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Chapter 1

Introduction

A propositional logic is a rough formalization of deductions in mathematics. In propositional
logics, a mathematical proposition is expressed by the language consisting of (propositional)
variables and logical symbols, the implication (→), the conjunction (∧), the disjunction (∨)
and the negation (¬). An expression of a mathematical proposition is called a (propositional)
formula. Every propositional logic have the following modus ponens rule:

if formulas A and A → B are provable, the formula B is also provable.

For a given propositional logic L, let us treat L as the set of all provable formulas in L.
The formalization of mathematics we usually use is called the classical logic C. It is

known that C has the law of excluded middle, i.e., A ∨ ¬A ∈ C for every formula A.
The law of excluded middle allows proof of disjunctions A ∨ B such that neither A nor

B is provable. On the other hand, Brouwer’s intuitionism[3, 4] claimed that deductions in
mathematics should be constructive and constructive proofs do not allow the law of excluded
middle. Heyting[11] formalized Brouwer’s intuitionism into a propositional logic, which is
called the intuitionistic logic H.

There are numerous studies for C and H since they have many good properties. In
particular, the intuitionistic logic has many constructive properties in contrast to the classical
logic. For example, H has the following disjunction property:

if formulas A and B satisfy A ∨B ∈ H, we have A ∈ H or B ∈ H.

C does not have the disjunction property (p ∨ ¬p is a counter example).
The intuitionistic logic is strictly weaker than the classical logic, i.e., H ⊊ C. The

propositional logic L is an intermediate propositional logic if H ⊆ L ⊆ C. There are infinite
intermediate logics. Intermediate logics have been researched until now since studies for
intermediate logics satisfying a given property are also studies for the property itself.

In this article, we focus on the separability and the conservativity property. We will
survey the definition and a historical background of the separability condition.

Throughout this article, the symbol S means a set of logical symbols containing → (i.e.,
→∈ S ⊆ {→,∧,∨,¬}). We say a propositional formula is an S-formula if it does not contain
logical symbols other than elements of S. We say an S-formula A is S-provable in a given
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axiomatization H + Γ of an intermediate logic if there exists a deduction (proof figure) of
H + Γ ⊢ A containing logical symbols only in S.

The notion of separability was introduced by Wajsberg[29]. A given axiomatization H+Γ
of an intermediate logic is separable if H + Γ satisfies the following two conditions:

1. (normality) every axiom is {→}, {→,∧}, {→,∨} or {→,¬}-formula;

2. (completeness) every provable S-formula is S-provable for every S.

Wajsberg claimed that H is separable in the same paper. However, Church[8] pointed out that
the proof in the paper contains a mistake, which is discussed in Kabziński and Porebska[17,
18]. The first correct proof of separability of H is given by Curry[7]. In [7], Curry gives
a method that convert a proof of intuitionistic sequent calculus LJ to a proof of H. His
converting method satisfies that, if a proof of the LJ satisfies the completeness condition, the
proof of H which is converted from the proof of LJ also satisfies the completeness condition.
Therefore, the cut-elimination theorem (and the subformula property which is a corollary
of cut-elimination theorem) shows the completeness condition of H. By this result, we can
regard the completeness condition as a weaker form than the subformula property. Therefore,
Curry’s method can be applied to some intermediate logics with cut-free systems, especially
the classical logic C. However, there are few intermediate logics that Curry’s method is
applicable. By methods different from Curry’s one, Hosoi[13, 15] proved that intermediate
logics H + ¬p ∨ ¬¬p and H + (p → q) ∨ (q → p) have separable axiomatizations (thus they
are separable as logics).

Since Curry and Hosoi’s methods are syntactical, it is hard to apply their method to
general intermediate logics. On the other hand, Horn[12] proved the separability of H by a
semantical method. Horn constructed S-algebras which characterize the set of S-provable
formulas in a given intermediate logic. Notice that the S-algebras are generalizations of the
Heyting algebras since an S-algebra means a Heyting algebra if S = {→,∧,∨,¬}.

Khomich[19, 20, 21, 22, 23, 25] gave many important and general results on separability.
He mainly examined the separability of logics each of which is axiomatized by disjunction-free
formulas. We introduce two theorems which seem particularly important.

Khomich proved that an intermediate logic L has a separable axiomatization if L is
tabular (characterized by a finite Kripke frame) and L has a normal axiomatization. This
theorem is proved by McKay[27]. However, Khomich[25] pointed out that the proof in [27]
contains a mistake and corrected the proof by the method in [25].

Also, Khomich[22] proved that an intermediate logic L has a separable axiomatization if
L can be axiomatized only by {→,∧}-formulas.

Therefore, the remaining problem for the separability is the case Khomich’s two theorems
above can not apply, i.e., the separability of non-tabular logics each of which needs the
disjunction to axiomatize.

The conservativity is more basic concept of the completeness. Let Γ be a set of S-
formulas, H+Γ be an axiomatization of an intermediate logic and S ⊆ S ′. We say HS′ +Γ is
a conservative extension of HS +Γ if every S ′-provable S-formula is also S-provable. A given
intermediate logic H+Γ satisfies the completeness condition if and only if H{→,∧,∨,¬} +Γ is a
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conservative extension of HS + Γ for every S. The conservativity condition suggests that the
role of each of logical symbols ∧, ∨ and ¬ are mutually independent in the axiomatization.
For example, in [7], Curry’s proved for separability of H by showing the conservativity for
any pair (S,S ′) by the subformula property.

Wroński[31] gave a general result for conservativity problem. He proved that HS′ + Γ is
a conservative extension of HS + Γ for every set Γ of S-formulas if and only if ∧ ∈ S for
every S and S ′ satisfying S ⊆ S ′ and a set Γ of S-formulas. However, when ∧ /∈ S, the
theorem does not give a method to determine whether a given axiomatization HS′ + Γ is a
conservative extension of HS + Γ for a given Γ.

Khomich and Wroński’s theorems above are proved by algebraic methods. In particular,
their idea seem to be based on the idea of Jankov’s characteristic formula ([16]) 1. Let M be
a subdirectly irreducible finite S-algebra. Jankov’s characteristic formula XM is constructed
from M. Jankov proved the relation between the embeddability of M and the refutability
of XM. Precisely, M is the “smallest” (see Chapter 4) algebra which does not validate XM.
His method is easily extended to subdirectly irreducible S-algebras.

In Chapter 4, we give a general algebraic characterization for conservativity by using
Jankov’s characteristic formula.

Theorem 1.0.1. Let S ⊆ S ′ and Γ be a set of S-formulas. The following are equivalent.

1. HS′ + Γ is a conservative extension of HS + Γ;

2. if an S-algebra M validates every γ ∈ Γ, M is S-embeddable in an S ′-algebra which
validates every γ ∈ Γ.

Also in Chapter 4, for the case S ∪{∧} ⊆ S ′, we give a criteria for the conservativity. For
a given S-algebra M, we constructed the smallest S ∪ {∧}-algebra C(M) by using Horn’s
method ([12]). We proved that the class

{C(M) | M validates every γ ∈ Γ}

gives a criteria of the conservativity for a given axiomatization H + Γ of an intermediate
logic.

Theorem 1.0.2. S ∪ {∧} ⊆ S ′ and Γ be a set of S-formulas. The following are equivalent.

1. HS′ + Γ is a conservative extension of HS + Γ;

2. every S ∪ {∧}-algebra in {C(M) | M validates every γ ∈ Γ} validates every γ ∈ Γ.

In Chapter 5, as an application of our criteria, we give a new separable axiomatization of
the Gabbay-de Jongh logics Dm (m ≥ 2).

Theorem 1.0.3. There is a separable axiomatization of the Gabbay-de Jongh logics Dm (m ≥
2).

1Jankov’s characteristic formula does not appear in the proof of the theorem directly. However, the author
suppose that the proof uses the idea of Jankov’s characteristic formula (see Chapter 4).
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We give the separable axiomatization of the Gabbay-de Jongh logics by Jankov’s charac-
teristic formula.

In Chapter 6, we revisit a hypersequent calculus GLCW which is defined by Avron[1]. It
is known that there are two hypersequent calculi which is equivalent to the intermediate logic
H + (p → q) ∨ (q → p). They are called GLCW and GLC. Therefore, GLCW ⊢ H if and
only if GLC ⊢ H for every hypersequent H. In [1], he treated GLCWS and GLCS which
are subsystems of GLCW and proved that GLCWS is strictly weaker than GLCS if ∧ /∈ S.
He wrongly claimed that GLCWS admits the cut-elimination theorem if ∧ /∈ S. We pointed
out an error in his proof for the case ∨ ∈ S. Therefore, we corrected his cut-elimination
theorem.

Theorem 1.0.4. GLCWS admits the cut-elimination theorem if and only if S ⊆ {→,¬}.

Ciabattoni[5] generalized GLC tom-GLC. m-GLC is a hypersequent calculus equivalent
to the intermediate logic which is characterized by the class of Kripke frames whose width
is m or less. We generalize GLCW to m-GLC by using Jankov’s characteristic formula.
which satisfies the following conditions:

• m-GLCWS admits the cut-elimination theorem if and only if S ⊆ {→,¬};

• m-GLCWS = m-GLCS if and only if ∧ ∈ S.
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Chapter 2

Preliminaries

In this chapter, we introduce the intermediate logics as sets of formulas satisfying some
conditions. Also, we introduce the intuitionistic sequent calculus and the Kripke semantics.
The intuitionistic sequent calculus helps to show the Curry’s theorem for the conservativity
problem in Section 3.1. We show the strong completeness theorem of the intuitionistic for
the Kripke semantics. Since all theorems in this chapter are well-known, many textbooks for
mathematical logic contain proofs of the theorems. For example, [6] and [8].

2.1 Propositional formulas

Definition 2.1.1 (Propositional formulas). A propositional formula is defined as follows:

• propositional variables p0, p1, . . . are formulas;

• if A and B are formulas, (A → B), (A ∧B), (A ∨B) and (¬A) are also formulas.

We abbreviate p0 → p0 to ⊤ and ¬⊤ to ⊥.
Brackets “(” and “)” are usually omitted by the following rules:

• the binding force of logical symbols decreases in strength in the series ¬,∧,∨,→;

• A → B → C means the formula (A → (B → C)).

The complexity of a formula A is the number of logical symbols occurring in A. The formulas
used in construction of a formula A according to the definition above as well as A itself are
called subformulas of A. For example, the set of all subformulas of ¬¬p → q is {¬¬p →
q, ¬¬p, ¬p, p, q}. A map σ : Var −→ Form is a substitution if σ satisfies σ(A ⊙ B) =
σ(A) ⊙ σ(B) (⊙ =→, ∧, ∨) and σ(¬A) = ¬σ(A).

2.2 Intermediate logics

Definition 2.2.1. An intermediate logic L is a set of formulas satisfying the following con-
ditions:
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1. L contains all formulas in the following list of the axioms:

List of the axioms

(K) p → q → p; (S) (p → q → r) → (p → q) → p → r;

(∧1) p ∧ q → p; (∧2) p ∧ q → q;

(∧3) (p → q) → (p → r) → p → q ∧ r; (∨1) p → p ∨ q;

(∨2) q → p ∨ q; (∨3) (p → r) → (q → r) → p ∨ q → r;

(¬1) (p → ¬q) → q → ¬p; (¬2) ¬p → p → q;

2. A ∈ L and A → B ∈ L implies B ∈ L (we call it modus ponens rule);

3. A ∈ L implies σ(A) ∈ L for every substitution σ;

4. ⊥ /∈ L.

The smallest intermediate logic H is called the intuitionistic logic.
For a set Γ of formulas, we write H + Γ for the smallest logic containing H ∪ Γ. If an

intermediate logic L satisfies L = H + Γ, we say that H + Γ is an axiomatization of L. If
A ∈ {B | B is an axiom of H} ∪ Γ, A is called an axiom of H + Γ. If Γ = {A1, . . . , Am}, we
may write H + A1 + · · · + Am instead of H + Γ.

Example 2.2.2. The following axiomatizations are same logics.

1. H + ¬¬p → p;

2. H + p ∨ ¬p;

3. H + ((p → q) → p) → p.

The logic which is axiomatized by above three examples is called the classical logic C.
Let Γ ∪ Σ ∪ {A} be a set of formulas and H + Γ be an axiomatization of an intermediate

logic. We define the notion of “P is a proof Σ ⊢H+Γ A”. The intended to meaning of
Σ ⊢H+Γ A is that A is provable in H + Γ from the assumption Σ.

Definition 2.2.3 (Proofs). Let Γ ∪ Σ ∪ {A,B} be a set of formulas and H + Γ be an axiom-
atization of an intermediate logic. Proofs of Σ ⊢H+Γ A are defined as follows:

1. if B is one of the axiom and σ(B) = A for a substitution σ, A is a proof of Σ ⊢H+Γ A;

2. if A ∈ Σ, A is a proof of Σ ⊢H+Γ A;

3. if P is a proof of Σ ⊢H+Γ B and Q is a proof of Σ ⊢H+Γ A → B,

P
A

Q
A → B
B
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is a proof of Σ ⊢H+Γ A (we call it modus ponens rule).

We say A is provable in H+Γ from the assumption Σ if there exists a proof of Σ ⊢H+Γ A.
We usually write H + Γ ⊢ A instead of ∅ ⊢H+Γ A. If there exists a proof of ∅ ⊢H+Γ A, we
often say just A is provable in H + Γ. It is easy to verify that A is provable in H + Γ if and
only if A ∈ H + Γ.

Example 2.2.4. H ⊢ p → p.

Proof. It follows from the following proof.

p → p → p

p → (p → p) → p (p → (p → p) → p) → (p → p → p) → p → p

(p → p → p) → p → p
p → p

For a given proof, the length of the proof is the number of horizontal lines on it (it is equal
to the number of times the modus ponens rule is applied on the proof).

Theorem 2.2.5 (Deduction theorem). For every an axiomatization H+Γ for an intermediate
logic, Σ ⊢H+Γ B if and only if Σ − {A} ⊢H+Γ A → B.

Proof. We show only if part. There exists a proof P of Σ ⊢H+Γ B by assumption. We show
that there exists a proof of Σ − {A} ⊢H+Γ A → B by induction on the length l of P .

If l = 0, P is B itself. We have three cases.
(B = A) Example 2.2.4 shows H + Γ ⊢ A → B. Therefore Σ − {A} ⊢H+Γ A → B.
(B is an axiom of H + Γ)

B B → A → B
A → B

is a proof of H + Γ ⊢ A → B. Therefore we have Σ − {A} ⊢H+Γ A → B.
(B is not an axiom of H + Γ and B ̸= A) P is a proof of {B} ⊢H+Γ B. Therefore

B ∈ Σ − {A} since B ̸= A. Therefore P is a proof of Σ − {A} ⊢H+Γ A → B.
We now show the case l > 0. P is the following form.

Σ
...
C

Σ
...

C → B
B

By induction hypothesis, we have Σ − {A} ⊢H+Γ A → C and Σ − {A} ⊢H+Γ A → C → B.
Therefore, the following proof shows Σ − {A} ⊢H+Γ A → B.

Σ − {A}
...

A → C

Σ − {A}
...

A → C → B (A → C → B) → (A → C) → A → B

(A → C) → A → B

A → B
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Proposition 2.2.6. Let ⊙ = ∧,∨ and A,B and C be formulas. We have H ⊢ A⊙B → B⊙A
and H ⊢ (A⊙B) ⊙ C → A⊙ (B ⊙ C).

Proposition 2.2.6 above allows the notation
∧m

i=1Ai which means (A1∧(A2∧· · ·∧(Am−1∧
Am)) · · · ) while considering the provability of formulas (the case for ∨ is treated similarly).
Thus we can define

∧
Γ = A1 ∧ · · · ∧ Am and

∨
Γ = A1 ∨ · · · ∨ Am for a finite set Γ =

{A1, . . . , Am} of formulas. We define
∧ ∅ = ⊤ and

∨ ∅ = ⊥.
For a given finite set Γ = {A1, . . . , Am} of formulas and a formula B, we abbreviate

A1 → · · · → Am → B to Γ → B.

Corollary 2.2.7. Let Σ ∪ {A} be a finite set of formulas. For every axiomatization H + Γ
of an intermediate logic, the following are equivalent:

1. H + Γ ⊢ ∧
Σ → A;

2. H + Γ ⊢ Σ → A.

2.3 The intuitionistic sequent calculus LJ

Definition 2.3.1. Let Γ be a finite multiset of formulas and γ be a formula or the emptyset.
A pair which denotes Γ ⇒ γ is called a (intuitionistic) sequent.

In sequents, we write Γ, A or A,Γ for Γ ∪ {A}. For example, Γ, A,B,∆ ⇒ γ means
Γ ∪ {A} ∪ {B} ∪ ∆ ⇒ γ.

Definition 2.3.2. The intuitionistic (propositional) sequent calculus LJ is the system defined
by the axioms and the inference rules.

Axioms A ⇒ A for any formula A.
Inference rules Let A and B be formulas, γ be a formula or emptyset and Γ and Σ are

finite multisets of formulas. The inference rules are divided into two types, structural rules
and rules for logical symbols.

Structural rules

Γ ⇒ γ
(WeL);

A,Γ ⇒ γ

Γ ⇒ ∅
(WeR);

Γ ⇒ γ

A,A,Γ ⇒ γ
(Con);

A,Γ ⇒ γ

Γ ⇒ A A,Σ ⇒ γ
(Cut);

Γ,Σ ⇒ γ
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Rules for logical symbols

Γ ⇒ A B,Σ ⇒ γ
(→ L);

A → B,Γ,Σ ⇒ γ

Γ, A ⇒ B
(→ R);

Γ ⇒ A → B

A,Γ ⇒ γ
(∧L);

A ∧B,Γ ⇒ γ

B,Γ ⇒ γ
(∧L);

A ∧B,Γ ⇒ γ

Γ ⇒ A Γ ⇒ B
(∧R);

Γ ⇒ A ∧B

A,Γ ⇒ γ B,Γ ⇒ γ
(∨L);

A ∨B,Γ ⇒ γ

Γ ⇒ A
(∨R1);

Γ ⇒ A ∨B

Γ ⇒ B
(∨R2);

Γ ⇒ A ∨B

Γ ⇒ A
(¬L);¬A,Γ ⇒

A,Γ ⇒
(¬R).

Γ ⇒ ¬A

The notation ⊢LJ which means provability in LJ is defined as follows:

1. ⊢LJ S if S is an axiom sequent;

2. ⊢LJ is closed under the above inference rules, for example, the rule (∨L) means that
⊢LJ A,Γ ⇒ γ and ⊢LJ B,Γ ⇒ γ implies ⊢LJ A ∨ B,Γ ⇒ γ for every formula A and
B, every finite multiset Γ of formulas and every formula or emptyset γ.

A proof figure of LJ is defined in the same manner as intermediate logics.

Example 2.3.3. ⊢LJ ¬¬¬p ⇒ ¬p

Proof. It follows from the following proof.
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p ⇒ p
p, ¬p ⇒
p ⇒ ¬¬p

¬¬¬p, p ⇒
¬¬¬p ⇒ ¬p

Theorem 2.3.4. Let Γ be a multiset of formulas and γ be a formula or the emptyset. We

have that Γ ⊢H T (γ) if and only if ⊢LJ Γ ⇒ γ, where T (γ) =

{
γ (γ ̸= ∅)

⊥ (γ = ∅).

The notation ⊢cf
LJ Γ ⇒ A means that there exists a cut-free proof (i.e., a proof such that

the cut rule has never been applied in it) of ⊢LJ Γ ⇒ A.

Theorem 2.3.5 (Cut-elimination theorem). Let Γ be a multiset of formulas and γ be a
formula or the emptyset. We have that ⊢LJ Γ ⇒ γ if and only if ⊢cf

LJ Γ ⇒ γ.

Corollary 2.3.6 (Subformula property). Let Γ be a multiset of formulas and γ be a formula
or the emptyset. If ⊢LJ Γ ⇒ γ, there exists a proof of ⊢LJ Γ ⇒ γ such that every formula
which occurs in the proof is a subformula of a formula which occurs in the sequent Γ ⇒ γ.

Proof. Every proof of ⊢cf
LJ Γ ⇒ γ satisfies the condition.

The following inversion lemma for LJ is a lemma of the cut-elimination theorem for LJ.
In Chapter 6, we will show a generalized inversion lemma for a hypersequent calculus to
prove the cut-elimination theorem for it.

Lemma 2.3.7 (Inversion lemma). Let Γ ∪ {A,B} be a finite multiset of formulas. We have
that ⊢cf

LJ Γ, A ⇒ B if and only if ⊢cf
LJ Γ ⇒ A → B.

Proof. The only if part is obtained by applying (→ R). We show the converse by induction
on the length l of the proof of ⊢LJ Γ ⇒ A → B.

If l = 0, Γ ⇒ A → B is an axiom of LJ, i.e., Γ = A → B. Therefore this case follows
from the fact ⊢LJ A,A → B ⇒ B.

If l > 0, Γ ⇒ A → B is obtained by applying inference rules. We show the case that
Γ ⇒ A → B is obtained by applying (→L) finally (the other cases are similarly). Thus we
assume Γ = {C → D} ∪ Σ ∪ Π and the proof is the following form:

L
Σ ⇒ C

R
D,Π ⇒ A → B

(→L)
C → D,Σ,Π ⇒ A → B

Therefore we have ⊢LJ D,Π, A ⇒ B by induction hypothesis. Consequently, we obtain
C → D,Σ,Π, A ⇒ B.
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2.4 Kripke frames

Definition 2.4.1. A Kripke frame (W,≤) is a partially ordered set, where W ̸= ∅.

For a Kripke frame (W,≤), a subset U ⊆ W is called hereditary if (x ∈ U and x ≤ y)
implies y ∈ U . We write Her(W ) for the set of all hereditary subsets of (W,≤).

Definition 2.4.2. A Kripke model (W,≤, v) is a pair of a Kripke frame (W,≤) and a map
v : Var −→ Her(W ).

For a Kripke model M = (W,≤, v), we say that M is a model on W .

Definition 2.4.3. Let M = (W,≤, v) be a Kripke model. A binary relation |=M (⊆ W ×
Form) is defined as follows:

1. x |=M p if and only if x ∈ v(p);

2. x |=M A → B if and only if y |=M A implies y |=M B for every y ≥ x;

3. x |=M A ∧B if and only if x |=M A and x |=M B;

4. x |=M A ∨B if and only if x |=M A or x |=M B.

5. x |=M ¬A if and only if y ̸|=M A for every y ≥ x.

We say M |= A if x |=M A for every x ∈ W . We say W |= A if M |= A for every model
M on W . If K be a class of frames (models), we say K |= A if W |= A (M |= A) for every
frame (model) W ∈ K (M ∈ K). We say A is valid in W (W validates A) if W |= A and A
is refutable in W (W refutes A) if not.

Lemma 2.4.4. Let M be a model on W and A be a formula. If x |=M A and x ≤ y, y |=M A.

Proposition 2.4.5. Let K be a class of Kripke frames. The set {A ∈ Form | K |= A} is
an intermediate logic.

Corollary 2.4.6 (Soundness theorem). Let A be a formula. We have that A is valid in all
Kripke frames if H ⊢ A.

Proof. Since H is the smallest intermediate logic and the set {A ∈ Form | K |= A} is an
intermediate logic.

Theorem 2.4.7 (Completeness theorem). Let A be a formula. We have that A ∈ H if A is
valid in all Kripke frames.

To show the complete theorem, we define the canonical frame of H.

Definition 2.4.8 (Maximal consistent pair). Let U and V are sets of formulas.

