP receptor protein/FNR family transcriptional regulator, serves as a positive regulator for the lightinducible gene cluster in the megaplasmid of *Thermus thermophilus*. Microbiology 160:2650-2660.
- 15. Kainrath S, Stadler M, Reichhart E, Distel M, Janovjak H. 2017. Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains. Angew Chem Int Ed Engl. 56:4608-4611.
- 16. Chatelle C, Ochoa-Fernandez R, Engesser R, Schneider N, Beyer HM, Jones AR, Timmer J, Zurbriggen MD, Weber W 2018. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells. ACS Synth Biol. 7:1349-1358.
- 17. Wang R, Yang Z, Luo J, Hsing IM, Sun F 2017. B₁₂-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A. 114:5912-5917.

227

- Takano H. 2016. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci Biotechnol Biochem 8451:1-10.
- Padmanabhan S, Jost M, Drennan CL, Elías-Arnanz M. 2017. A New Facet of Vitamin B 12: Gene Regulation by Cobalamin-Based Photoreceptors. Annu Rev Biochem 86:485-514.
- 角 悟 2014. グラム陰性細菌 Burkholderia multivorans が有する青色光
 応答機構に関する研究 修士論文
- 21. Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P. 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277-286.
- 22. Stanier RY, Palleroni NJ, Doudoroff M. 1966. The Aerobic Pseudomonads a Taxonomic Study. J Gen Microbiol 43:159-271.
- 23. Komatsu H, Imura Y, Ohori A, Nagata Y, Tsuda M. 2003. Distribution and organization of auxotrophic genes on the multichromosomal genome of *Burkholderia multivorans* ATCC 17616. J Bacteriol 185:3333-3343.

- 24. Yuhara S, Komatsu H, Goto H, Ohtsubo Y, Nagata Y, Tsuda M. 2008. Pleiotropic roles of iron-responsive transcriptional regulator Fur in Burkholderia multivorans. Microbiology 154:1763-1774.
- 25. Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M. 2010. Identification of *Burkholderia multivorans* ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ Microbiol 12:2539-2558.
- 26. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680.
- 27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739.
- 28. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.

- 29. Givens GD, Seidemann MF. 1977. Middle ear measurements in a difficult to test mentally retarded population. Ment Retard 15:40-42.
- 30. Haberle V, Forrest ARR, Hayashizaki Y, Carninci P, Lenhard B. 2015. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res 43:e51.
- 31. Livak KJ, Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25:402-408.
- 32. Guo M, Feng H, Zhang J, Wang W, Wang Y, Li Y, Gao C, Chen H, Feng Y, He ZG. 2009. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 19:1301-1308.
- 33. Zeng J, Li Y, Zhang S, He ZG. 2012. A novel high-throughput B1H-ChIP method for efficiently validating and screening specific regulator-target promoter interactions. Appl Microbiol Biotechnol. 93:1257-1269.

- 34. Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, Kang SG. 2012. One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol. 78:5440-5443.
- 35. Masuda M, Ide M, Utsumi H, Niiro T, Shimamura Y, Murata M. 2012. Production potency of folate, vitamin B₁₂, and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci Biotechnol Biochem 76:2061-2067.
- 36. Arcot J, Shrestha A. 2005. Folate: methods of analysis. Trends Food Sci Technol 16:253-266.
- 37. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN. 2007. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127:1-8.

- 38. Romine MF, Rodionov DA, Maezato Y, Anderson LN, Nandhikonda P, Rodionova IA, Carre A, Li X, Xu C, Clauss TRW, Kim Y-M, Metz TO, Wright AT. 2017. Elucidation of roles for vitamin B₁₂ in regulation of folate, ubiquinone, and methionine metabolism. Proc Natl Acad Sci U S A 114:E1205-E1214.
- 39. Lemke RA, Peterson AC, Ziegelhoffer EC, Westphall MS, Tjellström H, Coon JJ, Donohue TJ . 2014. Synthesis and scavenging role of furan fatty acids. Proc Natl Acad Sci U S A 111:E3450-E3457.
- 40. Petit M, Bonin P, Amiraux R, Michotey V, Guasco S, Armitano J, Jourlin-Castelli C, Vaultier F, Méjean V, Rontani JF. 2015. Dynamic of bacterial communities attached to lightened phytodetritus. Environ Sci Pollut Res Int 22:13681-13692.
- 41. Dufour YS, Landick R, Donohue TJ. 2008. Organization and evolution of the biological response to singlet oxygen stress. J Mol Biol. 383:713-730.

- 42. Gupta N1, Kumar S, Mishra MN, Tripathi AK. 2013. A constitutively expressed pair of *rpoE2-chrR2* in *Azospirillum brasilense* Sp7 is required for survival under antibiotic and oxidative stress. Microbiology 159:205-218.
- 43. Tardu M, Bulut S, Kavakli IH. 2017. MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in *Vibrio cholerae*. Sci Rep 18;7:40817.
- 44. Natalia Tschowri, Susan Busse, and Regine Hengge 2009. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of *Eschericia coli*. Genes Dev. 23:522-534.
- 45. Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH. 2012. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 85:326-344.
- 46. Veyrier F, Saïd-Salim B, Behr MA. 2008. Evolution of the mycobacterial SigK regulon. J Bacteriol 190:1891-1899.