1. A pair (U, V ) is consistent if ̸⊢LJ Γ ⇒ γ for any finite subset Γ ⊆ U and any γ such
that γ ∈ V or γ = ∅.

13



2. A pair (U, V ) is maximal consistent if (U, V ) is consistent and U ∪ V = Form.

We say that a pair (U, V ) is inconsistent if it is not consistent.

Lemma 2.4.9. If a pair (U, V ) is consistent, there exists a pair (U ′, V ′) satisfying U ⊆ U ′,
V ⊆ V ′ and that (U ′, V ′) is maximal consistent.

Proof. Let N be a set of all natural numbers and Form = {Ak | k ∈ N} (Form is a countable
infinity set). We define Ui and Vi (i ∈ N) as follows:

1. U0 = U and V0 = V ;

2. (Uk+1, Vk+1) =

{
(Uk ∪ {Ak}, Vk) (if (Uk ∪ {Ak}, Vk) is consistent)

(Uk, Vk ∪ {Ak}) (otherwise);

3. (U ′, V ′) = (
∪∞

k=1 Uk,
∪∞

k=1 Vk).

We first show that (Uk+1, Vk+1) is consistent for every k. If (Uk+1, Vk+1) is inconsistent
(not consistent), both (Uk ∪ {Ak}, Vk) and (Uk, Vk ∪ {Ak}) are inconsistent. Thus, there
are a finite subset Σ ⊆ Uk ∪ {Ak} and γ such that γ ∈ Vk or γ = ∅ satisfying ⊢LJ Σ ⇒ γ.
Similarly, there are a finite subset Π ⊆ Uk and δ such that δ ∈ Vk ∪ {Ak} or δ = ∅ satisfying
⊢LJ Π ⇒ δ. However, we can assume that C = Ak since C ̸= Ak and ⊢LJ Π ⇒ C shows that
(Uk, Vk) is inconsistent. Therefore we obtain the following proof.

L
Π ⇒ Ak

R
Σ ⇒ γ

...
(some structural rules)

Ak,Σ − {Ak} ⇒ γ
(Cut)

Π, Σ − {Ak} ⇒ γ

It shows that (Uk, Vk) is inconsistent, contradiction with induction hypothesis.
We next show (U ′, V ′) is consistent. If (U ′, V ′) is inconsistent, there are a finite subset

Σ ⊆ U ′ and γ such that γ ∈ Vk or γ = ∅ satisfying ⊢LJ Σ ⇒ γ. Since Σ is finite, ⊢LJ Σ ⇒ γ
also shows that (Uk, Vk) is inconsistent for some k ∈ N. It contradicts to the fact we proved
above.

(U ′, V ′) is maximal since every Ak ∈ Form satisfies Ak ∈ Uk+1 ∪ Vk+1 ⊆ U ′ ∪ V ′.
Consequently, we obtained the desired maximal consistent pair (U ′, V ′).

Definition 2.4.10 (Canonical model). The canonical model (CanH,⊆, |=M) is the Kripke
frame defined as follows:

1. CanH = {U ⊆ Form | (U,Form − U) is maximal consistent};

2. U |=M p if and only if p ∈ U .

Lemma 2.4.11 (Truth lemma). Let A be a formula. We have that U |=M A if and only if
A ∈ U .

14



Proof. Induction on the complexity c of A. The case c = 0 is guaranteed by the definition of
the canonical model.

In the case c ≥ 0, we give a proof for the case that A = B → C (the other cases are
similarly or much easier).

We show the contraposition of the only if part. Suppose that B → C ̸∈ U . We first verify
that (U∪{B}, {C}) is consistent. If not, we have a finite subset Σ ⊆ U satisfying ⊢LJ Σ, B ⇒
C. Therefore we obtain ⊢LJ Σ ⇒ B → C. It implies that (U, {A}) is inconsistent. Therefore,
(U,Form − U) is also inconsistent, which contradicts the definition of the canonical model.
Consequently, (U ∪ {B}, {C}) is consistent. Then, by Lemma 2.4.8, there exists a maximal
consistent pair (U ′, V ′) satisfying both U∪{B} ⊆ U ′ and C ∈ V ′. It implies that U ′ ∈ CanH.
Moreover, we have U ′ |=M B and U ′ ̸|=M C by induction hypothesis. Therefore we obtain
U ̸|=M A.

We show the contraposition of the if part. Suppose that U ̸|=M B → C. Then we have
V ⊇ U satisfying V |=M B and V ̸|=M C. By induction hypothesis, we have B ∈ V and
C ̸∈ V . Therefore, we obtain B → C /∈ V since B → C ∈ V implies V is inconsistent in
spite of V ∈ CanH. Consequently, we obtain B → C ̸∈ U .

We now show the completeness theorem.
Suppose A ̸∈ H. Then we have ̸⊢LJ A which implies that (∅, {A}) is consistent. Therefore

we have U ∈ CanH satisfying A ̸∈ U by Lemma 2.4.8. By Lemma 2.4.11, we have U ̸|=M A.
Consequently, A is not valid in CanH. Therefore we proved that CanH is the desired Kripke
frame. □

We note that the soundness theorem and completeness theorem for H can be enhanced
with the following results.

Corollary 2.4.12 (Strong completeness theorem). The following are equivalent even if Γ is
an infinite set of formulas:

1. Γ ⊢H A;

2. for every Kripke model M and x ∈ M, the following holds: x |=M A if x |=M γ for
every γ ∈ Γ.

Definition 2.4.13. Let L be an intermediate logic and K be a class of Kripke frames. We
say L is characterized by K if the following holds: A ∈ L if and only if K |= A.

The soundness theorem and completeness theorem for H shows that H is characterized
by the class of all Kripke frames. Similarly, some intermediate logics are characterized by
Kripke frames. The table below introduces some famous intermediate logics each of which is
characterized by a class of Kripke frames.

The notation |W | means the number of elements of W . The width of W means the
maximum number of elements of mutually incomparable subset of W . The depth of W
means the maximum number of elements of totally ordered subset of W . For example,
H + (p → q) ∨ (q → p) is characterized by all totally ordered (linear) Kripke frames.
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logic Kripke frames

H all frames
H + ¬¬p → p |W | = 1

H + (p → q) ∨ (q → p) totally ordered frames
H +

∨n
i=0(

∧
j ̸=i pj → pi) width ≤ n

H + pn ∨ (pn → (pn−1 ∨ (pn−1 → (· · · → (p2 ∨ (p2 → (p1 ∨ ¬p1) · · · ) depth ≤ n
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Chapter 3

Propositional logics in restricted
languages

In this chapter, we consider S-logics which is obtained from intermediate logics by restricting
logical symbols to S satisfying →∈ S ⊆ {→, ∧, ∨, ¬} and S-algebras which characterize
S-logics. To show some important theorems for S-algebras, we introduce some definition
and fundamental results for universal algebras. Also, we introduce Khomich’s theorem for
S-algebras. Khomich’s theorem explains generating set in finite S-algebras which is based
on Stone’s representation.

3.1 A conservativity result for the intuitionistic logic

Throughout the article, S (S ′ or these with subscriptions) means a set of propositional
logical symbols containing →, i.e., →∈ S ⊆ {→, ∧, ∨, ¬}. A formula A is an S-formula
if A contains only elements in S among the propositional logical symbols. For example,
¬¬p → q∨ r is a {→, ∨, ¬}-formula. Thus, every formula is an {→, ∧, ∨, ¬}-formula. We
write FormS for the set of all S-formulas.

We first introduce a theorem for the intuitionistic logic H.

Lemma 3.1.1 (Curry[7]). Let Γ∪{A} be a set of S-formulas satisfying ⊢LJ Γ ⇒ A and that
P be a proof figure of ⊢LJ Γ ⇒ A such that every formula in P is an S-formula. Then there
exists a proof figure Q of Γ ⊢H A such that every formula in Q is an S-formula.

Proof. Induction on the length of P .

Theorem 3.1.2 (Curry[7]). Let A be an S-formula H ⊢ A. Then there exists a proof figure
P of H ⊢ A such that every formula in P is an S-formula.

Proof. We have a proof Q of H ⊢ A by the assumption. Then we obtain a proof Q′ of
⊢LJ ∅ ⇒ A such that every formula in Q′ is S-formula by the subformula property. Therefore,
by Lemma 3.1.1, we obtain desired proof P from Q′.

In Chapter 4, we will consider the analogue of Curry’s theorem for intermediate logics.
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3.2 S-logics

A substitution σ is an S-substitution if σ(p) is an S-formula for every propositional variable
p. The definition (intermediate) S-logics is a generalization of the definition of intermediate
logics.

Definition 3.2.1. An S-logic L is a set of S-formulas satisfying the following conditions:

1. every S-formula in the following axiom list is an element of L;

Axioms

(K) p → q → p; (S) (p → q → r) → (p → q) → (p → r);

(∧1) p ∧ q → p; (∧2) p ∧ q → q;

(∧3) (p → q) → (p → r) → (p → q ∧ r); (∨1) p → p ∨ q;

(∨2) q → p ∨ q; (∨3) (p → r) → (q → r) → (p ∨ q → r);

(¬1) (p → ¬q) → (q → ¬p); (¬2) ¬p → p → q;

2. A ∈ L and A → B ∈ L implies B ∈ L (we call it modus ponens rule);

3. A ∈ L implies σ(A) ∈ L for every S-substitution σ;

4. ⊥ /∈ L.

We write HS for the smallest S-logic.
If an S-logic L is the smallest logic containing HS ∪ Γ for a set Γ of S-formulas, we say

that HS + Γ is an axiomatization of L.
If Γ is a set of formulas, we define ΓS = {A ∈ Γ | A is an S-formula}.

Proposition 3.2.2. Let S ⊆ S ′ and L be an S ′-logic. Then LS is an S-logic.

If L is an S ′-logic and S ⊆ S ′, we call an S-logic LS the S-fragment of L.
By definitions above, HS can be defined by the following two ways:

1. the smallest S-logic;

2. the S-fragment of H.

However, Theorem 3.1.2 shows that the two definitions are equivalent. Thus, HS is well-
defined in both senses.

3.3 Universal algebras

To show theorems for S-algebras which characterize S-logics in Section 3.4, we summarize
some basic concepts and results in the theory of universal algebras.
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Definition 3.3.1. An algebra M is a pair (M, ⟨f1, . . . , fk⟩) defined as follows:

1. M is a set;

2. for each fi, α(fi) is a non-negative integer and fi is an α(fi)-ary function, i.e., each
fi is a function such that fi : Mα(fi) −→ M .

We define a type for a row of non-negative integers. For example, an algebra (M, ⟨f1, . . . , fk⟩)
has the type ⟨α(f1), . . . , α(fk)⟩. Thus,

Definition 3.3.2. Let M = (M, ⟨f1, . . . , fk⟩) and N = (N, ⟨g1, . . . , gl⟩) are algebras. We
say M and N are same type if k = l and ⟨α(f1), . . . , α(fk)⟩ = ⟨α(g1), . . . , α(gl)⟩.

We note that each 0-ary function is a constant. If M = (M, ⟨f1, . . . , fk⟩), we may write
x ∈ M instead of x ∈ M .

Definition 3.3.3. For a given type ⟨n1, . . . , nm⟩, we define a term of a type ⟨n1, . . . , nm⟩ as
follows:

1. every ai (i ∈ I) is a term (I is an infinite set of symbols);

2. there exists a symbol Oi for each i = 1, . . . ,m;

3. if x1, . . . , xni
are terms, a string of symbols Oi(x1, . . . , xni

) is a term for every i =
1, . . . ,m.

Let Term⟨n1,...,nm⟩ be the set of all terms of a type ⟨n1, . . . , nm⟩.

Definition 3.3.4 (Term algebra). Let ⟨n1, . . . , nk⟩ be a type. The term algebra

TermAlg⟨n1,...,nk⟩ = (Term⟨n1,...,nk⟩, ⟨T1, . . . , Tk⟩)

is defined as follows:

1. ⟨α(T1), . . . , α(Tk)⟩ = ⟨n1, . . . , nk⟩;

2. For every Ti (i = 1, . . . k), Ti(x1, . . . , xα(Ti)) = Oi(x1, . . . , xni
).

Definition 3.3.5. Let M = (M, ⟨f1, . . . , fk⟩) and N = (N, ⟨g1, . . . , gk⟩) be algebras of same
type. A map h : M −→ N is a homomorphism if h(f(x1, . . . , xα(fi)) = gi(h(x1), . . . , f(xα(gi)))
for every i = 1, . . . , k.

We say a homomorphism h is an embedding if it is injective. We say a homomorphism h
is an isomorphism if it is bijective.

A equation of a type ⟨n1, . . . , nm⟩ is a string s = t. where s, t ∈ Term⟨n1,...,nm⟩.

Definition 3.3.6. Let M = (M, ⟨f1, . . . , fk⟩) be an algebra and s, t ∈ Term⟨α(f1),...,α(fk)⟩. We
say that M satisfies the equation s = t if h(s) = h(t) holds on M for every homomorphism
h : TermAlg⟨α(f1),...,α(fk)⟩ −→ M.
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Definition 3.3.7. Let M and N be algebras of same type. N is a subalgebra of M if there
exists an embedding h : N −→ M.

Lemma 3.3.8. Let M = (M, ⟨f1, . . . , fk⟩) and N = (N, ⟨g1, . . . , gk⟩) be algebras of same
type. If a map h : M −→ N is a homomorphism, h(M) is closed under functions g1, . . . , gk

and (h(M), ⟨g1, . . . , gk⟩) is a subalgebra of N.

Theorem 3.3.9. Let M = (M, ⟨f1, . . . , fk⟩) be an algebra and s, t ∈ Term⟨α(f1),...,α(fk)⟩ such
that M satisfies the equation s = t.

1. h(M) satisfies the equation s = t for every homomorphism h from M;

2. N satisfies the equation s = t for every subalgebra N of M.

Definition 3.3.10. Let Mj = (Mj, ⟨f1, . . . , fk⟩) (j ∈ J) be algebras of same type. A direct
product

∏
j∈J Mj = (

∏
j∈J Mj, ⟨f1, . . . , fk⟩) is defined as follows:

1.
∏

j∈J Mj is a direct product (as a set) of (Mj)j∈J ;

2. every function f ∈ {f1, . . . , fk} is defined by

f((xj)
1
j∈J , . . . , (xj)

α(f)
j∈J ) = (f(x1

j , . . . , x
α(f)
j ))j∈J ,

where (x1
j)j∈J , . . . , (x

α(f)
j )j∈J ∈ ∏

j∈J Mj.

Theorem 3.3.11. Let Mi = (Mi, ⟨f1, . . . , fk⟩) be algebras of same type and
s, t ∈ Term⟨α(f1),...,α(fk)⟩ such that every Mi satisfies the equation s = t. Then, the direct
product

∏
i∈I Mi also satisfies s = t.

Definition 3.3.12. A class of algebras V of same type is called a variety if V satisfies the
following:

1. V is closed under homomorphisms, i.e., if M ∈ V and h is a homomorphism from M,
h(M) ∈ V ;

2. V is closed under subalgebras;

3. V is closed under direct products.

Theorem 3.3.13 (Birkhoff). Let Mi = (Mi, ⟨f1, . . . , fk⟩) (i ∈ I) be algebras of same type
and a class of algebra F = {N: an algebra | Mi and N are of same type }. The following
are equivalent:

1. {Mi | i ∈ I} is a variety;

2. there are a set of equations E of Term⟨α(f1),...,α(fk)⟩ such that {Mi | i ∈ I} = {M ∈ F |
M satisfies all equations of E}.
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Definition 3.3.14. Let M and Mj (j ∈ J) be algebras of same type. M is a subdirect
product of Mj (j ∈ J) if the following hold:

1. there exists a embedding h : M −→ ∏
j∈J Mj; (thus, M is a subalgebra of

∏
j∈J Mj);

2. every projection πk ◦ h : M −→ Mk (k ∈ J) defined by πk((xk)j∈J) = xk is surjective.

Moreover, we say M is a proper subdirect product if M is not isomorphic to Mj for any
j ∈ J . If M is not a proper subdirect product of any set of algebras, we say M is subdirectly
irreducible .

Theorem 3.3.15 (Birkhoff’s factorization theorem). Every algebra is a subdirect product of
a set of subdirectly irreducible algebras.

To show Birkhoff’s factorization theorem, we prepare some definition and lemmas.

Definition 3.3.16. An equivalence relation θ is a congruence on an algebra M if, for every
function f on M, x1θy1, . . . , xα(f)θyα(f) implies f(x1, . . . , xα(f))θf(y1, . . . , yα(f)).

For every algebra M, we write E for the smallest congruence defined by xEy if and only
if x = y.

Definition 3.3.17. Let M = (M, ⟨f1, . . . , fk⟩) be an algebra and θ be a congruence on M.
We define the quotient algebra M/θ = (M/θ, {fi | i ∈ I}) as follows:

1. M/θ = {[x]θ | x ∈ M};

2. fi([x1]θ, . . . , [xα(fi)]θ) = [fi(x1, . . . , xα(fi))]θ,

where [x]θ is the equivalence class of x with respect to θ. The definition of M/θ is
well-defined.

Proposition 3.3.18. Let M be an algebra. A map h : M −→ M/θ is a homomorphic
surjection.

Proof. For each x ∈ M/θ, there exists y ∈ M such that [y]θ = x. Hence h is surjective since
h(y) = x. Let f be a function of M. Then

h(f(x1, . . . , xα(f)))

= [f(x1, . . . , xα(f))]θ

= f([x1]θ, . . . , [xα(f)]θ)

= f(h(x1), . . . , h(xθ)).

It proved that h is a homomorphism.

Proposition 3.3.19. Let M be an algebra and h be a homomorphism from M. Then there
exists a congruence θ on M such that h(M) and M/θ are isomorphic.
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Proof. The equivalence relation θ defined by xθy if and only if h(x) = h(y) is the congruence
we desired.

Corollary 3.3.20. If an algebra M is a subdirect product of Mj (j ∈ J), there are congru-
ences θj (j ∈ J) on M such that Mj is isomorphic to M/θj for every j ∈ J .

Proof. By definition of subdirect products, there exists a homomorphic surjection hj : M −→
Mj for each j. Thus, we obtain the corollary by Proposition 3.3.19.

Lemma 3.3.21. Let M be an algebra and a, b ∈ M such that a ̸= b. There is a maximal
congruence θ′ such that a ̸ θ′b.

Proof. Let A = {θ : congruence on M | a ̸ θb} (notice that A ̸= ∅ since E ∈ A) and C ⊆ A
be a chain (totally ordered subset). We show θ =

∪
C is an upper bound of C in A.

We show θ is transitive (the other cases are similarly). Suppose xθy and yθz. Then there
are θ1, θ2 ∈ C such that xθ1y and yθ2z. Hence we have x(θ1 ∪ θ2)y and y(θ1 ∪ θ2)z which
implies x(θ1 ∪ θ2)z. Since C is a chain, θ1 ∪ θ2 = θ1 or θ2. Therefore θ1 ∪ θ2 ∈ C, i.e.,
θ1 ∪ θ2 ⊆ θ. Consequently, we obtain xθz.

Consequently, by Zorn’s lemma, there exists a maximal congruence θ′ such that a ̸ θ′b.

Lemma 3.3.22. Let M be an algebra and {θi | i ∈ I} be a set of all congruences on M
except E. If

∩{θi | i ∈ I} = E, M is a subdirect product of (M/θj)j∈J .

Proof. Let a map h : M −→ ∏
i∈I M/θi be defined by h(x) = ([x]θi

)i∈I . We show h is
injective (Proposition 3.3.18 shows that h is homomorphic). Let x ̸= y. Then we have some
θk (k ∈ I) satisfying x ̸ θjy. Therefore h(x) ̸= h(y) since [x]θk

̸= [y]θk
.

We show πj ◦ h : M −→ M/θj (j ∈ I) is surjective. Let x ∈ M/θj. Then x = [y]θj
for

some y ∈ M. Hence πj ◦ h(y) = πj(([y]θi
)i∈I) = [y]θj

. Therefore, πj ◦ h is surjective.
Consequently, M is a subdirect product of (M/θi)i∈I .

Lemma 3.3.23. Let M be an algebra and {θi | i ∈ I} be the set of all congruences on M
except E. If

∩{θi | i ∈ I} ≠ E, M is subdirectly irreducible .

Proof. We have a, b ∈ M such that aθib for every i ∈ I but a ̸= b by the assumption. Suppose
that M is a proper subdirect product of Mj (j ∈ J). Then, by Corollary 3.3.20, there are θj

such that Mj = M/θj for each j ∈ J . Thus there exists an embedding h : M −→ ∏
j∈J M/θj.

However, we have h(a) = h(b) since [a]θ = [b]θ for every congruence θ on M. Therefore, h
cannot be injective, contradiction.

Lemma 3.3.24. Let M be an algebra, θ be a congruence on M and π be a congruence on
M/π. Then a binary relation πθ on M defined by aπθb if and only if [a]θπ[b]θ is a congruence
on M.

Lemma 3.3.25. Let M be an algebra and θa,b be a maximal congruence on M such that
a ̸ θa,bb for a, b ∈ M. Then M/θa,b is subdirectly irreducible .
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Proof. In the proof, we write [x] instead of [x]θa,b
. Let {πi | i ∈ I} be the set of all congruences

on M/θa,b except E. We show that [a]πi[b] for every i ∈ I. Suppose not, we have j ∈ I
satisfying [a] ̸ πj[b]. We define a binary relation πθ

j on M/θa,b by xπθ
jy if and only if [x]πj[y].

Then πθ
j is a congruence on M/θa,b by Lemma 3.3.24. Since πj ̸= E, we have x, y ∈ M such

that [x] ̸= [y] and [x]πj[y]. Therefore we have x ̸ θa,by and aπθ
jy which implies θa,b ⊊ πθ

j .
Therefore we have aπθ

j b by maximality of θa,b. Consequently, we obtain [a]πj[b]. The lemma
is proved.

Now we show Birkhoff’s factorization theorem.
Let M be an algebra such that M is not subdirectly irreducible. Then, for every a, b ∈ M

such that a ̸= b, there are maximal congruence θa,b such that a ̸ θa,bb.
We verify that θa,b ̸= E for any a, b ∈ M. If θa,b = E, E is a maximal congruence satisfying

a ̸ Eb. On the other hand, E is the smallest congruence on M. Therefore, E is the unique
congruence satisfying a ̸ Eb. Consequently, by Lemma 3.3.23, M is subdirectly irreducible,
which contradicts with the assumption.

By the fact
∩{θa,b | a, b ∈ M, a ̸= b} = E and Lemma 3.3.22, M is a subdirect product

of M/θa,b. By Lemma 3.3.25, M/θa,b is subdirectly irreducible for every a, b ∈ M. The
theorem is proved. □
Definition 3.3.26. Let M = (M, ⟨f1, . . . , fk⟩) be an algebra and ⟨g1, . . . , gl⟩ be a substring of
⟨f1, . . . , fk⟩ (i.e., l ≤ k). Then, an algebra M′ = (M, ⟨g1, . . . , gl⟩) is called the (⟨g1, . . . , gl⟩-
)reduct of M.

3.4 S-algebras

We now define S-algebras for →∈ S ⊆ {→,∧,∨,¬}. S-algebras are generalizations of
Heyting algebras. If S = {→, ∧, ∨, ¬}, S-algebras are Heyting algebras. Many concepts
of Heyting algebras can be defined for S-algebras in similar ways. However, we give detailed
definition and proofs for S-algebras in this section since there are few textbooks which focus
on S-algebras.