- 47. Shukla J, Gupta R, Thakur KG, Gokhale R, Gopal B. 2014. Structural basis for the redox sensitivity of the *Mycobacterium tuberculosis* SigK-RskA σ-anti- σ complex. Acta Crystallogr D Biol Crystallogr 70:1026-1036.
- 48. Lourenço RF1, Gomes SL. 2009. The transcriptional response to cadmium, organic hydroperoxide, singlet oxygen and UV-A mediated by the sigmaE-ChrR system in *Caulobacter crescentus*. Mol Microbiol 72:1159-1170.
- 49. Shimada T, Yamazaki Y, Tanaka K, Ishihama A. 2014. The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of *Escherichia coli*. PLoS One 9:e90447.
- 50. Wachi Y, Grant Burgess J, Iwamoto K, Yamada N, Nakamura N, Matsunaga T. 1995. Effect of ultraviolet-A (UV-A) light on growth, photosynthetic activity and production of biopterin glucoside by the marine UV-A resistant cyanobacterium *Oscillatoria* sp. BBA - Gen Subj 1244:165-168.

- 51. Sancar A. 2008. Structure and function of photolyase and in vivo enzymology: 50th anniversary. J Biol Chem 283:32153-32157.
- 52. Henderson TO, McNeill JJ, Tove SB. 1965. Folic acid involvement in cyclopropane fatty acid synthesis in lactobacilli. J Bacteriol. 90:1283-1287.
- 53. Ying-Ying Chang and John E. Cronan, Jr. 1999. Membrane cyclopropane fatty acid content is a major factor in acid resistance of *Eschericia coli*. Molecular Microbiology 33:249-259.
- 54. Cecilia-Vanesa Pini, Patricia Berbal, Patricia Godoy, Juan-Luis, Ramos and Ana Segura 2009. Cycropropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in *Pseudomonas putida* DOT-T1E. Microbial Biotechnology 2:253-261.
- 55. Nixon MR, Saionz KW, Koo MS, Szymonifka MJ, Jung H, Roberts JP, Nandakumar M, Kumar A, Liao R, Rustad T, Sacchettini JC, Rhee KY, Freundlich JS, Sherman DR. 2014. Folate pathway disruption leads to critical disruption of methionine derivatives in *Mycobacterium tuberculosis*. Chem Biol 21:819-830.

- 56. Herrou J, Crosson S. 2011. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol 9:713-723.
- 57. Fujisawa T, Masuda S. 2018. Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophys Rev 10:327-337.
- 58. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O'Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED. 2012. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492-1496.
- 59. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X, Shi Y. 2012. Structural basis of ultraviolet-B perception by UVR8. Nature 484:214-219.
- 60. Gong J, Yuan Y, Ward A, Kang L, Zhang B, Wu Z, Peng J, Feng Z, Liu J, Xu XZS. 2016. The *C. elegans* Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell 167:1252-1263.

- 61. Rajasekar KV, Zdanowski K, Yan J, Hopper JT, Francis ML, Seepersad C, Sharp C, Pecqueur L, Werner JM, Robinson CV, Mohammed S, Potts JR, Kleanthous C. 2016. The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core. Nat Commun 19;7:12194.
- 62. Watanabe S, Kita A, Kobayashi K, Miki K. 2008. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci U S A 105:4121-4126.
- 63. Ito N, Phillips SE, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadav KD, Knowles PF. 1991. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature 350:87-90.
- 64. Ye S, Wu X, Wei L, Tang D, Sun P, Bartlam M, Rao Z. 2007. An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor. J Biol Chem 282:3391-3402.
- 65. McCoy JG, Bailey LJ, Bitto E, Bingman CA, Aceti DJ, Fox BG, Phillips GN Jr. 2006. Structure and mechanism of mouse cysteine dioxygenase. Proc Natl Acad Sci U S A. 103:3084-3089.

66. Kidambi SP, Booth MG, Kokjohn TA, Miller RV. 1996. recA-dependence of the response of *Pseudomonas aeruginosa* to UVA and UVB irradiation. Microbiology. 142:1033-40.

本研究の遂行および論文の作成にあたりご指導とご助言を賜りました上田 賢志教授と髙野英晃准教授に心より感謝いたします。青木俊夫教授と砂入道 夫教授には副査をご快諾していただき、厚くお礼を申し上げます。RNA seq 解析では静岡大学の兼先友博士と東京農業大学の吉川博文教授にご協力いた だき深く感謝します。分子系統樹の作成にご指導していただきました髙野初 美博士と元素分析をしていただきました西山辰也博士、定量 RT-PCR 解析で ご協力していただきました島村昌幸博士に心より感謝いたします。TetR とク ラス IV LitR の研究を共に進めてくれた大田千愛さんと永松瑛梨さんに深く 感謝いたします。博士前期課程・学部生で卒業された研究室の皆様には、研 究室での生活等で大変お世話になりました。学会発表会や研究会では多くの 先生方に研究へのご助言と励ましの言葉をいただきました。研究を進行させ るにあたり、大変な活力となりました。皆様のご助言やご厚意、励ましの言 葉のおかげで本論文を作り上げることができました。深く感謝申し上げます。 最後に、生活面で支えてくれた両親に心より感謝いたします。本当にありが とうございました。