Definition 3.4.1 (S-algebra). An algebra M = (M, {f⊙ | ⊙ ∈ S} ∪ {1}) is an S-algebra if
M satisfies the following conditions:

1. for each ⊙ ∈ S, M has the function f⊙ and the arity of f⊙ is the same as the one of
⊙ (in these algebras, we write simply ⊙ as f⊙);

2. M has a constant element 1;

3. M satisfies the equations 1 → x = x, x → 1 = 1 and (x → y) → (y → x) → y = (x →
y) → (y → x) → x;

4. if an S-formula A is one of the axioms of H, M satisfies the equation δ(A) = 1, where
δ is conversion of a formula to a term 1.

1For example, δ(p → q → p) = x → y → x, where x → y → x is a term which is an abbreviation of
x f→ (y f→ x).
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Definition 3.4.2. Let M be an S-algebra. A map v : FormS −→ M is a valuation if v
satisfies the following:

1. v(x → y) = v(x) → v(y);

2. if ∧ ∈ S, v(x ∧ y) = v(x) ∧ v(y);

3. if ∨ ∈ S, v(x ∨ y) = v(x) ∨ v(y);

4. if ¬ ∈ S, v(¬x) = ¬v(x).

If ¬ ∈ S, we abbreviate ¬1 to 0.
A is valid in M (M validates A) if v(A) = 1 for every valuation v on M. A is refutable in

M (M refutes A) if A is not valid in M. If a valuation w on M satisfies w(A) ̸= 1, we say w
is a refutation of A on M. Let L be an S-logic. If an S-algebra M validates all S-formulas
A ∈ L, we say M be an L-algebra. Thus, the soundness theorem between S-logics and
S-algebras is obvious.

Theorem 3.4.3. Let L be an S-logic and A be an S-formula. Then, L ⊢ A implies that
every L-algebra validates A.

Proof. It follows from the definition of S-algebras.

Moreover, by Theorem 3.3.13, we obtain the following proposition.

Proposition 3.4.4. Let L be an S-logic. Then the class of all L-algebras is a variety.

Proof. Since L-algebras are defined by equations (see Definition 3.4.1).

Corollary 3.4.5. Let L be an S-logic and M be an L-algebra. Then the following hold:

1. every S-subalgebra of M is an L-algebra;

2. for every S-homomorphism h : M −→ h(M), h(M) is an L-algebra;

3. if Mi is an L-algebra for each i ∈ I,
∏

i∈I Mi is an L-algebra.

Let Γ be a set of S-formulas. If an S-algebra M validates all γ ∈ Γ, we say Γ is an
HS + Γ-algebra.

Theorem 3.4.6 (Soundness theorem). Let L be an S-logic and Γ be a set of S-formulas
such that HS + Γ is an axiomatization of L. Then, If an S-algebra M validates any γ ∈ Γ,
M is an L-algebra.

Proof. Let v be a valuation on an S-algebra M and A ∈ L. We show v(A) = 1 by induction
on the length l of the proof of HS + Γ ⊢ A. If l = 0, A = σ(B(p1, . . . , pm)), where B is
an axiom of HS or an element of Γ, σ is an S-substitution and p1, . . . , pm are all proposi-
tional variables occurring in B. We define a valuation w by w(pi) = v(σ(pi)). Thus, we
have v(A) = v(σ(B(p1, . . . , pm)) = v(B(σ(p1), . . . , σ(pm)) = B(v(σ(p1), . . . , v(σ(pm)))) =
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B(w(p1), . . . , w(pm))) = w(B) = 1 since B itself is valid in every S-algebra. If l > 0, A is
obtained by the modus ponens rule from C and C → A for some S-formula C. Then, by
induction hypothesis, v(C) = v(C → A) = 1. Thus, we have v(A) = 1 → v(A) = v(C) →
v(A) = v(C → A) = 1.

To show the completeness theorem, we define the Lindenbaum algebra for a given S-logic.

Lemma 3.4.7. Let L be an S-logic and ≡L be a binary relation on FormS defined by A ≡L B
if and only if A → B ∈ L and B → A ∈ L. Then ≡L is a congruence on FormS .

Proof. It is clear that ≡L is an equivalence relation. If A ≡L B and C ≡L D, Thus we have
(A → C) → (B → D) ∈ L by the following proof and the deduction theorem:

B

...
B → A
A A → C

C

...
C → D

D

Similarly, we also have (B → D) → (A → C) ∈ L. Therefore, A → C ≡L B → D. The
other cases (∧, ∨, ¬) are similarly.

Definition 3.4.8. Let L be an S-logic. We define an S-algebra LinL, the Lindenbaum
algebra of L, as follows:

1. LinL = FormS/ ≡L;

2. 1 = [⊤];

3. [A] → [B] = [A → B];

4. if ∧ ∈ S, [A] ∧ [B] = [A ∧B];

5. if ∨ ∈ S, [A] ∨ [B] = [A ∨B];

6. if ¬ ∈ S, ¬[A] = [¬A],

where [A] is the equivalence class of A.

Proposition 3.4.9. LinL is an L-algebra.

Proof. Let A(p1, . . . , pm) ∈ L, v be a valuation on LinL and v(pi) = [Bi]. We define a
S-substitution σ by σ(pi) = Bi. Thus

v(A(p1, . . . , pm))

= A(v(p1), . . . , v(pm))

= A([B1], . . . , [Bm])

= [A(B1, . . . , Bm)]

= [A(σ(p1), . . . , σ(pm)]

= [σ(A)] ≡L [⊤]

= 1,
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since A ∈ L implies σ(A) ∈ L.

Theorem 3.4.10 (Completeness theorem). Let L be an S-algebra. If an S-formula A sat-
isfies A ̸∈ L, there exists an S-logic which refutes A.

Proof. LinL is an L-algebra refutes A by the valuation v defined by v(p) = [p] for all propo-
sitional variable p.

Proposition 3.4.11. Let L and L′ be S-logics. Then L ⊆ L′ if and only if V (L′) ⊆ V (L),
where V (L) and V (L′) are the set of all L-algebras and the set of all L′-algebras respectively.

Proof. Assume L ⊆ L′ and let M be an L′-algebra. Then M validates all theorems of
L′. Thus M also validates all theorems of L by assumption. Conversely, suppose that
V (L′) ⊆ V (L) and an S-formula A satisfies L ⊢ A. Then every L′-algebra M validates A
since M ∈ V (L′) ⊆ V (L). Therefore L′ ⊢ A. We proved L ⊆ L′.

Let us introduce the definition of lattices to explain properties of S-algebras.

Definition 3.4.12. An algebra M is a semilattice if M has a binary function ◦ and satisfies
the following equations:

1. (x ◦ y) ◦ z = x ◦ (y ◦ z);

2. x ◦ y = y ◦ x;

3. x ◦ x = x.

Precisely, “M has a binary function ◦” means “there exists a binary function ◦ and an
algebra (M, ⟨◦⟩) is a restriction of M.” We use this phrase throughout the article.

Proposition 3.4.13. Let M = (M, {◦}) be a semilattice. Binary relations ≤1 and ≤2 on
M defined as follows are partial order:

• x ≤1 y if and only if x ◦ y = x;

• x ≤2 y if and only if x ◦ y = y.

≤1 and ≤2 are called semilattice order.

Definition 3.4.14. An algebra M is a lattice if M has binary functions ∧ and ∨ satisfy the
following:

1. (M, ∧) and (M, ∨) are semilattices;

2. M satisfies the equations x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x.

Moreover, a lattice M is called a distributive lattice if it has the axioms x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
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Proposition 3.4.15. Let M = (M, ∧, ∨) be a lattice. Partial orders ≤1 and ≤2 on M
defined as follows are equivalent:

1. x ≤1 y if and only if x ∧ y = x;

2. x ≤2 y if and only if x ∨ y = y.

Proof. (1 =⇒ 2) is shown by x ∨ y = (x ∧ y) ∨ y = y. The converse is similarly.

We now introduce some famous properties of S-algebras.

Proposition 3.4.16. Let M be an S-algebra. The following hold:

1. (M,≤→) is a partial order set with the biggest element 1, where ≤→ is defined by x ≤ y
if and only if x → y = 1 (we call ≤→ the implicational order);

2. if ∧ (∨) ∈ S, (M, ∧ (∨)) is a semilattice;

3. if ∧ (∨) ∈ S, the semilattice order on M is equivalent to the implicational order on M;

Proof. 1. We have x → x = 1 by the fact H ⊢ x → x and the condition 4 of Definition
3.4.1. We have that x → y = y → x = 1 implies x = y by the condition 3 of Definition
3.4.1. We show the transitivity. We have (x → y) → (y → z) → x → z = 1 by the
fact H ⊢ (x → y) → (y → z) → x → z and the condition 4 of Definition 3.4.1. Thus,
if x → y = y → z = 1, we have x → z = (x → y) → (y → z) → x → z = 1.

2. It follows from the condition 4 of Definition 3.4.1.

3. We show the case ⊙ = ∨ (the other case (⊙ = ∧) is similarly). Assume x ≤∨ y, where
≤∨ is the semilattice order on M defined by ∨. Thus we have x∨ y = y. Then we have
x → y = x → x ∨ y = 1 by the condition 4 of Definition 3.4.1. Conversely, suppose
x ≤→ y, i.e., x → y = 1. Then, we have 1 = (x → y) → (y → y) → x ∨ y → y =
1 → 1 → x ∨ y → y = x ∨ y → y by the condition 3 and 4 of Definition 3.4.1. Also
we have y → x∨ y = 1 by the condition 4 of Definition 3.4.1. Consequently, we obtain
x ∨ y = y.

By the theorem above, the semilattice order and the implicational order are equivalent.
Thus, we will write just ≤ for these partial orders on S-algebras.

Proposition 3.4.17. Let M be an S-algebra. The following hold:

1. if ∧(∨) ∈ S, x ∧ y is the largest lower bound (the least upper bound) of {x, y} on M;

2. if ∧, ∨ ∈ S, (M,∧,∨) is a distributive lattice;

3. if ∧ ∈ S, x ∧ y ≤ z if and only if y ≤ x → z holds for every x, y, z ∈ M
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Proof. 1. We show the case ∨ (the case ∧ is similarly). By axioms of HS , we have
x → x ∨ y = 1 and y → x ∨ y = 1 which implies x, y ≤ x ∨ y. Moreover, if x, y ≤ z,
then we have x → z = y → z = 1. Therefore, by axioms of HS , we have x ∨ y → z =
(x → z) → (y → z) → (x ∨ y → z) = 1. Consequently, we proved that x ∨ y is the
least upper bound of {x, y} on M.

2. It follows from the fact H ⊢ x∧(y∨z) → (x∧y)∨(x∧z), H ⊢ (x∧y)∨(x∧z) → x∧(y∨z),
H ⊢ x ∨ (y ∧ z) → (x ∨ y) ∧ (x ∨ z) and H ⊢ (x ∨ y) ∧ (x ∨ z) → x ∨ (y ∧ z).

3. It follows from the fact that HS ⊢ (x ∧ y → z) → (y → x → z), HS ⊢ (y → x → z) →
(x ∧ y → z) and the soundness theorem.

Proposition 3.4.18. Let M be an S-algebra and x, x′, y, y′ ∈ M satisfy x ≤ x′ and y ≤ y′.
Then x → y ≤ x → y′ and x′ → y ≤ x → y holds.

Proof. They follow from (x → y) → x → y′ = 1 → (x → y) → x → y′ = (x → y → y′) →
(x → y) → x → y = 1 and (x′ → y) → x → y = 1 → (x′ → y) → x → y = (x′ → x) →
(x′ → y) → x → y = 1 respectively.

Proposition 3.4.19. Let ∧ ∈ S. Every S-algebra satisfy the following equations:

1. x ∧ y → z = x → y → z;

2. x → y ∧ z = (x → y) ∧ (x → z);

3. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (if ∨ ∈ S);

4. ¬(x ∧ y) = (x → y → z) ∧ (x → y → ¬z) (if ¬ ∈ S).

Proof. It follows from the condition 4 of Definition 3.4.1.

We recall the basic definition of homomorphisms between S-algebras. Let M be an SM-
algebra and N be an SN-algebra, where S ⊆ SM, SN. A map h : M −→ N is called an
S-homomorphism if, for every x, y ∈ M, h satisfies the following:

1. h(x →M y) = h(x) →N h(y);

2. if ∧ ∈ S, h(x ∧M y) = h(x) ∧N h(y);

3. if ∨ ∈ S, h(x ∨M y) = h(x) ∨N h(y);

4. if ¬ ∈ S, h(¬Mx) = ¬Nh(x),

We note that, if ¬ ̸∈ S and each of M and N has the minimum element (we put mM and
mN are the minimum elements of M and N respectively), an S-homomorphism h : M −→ N
does not always satisfy h(mM) = mN. An S-homomorphism h is called an S-embedding if h
is an injection.
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Proposition 3.4.20. Let ¬ ∈ S and M be an S-algebra. Then ¬x = x → 0 holds.

Proof. We have ¬x ≤ x → 0 since ¬x → x → 0 = 1. Conversely, we have (x → 0) ≤ ¬x
since 1 = (x → ¬1) → 1 → ¬x = (x → 0) → ¬x.

Proposition 3.4.21. Let ¬ ∈ S, M and N be S-algebras and h : M −→ N be a map.
h is a {→, ¬}-homomorphism if and only if h is a {→}-homomorphism and h satisfies
h(0M) = 0N.

Proof. Let h : M −→ N be a {→, ¬}-homomorphism. Then we obtain h(0M) = h(¬(x →
x)) = ¬(h(x) → h(x)) = ¬1N = 0N.

Conversely, let h : M −→ N be a {→}-homomorphism and h satisfies h(0M) = 0N.
We obtain h(¬x) = h(x → 0M) = h(x) → h(0M) = h(x) → 0N = ¬h(x) by Proposition
3.4.20.

Theorem 3.4.10 showed the (not strong) completeness theorem between S-logics and
S-algebras by virtue of the Lindenbaum algebra. Moreover, we will show the strong com-
pleteness between between S-logics and S-algebras.

Definition 3.4.22 (Boolean algebra). M is a Boolean algebra if M is a {→, ∧, ∨, ¬}-
algebra satisfying an equation ¬¬x = x.

For a given set Φ, P(Φ) means the power set of Φ.

Proposition 3.4.23. Let Φ be an arbitrary set. Then, (P(Φ),→,∧,∨,¬) is a Boolean
algebra by defining each function as follows:

1. α → β = αc ∪ β;

2. α ∧ β = α ∩ β;

3. α ∨ β = α ∪ β;

4. ¬α = αc,

where α, β ∈ P(Φ), ∪ means the union, ∩ means the intersection and αc means the comple-
ment of α.

Proof. We can easily verify that P(Φ) is a {→, ∧, ∨, ¬}-algebra, notice that the maximum
element 1 of P(Φ) is Φ itself. The equation ¬¬α = α immediately follows from the fact
(αc)c = α.

In the rest of the section, we write P(Φ) for a Boolean algebra (P(Φ),→,∧,∨,¬) defined
above.

By the proposition above, we can define filter on P(Φ). Recall that F ⊆ P(Φ) is a filter
if F satisfies following:

1. Φ ∈ F ;
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2. α ∈ F and α ⊆ β implies β ∈ F ;

3. α, β ∈ F implies α ∩ β ∈ F .

Definition 3.4.24. Let Φ be an arbitrary set and P(Φ) be a Boolean algebra. A filter
F ∈ P(Φ) is an ultra filter if α ∈ F or αc ∈ F for every α ∈ P(Φ) and ∅ /∈ F .

Notice that the above definition is equivalent to “exactly one of α and αc is an element
of F for every α ∈ P(Φ)” since, if both of α ∈ F and αc ∈ F holds, we have ∅ = α∩αc ∈ F .

Definition 3.4.25 (Ultra product). Let Mi (i ∈ I) be S-algebras. We define the ultraproduct
of Mi (i ∈ I) as follows:

1. define a equivalence relation ≡F the direct product
∏

i∈I Mi by (xi) ≡F (yi) if and only
if {j ∈ I | xj = yj} ∈ F ;

2. The ultra product of Mi (i ∈ I) is
∏

i∈I Mi/ ≡F .

Theorem 3.4.26 ( Lós’s theorem). Let Mi (i ∈ I) be S-algebras, F ⊆ P(I) be an ultra filter,∏
i∈I Mi/ ≡F be the ultra product, v be a valuation on

∏
i∈I Mi/ ≡F and, for each i ∈ I, vi

is a valuation defined by v(p) = [(vi(p))]≡F
for every propositional variable p, where [· · · ]≡F

means an equivalent class with respect to ≡F . Then, for a given formula A, v(A) = 1 if and
only if {i ∈ I | vi(A) = 1} ∈ F .

Proof.

v(A) = 1

⇐⇒ (vi(A)) ≡F 1

⇐⇒ {i ∈ I | vi(A) = 1} ∈ F.

Theorem 3.4.27 (Strong completeness theorem). Let L be an S-logic and Γ ∪ {A} be a set
of S-formulas. The following are equivalent:

1. L ̸⊢ Σ → A holds for any finite subset Σ ⊆ Γ;

2. there exist an L-algebra M and a valuation v on M satisfying v(γ) = 1 for any γ ∈ Γ
and v(A) ̸= 1.

Proof. (1 =⇒ 2) Let I = {Σ ⊆ Γ | Σ is finite} and assume L ̸⊢ Σ → A for any Σ ∈ I. Thus,
for any Σ ∈ I, we have an L-algebra MΣ and a valuation vΣ on MΣ satisfying vΣ(Σ → A) ̸= 1
by Theorem 3.4.34. We can assume vΣ(σ) = 1 for any σ ∈ Σ by Proposition 3.4.34. Let Vγ =
{Σ ∈ I | vΣ(γ) = 1}(⊇ {Σ ∈ I | γ ∈ Σ}). Then F = {Vγ | γ ∈ Γ} has the finite intersection
property since Vγ1 ∩ · · · ∩ Vγm = {Σ ∈ I | vΣ(γj) = 1 (j = 1, . . . ,m)} ∋ {γ1, . . . , γm}.
Therefore, there exists an ultra filter G ⊇ F on (P(I),⊆). Let M = (

∏
Σ∈I MΣ)/G be the

ultra product and define a valuation v on M by v(A) = (
∏

Σ∈I vΣ(A))/G. Thus v(A) =
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1 ⇐⇒ {Σ ∈ I | vΣ(A) = 1} ∈ G holds by  Lós’s theorem. Since MΣ is an L-algebra for any
Σ ∈ I, M is L-algebra. If γ ∈ Γ, v(γ) = 1 since {Σ ∈ I | vΣ(γ) = 1} = Vγ ∈ G. On the
other hand, {Σ ∈ I | vΣ(A) = 1} = ∅ by the assumption. Hence {Σ ∈ I | vΣ(A) = 1} ̸∈ G
since G is a proper filter. Therefore v(A) ̸= 1. Consequently, M and v are the L-algebra and
valuation we wanted.

(2 =⇒ 1) By the assumption, v satisfies that v(Σ → A) ̸= 1 which implies L ̸⊢ Σ → A.

We will consider the question: what kind of S-algebras are subdirectly irreducible ?
In S-algebras, congruences and implicational filters defined below are equivalent.

Definition 3.4.28. Let M be an S-algebra. A subset F ⊆ M is a filter if (x, x → y ∈ F
implies y ∈ F and 1 ∈ F ).

Proposition 3.4.29. Let ∧ ∈ S and M be an S-algebra. Then, F ⊆ M is a filter if and
only if F satisfies the following:

1. 1 ∈ F ;

2. x ∈ F and x ≤ y imply y ∈ F ;

3. x, y ∈ F implies x ∧ y ∈ F .

Proof. (=⇒) follows from the facts that (x ≤ y implies x → y = 1 ∈ F ) and x → y →
x ∧ y = 1 ∈ F

(⇐=) Let x, x → y ∈ F . Then we have x ∧ x → y ∈ F by the assumption. Therefore we
obtain y ∈ F since x ∧ (x → y) → y = 1 ∈ F .

Proposition 3.4.30. Let M be an S-algebra and F ⊆ M be a filter. Then, the binary
relation ∼F on M by x ∼F y if and only if x → y, y → x ∈ F is a congruence.

Proof. Similar to the proof of Lemma 3.4.7.

Therefore, by Definition 3.3.17, we have the quotient algebra M/ ∼F for each S-algebra
M and filter F on M. We abbreviate M/ ∼F to M/F .

Proposition 3.4.31. Let M be an S-algebra and θ be a congruence on M. Then there exists
a filter F of M such that ∼F = θ.

Proof. The filter F = {x ∈ M | [x]θ = [1]θ} satisfies ∼F = θ since

x ∼F y

⇐⇒ x → y, y → x ∈ F

⇐⇒ [x → y]θ = [y → x]θ = [1]θ

⇐⇒ [x]θ → [y]θ = [y]θ → [x]θ = [1]θ

⇐⇒ [x]θ = [y]θ

⇐⇒ xθy.
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Theorem 3.4.32. Let M be an S-algebra. M is subdirectly irreducible if and only if M
has the unique second greatest element ω. Precisely, ω satisfies ω ≤ 1 and x ≤ ω for all
x ∈ M − {1}.

Proof. By Lemma 3.3.22 and 3.3.23, we will show that
∩

i Fi ̸= {1} if and only if M has the
unique second greatest element ω, where Fi (i ∈ I) is all filters on M except {1}, since the
minimum congruence E on M is ∼{1}.

Assume that M does not have the unique second greatest element ω. For every x ∈
M − {1}, there exists y ∈ M − {1} such that y ̸≤ x. Thus, a filter y ↑= {z ∈ M | y ≤ z}
on M satisfies x ̸∈ y ↑ and y ↑̸= {1}. Therefore,

∩
i∈I Fi ⊆ ∩{z ↑| z ∈ M − {1}} = {1}.

Consequently,
∩

i∈I Fi = {1}. we proved the contraposition.
Conversely, suppose that M has the unique second greatest element ω. Then, if F ̸= {1} is

a filter on M, there exists x ∈ F−{1}. Thus, ω ∈ F since x ≤ ω. Therefore,
∩

i∈I Fi ⊇ {1, ω}
(in fact, we have

∩
i∈I Fi = {1, ω} since {1, ω} is a filter on M).

Let A be an S-formula, M be an S-algebra and w be a valuation of M. If M is subdirectly
irreducible and w(A) = ω, we say w is an ω-refutation of A on M.

Proposition 3.4.33 (c.f., Jankov[16] pp.28, Lemma). On a subdirectly irreducible S-algebra,
x → y = ω if and only if x = 1 and y = ω.

Proof. Assume x → y = ω. Since x → x → y = x → y holds in every S-algebra (since it is
provable in H), we have x → ω = ω. Therefore we have x = 1. Then we also have y = ω
immediately. The converse is obvious.

Proposition 3.4.34 (c.f., Wroński[30], Lemma 1). Let M be an S-algebra and a ∈ M−{1}.
There is an S-homomorphism h from M such that h(a) is the unique second greatest element
of h(M) (thus, h(M) is a subdirectly irreducible S-algebra).

Proof. Let F ⊆ M be a maximal filter satisfying a ̸∈ F (such F is guaranteed to exist by
Zorn’s Lemma). We show that h defined by h(x) = x/F is the S-homomorphism we wanted.
We can easily verify h(a) ̸= 1 since a ̸∈ F . Thus, it is sufficient to prove that b ≤ h(a) for
every b ∈ h(M) − {1}. Let b ∈ h(M) − {1}. Then b ↑= {y ∈ h(M) | b ≤ y} is a filter of
h(M). Thus, h−1(b ↑) is a filter of M such that F ⊊ h−1(b ↑) since h(F ) = {1} ⊆ b ↑ and
b ∈ b ↑ −{1}. Therefore, a ∈ h−1(b ↑) since F is maximal. Thus we obtain h(a) ∈ b ↑, i.e.,
b ≤ h(a).

By, Proposition 3.4.34, we can refine the strong completeness theorem.

Theorem 3.4.35 (Strong completeness theorem for subdirectly irreducible algebras). Let L
be an S-logic and Γ ∪ {A} be a set of S-formulas. The following are equivalent:

1. L ̸⊢ Σ → A holds for any finite subset Σ ⊆ Γ;

2. there exist an subdirectly irreducible L-algebra M and a valuation v on M satisfying
v(γ) = 1 for any γ ∈ Γ and v(A) ̸= 1.
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Proof. We show (1 ⇒ 2). The converse can be proved in the same way as Theorem 3.4.27.
By the proof of Theorem 3.4.27, we obtain an L-algebra M and a valuation v on M satisfying
v(γ) = 1 for any γ ∈ Γ and v(A) ̸= 1. By Proposition 3.4.34, we obtain a quotient algebra
N of M satisfying the following:

1. N is subdirectly irreducible ;

2. there exists an ω-refutation of A on N.

Therefore, N is the subdirectly irreducible L-algebra we wanted.

We note that the theorem above implies that we just need to consider subdirectly irre-
ducible S-algebras, i.e., we can assume that each S-algebra has the unique second greatest
element while considering relation between S-logics and S-algebras.

3.5 Khomich’s results

Khomich studied S-algebras by using indecomposable elements of S-algebras. In this section,
we summarize Khomich’s result ([24]) for indecomposable elements.

Definition 3.5.1. Let M be an S-algebra. If y ∈ M satisfies x → y = y or x → y = 1 for
every x ∈ M, we say that y is indecomposable.

Let M be an S-algebra, x ∈ M and ϕ ⊆ M (notice that ϕ does not have to be a
subalgebra of M). We define I(x) = {y ∈ M | y ≥ x and y is indecomposable}, m(ϕ) = {y ∈
ϕ | ∀z ∈ I(x), z ≤ y implies z = y} (i.e., m(ϕ) is the set of all minimal elements of ϕ) and
r(x) = m(I(x)).

Lemma 3.5.2 (Khomich[24]). Let M be a finite S-algebra and x, y ∈ M. Then I(x → y) =
{z ∈ M | z is indecomposable and there exists w ∈ I(y) − I(x) such that w ≤ z} ∪ {1}.

Proof. We show ⊇. Let z ∈ M be indecomposable and w ∈ I(y) − I(x) satisfies w ≤ z.
Then we have z ≥ w ≥ y and w ̸≥ x. Thus, since w is indecomposable, we have x → w = w.
Therefore, we obtain z ≥ w = x → w ≥ x → y which implies z ∈ I(x → y).

Conversely, we have (I(y) − I(x)) → x → y = I(y) → x → y = 1 since x is smaller than
each element of I(x). Thus, for every z ∈ I(x → y), we have (I(x) − I(y)) → z = 1 since
x → y ≤ z. Since z is indecomposable, there exists w ∈ I(y) − I(x) satisfying w ≤ z. We
obtained the desired element w.

Theorem 3.5.3 (Khomich[24]). Let M be a finite S-algebra and x, y ∈ M. Then

r(x → y) =

{
r(y) − I(x) (x → y ̸= 1)

{1} (x → y = 1).
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Proof. We have r(x → y) = m(I(x → y)) = m({z ∈ M | z is indecomposable and there
exists w ∈ I(y) − I(x) such that w ≤ z} ∪ {1}) = m(I(y) − I(x)). Thus, it is sufficient to
show that m(I(y) − I(x)) = r(y) − I(x).

We show ⊇. Let z ∈ r(y) − I(x). Then z is a minimal element in I(y). Therefore, z is
also a minimal element in I(y) − I(z). We obtained that z ∈ m(I(y) − I(x)).

Conversely, suppose that z ∈ m(I(y) − I(x)) and z /∈ r(y) − I(z). Then we have z /∈ r(y)
since z /∈ I(x). Moreover, there exists w ∈ r(y) satisfying w < z since z ∈ m(I(y) − I(x)) ⊆
I(y). The element w satisfies w /∈ I(y) − I(x) since w < z ∈ m(I(y) − I(x)). Therefore,
we have w ∈ I(x), i.e., x ≤ w. Hence we have x ≤ z, which contradicts to assumption that
z /∈ I(x).

Proposition 3.5.4. Let M be a finite S-algebra and x ∈ M. Then r(x) → x = 1.

Proof. Induction on |r(x)|, the number of elements in r(x). If |r(x)| = 1, x itself is indecom-
posable, i.e., r(x) = {x}. Then r(x) → x = x → x = 1.

If |r(x)| > 1, let r(x) = {y1, . . . , ym}. Since y1, . . . , ym are mutually incomparable, we
have that y2, . . . , ym /∈ I(y1). Therefore, we have r(y1 → x) = r(x) − I(y1) = {y2, . . . , ym}.
Thus, by induction hypothesis, we obtain r(x) → x = r(y1 → x) → y1 → x = 1.

Proposition 3.5.5. Let M be a finite S-algebra and x, y ∈ M. Then r(x) = r(y) implies
x = y.

Proof. x → y = x → r(x) → y = x → r(y) → y = 1. We proved x ≤ y. The converse y ≤ x
can be shown in the same way.

If ∧ ∈ S, the definition of indecomposable elements becomes easy to understand,

Proposition 3.5.6. Let ∧ ∈ S, M be an S-algebra and x ∈ M. Then the following are
equivalent:

1. x is indecomposable;

2. if x = y ∧ z, x = y or x = z hold.
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Chapter 4

Algebraic characterization for the
conservativity

This chapter contains two results for conservativity problem. The former result gives a
general algebraic condition which is equivalent to conservativity condition between HS′ + Γ
and HS + Γ for S ⊆ S ′ and a set Γ of S-formulas. We used Jankov’s characteristic formula
([16]) for this characterization. The first result can be strengthen for the case ∧ ∈ S ′. Our
second result is a criteria for conservativity problem by using a concrete class of S ∪ {∧}-
algebras which are constructed by Horn[12]. As an application of our results, we give algebraic
proofs for some Khomich’s results ([19, 21, 22]). We also give a detailed proof for Wroński’s
theorem ([31]) for conservativity problem. This chapter is based on [33].

4.1 Jankov’s characteristic formula

Jankov[16] defined the characteristic formulas for subdirectly S-algebras. Jankov’s charac-
teristic formula XM shows the relation between the embeddability of M and the refutability
of XM for a given S-algebra M. In [16], Jankov needed to define only for finite subdirectly
S-algebras for the case ∧ ∈ S. However, it is clear that his definition and theorems can be
applied for any S. Moreover, we can obtain similar results for infinite S-algebras.

Definition 4.1.1 (Jankov[16] Section 3). Let M be a subdirectly irreducible SM-algebra and
S ⊆ SM. We construct the diagram of M and the S-characteristic formula XS

M by the
following processes:

1. for every x ∈ M, pick a propositional variable px which is distinct each other;

35



2. the set Y S
M of S-formulas is defined as follows:

Y S
M = {pa ⊙ pb → pa⊙b

|∀a, b ∈ M,⊙ ∈ S ∩ {→,∧,∨}}
∪ {pa⊙b → pa ⊙ pb

|∀a, b ∈ M,⊙ ∈ S ∩ {→,∧,∨}}
∪ {p1}
∪ {¬pa → p¬a|∀a ∈ M} (if ¬ ∈ S)

∪ {p¬a → ¬pa|∀a ∈ M} (if ¬ ∈ S)

3. if M is finite, we define XS
M = Y S

M → pω.

We can not define XS
M if M is infinite. Thus we define an (ω-)refutation for a pair of a

set of S-formulas and an S-formula as follows.

Definition 4.1.2. Let Γ be a set of S-formulas, A be an S-formula and M be an S-algebra.

1. A valuation v on M is a refutation of (Γ, A) if v(∆ → A) ̸= 1 for any finite subset
∆ ⊆ Γ.

2. A valuation v on M is an ω-refutation of (Γ, A) if v(γ) = 1 for every γ ∈ Γ, M is
subdirectly irreducible and v(A) = ω.

Lemma 4.1.3 (Wroński[30] Lemma 7). Let M and N be subdirectly irreducible S-algebras.
If there is an ω-refutation v of (Y S

M, pω) on N, there is S-embedding h : M −→ N.

Proof. Notice that we have following equations for every a, b ∈ M by Proposition 3.4.33:

v(pa) ⊙ v(pb) = v(pa ⊙ pb) = v(pa⊙b) (⊙ ∈ S ∩ {→,∧,∨});

¬v(pa) = v(¬pa) = v(p¬a) (if ¬ ∈ S);

v(p1) = 1;

v(pω) = ω.

We show that h : M −→ N defined by h(x) = v(px) is the S-embedding we wanted.
Let x, y ∈ M satisfying x ̸= y. Thus, we can assume x ̸≤ y, especially, x → y ≤ ω. Then

we have v(px→y) → v(pω) = v(p1) = 1. Hence we obtain h(x) → h(y) = v(px) → v(py) =
v(px→y) ≤ v(pω) = ω ̸= 1. We proved that h is injective.

Since v is a valuation, we can easily show that h preserves every function of S: h(x) ⊙
h(y) = v(px) ⊙ v(py) = v(px ⊙ py) = h(px ⊙ py) (the case ¬ is similarly).

Lemma 4.1.4 (Wroński[30] Lemma 1). Let M be a subdirectly irreducible S-algebra and N
be an S-algebra. If there exists a refutation v of (Y S

M, pω) on N, there is an S-homomorphism
h satisfying the following:

1. h(N) is subdirectly irreducible ;
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2. h ◦ v is an ω-refutation of (Y S
M, pω) on h(N).

Proof. It can be shown similarly to Proposition 3.4.34. Let F ⊆ N be a maximal filter such
that v(pω) /∈ F and h : N −→ N/F be a canonical homomorphism, i.e., h is defined by
h(x) = [x], where [x] means the equivalent class of x with respect to ≡F . Then, h ◦ v is the
desired valuation on h(N) (= N/F ) satisfying (h ◦ v)(pω) = ω and therefore (h ◦ v)(α) = 1
for every α ∈ Y S

M.

Theorem 4.1.5 (Jankov[16] Section 3). Let M be a subdirectly irreducible S-algebra and N
be an S-algebra. the following are equivalent:

1. (Y S
M, pω) is refutable in N;

2. M is S-embeddable in an S-homomorphic image of N.

Proof. (1 =⇒ 2) Let v be a refutation of (Y S
M, pω) on N. Then, by Lemma 4.1.4, there is an

S-homomorphism h satisfying the following:

(1) h(N) is subdirectly irreducible ;

(2) h ◦ v is an ω-refutation of (Y S
M, pω) on h(N).

Therefore, by Lemma 4.1.3, M is S-embeddable in N.
(2 =⇒ 1) Let h : M −→ N be an S-embedding. Then the valuation v on N defined by

v(px) = h(x) is a refutation on N since we can verify v(α) = 1 for every α ∈ Y S
M and v(pω) ̸= 1.

Precisely, they follows from v(px ⊙ py) = v(px) ⊙ v(py) = h(x) ⊙ h(y) = h(x ⊙ y) = v(px⊙y)
(the case ¬ is similarly) and v(pω) = h(ω) ̸= 1.

4.2 Horn’s construction

For a given S-algebra M, Horn constructed an S ∪ {∧}-algebra containing M.

Definition 4.2.1 (Horn[12] pp.395-397). Let M be an S-algebra. The S ∪{∧}-algebra C(M)
is constructed from M as follows:

1. M∧ = {Γ ⊆ M | Γ is finite and not empty}; with the functions defined as follows:

Γ → ∆ = {Γ →M δ | δ ∈ ∆};

Γ ∧ ∆ = Γ ∪ ∆;

Γ ∨ ∆ = {γ ∨M δ | γ ∈ Γ, δ ∈ ∆} (if ∨ ∈ S);

¬Γ = Γ → {p,¬Mp} (if ¬ ∈ S).

2. define a binary relation ≈ by Γ ≈ ∆ ⇐⇒ ∀γ ∈ Γ, ∆ → γ = 1 and ∀δ ∈ ∆, Γ → δ = 1;
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3. C(M) = M∧/≈ with the functions defined as follows:

[Γ] ⊙ [∆] = [Γ ⊙ ∆] (⊙ ∈ {→, ∧})

[Γ] ∨ [∆] = [Γ ∨ ∆] (if ∨ ∈ S);

¬[Γ] = [¬Γ] (if ¬ ∈ S),

where [Γ] is the equivalence class of Γ with respect to ≈.

We verify that well-definedness of ≈.

Lemma 4.2.2 (c.f., Horn[12]). ≈ is a congruence with respect to →, ∧, ∨ and ¬.

Proof. Let finite subsets Γ, ∆, Σ, Π ⊆ M satisfy [Γ] ≈ [∆] and [Σ] ≈ [Π].
We show [Γ → Σ] → [∆ → Π] = 1. We have

[Γ → Σ] → [∆ → Π]

= [{Γ → σ | σ ∈ Σ}] → [{∆ → π | π ∈ Π}]

= [{{Γ → σ | σ ∈ Σ} → ∆ → π | π ∈ Π}].

Therefore, it is enough to show {Γ → σ | σ ∈ Σ} → ∆ → π = 1 for all π ∈ Π. It follows
from the assumption ∆ → γ = 1 for every γ ∈ Γ and Σ → π = 1 for every π ∈ Π. The case
∧ can be verified by the following:

[Γ ∧ Σ] → [∆ ∧ Π]

= [{Γ ∪ Σ → x | x ∈ ∆ ∪ Π}]

= [{1}].

The case ∨ is proved in the same way. We have

[Γ ∨ Σ] → [∆ ∨ Π]

= [{γ ∨ σ | γ ∈ Γ, σ ∈ Σ}] → [{δ ∨ π | δ ∈ ∆, π ∈ Π}]

= [{{γ ∨ σ | γ ∈ Γ, σ ∈ Σ} → δ ∨ π | δ ∈ ∆, π ∈ Π}]

Therefore, it is enough to show {γ ∨ σ | γ ∈ Γ, σ ∈ Σ} → δ ∨ π = 1 for all δ ∈ ∆ and
π ∈ Π. We can verify it by the following facts:

1. {γ ∨ σ | γ ∈ Γ, σ ∈ Σ} → Γ ∨ Σ = 1 holds by distributivity;

2. (Γ → δ ∨ π) → (Σ → δ ∨ π) → (Γ ∨ Σ → δ ∨ π) = 1 holds by the axiom of H{→};

3. Γ → δ ∨ π = Σ → δ ∨ π = 1 holds by assumption.

The case ¬ is similar to the case →.

Lemma 4.2.3 (Horn[12] Theorem 8.4). If M is an S-algebra, C(M) is an S ∪ {∧}-algebra,
i.e., it satisfies all axioms of HS∪{∧}.
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Lemma 4.2.4 (Horn[12] Theorem 8.5). For every S-algebra M, the map f : M −→ C(M)
defined by f(x) = [{x}] is an S-embedding.

Theorem 4.2.5 (c.f., Horn[12]). Let M be an S-algebra and N be an S ∪ {∧}-algebra. If
there exists S-embedding f : M −→ N, we have an S ∪ {∧}-embedding g : C(M) −→ N
defined by g([Γ]) =

∧
γ∈Γ f(γ).

Proof. We can verify that g is well-defined and injection since ≈ is a congruence. Let Γ =
{γ1, . . . , γm} and ∆ = {δ1, . . . , δn} be finite subsets of M. We verify that g is an S ∪ {∧}-
homomorphism by the following:

g([Γ] → [∆])

= g([{Γ → δj | j = 1, . . . , n}])

=
∧

j=1,...,n

f(Γ → δj)

=
∧

j=1,...,n

(f(γ1) → · · · f(γm) → f(δj))

=
∧

i=1,...,m

f(γi) →
∧

j=1,...,n

f(δj)

= g([Γ]) → g([∆]);

g([Γ] ∧ [∆])

= g([Γ ∪ ∆])

=
∧

x∈Γ∪∆

f(x)

=
∧

i=1,...,m

f(γi) ∧
∧

j=1,...,n

f(δj)

= g([Γ]) ∧ g([∆]);

g([Γ] ∨ [∆])

= g([{γi ∨ δj | i = 1, . . . ,m, j = 1, . . . , n}])

=
∧

i=1,...,m, j=1,...,n

f(γi ∨ δj)

=
∧

i=1,...,m, j=1,...,n

(f(γi) ∨ f(δj))

=
∧

i=1,...,m

f(γi) ∨
∧

j=1,...,n

f(δj)

= g([Γ]) ∨ g([∆]).

The case ¬ can be shown by the similar way to the case →. Therefore, g is an S ∪ {∧}-
homomorphism. Consequently, g is an S ∪ {∧}-embedding.
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4.3 Separability and conservativity

We define the separability and conservativity for intermediate logics.
Let S ⊆ S ′. If an S-formula A satisfies both of HS + Γ ̸⊢ A and HS′ + Γ ⊢ A, the proof

of HS′ + Γ ⊢ A must contain a logical symbol ⊙ ∈ S ′ − S nevertheless ⊙ does not occur in
A. When the above situation does not occur, in other words, every S-formula A which is
provable in HS′ + Γ is S-provable, we say that HS′ + Γ is a conservative extension of HS + Γ.

More formally stated,

Definition 4.3.1 (Conservativity). Let S ⊆ S ′ and Γ be a set of S-formulas. HS′ + Γ is a
conservative extension of HS + Γ if (HS′ + Γ)S = HS + Γ.

Notice that conservativity condition is a property for axiomatization of logics.

Definition 4.3.2 (Separability). An axiomatization H+Γ of a logic L is a separable axiom-
atization if it satisfies the following conditions:

1. H+Γ is normal, i.e., any formula in Γ is a {→}, {→, ∧}, {→, ∨} or {→,¬}-formula;

2. H + Γ is S-complete 1 for every S, i.e., (H + Γ)S = HS + ΓS holds for every S.

The conservativity is a part of the conditions of the separability. If Γ is a set of S-formulas,
S-completeness is equivalent to the conservativity between H + Γ and HS + Γ.

Definition 4.3.3. An intermediate logic L is separable if there is a finite set Γ of formulas
such that H + Γ is a separable axiomatization of L.

The definition of separability is introduced by M. Wajsberg[29]. The separability of some
famous intermediate logics has been proved until in the mid of 1960’s.

Theorem 4.3.4. The following logics are separable:

1. the intuitionistic propositional logic H (Curry[7])

2. the classical propositional logic C 2;

3. H + ¬p ∨ ¬¬p; (Hosoi[15]);

4. H + (p → q) ∨ (q → p) (Hosoi[13], pp.537, Corollary).

We note that the previous results proved the separability of logics. For example, Hosoi
did not proved the separability of the axiomatization H + (p → q) ∨ (q → p) but the logic
represented by H + (p → q) ∨ (q → p).

However, there are few general results for the separability and conservativity. We intro-
duce two general results for the separability which seem particularly important.

1The name of this condition is due to Khomich ([19]). Thus, it does not mean the completeness theorem
between logics and Kripke frames.

2The author have not found the first paper which shows this fact. However, this fact can be easily obtain
by results in the present-day. For example, McKay’s result([27]) shows the separability since the classical
propositional logic is a tabular logic which can be normally axiomatized,
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Theorem 4.3.5 (McKay [27], Theorem 3 and Khomich [25], Theorem 1). Any tabular (char-
acterized by a finite Kripke frame) logic which has normal axiomatization is separable.

The theorem above is proved by McKay[27]. However, Khomich[25] pointed out that the
proof in [27] contains a mistake and corrected the proof by the method in [25].

V. I. Khomich[19, 20, 21, 22, 23, 25] examined the separability of logics each of which is
axiomatized by disjunction-free formulas. In particular, he proved the following theorem.

Theorem 4.3.6 (Khomich[22], Theorem 17). If an intermediate propositional logic L can be
axiomatized by formulas without neither ∨ nor ¬, L is separable.

Therefore, the remaining problem for the separability is the case which McKay and
Khomich’s two theorems above can not apply, i.e., the separability of non-tabular logics
each of which needs the disjunction to axiomatize.

4.4 Wroński’s theorem

Wroński[31] gave the following theorem by algebraic methods. The following theorem gives
the answer for the question that what S satisfies the following condition:

(H + Γ)S = HS + Γ for every set Γ of S-formulas.

However, if ∧ /∈ S, the following theorem does not give any criteria for (H + Γ)S = HS + Γ
or not.

Theorem 4.4.1 (Wroński[31]). The following hold.

1. If ∧ ∈ S, (H + Γ)S = HS + Γ for every set Γ of S-formulas.

2. If ∧ ̸∈ S, there exists a set Γ of S-formulas such that (H + Γ)S ̸= HS + Γ.

In this section, we give a proof of Theorem 4.4.1 in detail since in the original paper [31],
there is only an outline of the proof for the case ∧ ∈ S.

4.4.1 The case ∧ ∈ S
We show 1 of Theorem (4.4.1). In the original paper ([31]), all of the case of ∧ ∈ S follow
from the McKay’s theorem 4.4.3. However, we write a detailed proof since The McKay’s
theorem seems not to be applied in the case S = {→,∧,∨}.

Theorem 4.4.2 (McKay[26] Section 2). Every finitely generated S-algebra is finite if S =
{→, ∧}, {→, ¬} or {→, ∧, ¬} (in other words, ∨ ̸∈ S).

Theorem 4.4.3 (McKay[26] Section 2). Every finite {→,∧}-algebra M can be expanded to
a Heyting algebra uniquely.
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Lemma 4.4.4 (Wroński[31]). For every set Γ of S-formulas, HS + Γ is the S-fragment of
H + Γ if S = {→, ∧} or {→, ∧, ¬}.

Proof. Let A be an S-formula satisfying HS + Γ ̸⊢ A. Then there exists the subalgebra M of
the Lindenbaum algebra of HS + Γ generated by the propositional variables occurring in A.
M is finitely generated HS +Γ-algebra which refutes A. Hence M is finite by Theorem 4.4.2.
Therefore, M can be expanded to a Heyting algebra M′ by Theorem 4.4.3. Consequently,
M′ is a H + Γ-algebra which refutes A. It implies H + Γ ̸⊢ A. The lemma is proved.

Lemma 4.4.5 (Wroński[31]). For every set Γ of S-formulas, HS + Γ is the S-fragment of
H + Γ if S = {→, ∧, ∨}.

Proof. Let A = A(p1, . . . , pn) be an S-formula satisfying HS + Γ ̸⊢ A. There is an HS + Γ-
algebra M which refutes A by a refutation v. Let v(pi) = ai (∀i ∈ {1, . . . , n}) and N =
{x ∈ M | x ≥ a1 ∧ · · · ∧ an}. Then we can verify that N is closed under the functions of
M. Therefore, N is an S-subalgebra of M which implies that N is an HS + Γ-algebra. We
can expand N to a Heyting algebra N′ by defining ¬ as follows: ¬x = x → (a1 ∧ · · · ∧ an),
since a1 ∧ · · · ∧ an is the smallest element of N. Hence N′ is a H + Γ algebra which refutes
A. Consequently, H + Γ ̸⊢ A. The lemma is proved.

Theorem 4.4.1 for the case ∧ ∈ S is now proved by Lemma 4.4.4 and 4.4.5.

Corollary 4.4.6. Let Γ be a set of S-formulas. The following are equivalent:

1. (H + Γ)S = HS + Γ;

2. (HS∪{∧} + Γ)S = HS + Γ.

Proof. (1 =⇒ 2) (HS∪{∧} + Γ)S ⊆ (H + Γ)S = HS + Γ ⊆ (HS∪{∧} + Γ)S . The first inclusion
follows from HS∪{∧} ⊆ H.

(2 =⇒ 1) We obtain HS∪{∧} + Γ = (H + Γ)S∪{∧} by Theorem 4.4.1. Thus, we have
HS + Γ = (HS∪{∧} + Γ)S = ((H + Γ)S∪{∧})S = (H + Γ)S .

4.4.2 The case ∧ /∈ S
We give a detailed proof 2 of Theorem 4.4.1 by using Jankov’s characteristic formulas. We
suppose that the idea in original paper ([31]) is based on Jankov’s characteristic formulas
too.

Let N1 = {1, ω, a, b, 0} is the Heyting algebra defined by the diagram of the Figure
1 and M1 = {1, ω, a, b} is the {→, ∨, ¬}-subalgebra of N1 displayed in Figure 2. The
calculation table of N1 is on Table 1. We note that a → 0 = b → 0 = 0 are defined in M1.
Thus, the {→, ∨, ¬}-algebra defined by the diagram on Figure 3 is not M1.
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Table 4.1: Calculation table of N1

→ 1 ω a b c 0

1 1 ω a b 0 0
ω 1 1 a b 0 0
a 1 1 1 b b 0
b 1 1 a 1 a 0
c 1 1 1 1 1 0
0 1 1 1 1 1 1
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Lemma 4.4.7. M1 validates X
{→}
N1

and refutes X
{→}
M1

.

Proof. The Heyting algebra N1 is not {→}-embeddable in any {→, ∨, ¬}-homomorphic
image of M1 since any embedding is injective and |h(M1)| ≤ |M1| < |N1| holds for every

{→, ∨, ¬}-homomorphism h. Therefore, by Theorem 4.1.5, M1 validates X
{→}
N1

.

On the other hand, since M1 is {→}-embeddable in M1 itself, M1 refutes X
{→}
M1

by
Theorem 4.1.5.

Corollary 4.4.8. H{→, ∨, ¬} +X
{→}
N1

̸⊢ X
{→}
M1

.

Proof. It follows from Lemma 4.4.7 and Theorem 3.4.3 and 3.4.6.

Lemma 4.4.9. H{→, ∧} +X
{→}
N1

⊢ X
{→}
M1

.

Proof. We show the (contraposition of) following claim which shows the lemma by (the
contraposition of) Theorem 3.4.10:
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• if an {→, ∧}-algebra M is an H{→, ∧} + X
{→}
N1

-algebra (i.e., M validates X
{→}
N1

), M

also validates X
{→}
M1

.

Let M be a {→, ∧}-algebra refutes X
{→}
M1

. Then, M1 is {→}-embeddable in f(M) for
some {→, ∧}-homomorphism f , i.e., there is an {→}-embedding h : M1 −→ f(M). We
define a map g : N1 −→ f(M) by

{
g(0) = h(a) ∧ h(b)

g(x) = h(x) (if x ̸= 0).

Then, it is easy to verify that g is a {→}-embedding. Therefore, M also refutes X
{→}
N1

.
The lemma is proved.

Theorem 4.4.10. Let ∧ /∈ S. Then, there exists a set Γ of S-formulas such that (HS∪{∧} +
Γ)S ̸= HS∪∧ + Γ.

Proof. Since ∧ /∈ S implies (H{→, ∧} + X
{→}
N1

)S ⊆ (HS∪{∧} + X
{→}
N1

)S and HS + X
{→}
N1

⊆
H{→, ∨, ¬} +X

{→}
N1

, the following calculation shows the theorem:

X
{→}
M1

∈ (H{→, ∧} +X
{→}
N1

)S − H{→, ∨, ¬} +X
{→}
N1

⊆ (HS∪{∧} +X
{→}
N1

)S − HS +X
{→}
N1

.

Let N2 = {1, ω, a, b, c d. e, 0} is the Heyting algebra defined by the diagram of the
Figure 3. and M2 = {1, ω, a, b, d, e, 0} is the {→, ¬}-subalgebra of N2 displayed in
Figure 4. The calculation table of N2 is in Table 2.

Table 4.2: Calculation table of N2

→ 1 ω a b c d e 0

1 1 ω a b c d e 0
ω 1 1 a b c d e 0
a 1 1 1 b b d e 0
b 1 1 a 1 a d e 0
c 1 1 1 1 1 d e 0
d 1 1 1 1 1 1 e e
e 1 1 1 1 1 d 1 d
0 1 1 1 1 1 1 1 1

We will define Z
{→}
N2

which is similar to Jankov’s characteristic formula by

Z
{→}
N2

= Y
{→}
M2

∪ {pc → pa, pc → pb, pd → pc, pe → pc} → pω.
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The formula Z
{→}
N2

determines the {→}-reduct of the {→, ¬}-algebra M2 and there is an
element c such that d, e < c < b, a. We have the following lemma similar to Theorem 4.1.5.

Lemma 4.4.11. Let ∨ ∈ S. An S-algebra M refutes Z
{→}
N2

if and only if the following hold:

1. there are an S-homomorphism g and an {→}-embeddable h : M2 −→ g(M);

2. there is c′ ∈ g(M) such that h(d), h(e) < c′ < h(a), h(b).

Proof. We show the if part first. Let v be a valuation on M by
{
v(pc) = c′

v(px) = g(x) (if x ̸= c).

Then, similar to the proof of Theorem 4.1.5, we obtain v(Z
{→}
N2

) = ω.
We show the only if part. By Theorem 3.4.34, there is a S-homomorphism g such that

there is ω-refutation v of Z
{→}
N2

on g(M). Therefore, by Theorem 4.1.5, there is {→}-
embeddable h : M2 −→ g(M). Moreover, since v is an ω-refutation, v satisfies v(pc → pa) =
v(pc → pb) = v(pd → pc) = v(pe → pc) = 1, which implies v(d), v(e) ≤ v(c) ≤ v(a), v(b).
Therefore, we have v(d), v(e) < v(c) < v(a), v(b) since v(d) and v(e), and v(a) and v(b) are
incomparable. Consequently, v(c) is the element c′ we wanted.
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We note that Z
{→}
N2

does not determine calculation table with respect to c. Z
{→}
N2

deter-
mines only d, e < c < b, a. For example, both of N2 and a {→, ¬}-algebra J displayed in

Figure 6 refute Z
{→}
N2

(J defines a → c = b → c = c unlike in the {→, ¬}-reduct of N2).

Lemma 4.4.12. H{→, ∧, ¬} + Z
{→}
N2

̸⊢ X
{→}
M2

.

Proof. Since the {→, ∧, ¬}-algebra M2 validates Z
{→}
N2

, and refutes X
{→}
M2

. See the proof of
Lemma 4.4.7.

Lemma 4.4.13. H{→, ∨} + Z
{→}
N2

⊢ X
{→}
M2

.

Proof. Similar to Lemma 4.4.9, it is sufficient to show the following claim:

• if an {→, ∨}-algebra M validates Z
{→}
N2

, M also validates X
{→}
M2

.

We show the contraposition. Thus, we assume that there are a {→, ∨}-algebra M and
{→, ∨}-homomorphism g such that there is a {→}-embedding h : M2 −→ g(M).

By Lemma 4.4.11, the following two claims show that M refutes Z
{→}
N2

:

1. there is an {→}-embedding h : M2 −→ g(M);

2. there is c′ ∈ g(M) such that h(d), h(e) < c′ < h(a), h(b).

We have already obtained an {→}-embedding h : M2 −→ g(M). Thus we will show the
second claim above. Put c′ = h(d) ∨ h(e). Then we have h(d), h(e) ≤ h(d) ∨ h(e) ≤
h(a), h(b) since h(d) ∨ h(e) is the least upper bound of {h(d), h(e)}. Moreover, we have
h(d), h(e) < h(d)∨h(e) < h(a), h(b) since h(d) and h(e), and h(a) and h(b) are incomparable.
The lemma is proved.

Consequently, we obtain the following theorem in the same way as Theorem 4.4.10.

Theorem 4.4.14. Let ∧, ∨ /∈ S. Then, there exists a set Γ of S-formulas such that
(HS∪{∨} + Γ)S ̸= HS∪{∨} + Γ.

Let N3 = {1, ω, a, b, 0} be the Heyting algebra defined by the diagram of the Figure
7 and M3 = {1, ω, a, b} is the {→, ∨}-subalgebra of N3 displayed in Figure 8. The
calculation table of N3 is in Table 3.
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Table 4.3: Calculation table of N3

→ 1 ω a b 0

1 1 ω a b 0
ω 1 1 a b 0
a 1 1 1 b b
b 1 1 a 1 a
c 1 1 1 1 1

Similar to Z
{→}
N2

, we define that

Z
{→}
N3

= Y
{→}
M3

∪ {p0 → px | x = a, b} → pω.

Lemma 4.4.15. Let ¬ ∈ S. An S-algebra M refutes Z
{→}
N3

if and only if the following hold:

1. there are an S-homomorphism g and an {→, ¬}-embeddable h : M3 −→ g(M);

2. there is 0′ ∈ g(M) such that 0′ < h(a), h(b).

Proof. We show the if part first. Let v be a valuation on M by

{
v(p0) = 0′

v(px) = g(x) (if x ̸= 0).

Then, similar to the proof of Theorem 4.1.5, we obtain v(ZS
N2

) = ω.
We show the only if part. By Theorem 3.4.34, there is a S-homomorphism g such

that there is ω-refutation v of ZS
N3

on g(M). Therefore, by Theorem 4.1.5, there is {→}-
embeddable h : M2 −→ g(M). Moreover, since v is an ω-refutation, v satisfies v(p0 → pa) =
v(p0 → pb) = 1, which implies v(p0) ≤ v(pa), v(pb). Therefore, we have v(p0) < v(pa), v(pb)
since v(pa) and v(pb) are incomparable. Consequently, v(p0) is the element 0′ we wanted.

Lemma 4.4.16. H{→, ∨} + Z
{→}
N3

̸⊢ X
{→}
M3

.

Proof. Since the {→, ∨}-algebra M3 validates Z
{→}
N3

, and refutes X
{→}
M3

. See the proof of
Lemma 4.4.7.

Lemma 4.4.17. H{→, ¬} + Z
{→}
N3

⊢ X
{→}
M3

.

Proof. Similar to Lemma 4.4.9, it is sufficient to show the following claim:
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• if an {→, ¬}-algebra M validates Z
{→}
N3

, M also validates X
{→}
M3

.

We show the contraposition. Thus, we assume that there is a {→, ¬}-algebra M and {→, ¬}-
homomorphism g such that there is a {→}-embedding h : M3 −→ g(M). By Lemma 4.4.15,

the following two claims show that M refutes Z
{→}
N3

:

1. there is a {→}-embedding h : M2 −→ g(M);

2. there is 0′ ∈ g(M) such that 0′ < h(a), h(b).

We already obtained a {→}-embedding h : M2 −→ g(M). Thus we will show the second
claim above. Put 0′ = ¬h(1). Then we have ¬h(1) ≤ h(a), h(b). since ¬h(1) = ¬1 is the
smallest element of g(M). Moreover, we have ¬h(1) < h(a), h(b) since h(a) and h(b) are
incomparable. The lemma is proved.

Consequently, we obtain the following theorem in the same way as Theorem 4.4.10.

Theorem 4.4.18. Let ∧, ¬ /∈ S. Then, there exists a set Γ of S-formulas such that
(HS∪{¬} + Γ)S ̸= HS∪{¬} + Γ.

We obtain 2 (the case ∧ /∈ S) of Theorem 4.4.1 by Theorem 4.4.10, 4.4.14 and 4.4.18.

4.5 Algebraic characterization of the conservativity

When S ⊊ S ′ and ∧ /∈ S, Theorem 4.4.1 states that there is a set Γ of S-formulas such that
HS′ + Γ is not a conservative extension of HS + Γ. However, for a given Γ, Theorem 4.4.1
does not gives an answer to the question:

Is HS′ + Γ a conservative extension of HS + Γ?

As our first result for conservativity problem, we give a characterization which answers the
above question.

Theorem 4.5.1. Let S ⊆ S ′ and Γ be a set of S-formulas. The following are equivalent.

1. HS + Γ = (HS′ + Γ)S .

2. Every HS + Γ-algebra is S-embeddable in an HS′ + Γ-algebra.

3. Every finitely generated HS + Γ-algebra is S-embeddable in an HS′ + Γ-algebra.

Proof. (1 =⇒ 2) We can assume that M is subdirectly irreducible (i.e., M is Gödelian).
Let M be a subdirectly irreducible HS + Γ-algebra. We have an ω-refutation v of (Y S

M, pω)
on M defined by v(px) = x. Hence we have HS + Γ ̸⊢ ∆ → pω for every finite subset
∆ ⊆ Y S

M. We have HS′ + Γ ̸⊢ ∆ → pω for every finite subset ∆ ⊆ Y S
M by assumption.

Therefore we obtain an S ′-algebra N and a valuation w on N satisfying w(A) = 1 for any
A ∈ Y S

M and w(pω) ̸= 1 by Theorem 3.4.27. There exists an S ′-homomorphism h satisfying
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h(N) is subdirectly irreducible and h ◦w is an ω-refutation of (Y S
M, pω) on h(N) by Lemma

4.1.4. Hence M is S-embeddable in h(N) by Lemma 4.1.3. We proved that every subdirectly
irreducible HS + Γ-algebra is S-embeddable in an HS′ + Γ-algebra.

(2 =⇒ 3) is obvious.
(3 =⇒ 1) Assume HS + Γ ̸⊢ A. Let M be the subalgebra of the Lindenbaum algebra of

HS + Γ generated by the propositional variables occurring in A. M is a finitely generated
HS + Γ-algebra which refutes A. Therefore, M is S-embeddable in an HS′ + Γ-algebra N by
assumption. Hence N refutes A. Therefore, HS′ +Γ ̸⊢ A. Consequently, HS +Γ ⊇ (HS′ +Γ)S
(⊆ is obvious).

Corollary 4.5.2. Let S ⊆ S ′ and Γ be a set of S-formulas. If ∨ ̸∈ S, the following are
equivalent.

1. HS + Γ = (HS′ + Γ)S ;

2. Every finite HS + Γ-algebra is S-embeddable an HS′ + Γ-algebra.

Proof. (1 =⇒ 2) follows from Theorem 4.5.1.
(2 =⇒ 1) follows from the proof of (3 =⇒ 1) of Theorem 4.5.1 and Theorem 4.4.2 since

∨ ̸∈ S.

Our second result is that, for the case S ∪{∧} ⊆ S ′, we can strengthen the first result by
using concrete S ∪ {∧}-algebras which are constructed by Horn[12].

Theorem 4.5.3. For every S and set Γ of S-formulas, the following are equivalent.

1. HS + Γ = (HS∪{∧} + Γ)S ;

2. for every HS + Γ-algebra M, C(M) is an HS∪{∧} + Γ-algebra.

Proof. (1 =⇒ 2) Let M be an HS + Γ-algebra. Then there exists an S ∪{∧}-algebra N such
that M is S-embeddable in N since the assumption and Theorem 4.5.1. By Theorem 4.2.5,
C(M) is S ∪ {∧}-embeddable in N. Therefore, C(M) is an HS∪{∧} + Γ-algebra.

(2 =⇒ 1) Let M be an HS + Γ-algebra. By Lemma 4.2.4, M is S-embeddable in C(M).
Furthermore, C(M) is an HS∪{∧} +Γ-algebra by assumption. Therefore, HS +Γ = (HS∪{∧} +
Γ)S by Theorem 4.5.1.

In conclusion, we obtain the following characterization.

Theorem 4.5.4. Let Γ is a set of S-formulas and S ∪ {∧} ⊆ S ′. All the following seven
statements are equivalent:

1. HS + Γ = (HS′ + Γ)S ;

2. HS + Γ = (HS∪{∧} + Γ)S ;

3. For every HS + Γ-algebra M, M is S-embeddable in an HS′ + Γ-algebra;
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4. For every HS + Γ-algebra M, M is S-embeddable in an HS∪{∧} + Γ-algebra;

5. For every finitely generated HS + Γ-algebra M, M is S-embeddable in an HS′ + Γ-
algebra;

6. For every finitely generated HS + Γ-algebra M, M is S-embeddable in an HS∪{∧} + Γ-
algebra;

7. For every HS + Γ-algebra M, C(M) is an HS∪{∧} + Γ-algebra.

Furthermore, if ∨ ̸∈ S, all the above seven statements and the following two are equivalent:

8. For every finite HS + Γ-algebra M, M is S-embeddable in an HS′ + Γ-algebra;

9. For every finite HS + Γ-algebra M, M is S-embeddable in an HS∪{∧} + Γ-algebra.

Proof. We obtain (1 ⇐⇒ 3 ⇐⇒ 5) and (2 ⇐⇒ 4 ⇐⇒ 6) by Theorem 4.5.1, (2 ⇐⇒ 7) by
Theorem 4.5.3, (1 ⇐⇒ 2) by Corollary 4.4.6. If ∨ ̸∈ S, we obtain (1 ⇐⇒ 8) and (2 ⇐⇒ 9)
by Corollary 4.5.2.

4.6 Applications of the characterization for the conser-

vativity

As applications of our theorems, we obtain algebraic proofs of some Khomich’s theorems
([19, 21, 22]) which are proved by syntactical methods in original papers.

Proposition 4.6.1. Let S ⊆ S ′, M′ be an S ′-algebra and M be the S-reduct of M′. Then
C(M) is the S ∪ {∧}-reduct of C(M′).

Proof. Let x = {x1, . . . , xm}, y = {y1, . . . , yn} ∈ M∧ (see Definition 4.2.1). Then x ≈C(M) y
if and only if x ≈C(M′) y since the {→}-reduct of C(M) and the {→}-reduct of C(M′) are
equivalent. Therefore

x ∧C(M) y

= [{x1, . . . , xm, y1, . . . , yn}]C(M)

= [{x1, . . . , xm, y1, . . . , yn}]C(M′)

= x ∧C(M′) y,

where [· · · ]C(M) and [· · · ]C(M′) mean equivalence classes of C(M) and C(M′) respectively.
Also, we show the case ∨. The case → and ¬ are similarly.

x ∨C(M) y

= [{x1, . . . , xm}]C(M) ∨C(M) [{y1, . . . , yn}]C(M)

= [{xi ∨M yj | i = 1, . . . ,m, j = 1, . . . , n}]C(M)

= [{xi ∨M′ yj | i = 1, . . . ,m, j = 1, . . . , n}]C(M′)

= [{x1, . . . , xm}]C(M′) ∨C(M′) [{y1, . . . , yn}]C(M′)

= x ∨C(M′) y.
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Theorem 4.6.2 (c.f., Khomich[22] Theorem 1). For i = 1, . . . ,m, assume that

1. Γi is a set of Si-formulas;

2. (H + Γi)Si
= HSi

+ Γi.

Then (H +
∪m

i=1 Γi)S = HS +
∪m

i=1 Γi holds for any S ⊇ ∪m
i=1 Si.

Proof. Let M be an HS +
∪m

i=1 Γi-algebra and Mi is the Si-reduct of M. Then C(Mi)
validates Γi since Mi validates any γ ∈ Γi and (1 ⇐⇒ 7) of Theorem 4.5.4. Hence C(M)
validates any γ ∈ Γi since C(Mi) is the Si ∪{∧}-reduct of C(M). Consequently, C(M) is an
HS∪{∧} +

∪m
i=1 Γi-algebra. Therefore, we have (H +

∪m
i=1 Γi)S = HS +

∪m
i=1 Γi by applying

(1 ⇐⇒ 7) of Theorem 4.5.4 again.

Theorem 4.6.2 contains the following result proved by Khomich[22].

Corollary 4.6.3 (Khomich[19] Corollary 1). Let Γ1 and Γ2 be sets of S-formulas. If HS +
Γi = (H + Γi)S holds for i = 1, 2, HS + Γ1 ∪ Γ2 = (H + Γ1 ∪ Γ2)S also holds.

Also, we obtain the following corollary.

Corollary 4.6.4. Let Γ be S-formulas and S ⊆ S ′. If (H+Γ)S = HS +Γ holds, (H+Γ)S′ =
HS′ + Γ also holds.

Khomich[21] gave a syntactical property equivalent to the properties of Theorem 4.5.4.
We show the equivalence between his property and the property 7 of Theorem 4.5.4 by an
algebraic method.

Definition 4.6.5 (Khomich[21]). Let an S-formula Q = Q(q1, . . . , qn) and T1, . . . , Tn are sets

of propositional variables. We fix a method of constructing from Q a formula Q̃ satisfying
the following conditions :

1. H ⊢ Q(
∧
T1, . . . ,

∧
Tm) → Q̃;

2. H ⊢ Q̃ → Q(
∧
T1, . . . ,

∧
Tm);

3. Q̃ is a conjunction of formulas constructed from variables in the list T1 ∪ · · · ∪ Tn with
the help of → and the logical symbols occurring in Q and different from ∧ 3.

We say that H + Q1 + · · · + Qn possesses the property CS if, for any i such that Qi is an
S-formula, every conjunct A of Q̃i satisfies HS + {Q1, . . . , Qn} ⊢ A.

Lemma 4.6.6. Let M be an S-algebra and Q = Q(q1, . . . , qm) be an S-formula. The following
are equivalent:

3Q̃ can be constructed by Proposition 3.4.19.
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1. Q is valid on C(M);

2. if T1, . . . , Tm are finite sets of propositional variables, v(Q(
∧
T1, . . . ,

∧
Tm)) = 1 for

every valuation v on C(M) satisfying v(p) ∈ {[{x}] | x ∈ M} for every propositional
variable p occurring in T1, . . . , Tm.

Proof. (1 =⇒ 2) The formula Q(
∧
T1, . . . ,

∧
Tm) is a substitution instance of Q. Hence

Q(
∧
T1, . . . ,

∧
Tm) is valid on C(M) by assumption. Therefore we obtain the condition 2 of

the lemma.
(2 =⇒ 1) Let v be an arbitrary valuation on C(M). By definition of C(M), we can

assume v(qi) = [Si], where Si = {si
1, . . . , s

i
ki

} ⊆ M is a finite subset for every i = 1, . . . ,m.
Therefore we have

v(Q(q1, . . . , qm))

= Q(v(q1), . . . , v(qm))

= Q([S1], . . . , [Sm])

= Q(
∧

s∈S1

[{s}], . . . ,
∧

s∈Sm

[{s}]).

On the other hand, for each i, pick the set Ti = {ti1 . . . , tiki
} of distinct propositional variables

and define the valuation w on C(M) by w(tij) = [{si
j}]. Thus we have w(Q(

∧
T1, . . . ,

∧
Tm)) =

Q(
∧

s∈S1
[{s}], . . . ,

∧
s∈Sm

[{s}]) = 1 since v(p) ∈ {[{x}] | x ∈ M} for every propositional vari-
able p occurring in T1, . . . , Tm. Consequently, v(Q(q1, . . . , qm)) = 1.

Theorem 4.6.7 (Khomich[21]). Let Q1, . . . , Qn be S-formulas. Every Q = Q1, . . . , Qn pos-
sesses the property CS if and only if HS +Q1 + · · · +Qn = (H +Q1 + · · · +Qn)S .

Proof. (⇐=) Let Q ∈ {Q1, . . . , Qn} and A is a conjunct of Q̃. Thus, we obtain

H +Q1 + · · · +Qn ⊢ Q

⇐⇒ H +Q1 + · · · +Qn ⊢ Q̃

=⇒ H +Q1 + · · · +Qn ⊢ A

=⇒ HS +Q1 + · · · +Qn ⊢ A,

since A is an S-formula. Therefore, Q possesses the property CS .
(=⇒) Let M be an HS + Q1 + · · · + Qn-algebra. We show that every Q(q1, . . . , qm) ∈

{Q1, . . . , Qn} is valid on C(M).
Let T1, . . . , Tm be finite sets of propositional variables and v be a valuation on C(M)

satisfying that, for every propositional variable p occurring in T1, . . . , Tm, there exists x ∈ M
such that v(p) = [{x}]. It is sufficient to show v(Q(

∧
T1, . . . ,

∧
Tm)) = 1 by Lemma 4.6.6.

We have the formula Q̃ from Q(
∧
T1, . . . ,

∧
Tm) which is constructed by the method of

Definition 4.6.5. Let Q̃ = A1 ∧ · · · ∧ Ar, where A1, . . . , Ar are S-formulas. Thus HS + Q1 +
· · · + Qn ⊢ A for every A ∈ {A1, . . . , Ar} since H + Q1 + · · · + Qn possesses the property
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CS . Hence A is valid on M since M is an HS +Q1 + · · · +Qn-algebra. Thus A is valid also
on S-subalgebra {[{x}] | x ∈ M} of C(M) since {[{x}] | x ∈ M} is S-isomorphic to M.
Therefore, v(A) = 1 on C(M) since v(p) ∈ {[{x}] | x ∈ M} for every propositional variable
p occurring in A and A is an S-formula. It implies

v(Q(
∧

T1, . . . ,
∧

Tm))

= v(Q̃) = v(A1 ∧ · · · ∧ Ar)

= v(A1) ∧ · · · ∧ v(Ar)

= 1 ∧ · · · ∧ 1 = 1.

Consequently, C(M) is an HS∪{∧} +Q1 + · · · +Qn-algebra. Therefore, we obtain HS +Q1 +
· · · +Qn = (H +Q1 + · · · +Qn)S by Theorem 4.5.4 (condition 1 ⇐⇒ 7).

4.7 Conclusion

For given S, S ′ and an axiomatization of an intermediate S-logic HS + Γ, we considered a
general characterization for the conservativity condition (Theorem 4.5.1). Especially, for the
case S ∪{∧} ⊆ S ′, we proved that Horn’s construction ([12]) helps proving the conservativity
condition. In other words, the conservativity condition of HS + Γ (i.e, whether HS′ + Γ is
a conservative extension of HS + Γ) depends on the class {C(M) | M is H + Γ-algebra} of
S-algebras.

Also, as applications of this characterization, we gave algebraic proofs for some Khomich’s
theorems ([19, 21, 22]) (Theorem 4.6.2 and 4.6.7).

Question. Let S ⊆ S ′, ∧ /∈ S ′ and Γ be a set of S-formulas. What kind of class of algebras
does the conservativity condition of HS + Γ (i.e, whether HS′ + Γ is a conservative extension
of HS + Γ) depend on?
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Chapter 5

Separability of the Gabbay-de Jongh
logics

In this chapter, we give a separable axiomatization of the Gabbay-de Jongh logics Dm (m ≥ 2)
[10], i.e., we show that the Gabbay-de Jongh logics satisfies the separable condition. The
proofs are made as an application of the result of Chapter 4. In particular, the separable
axiomatization which we give is constructed as a Jankov’s characteristic formula. We also
show that (a variant of) the standard axiomatization of the Gabbay-de Jongh logics is not
separable. This chapter is based on [32].

5.1 Definitions and preliminaries

Gabbay-de Jongh logics Dm (m ≥ 2) are the logics characterized by all Kripke frames each
of that forms a finite tree whose points do not have more than m immediate successors (e.g.,
if m = 2, the logic is the set of formulas which is valid in all Kripke frames each of that forms
a finite binary tree). They gave axiomatizations of Dm as follows.

Theorem 5.1.1 (Gabbay and de Jongh[10], Section 4). H + Am is an axiomatization of
Dm (m ≥ 2), where

Am =
m∧

i=0

((pi →
∨

j ̸=i

pj) →
∨

j ̸=i

pj) →
m∨

i=0

pi.

H + Am is not separable since it is not normal. However, we can obtain a normal axiom
A′

m by the well-known method (the definition is in Section 2), i.e.,

A′
m = {(pi →

∨

j ̸=i

pj) →
∨

j ̸=i

pj | i = 0, . . . ,m} →
m∨

i=0

pi.

Furthermore, the Khomich’s result can not apply to Dm since disjunction occurs in A′
m.
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5.2 Another axiomatization of Gabbay-de Jongh logics

Let Tm = {1, ω, a0, . . . , am} be the {→, ∨}-algebra defined by the following diagram:

t
t

t t t
�

�
�

�

@
@

@
@

�
�

�
�

1

ω

a0 a1 q q q am

figure-1 Tm

we define x → y =

{
1 (x ≤ y)

y (otherwise),
x ∨ y =





1 (x = 1 or y = 1)

ai (x = y = ai)

ω (otherwise).

We show that H +X
{→, ∨}
Tm

is an axiomatization of Dm, i.e., H +X
{→, ∨}
Tm

= H + A′
m.

Lemma 5.2.1. Let S ⊇ {→, ∧, ∨}. For every S-algebra M, the following are equivalent.

1. X
{→, ∨}
Tm

is refutable in M.

2. Tm is {→, ∨}-embeddable in w(M), where w(M) is an S-homomorphic image of M.

3. A′
m is refutable in M.

Proof. We posted the idea behind the proof of (2 ⇐⇒ 3) on remarks (the end of this section)
since our proof is by long and boring calculations.

(1 ⇐⇒ 2) Follows from Theorem 4.1.5.

(2 =⇒ 3) Let h : Tm −→ w(M) be an embedding. Define valuation v on M by v(pi) =
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h(
∧

j ̸=i aj). Then

v(A′
m)

= {(v(pi) →
∨

j ̸=i

v(pj)) →
∨

j ̸=i

v(pj) | i = 0, . . . ,m} →
m∨

i=0

v(pi).

= {(h(
∧

j ̸=i

aj) →
∨

j ̸=i

h(
∧

k ̸=j

ak)) →
∨

j ̸=i

h(
∧

k ̸=j

ak) | i = 0, . . . ,m} →
m∨

i=0

h(
∧

j ̸=i

aj).

= {(h(
∧

j ̸=i

aj) → h(
∨

j ̸=i

∧

k ̸=j

ak)) → h(
∨

j ̸=i

∧

k ̸=j

ak) | i = 0, . . . ,m} → h(
m∨

i=0

∧

j ̸=i

aj).

= {(h(
∧

j ̸=i

aj) → h(ai)) → h(ai) | i = 0, . . . ,m} → h(ω).

= {(h(ai) → h(ai) | i = 0, . . . ,m} → h(ω).

= h(ω) ̸= 1.

Therefore, M also refutes A′
m.

(3 =⇒ 2) Assume that A′
m is refutable in M. By Theorem 4.1.4, there exists a subdirectly

irreducible S-algebra N which is an S-homomorphic image of M such that there exists a
valuation h on N satisfying h(A′

m) = ω. By Proposition 3.4.33, we have

h((pi →
∨

j ̸=i

pj) →
∨

j ̸=i

pj) = 1 (i = 0, . . . ,m);

h(
m∨

i=0

pi) = ω.

Then we have

h(pi) →
∨

j ̸=i

h(pj) ≤
∨

j ̸=i

h(pj) (i = 0, . . . ,m);

m∨

i=0

h(pi) = ω.

Furthermore, we have

h(pi) →
∨

j ̸=i

h(pj) =
∨

j ̸=i

h(pj) (i = 0, . . . ,m),

since h(pi) → ∨
j ̸=i h(pj) ≥ ∨

j ̸=i h(pj) always holds. Put xk =
∨

j ̸=k h(pj). We show that
{xk | k = 1, . . . ,m} ∪ {ω, 1} is {→, ∨}-isomorphic to Tm. First, we have xk → ω = 1
since xk =

∨
j ̸=k h(pj) ≤ h(

∨m
i=0 pi) = ω. Second, we obtain ω → xk = xk by the following
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calculation:

ω → xk = h(
m∨

i=0

pi) →
∨

j ̸=k

h(pj)

= (h(pk) ∨
∨

j ̸=k

h(pj)) →
∨

j ̸=k

h(pj)

= h(pk) →
∨

j ̸=k

h(pj)

=
∨

j ̸=k

h(pj) = xk.

Third, xk → xl = xl can be shown by similar calculations to above: xk → xl = h(pl) →∨
j ̸=l h(pj) =

∨
j ̸=l h(pj) = xl. Finally, we have xk∨xl = ω (k ̸= l) since xk∨xl =

∨
j ̸=k h(pj)∨∨

j ̸=l h(pj) = h(
∨m

i=0 pi) = ω. Consequently, Tm is {→, ∨}-embeddable in N (N is an S-
homomorphic image of M).

Theorem 3.4.27 and Lemma 5.2.1 show the following theorem.

Theorem 5.2.2. H +X
{→, ∨}
Tm

is an axiomatization of Dm.

Remark (The idea behind the proof of Lemma 5.2.1). Let 2 be the two-valued Boolean
algebra and Mm be the {→, ∨}-algebra defined by Mm = (2m+1 + 2){→, ∨} − {0}, where

(2m+1 + 2){→, ∨} is the {→, ∨}-reduct of 2m+1 + 2 (see figure-2). Mm refutes X
{→, ∨}
Tm

since
there exists a {→, ∨}-embedding h : Tm −→ Mm which is defined by h(ai) = ci, where
c0, . . . , cm are the immediate predecessors of ω. On the other hand, Mm also refutes A′

m

by the ω-refutation v of A′
m on Mm which is defined by v(pi) = bi, where b0, . . . , bm are the

minimal elements of Mm. Then we can easily verify bi =
∨

j ̸=i cj. However, to represent ci by
{b0, . . . , bm}, we need the conjunction (therefore, in the Lemma 5.2.1, we put the assumption
{→, ∧, ∨} ⊆ S). On the other hand, in the {→, ∧, ∨}-reduct of 2m+1 + 2, we have
ci =

∧
j ̸=i bj. In the proof of ((2) ⇐⇒ (3)), we verify that this relation between bi and ci holds

on any {→, ∧, ∨}-algebra by calculation.

t
t

t t t
t t t

�
�

�
�

Z
Z

Z
Z

Z
Z

Z
Z

�
�

�
�

�
�

�
�

Z
Z

Z
Z

1

ω

b2 b1 b0

c0 c1 c2

figure-2 M2
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5.3 Separability of H +X
{→, ∨}
Tm

H + X
{→, ∨}
Tm

is normal since X
{→, ∨}
Tm

is a {→, ∨}-formula. Therefore, in this section, we
show the S-completeness, that is:

HS +X
{→, ∨}
Tm

= (H +X
{→, ∨}
Tm

)S for every S.

First, we show for the case ∨ ∈ S, i.e., S = {→, ∨}, {→, ∨, ¬}. Our goal is:

HS +X
{→, ∨}
Tm

= (H +X
{→, ∨}
Tm

)S if ∨ ∈ S.

Let M be a finite subdirectly irreducible S-algebra. We consider the following condition
(ϕ⋆) for M:

(ϕ⋆) for every S-algebra N and S-homomorphism h such that h(N) is Gödelian, if there
exists a S-embedding g : M −→ C(h(N)) satisfying g(ω) = ω, M is S-embeddable in
h(N).

We show that (ϕ⋆) implies HS + XS
M = (H + XS

M)S for every finite subdirectly irreducible
S-algebra M and Tm satisfies the condition (ϕ⋆).

First, we show Tm satisfies the condition (ϕ⋆).

Lemma 5.3.1. Let N be a subdirectly irreducible S-algebra. If there exists a {→, ∨}-
embedding g : Tm −→ C(N) satisfying g(ω) = ω, Tm is {→, ∨}-embeddable in N.

Proof. By the assumption, we have

g(1) = 1;

g(ω) = ω;

g(ai) = xi
0 ∧ · · · ∧ xi

ni
(i = 0, . . . ,m),

for some xi
0, . . . , x

i
ni

∈ N. We can assume xi
0, . . . , x

i
ni

satisfy that for every k = 0, . . . , ni,∧ni

r=1 x
i
r ̸= ∧

r ̸=k x
i
r.

Now we put xi =
∪

s ̸=i{xs
t | t = 0, . . . , ns} → xi

0 (i = 0, . . . ,m). We have xi < ω for
every i since g is injective and Proposition 3.4.33. We show {1, ω, x0, . . . , xm} ⊆ N is
{→, ∨}-isomorphic to Tm. Since xi

0 ∈ {xs
t | s ̸= j, t = 1, . . . , ns}, we have

xi → xj

= (
∪

s ̸=i

{xs
t | t = 0, . . . , ns} → xi

0) →
∪

s ̸=j

{xs
t | t = 0, . . . , ns} → xj

0

=
∪

s ̸=j

{xs
t | t = 0, . . . , ns} → xj

0

= xj.
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Next we show that xi∨xj = ω if i ̸= j. xi∨xj ≥ ω can be verified by the following calculation:

xi ∨ xj

≥ xi
0 ∨ xj

0

≥ g(ai) ∨ g(aj)

= g(ai ∨ aj)

= g(ω)

= ω.

Conversely, if xi = 1, the following calculation holds on C(N):

xi
0 ∧ · · · ∧ xi

ni

= g(ai)

= {g(aj) | j ̸= i} → g(ai)

=
∪

s ̸=i

{xs
t | t = 0, . . . , ns} → (xi

0 ∧ · · · ∧ xi
ni

)

= (
∪

s ̸=i

{xs
t | t = 0, . . . , ns} → xi

0) ∧ (
∪

s ̸=i

{xs
t | t = 0, . . . , ns} → (xi

1 ∧ · · · ∧ xi
ni

))

= xi ∧ (
∪

s ̸=i

{xs
t | t = 0, . . . , ns} → (xi

1 ∧ · · · ∧ xi
ni

))

=
∪

s ̸=i

{xs
t | t = 0, . . . , ns} → (xi

1 ∧ · · · ∧ xi
ni

)

≥ xi
1 ∧ · · · ∧ xi

ni
.

Thus, we have
∧ni

r=1 x
i
r =

∧
r ̸=1 x

i
r which contradicts with the incomparability as mentioned

above. Consequently, we have xi ≤ ω which implies xi ∨xj ≤ ω. We proved that xi ∨xj = ω.
Consequently, Tm is {→, ∨}-isomorphic to {1, ω, a0, . . . , am} ⊆ N. Therefore, Tm is

{→, ∨}-embeddable in N.

Corollary 5.3.2. Tm satisfies the condition (ϕ⋆).

Next, we show that the condition (ϕ⋆) implies the following condition (ϕ) for every finite
subdirectly irreducible S-algebra M:

(ϕ) for every S-algebra N and S∪{∧}-homomorphism h, if M is S-embeddable in h(C(N)),
M is also S-embeddable in h(N).

Theorem 5.3.3. Let M be an S-algebra, N be an S ∪ {∧}-algebra and h : C(M) −→ N be
an S∪{∧}-homomorphism. Then the S-homomorphism h̄ : M −→ N defined by h̄(x) = h(x)
satisfies the following:

1. h(C(M)) and C(h̄(M)) are S ∪ {∧}-algebras;
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2. h(C(M)) is S ∪ {∧}-isomorphic to C(h̄(M)).

Proof. Put →̄, ∧̄, ∨̄, ¬̄ for the functions →, ∧, ∨, ¬ on C(h̄(M)) respectively. Let
x1, . . . , xm, y1, . . . , yn ∈ M. We show that the map g : h(C(M)) −→ C(h̄(M)) which is
defined by g(h(x1 ∧ · · · ∧ xm)) = h̄(x1)∧̄ · · · ∧̄h̄(xm) is the S ∧ {∧}-isomorphism.

Assume h(x1 ∧ · · · ∧ xm) = h(y1 ∧ · · · ∧ yn). Then, for every i = 1, . . . , n, we have

h̄(x1)∧̄ · · · ∧̄h̄(xm)→̄h̄(yi)

= h̄(x1)→̄ · · · →̄h̄(xm)→̄h̄(yi)

= h̄(x1 → · · · → xm → yi)

= h(x1 → · · · → xm → yi)

= h(x1 ∧ · · · ∧ xm) → h(yi)

≥ h(x1 ∧ · · · ∧ xm) → h(y1 ∧ · · · ∧ yn) = 1.

Obviously, this calculation holds in the case of h̄(y1)∧̄ · · · ∧̄h̄(yn)→̄h̄(xj) (j = 1, . . . ,m).
Therefore, g(h(x1 ∧ · · · ∧ xm)) = g(h(y1 ∧ · · · ∧ yn)) holds. We proved the well-definedness of
g.

Similarly, we can prove that g is injective. For every i = 1, . . . , n, we have

h̄(x1) ∧ · · · ∧ h̄(xm) = h̄(y1) ∧ · · · ∧ h̄(yn)

=⇒ h̄(x1)→̄ · · · →̄h̄(xm)→̄h̄(yi) = 1h̄(M)

⇐⇒ h̄(x1 → · · · → xm → yi) = 1h̄(M)

⇐⇒ h(x1 → · · · → xm → yi) = 1h(M) = 1C(h(M))

⇐⇒ h(x1) → · · · → h(xm) → h(yi) = 1C(h(M))

⇐⇒ h(x1) ∧ · · · ∧ h(xm) → h(yi) = 1C(h(M)).

Therefore, we obtain h(x1) ∧ · · · ∧ h(xm) ≤ h(y1) ∧ · · · ∧ h(yn). Obviously, we also have
h(y1)∧· · ·∧h(yn) ≤ h(x1)∧· · ·∧h(xm). Consequently, we have h(x1∧· · ·∧xm) = h(y1∧· · ·∧yn).
We proved g is injective.

By the definition of g, it is obvious that g is a surjection.
We can verify that g preserves → (g is an {→}-homomorphism) by the similar calculations

above.
We obtain that g preserves ∨ (if ∨ ∈ S) by the following calculation:

g(h(x1 ∧ · · · ∧ xm) ∨ h(y1 ∧ · · · ∧ yn))

= g(h(
∧

1≤i≤m, 1≤j≤n

(xi ∨ yj)))

=
∧

1≤i≤m, 1≤j≤n
h̄(xi ∨ yj)

=
∧

1≤i≤m, 1≤j≤n
(h̄(xi) ∨̄ h̄(yj))

= (h̄(x1)∧̄ · · · ∧̄h̄(xm)) ∨̄ (h̄(y1)∧̄ · · · ∧̄h̄(yn))

= g(h(x1 ∧ · · · ∧ xm)) ∨̄ g(h(y1 ∧ · · · ∧ yn)).
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We can prove that g preserves ∧ (if ∧ ∈ S) similarly. g preserves ¬ (if ¬ ∈ S) since g
preserves → and g(0) = g(h(0)) = h̄(0) = 0.

Lemma 5.3.4. Let M be finite subdirectly irreducible S-algebra, N be an (arbitrary) S-
algebra and h be an S ∪ {∧}-homomorphism. If there exists an S-embedding f : M −→
h(C(N)), there exist an S-homomorphism h′ and an S-embedding f ′ : M −→ C(h′(N))
satisfying f ′(ω) = ω.

Proof. Let F be a maximal filter of h(C(N)) such that f(ω) ̸∈ F (such F is guaranteed to
exist by Zorn’s Lemma) and π : h(C(N)) −→ π(h(C(N)) (= h(C(N))/F ) be a canonical
projection defined by F , i.e., π is defined by π(x) = x/F . By Proposition 3.4.34, π ◦ f :
M −→ π(h(C(N))) is an S ∪ {∧}-homomorphism satisfying that, π(h(C(N)) is subdirectly
irreducible and π ◦ f(ω) = ω.

Therefore, we show π ◦ f is injective. Assume x, y ∈ M satisfy x ̸= y and (π ◦ f)(x) =
(π◦f)(y). Without loss of generality, we can assume x ̸≤ y which implies x → y ≤ ω. By the
definition of π, (π ◦ f)(x) = (π ◦ f)(y) implies f(x) → f(y) ∈ F . Furthermore, x → y ≤ ω
implies f(x → y) ≤ f(ω). Therefore, we have f(x) → f(y) ≤ f(ω) which implies f(ω) ∈ F ,
a contradiction. Consequently, π ◦ f is an embedding.

By Theorem 5.3.3, we have S ∪{∧}-isomorphism i : π(h(C(N))) −→ C(π ◦ h(N)), where
π ◦ h is the S-homomorphism defined by π ◦ h(x) = π ◦ h(x) for all x ∈ N.

Therefore , we obtain the S-embedding i◦π◦f : M −→ C(π ◦ h(N)) (i.e., f ′ = i◦π◦f, h′ =
π ◦ h).

Corollary 5.3.5. The condition (ϕ⋆) implies the condition (ϕ) for every finite subdirectly
irreducible S-algebra M.

Proof. Since Lemma 5.3.4 shows that the assumption of the condition (ϕ) implies the one of
the condition (ϕ⋆).

Finally, we show the condition (ϕ) implies HS + XS
M = (H + XS

M)S for every finite
subdirectly irreducible S-algebra M.

Lemma 5.3.6. The condition (ϕ) implies HS +XS
M = (H+XS

M)S for every finite subdirectly
irreducible S-algebra M.

Proof. By Theorem 4.1.5, (ϕ) implies the following condition (ψ) for every finite subdirectly
irreducible S-algebra M (consider the contraposition of (ψ)):

(ψ) if N is an HS +XS
M-algebra, C(N) is an HS∪{∧} +XS

M-algebra.

Therefore, by Theorem 4.5.3, the lemma is proved.

By Corollary 5.3.2, 5.3.5 and Lemma 5.3.6, the S-completeness for the case ∨ ∈ S is
proved.

Theorem 5.3.7. If ∨ ∈ S, HS +X
{→, ∨}
Tm

= (H +X
{→, ∨}
Tm

)S holds.
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Next we show for the case ∨ ̸∈ S. If ∨ ̸∈ S, X
{→, ∨}
Tm

is not an S-formula but a {→, ∨}-
formula. Hence we have the following lemma.

Lemma 5.3.8. If ∨ ̸∈ S, HS + {X{→, ∨}
Tm

}S = HS holds.

On the other hand, Segerberg[28] proved the following theorem.

Theorem 5.3.9 (Segerberg[28]). If ∨ ̸∈ S, (Dm)S = HS holds.

Moreover, Theorem 5.2.2 shows Dm = H + X
{→, ∨}
Tm

. Consequently, the case ∨ ̸∈ S is
proved.

Theorem 5.3.10. If ∨ ̸∈ S, HS + {X{→, ∨}
Tm

}S = (H +X
{→, ∨}
Tm

)S holds.

Proof. HS + {X{→, ∨}
Tm

}S = HS = (Dm)S = (H +X
{→, ∨}
Tm

)S .

By Theorem 5.2.2, 5.3.7 and 5.3.10, the conclusion is proved.

Theorem 5.3.11. HS +X
{→, ∨}
Tm

is a separable axiomatization of Dm.

Remark. Let Γ is a set of Jankov’s characteristic formulas of S-algebras. The condition
(ϕ⋆) (Lemma 5.3.1) implies S ′(⊇ S)-completeness of H + Γ. However, among S ⊇ {→, ∨}-
algebras, we have not found any algebras which satisfy the assumption but Tm yet.

5.4 Inseparability of the variant of the standard axiom-

atization of Gabbay-de Jongh logics

Finally, we will show that H + A′
m is not a separable axiomatization of Dm.

Lemma 5.4.1. Tm validates A′
m for every m.

Proof. Suppose not; there is a refutation g of A′
m on Tm, i.e.,

g({(pi →
∨

j ̸=i

pj) →
∨

j ̸=i

pj | i = 0, . . . ,m} →
m∨

i=0

pi) ̸= 1.

We have g(pk) ̸= 1 for any k since g(A′
m) ≤ g(pk). Suppose g(pk) = ω for some k. Then,

there exists l ̸= k such that g(pl) ≤ g(pk) = ω since g(pl) ̸= 1. Therefore, we have:

g({(pi →
∨

j ̸=i

pj) →
∨

j ̸=i

pj | i = 0, . . . ,m} →
m∨

i=0

pi)

≥ g(((pl →
∨

j ̸=l

pj) →
∨

j ̸=l

pj) →
m∨

i=0

pi)

= ((g(pl) → ω) → ω) → ω

= (1 → ω) → ω

= 1,

63



this is a contradiction. Consequently, we have g(pk) ̸= ω, 1 for any k.
Suppose g(

∨m
i=0 pi) = ak. Thus we have g(pi) = ak for every i. Then we have

g({(pi →
∨

j ̸=i

pj) →
∨

j ̸=i

pj | i = 0, . . . ,m} →
m∨

i=0

pi)

= {(ak → ak) → ak | i = 0, . . . ,m} → ak

= ak → ak = 1.

This is a contradiction. Therefore, we have g(
∨m

i=0 pi) = ω.
Consequently, there are k, l ∈ {0, . . . ,m} such that k ̸= l and g(pk) = as, g(pl) = at

(t ̸= s). Furthermore, there exists u ̸= {0, . . . ,m} − {k, l} since m ≥ 2. Therefore, we have

g({(pi →
∨

j ̸=i

pj) →
∨

j ̸=i

pj | i = 0, . . . ,m} →
m∨

i=0

pi)

≥ g(((pu →
∨

j ̸=u

pj) →
∨

j ̸=u

pj) →
m∨

i=0

pi)

= ((g(pu) → ω) → ω) → ω

= (1 → ω) → ω

= 1.

This is a contradiction with the assumption that g is a refutation. Consequently, A′
m is valid

on Tm.

On the other hand, by Theorem 4.1.5, a {→, ∨}-algebra Tm refutes X
{→, ∨}
Tm

. Therefore
we have the following corollary.

Corollary 5.4.2. (Dm){→, ∨} = H{→, ∨} +X
{→, ∨}
Tm

⊋ H{→, ∨} + A′
m.

Therefore H{→, ∨} + A′
m is not {→, ∨}-complete.

Theorem 5.4.3. H{→, ∨} + A′
m is not a separable axiomatization of Dm.

5.5 Conclusion

As an application of the result of Chapter 4, we gave an separable axiomatization of Gabbay-
de Jongh logics Dm (m ≥ 2) by Jankov’s characteristic formula. For the case ∨ ∈ S,
S-normality is proved as the corollary of the main theorem of Chapter 4 and theorem of
Jankov’s characteristic formulas. and the other case is proved by the Segerberg’s theorem.
In the former case depends on the structure of Tm. In other words, it depends on the fact
that Gabbay-de Jongh logics can be axiomatized by Jankov’s characteristic formulas which
the results of Chapter 4can be apply. Therefore, the following question remains.
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Question. Let S ⊆ S ′. Is there a finite S ′-algebra M satisfying the following:

1. H +XS
M is separable;

2. H+XS
M is an axiomatization of an intermediate logic which is not known to be separable.

However, we have not solved that the whether following simple {→}-algebra U2 satisfies
the above question yet.
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cU2

In U2, we define x → y =

{
1 (x ≤ y)

y (otherwise),
x ∨ y =





1 (x = 1 or y = 1)

ai (x = y = ai)

ω (otherwise).
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Chapter 6

Hypersequent calculi related Avron’s
GLCW

Avron[1] gives two hypersequent calculi GLCW and GLC, both of which are equivalent
to the intermediate logic H + (p → q) ∨ (q → p). Thus, GLCW ⊢ H if and only if
GLC ⊢ H for any hypersequent H. However, GLCWS which is obtained by restricting
logical symbols to S is strictly weaker than GLCS if ∧ /∈ S. In particular, Avron proved
that GLC{→} ⊢ p ⇒ q | q ⇒ p but GLCW{→,∨,¬} ̸⊢ p ⇒ q | q ⇒ p, where p ⇒ q | q ⇒ p
is a hypersequent which is translated to (p → q) ∨ (q → p) itself. In this chapter, we revisit
GLCWS from our point of view and give two results.

We correct Avron’s cut-elimination theorem for GLCWS for the case that both of ∨ ∈ S
and ∧ /∈ S hold.

We also give a new hypersequent calculus m-GLCW which is a generalization of GLCW
for m ≥ 2 (1-GLCW = GLCW). We show that same relation holds between m-GLCW
and m-GLC as between GLCW and GLC, where m-GLC is a generalization of GLC
defined by Ciabattoni and Ferrari[5].

6.1 The intuitionistic hypersequent calculus HLJ

We recall the definitions of hypersequent and HLJ in this section. A hypersequent is a
natural generalization of a sequent. The intuitionistic hypersequent calculus HLJ is the
hypersequent calculus obtained from LJ. We also recall the standard translation from a
hypersequent into a formula.

Definition 6.1.1. A hypersequent is a finite multiset of sequents written in a form Γ1 ⇒
∆1 | · · · | Γm ⇒ ∆m.

Definition 6.1.2. The intuitionistic hypersequent calculus HLJ is the system defined by the
axioms and the inference rules.

The axioms A ⇒ A for any formula A.
Inference rules Let A and B be formulas, γ be a formula or emptyset, Γ and Σ are finite

multisets of formulas and G and H be hypersequents. The inference rules are divided into
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two types, internal structural rules, external structural rules and rules for logical symbols.
Internal structural rules

G | Γ ⇒ γ
(IWL)

G | A,Γ ⇒ γ

G | Γ ⇒ ∅
(IWR)

G | Γ ⇒ A

G | A,A,Γ ⇒ γ
(Con)

G | A,Γ ⇒ γ

G | Γ ⇒ A G | A,Σ ⇒ γ
(Cut)

G | Γ,Σ ⇒ γ

External structural rules

G
(EW)

G | H

G | Γ ⇒ γ | Γ ⇒ γ
(EC)

G | Γ ⇒ γ

Rules for logical symbols

G | Γ ⇒ A G | B,Σ ⇒ γ
(→ L)

G | A → B,Γ,Σ ⇒ γ

G | Γ, A ⇒ B
(→ R)

G | Γ ⇒ A → B

G | A,Γ ⇒ γ
(∧L)

G | A ∧B,Γ ⇒ γ

G | B,Γ ⇒ γ
(∧L)

G | A ∧B,Γ ⇒ γ

G | Γ ⇒ A G | Γ ⇒ B
(∧R)

G | Γ ⇒ A ∧B

G | A,Γ ⇒ γ G | B,Γ ⇒ γ
(∨L)

G | A ∨B,Γ ⇒ γ
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G | Γ ⇒ A
(∨R − 1)

G | Γ ⇒ A ∨B

G | Γ ⇒ B
(∨R − 2)

G | Γ ⇒ A ∨B

G | Γ ⇒ A
(¬L)

G | ¬A,Γ ⇒ ∅

G | A,Γ ⇒ ∅
(¬R)

G | Γ ⇒ ¬A

The notation ⊢HLJ which defines provability in HLJ is defined as follows:

1. ⊢HLJ S if S is an axiom sequent;

2. ⊢HLJ is closed under the above inference rules.

In the same way as the definition of S-formulas, we define S-sequents and S-hypersequents.
For example, C ∨D ⇒ C ∨D | A, A → B ⇒ B is an {→, ∨}-hypersequent.

We define S-subsystems of hypersequent calculi.

Definition 6.1.3. Let G be a hypersequent calculus. GS is the hypersequent calculus obtained
by adding the following restriction to G:

every proof of GS consists of only S-hypersequents.

The symbol | is translated to the disjunction ∨.

Theorem 6.1.4. Let Γ1 ∪ · · · ∪ Γm ∪ {A1, . . . , Am} is a set of formulas. The following are
equivalent:

1. ⊢HLJ Γ1 ⇒ A1 | · · · | Γm ⇒ Am;

2. ⊢H (Γ1 → A1) ∨ · · · ∨ (Γm → Am).

Proof. Induction on the length of proof.

By Theorem 6.1.4, we obtain a method of translation from a hypersequent into a formula.
Let HSeq be the set of all hypersequents. We define a map T : HSeq → Form by

T (Γ1 ⇒ δ1 | · · · | Γm ⇒ δm) = (T ′(Γ1) → T ′(δ1)) ∨ · · · ∨ (T ′(Γm) → T ′(δm)),

where T ′ is defined by T ′(Γi) =

{
Γi (Γ ̸= ∅)

⊤ (Γi = ∅)
and T ′(δi) =





δi (δi ̸= ∅)

⊥ (δi = ∅, ¬ ∈ S)

r (δi = ∅, ¬ /∈ S),

where r is a variable which does not occur in Γ1 ⇒ δ1 | · · · | Γm ⇒ δm.
If ∨ ̸∈ S, the symbol “|” cannot be translated directly.
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Lemma 6.1.5. Let A and B be formulas and p be a propositional variable which does not
occur in neither A nor B. Then, ⊢H A ∨B if and only if ⊢H (A → p) → (B → p) → p.

Proof. The only if part follows from the axiom (∨3) of H. The converse follows from:

⊢H (A → p) → (B → p) → p

=⇒⊢H (A → A ∨B) → (B → A ∨B) → A ∨B

⇐⇒⊢H A ∨B.

For given formulas A and B, we abbreviate (A → p) → (B → p) → p to A∨̄B, where p
is a propositional variable which does occur in neither A nor B.

Corollary 6.1.6. Let Γ1∪· · ·∪Γm∪{A1, . . . , Am} is a set of formulas and p be a propositional
symbol does not occurring in Γ1 ∪ · · · ∪ Γm ∪ {A1, . . . , Am}. The following are equivalent:

1. ⊢HLJ Γ1 ⇒ A1 | · · · | Γm ⇒ Am;

2. ⊢H (Γ1 → A1)∨̄ · · · ∨̄(Γm → Am).

6.2 Two hypersequent calculi GLCW and GLC

Definition 6.2.1 (Avron[1]). Symbols γ, γ1 and γ2 mean a formula or ∅.

1. GLCW is the hypersequent calculus obtained by adding the following split rule to HLJ:

G | Γ,∆ ⇒ γ
(sp)

G | Γ ⇒ γ | ∆ ⇒ γ

2. GLC is the hypersequent calculus obtained by adding the following communication rule
to HLJ:

G | Γ1,Γ2 ⇒ γ1 G | ∆1,∆2 ⇒ γ2
(com)

G | Γ1,∆1 ⇒ γ1 | Γ2,∆2 ⇒ γ2

We note that (sp) is considered a special case of (com), i.e., (sp) and the case A = B in
(com) are equivalent rule.

There is the following simple relation between GLCW and GLC.

Theorem 6.2.2 (Avron[1]). The following are equivalent for every hypersequent H:

1. GLCW ⊢ H;

2. GLC ⊢ H;
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3. H + (p → q) ∨ (q → p) ⊢ T (H).

Therefore, we consider GLCWS and GLCS , S-subsystems of GLCW and GLC, in the
rest of the chapter.

It is known that HS +(p → q)∨ (q → p) is characterized by the class of totally ordered S-
algebras. Therefore, Theorem 6.2.2 implies that both of GLCW and GLC are characterized
by the class of totally ordered Heyting algebras. However, if ∧ /∈ S, the class of S-algebras
characterizes GLCWS is different from the class of S-algebras characterizes GLCS

Let G be a hypersequent calculus and M be an S-algebra. We say that M is G-algebra
if M validates T (H) for every hypersequent H satisfying G ⊢ H.

Proposition 6.2.3 (Avron[1]). An S-algebra M is GLCWS-algebra if M satisfies the fol-
lowing condition:

every x ∈ M is indecomposable.

Proposition 6.2.4 (Avron[1]). GLCS is characterized by the class of totally ordered S-
algebras.

Proposition 6.2.5 (Avron[1]).

1. if ∧ ∈ S, every GLCWS-algebra is a GLCS-algebra;

2. if ∧ /∈ S, there is a GLCWS-algebra which is not a GLCS-algebra.

Proof. We show the contraposition of the case ∧ ∈ S. Let an S-algebra M is not a GLCS-
algebra. Then we have x, y ∈ M such that x and y are incomparable. Therefore we obtain
x → x ∧ y = x → y ≥ y > x ∧ y, which implies that M is not a GLCWS-algebra.

The case ∧ /∈ S follows from the GLCWS-algebra defined by Figure 9.
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Figure 9: a GLCWS-algebra but not a GLCS-algebra

Theorem 6.2.6 (Avron[1]). GLCS = GLCWS if and only if ∧ ∈ S
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Avron also gives Hilbert-style formulations of GLCWS .

Theorem 6.2.7 (Avron[1]). The following are equivalent:

1. GLCWS ⊢ H;

2. HS + ((p → q) → q)∨̄(p → q) ⊢ T (H).

6.3 Cut-elimination theorem of GLCWS

In Avron[1], he claims the following cut-elimination theorem.

Claim 6.3.1 (Avron[1] Theorem 1 and 5). GLCWS admits the cut-elimination theorem if
∧ /∈ S.

We discovered a mistake in the proof for the case ∨ ∈ S. Since the proof still correct for
the the case ∨ /∈ S, we corrected his claim.

Theorem 6.3.2 (c.f., Avron[1] Theorem 1 and 5). If S ⊆ {→,¬}, the cut-elimination
theorem holds on GLCWS .

We give a proof of it in detail since the original proof in Avron[1] is written in very simple
and this proof is used in the cut-elimination theorem for the generalized case in Section 6.5.

In this section, we assume S ⊆ {→,¬} and δ or it with subscript means an S-formula
or empty. GLCWcf

S is the S-hypersequent calculus obtained by removing (cut) from
GLCWS . GLCWs

S is the S-hypersequent calculus obtained by replacing (cut) by the
following (spmix) rule from GLCWS .

G1 | Γ1,Γ
′
1 ⇒ A | · · · | Γn,Γ

′
n ⇒ A G2 | ∆1 ⇒ δ1 | · · · | ∆k ⇒ δk

(spmix)

G1 | G2 | Γ′
1 ⇒ A | · · · | Γ′

n ⇒ A | Γ,∆A
1 ⇒ δ1 | · · · | Γ,∆A

k ⇒ δk

where Γ = Γ1 ∪ · · · ∪ Γn, a component Γ′
i ⇒ δ is actually exist only if Γ′

i ̸= ∅ and ∆δ
i (i =

1, . . . , k) is the multiset obtained by removing all δ from ∆i.

Lemma 6.3.3. GLCWS ⊢ G if and only if GLCWs
S ⊢ G for every S-hypersequent G.

Proof. For simplicity, we assume that n = k = 2. We first have the following proof by
split-rule.

Γ′
1,Γ1 ⇒ A | Γ2,Γ

′
2 ⇒ A

Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ1 ⇒ A | Γ2 ⇒ A

Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ ⇒ A

Then we obtain (spmix) by the following proof.
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Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ ⇒ A

Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ ⇒ A

∆1 ⇒ δ1 | ∆2 ⇒ δ2

A,∆A
1 ⇒ δ1 | A,∆A

2 ⇒ δ2

Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ,∆A
1 ⇒ δ1 | A,∆A

2 ⇒ δ2

Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ,∆A
1 ⇒ δ1 | Γ,∆A

2 ⇒ δ2

Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ,∆A
1 ⇒ δ1 | Γ,∆A

2 ⇒ δ2

Lemma 6.3.4 (Inversion lemma). Let Γ1, . . . ,Γn be multisets of S-formulas
and A1, . . . , An, B1, . . . , Bn be formulas. The following are equivalent:

1. GLCWcf
S ⊢ G | Γ1 ⇒ A1 → B1 | · · · | Γn ⇒ An → Bn.

2. GLCWcf
S ⊢ G | Γ1, A1 ⇒ B1 | · · · | Γn, An ⇒ Bn

Proof. (1 =⇒ 2) Induction on the length of the proof. We give the proof for the case that
(EC) and (sp). since the rest cases can be shown similarly to Theorem 2.2.5.

We show the case (EC), we can assume that the proof is the following form:

G | Γ1 ⇒ A1 → B1 | · · · | Γn ⇒ An → Bn | Γn ⇒ An → Bn

G | Γ1 ⇒ A1 → B1 | · · · | Γn ⇒ An → Bn

By I.H., we have

GLCWcf
S ⊢ G | Γ1, A1 ⇒ B1 | · · · | Γn, An ⇒ Bn | Γn, An ⇒ Bn.

Therefore we obtain

G | Γ1, A1 ⇒ B1 | · · · | Γn, An ⇒ Bn | Γn, An ⇒ Bn

G | Γ1, A1 ⇒ B1 | · · · | Γn, An ⇒ Bn

We show the case (sp), there are two proofs we need to consider. One of them is

G | Γ1 ⇒ A1 → B1 | · · · | Γn−1,Γn ⇒ An → Bn

G | Γ1 ⇒ A1 → B1 | · · · | Γn ⇒ An → Bn

where An−1 → Bn−1 = An → Bn. By I.H., we have

GLCWcf
S ⊢ G | Γ1, A1 ⇒ B1 | · · · | Γn−1,Γn, An ⇒ Bn.

Therefore we obtain

G | Γ1, A1 ⇒ B1 | · · · | Γn−1,Γn, An ⇒ Bn

G | Γ1, A1 ⇒ B1 | · · · | Γn−1,Γn, An, An ⇒ Bn

G | Γ1, A1 ⇒ B1 | · · · | Γn, An ⇒ Bn

The other is

G− | Γ1 ⇒ A1 → B1 | · · · | Γn−1 ⇒ An−1 → Bn−1 | Σ,Γn ⇒ An → Bn

G− | Σ ⇒ An → Bn | Γ1 ⇒ A1 → B1 | · · · | Γn ⇒ An → Bn
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where G = G− | Σ ⇒ An → Bn. By I.H., we have

GLCWcf
S ⊢ G− | Γ1, A1 ⇒ B1 | · · · | Γn−1, An−1 ⇒ Bn−1 | Σ,Γn, An ⇒ Bn.

Therefore we obtain

G− | Γ1, A1 ⇒ B1 | · · · | Γn−1, An−1 ⇒ Bn−1 | Σ,Γn, An ⇒ Bn

G | Γ1, A1 ⇒ B1 | · · · | Γn, An ⇒ Bn

The converse is obtained by applying (→R) n times.

Lemma 6.3.5. Let Γ1, . . . ,Γn,Σ be multisets of S-formulas and A and B be formulas. The
following are equivalent:

1. GLCWcf
S ⊢ G | Γ1 ⇒ A → B | · · · | Γn ⇒ A → B | Σ ⇒ A → B;

2. GLCWcf
S ⊢ G | Γ1 ⇒ B | · · · | Γn ⇒ B | Σ, A ⇒ B.

Proof.

GLCWcf
S ⊢ G | Γ1 ⇒ A → B | · · · | Γn ⇒ A → B | Σ ⇒ A → B

⇐⇒ GLCWcf
S ⊢ G | Γ1, . . . ,Γn,Σ ⇒ A → B

⇐⇒ GLCWcf
S ⊢ G | Γ1, . . . ,Γn,Σ, A ⇒ B

⇐⇒ GLCWcf
S ⊢ G | Γ1 ⇒ B | · · · | Γn ⇒ B | Σ, A ⇒ B.

Lemma 6.3.6. Let G be a hypersequent, Γ be a set of formulas and A and B be formulas.
GLCWcf

S ⊢ G | Γ ⇒ δ | · · · | Γ ⇒ δ implies GLCWcf
S ⊢ G | B,ΓA→B ⇒ δ.

Proof. Induction on the length of the proof. we verify the case (→L) and (EC).
In the case (→L), we can assume that the proof is the following form:

G | ∆ ⇒ D G | E,Σ ⇒ δ

G | D → E,∆,Σ ⇒ δ

If B ̸= E holds, D → E ̸= A → B also holds. Hence we have

(I.H.)

G | B,∆A→B ⇒ D

(I.H.)

G | B,E,ΣA→B ⇒ δ

G | B,D → E,∆A→B,ΣA→B ⇒ δ

If B = E, we have

(I.H.)

G | B,B,ΣA→B ⇒ δ

G | B,ΣA→B ⇒ δ

G | B,D → E,∆A→B,ΣA→B ⇒ δ
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In the case (EC), we can assume that the proof is the following form:

G | Γ ⇒ δ | Γ ⇒ δ

G | Γ ⇒ δ

Therefore we obtain G | B,ΓA→B ⇒ δ by the induction hypothesis.

Now we show the cut-elimination theorem for GLCWS for the case S ⊆ {→,¬}.
It is sufficient to prove that the rule (spmix) can be eliminated on GLCWs

S , i.e.,

GLCWcf
S ⊢ G1 | Γ1,Γ

′
1 ⇒ γ | · · · | Γn,Γ

′
n ⇒ γ

(we call it the left premise) and

GLCWcf
S ⊢ G2 | ∆1 ⇒ δ1 | · · · | ∆k ⇒ δk

(we call it the right premise) implies

GLCWcf
S ⊢ G1 | G2 | Γ′

1 ⇒ γ | · · · | Γ′
n ⇒ γ | Γ,∆A

1 ⇒ δ1 | · · · | Γ,∆A
k ⇒ δk

(we call it the conclusion), where γ, δ1, . . . , δk are a formula or ∅ (in the proof, we use γ,
δ and these with a subscript for a formula or ∅). We show it by double induction on the
complexity of the cut formula and the sum of the length of the proof of the premises. For
simplicity, we omit the side sequents that are not involved in the “action” in our proof.

If the left premise is an axiom A ⇒ A, we need to prove the following two cases:

A ⇒ A
R

∆ ⇒ δ
A ⇒ A | ∆A ⇒ δ

and

A ⇒ A
R

∆ ⇒ δ
A,∆A ⇒ δ

They can be solved by the following proofs respectively:

A ⇒ A
A ⇒ A | ∆A ⇒ δ

and

R
∆ ⇒ δ

some (IC)s or (IW)

A,∆A ⇒ δ

If the left premise is obtained by applying a (internal or external) structural rule finally,
we verify the case (EW) and (EC) (the other cases can be proved similarly). In the case
(EW), we can assume that the proof is the following form:
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L
Γ1,Γ

′
1 ⇒ δ

Γ1,Γ
′
1 ⇒ δ | Γ2,Γ

′
2 ⇒ δ

R
∆ ⇒ δ1

(c, l)

Γ′
1 ⇒ A | Γ′

2 ⇒ A | Γ1,Γ2,∆
δ ⇒ δ1

where c and l are the complexity of the cut formula and the sum of the length of the proof
of the premises respectively. This proof can be replaced with:

L
Γ1,Γ

′
1 ⇒ δ

R
∆ ⇒ δ1

(c, l − 1)

Γ′
1 ⇒ δ | Γ1,∆

δ ⇒ δ1

Γ′
1 ⇒ δ | Γ1,Γ2,∆

δ ⇒ δ1

Γ′
1 ⇒ δ | Γ′

2 ⇒ δ | Γ1,Γ2,∆
δ ⇒ δ1

The (spmix) rule in this deduction can be eliminated by induction hypothesis.
In the case (EC), we can assume that the proof is the following form:

L
Γ1,Γ

′
1 ⇒ δ | Γ1,Γ

′
1 ⇒ δ

Γ1,Γ
′
1 ⇒ δ

R
∆ ⇒ δ1

(c, l)

Γ′
1 ⇒ δ | Γ1,∆

δ ⇒ δ1

This proof can be replaced with:

L
Γ1,Γ

′
1 ⇒ δ | Γ1,Γ

′
1 ⇒ δ

R
∆ ⇒ δ1

(c, l − 1)

Γ′
1 ⇒ δ | Γ′

1 ⇒ δ | Γ1,Γ1∆
δ ⇒ δ1

Γ′
1 ⇒ δ | Γ′

1 ⇒ δ | Γ1∆
δ ⇒ δ1

Γ′
1 ⇒ δ,Γ1 | ∆δ ⇒ δ1

The (spmix) rule in this deduction can be eliminated by induction hypothesis.
If the left premise is obtained by applying (sp) finally, we need to prove two cases. In the

first case, we assume that the proof is the following form:

L
Γ1,Γ

′
1,Γ2,Γ

′
2 ⇒ δ

Γ1,Γ
′
1 ⇒ δ | Γ2,Γ

′
2 ⇒ δ

R
∆ ⇒ δ1

(c, l)

Γ′
1 ⇒ δ | Γ′

2 ⇒ δ | Γ1,Γ2,∆
δ ⇒ δ1

This proof can be replaced with

L
Γ1,Γ

′
1,Γ2,Γ

′
2 ⇒ δ

R
∆ ⇒ δ1

(c, l − 1)

Γ′
1,Γ

′
2 ⇒ δ | Γ1,Γ2,∆

δ ⇒ δ1

Γ′
1 ⇒ δ | Γ′

2 ⇒ δ | Γ1,Γ2,∆
δ ⇒ δ1
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The (spmix) rule in this deduction can be eliminated by induction hypothesis. In the other
case, we assume that the proof is the following form:

L
Γ1,Γ

′
1,Σ ⇒ δ

Γ1,Γ
′
1 ⇒ δ | Σ ⇒ δ

R
∆ ⇒ δ1

(c, l)

Σ ⇒ δ | Γ′
1 ⇒ δ | Γ1,∆

δ ⇒ δ1

This proof can be replaced with

L
Γ1,Γ

′
1,Σ ⇒ δ

R
∆ ⇒ δ1

(c, l − 1)

Γ′
1,Σ ⇒ δ | Γ1,∆

δ ⇒ δ1

Σ ⇒ δ | Γ′
1 ⇒ δ | Γ1,∆

δ ⇒ δ1

The (spmix) rule in this deduction can be eliminated by induction hypothesis.
If the left premise is obtained by applying (→R) finally and the right premise is obtained

by applying (→L) finally, we need to prove two cases. If the principal formula is the cut
formula, the proof is on Avron[1]. If not, we can assume that the proof is the following form:

L
Γ1,Γ

′
1 ⇒ δ

R1

Σ1 ⇒ C

R2

D,Σ2 ⇒ δ1
Σ1,Σ2, C → D ⇒ δ1

(c, l)

Γ′
1 ⇒ δ | Γ1,Σ

δ
1,Σ

δ
2, C → D ⇒ δ1

This proof can be replaced with

L
Γ1,Γ

′
1 ⇒ δ

R1

Σ1 ⇒ C
(c, < l)

Γ′
1 ⇒ δ | Γ1,Σ

δ
1 ⇒ C

L
Γ1,Γ

′
1 ⇒ δ

R2

D,Σ2 ⇒ δ1
(c, < l)

Γ′
1 ⇒ δ | Γ1,Σ

δ
2, D ⇒ δ1

Γ′
1 ⇒ δ | Γ1,Γ1,Σ

δ
1,Σ

δ
2, C → D ⇒ δ1

Γ′
1 ⇒ δ | Γ1,Σ

δ
1,Σ

δ
2, C → D ⇒ δ1

The (spmix) rule in this deduction can be eliminated by induction hypothesis.
The rest case is that both premises are obtained by applying (→L) finally. We need to

show two cases. The first case is that the principal formula in the right premise is not the
cut formula. Then we can assume that the proof is the following form:

L1

Σ1,Σ
′
1 ⇒ C

L2

D,Σ2,Σ
′
2 ⇒ δ

Σ1,Σ2,Σ
′
1,Σ

′
2, C → D ⇒ δ

R1

Π1 ⇒ E

R2

F,Π2 ⇒ δ1
E → F,Π1,Π2 ⇒ δ1

(c, l)

Σ′
1,Σ

′
2 ⇒ δ | Σ1,Σ2,Π

δ
1,Π

δ
2, C → D,E → F ⇒ δ1

This proof can be replaced with
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L1

Σ1, Σ′
1 ⇒ C

L2

D, Σ2, Σ′
2 ⇒ δ

Σ1, Σ2, Σ′
1, Σ′

2, C → D ⇒ δ

R1

Π1 ⇒ E
(c, < l)

Σ′
1, Σ′

2 ⇒ δ | Σ1, Σ2, Πδ
1, C → D ⇒ E

L1

Σ1, Σ′
1 ⇒ C

L2

D, Σ2, Σ′
2 ⇒ δ

Σ1, Σ2, Σ′
1, Σ′

2, C → D ⇒ δ

R2

F, Π2 ⇒ δ1
(c, < l)

Σ′
1, Σ′

2 ⇒ δ | Σ1, Σ2, Πδ
2, C → D, F ⇒ δ1

Σ′
1, Σ′

2 ⇒ δ | Σ1, Σ2, Πδ
1, Πδ

2, C → D, E → F ⇒ δ1

The (spmix) rule in this deduction can be eliminated by induction hypothesis.
The other case is that the principal formula of the right sequent is actually the cut formula.

Then we can assume that the proof is the following form:

L1

Σ1,Σ
′
1 ⇒ C

L2

D,Σ2,Σ
′
2 ⇒ E → F

Σ1,Σ2,Σ
′
1,Σ

′
2, C → D ⇒ E → F

R1

Π1 ⇒ E

R2

F,Π2 ⇒ δ1
E → F,Π1,Π2 ⇒ δ1

(c, l)

(⋆)Σ′
1,Σ

′
2 ⇒ E → F | Σ1,Σ2,Π

E→F
1 ,ΠE→F

2 , C → D ⇒ δ1

This proof implies:

GLCWcf
S ⊢ Σ1,Σ2,Σ

′
1,Σ

′
2, C → D ⇒ E → F ;

GLCWcf
S ⊢ F,Π2 ⇒ δ1.

By Lemma 6.3.4 and 6.3.6, we obtain:

GLCWcf
S ⊢ Σ′

1,Σ
′
2, E ⇒ F | Σ1,Σ2, C → D ⇒ F ;

GLCWcf
S ⊢ F,ΠE→F

2 ⇒ δ1.

Therefore we obtain the following proof:

L′

Σ′
1,Σ

′
2, E ⇒ F | Σ1,Σ2, C → D ⇒ F

R′
2

F,ΠE→F
2 ⇒ δ1

(c − 1)

Σ′
1,Σ

′
2, E ⇒ F | Σ1,Σ2, C → D,ΠE→F

2 ⇒ δ1

Σ′
1,Σ

′
2 ⇒ E → F | Σ1,Σ2,Π

E→F
1 ,ΠE→F

2 , C → D ⇒ δ1

The (spmix) rule in this deduction can be eliminated by induction hypothesis. We note that
the same proof works if the conclusion (⋆) is

Σ′
1,Σ

′
2, C → D ⇒ E → F | Γ1,Σ1,Σ2,Π

E→F
1 ,ΠE→F

2 ⇒ δ1.

We omit the proof for the following similar cases:

• the right premise is obtained by applying a (internal or external) structural rule finally;

• the right premise is obtained by applying (→R) finally;

• the right or left premise are obtained by applying a (¬L) or (¬R) finally.

78



□
We next give a counterexample for Avron’s cut-elimination theorem for the case ∨ ∈ S.
Let a hypersequent M = Γa ⇒ a | Γb ⇒ b | Γc ⇒ c | Γd ⇒ d | Γb∨c ⇒ b ∨ c | Γa→b∨c ⇒

a → b ∨ c, where

Γa = {b, c, d, b → d, c → d, b ∨ c, a → b ∨ c};

Γb = {a, c, d, b → d, c → d, b ∨ c, a → b ∨ c};

Γc = {a, b, d, b → d, c → d, b ∨ c, a → b ∨ c};

Γd = {b → d, c → d, a → b ∨ c};

Γb∨c = Γa→b∨c = {a, d, b → d, c → d}.

We note that Γd ⊆ Γa, Γb, Γc and Γb∨c = Γa→b∨c ⊆ Γb, Γc. Let Sub(M) = {a, b, c, d, b ∨
c, b → c, c → d, a → b∨ c}, i.e., Sub(M) = {A | A is a subformula of some B occurring in
M}.

Lemma 6.3.7. Let ∨ ∈ S. If a hypersequent H consists of formulas in Sub(M) satisfies
GLCWcf

S ⊢ H, M cannot be provable from H by applying only structural rules.

Proof. Induction on length l of the proof of GLCWcf
S ⊢ H.

The case l = 0, H = A ⇒ A for a S-formula A. Thus M cannot be provable from H
by applying only structural rules since any hypersequent which can be obtained by applying
only structural rules from A ⇒ A must contain A ⇒ A itself.

If H is obtained by applying (internal or external) structural rules finally, we can assume
that the proof is the following form:

...
G

(a structural rule)
H

Therefore, if M is provable from H by applying only structural rules, M is provable from G
by applying only structural rules too. It contradicts with induction hypothesis.

If H is obtained by applying (∨ R) finally, we can assume that H = G | Γ ⇒ b ∨ c and
the proof of GLCWcf

S ⊢ H is the following form:

...
G | Γ ⇒ x

G | Γ ⇒ b ∨ c

where x is b or c. Therefore, if M is provable from H by applying only structural rules, we
have Γ ⊆ Γb∨c

1. Therefore, Γ ⊆ Γx which implies that the sequent G | Γx ⇒ x is provable
from G | Γ ⇒ x by applying only structural rules. Consequently, M is provable from
G | Γ ⇒ x by applying only structural rules too. It contradicts with induction hypothesis.

If H is obtained by applying (∨ L) finally, we can assume that H = G | Γ, b ∨ c ⇒ y and
the proof of GLCWcf

S ⊢ H is the following form:

1We Ignore duplication of formulas in sequents. For example, {a, a, b, b, b} ⊆ {a, b, c}.
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...
G | Γ, b ⇒ y

...
G | Γ, c ⇒ y

G | Γ, b ∨ c ⇒ y

Therefore, if M is provable from H by applying only structural rules, we have three cases.
(Case 1: Γ ⊆ Γa and y = a) we have Γ ∪ {b} ⊆ Γa. Therefore Γa ⇒ a can be obtained from
Γ, b ⇒ y by applying only structural rules. It contradicts with induction hypothesis.
(Case 2: Γ ⊆ Γb and y = b) we have Γ ∪ {b} ⊆ Γb. Therefore Γb ⇒ b can be obtained from
Γ, b ⇒ y by applying only structural rules. It contradicts with induction hypothesis.
(Case 3: Γ ⊆ Γc and y = c) similarly to the case 2.

If H is obtained by applying (→ R) finally, we can assume that H = G | Γ ⇒ A → B.
M cannot be obtained from it by applying only structural rules.

If H is obtained by applying (→ L) finally, we can assume that H = G | v → w,Γ,∆ ⇒ z
and the proof of GLCWcf

S ⊢ H is the following form:

...
G | Γ ⇒ v

...
G | w,∆ ⇒ z

G | v → w,Γ,∆ ⇒ z

Therefore, if M is provable from H by applying only structural rules, we have some cases.
(Case 1: z = b ∨ c or z = a → b ∨ c) we have v → w = x → d and Γ ∪ ∆ ∪ {x → d} ⊆ Γb∨c,
where x = b or c. Since Γb∨c ⊆ Γb, Γc holds, Γx ⇒ x is provable from Γ ⇒ v by applying
only structural rules. It contradicts with induction hypothesis.
(Case 2: z = d) Similarly to the case 1. (Case 3-1: z = a, x → y = a → b ∨ c) we have
Γ ∪ ∆ ∪ {a → b ∨ c} ⊆ Γa. Therefore, Γa ⇒ a is provable from Γ ⇒ v by applying only
structural rules. It contradicts with induction hypothesis.
(Case 3-2: z = a, v → w = x → d, where x = b or c) we have Γ∪∆∪{x → d} ⊆ Γa. Therefore,
Γa ⇒ a is provable from w,∆ ⇒ z by applying only structural rules since ∆ ∪ {d} ⊆ Γa. It
contradicts with induction hypothesis.

(Case 4-1: z = x, v → w = a → b ∨ c, where x = b or c) we have Γ ∪ ∆ ∪ {a → b ∨ c} ⊆ Γx.
Therefore, Γx ⇒ x is provable from Γ ⇒ v by applying only structural rules. It contradicts
with induction hypothesis.
(Case 4-2: z = x, v → w = x → d, where x = b or c) we have Γ∪∆∪{x → d} ⊆ Γx. Therefore,
Γx ⇒ x is provable from w,∆ ⇒ z by applying only structural rules since ∆ ∪ {d} ⊆ Γx. It
contradicts with induction hypothesis.

Since GLCWcf
S has the subformula property, There are no applications of rules (∧L),

(∧R), (¬L) and (¬R) in the proof of GLCWcf
S ⊢ H.

We verified all cases.

Corollary 6.3.8. Let ∨ ∈ S. The following hold.

1. GLCWcf
S ⊢ a ⇒ b ∨ c | a → b ∨ c, b → d, c → d ⇒ d;
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2. GLCWS ⊢ a ⇒ b ∨ c | a → b ∨ c, b → d, c → d ⇒ d.

Proof. The former follows from Lemma 6.3.7. The latter follows from the proof below:

...
a, a → b ∨ c ⇒ b ∨ c

a ⇒ b ∨ c | a → b ∨ c ⇒ b ∨ c

...
b ∨ c, b → d, c → d ⇒ d

a ⇒ b ∨ c | a → b ∨ c, b → d, c → d ⇒ d.

Theorem 6.3.9. GLCWS does not admit the cut-elimination theorem if ∨ ∈ S.

Theorem 6.3.10 (Avron[1]). The cut-elimination theorem does not hold on GLCWS if
∧ ∈ S.

Proof. The following proof shows GLCWS ⊢ p ⇒ q | q ⇒ p:

p, q ⇒ p ∧ q

p ⇒ p ∧ q | q ⇒ p ∧ q p ∧ q ⇒ p

p ⇒ p ∧ q | q ⇒ p p ∧ q ⇒ q

p ⇒ q | q ⇒ p

However, GLCWcf
S ̸⊢ p ⇒ q | q ⇒ p since, any hypersequent which does not consist any

logical symbols is provable without cuts only if one of its components is of the form Γ ⇒ p,
where p ∈ Γ.

In conclusion, the following theorem is obtained.

Theorem 6.3.11. GLCWS has the cut-elimination theorem if and only if S ⊆ {→,¬} (i.e.,
S = {→}, {→, ¬}).

6.4 Conservativity results for GLCWS

In GLCW, the cut-elimination theorem implies the conservativity.
Let G be a hypersequent calculus and S ⊆ S ′. We say GS′ is a conservative extension of

GS if GS′ ⊢ H implies GS ⊢ H for every S-hypersequent H.

Proposition 6.4.1. GLCW{→,¬} is a conservative extension of GLCW{→}.

Proof. If a {→}-hypersequent H satisfies GLCW{→,¬} ⊢ H, we have a cut-free proof P of

LS ⊢ GLCW{→,¬} ⊢ H. Since GLCWcf
{→,¬} has the subformula property, P is a proof also

of GLCWcf
{→} ⊢ G. Therefore, GLCW{→,¬} is a conservative extension of GLCW{→}.

We give an alternative proof for Theorem 6.3.10 by using our result for conservativity.
Recall that GLCWS and HS + (p → q)∨̄((p → q) → q) are equivalent.
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Lemma 6.4.2. H{→,∧} + (p → q)∨̄((p → q) → q) is not a conservative extension of H{→} +
(p → q)∨̄((p → q) → q).

Proof. The {→}-reduct of M3 (defined in pp.46, Figure 8) is an H{→} + (p → q)∨̄((p →
q) → q)-algebra. However, C(M3) is the {→,∧}-reduct of N3 (defined in pp.46, figure-7).
Therefore, C(M3) is not an H{→,∧} + (p → q)∨̄((p → q) → q). By Theorem 4.5.3, the lemma
is proved.

Therefore. by considering the contraposition of Proposition 6.4.1, we obtain the fact that
the cut-elimination theorem does not hold on GLCWS if ∧ ∈ S.

However, the converse does not necessarily hold. Precisely, the fact that

GLCWS does not admit the cut-elimination theorem

does not necessarily implies

GLCWS is not a conservative extension of GLCW{→}.

Avron gave direct proofs for the conservativity ([1]) for the case S ⊆ S ′ ⊆ {→, ∨, ¬}.

Theorem 6.4.3 (Avron[1], Theorem 4 and Corollary 1). Let S ⊆ S ′ ⊆ {→, ∨, ¬}. then
GLCWS′ is a conservative extension of GLCWS .

6.5 Generalized splitting

Ciabattoni and Ferrari[5] gave a generalization of GLC. For m ≥ 1, m-GLC is obtained by
adding the following rule to HLJ:

G | Γ0,Γ1 ⇒ A0 . . . G | Γ0,Γm ⇒ A0 . . . G | Γm,Γ0 ⇒ Am . . . G | Γm,Γm−1 ⇒ Am
(Bwm)

G | Γ0 ⇒ A0 | · · · | Γm ⇒ Am

Theorem 6.5.1 (Ciabattoni and Ferrari[5]). Let H be an S-hypersequent. The following are
equivalent:

1. m-GLCS ⊢ H;

2. HJS +
∨m

i=0(pi → ∨
j ̸=i pj) ⊢ T (H);

3. every S-algebra whose width is m or less validates T (H).

We define a generalization of GLCW. For m ≥ 1, let m-GLCW be the hypersequent
calculus obtained by adding the generalized splitting rule (sp-m) to HLJS as follows:

Γi,Γj ⇒ A (i, j = 0, . . . ,m, i < j)
(sp-m)

Γ1 ⇒ A | · · · | Γm ⇒ A

For example, (sp-2) is:
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Γ0,Γ1 ⇒ A Γ1,Γ2 ⇒ A Γ2,Γ0 ⇒ A
(sp-2)

Γ0 ⇒ A | Γ1 ⇒ A | Γ2 ⇒ A

Similar to the case m = 1, (sp-m) is considered a special case of (Bwm), i.e., (sp-m) and
the case A0 = · · · = Am in (Bwm) are equivalent rule.

CIm =
∨̄m

k=1
{((r1 → · · · → rk−1 → (rk → s) → s)}∨̄(r1 → · · · → rm → s).

We have 1-GLCW = GLCW and (p → q) ∨ ((p → q) → q) = CI1. Notice that ∨̄ in CIm

can be replaced with ∨ if ∨ ∈ S.
We show that m-GLCW and HS + CIm are equivalent.
Let Um = {1, ω} ∪ {u0, . . . , um} be a {→}-algebra defined by the following figure:

t
t

t t t
�

�
�

�

@
@

@
@

�
�

�
�

1

ω

u0 u1 q q q um

Um

On Um, we define x → y =

{
1 (x ≤ y)

y (otherwise).

Let Zm = {1} ∪ P({e0, . . . , em}) be a {→}-algebra defined by

x → y =





1 (y = 1 or x ⊆ y)

y (x = 1)

xc ∪ y (otherwise),

where {e0, . . . , em} is an arbitrary set satisfying |{e0, . . . , em}| = m+ 1.
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Proposition 6.5.2. HS + X
{→}
Um

is characterized by the class of S-algebras {M | M is an
S-algebra such that (width of M) ≤ m}.

Proof. Let M be an S-algebra satisfying (width of M) > m. Then we have mutually incom-
parable elements a0, . . . , am ∈ M. Therefore we have an embedding h : Zm → M defined by
h(1) = 1, h(ω) = ω and h(ui) = ai. Consequently, M refutes X

{→}
Um

by Theorem 4.1.5.
The converse follows from the fact that (width of Um) = m+ 1.

We show that GLCWS and HS +X
{→}
Zm

are equivalent if ∨ /∈ S.
First, we construct an intermediate logic equivalent to GLCWS by a simple method. We

obtain the formula T 1
m = {pi → pj → q | i, j = 0, . . . ,m, i < j} → ∨̄m

k=0(pk → q) by the
inference rule (sp-m). However, the rule (sp-m) allows substituting a multiset of formulas in
Γk, whereas T 1

m above only applies substituting a single formula in each pk. We note that the
case ∧ /∈ S causes this problem since a multiset of formulas can be substituted in pk if ∧ ∈ S.
For example, Let σ be the substitution defined by σ(pi) = B1 ∧ B2 and σ(pj) = C1 ∧ C2.
Then we have σ(pi → pj → q) = B1 ∧ B2 → C1 ∧ C2 → q = B1 → B2 → C1 → C2 → q.
Therefore, we define

T a
m = {p1

i → · · · → pa
i → p1

j → · · · → pa
j → q | i, j = 0, . . . , m, i < j} →

∨̄m

k=0
(p1

k → · · · pa
k → q)

for every a ≥ 1.

Lemma 6.5.3. The following logics are equivalent:

1. m-GLCWS ;

2. HS + {T a
m | a ≥ 1}.

Proof. (1 =⇒ 2) is obvious. We show the converse. Let Γi = {p1
i , . . . , p

a
i } ∪ {p1

j → · · · →
pa

j → q | j ̸= i}. Then we have m-GLCWS ⊢ Γi, Γj ⇒ q if i ̸= j. Thus, by applying (sp-m),
we have m-GLCWS ⊢ Γi ⇒ q for every i = 0, . . . ,m. So, for each i, we have:

G | Γi ⇒ q

G | p1
i , . . . , p

a
i , {p1

i → · · · → pa
i → p1

j → · · · → pa
j → q | j ̸= i} ⇒ q

G | {p1
j → · · · → pa

j → q | j ̸= i} ⇒ p1
i → · · · → pa

i → q

G | ∅ ⇒ T a
m

Therefore, we obtain m-GLCWS ⊢ T a
m. The converse is proved.

Lemma 6.5.4. Let M be a finite S-algebra and g be a refutation of T a
m on M. Then, there

is an S-homomorphism h and x ∈ h(M) satisfying r(x) ≥ m+ 1 (the definition of r(x) is on
Section 3.5).

Proof. By Proposition 3.4.34, we have an S-homomorphism h such that h(M) is subdirectly
irreducible and h ◦ g(T a

m) = ω. Thus, by Proposition 3.4.33, we have

h ◦ g(p1
i → · · · → pa

i → p1
j → · · · → pa

j → q) = 1
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for every i, j = 0, . . . ,m (i < j) and

h ◦ g(p1
k → · · · pa

k → q) ̸= 1

for every k = 0, . . . ,m. We show that r(h◦g(q)) ≥ m+1. If not, we can assume r(h◦g(q)) =
{c1, . . . , cm}. By Theorem 3.5.3, we have

r(h ◦ g(p1
k → · · · pa

k → q))

= r(h ◦ g(p1
k) → · · ·h ◦ g(pa

k) → h ◦ g(q))

= r(h ◦ g(q)) − (I(h ◦ g(p1
k) ∪ · · · ∪ I(h ◦ g(pa

k)).

Therefore, for every k = 0, . . . ,m, we have f(k) ∈ {1, . . . ,m} satisfying cf(k) /∈ I(h ◦ g(p1
k) ∪

· · · ∪ I(h ◦ g(pa
k). However, f : {0, . . . ,m} −→ {1, . . . ,m} cannot be injective. Therefore,

there are s, t ∈ {0, . . . ,m} satisfying f(s) = f(t). Consequently, we obtain that

r(h ◦ g(p1
s → · · · → pa

s → p1
t → · · · → pa

t → q))

= r(q) − (I(h ◦ g(p1
s) ∪ · · · ∪ I(h ◦ g(pa

s)) ∪ (I(h ◦ g(p1
t ) ∪ · · · ∪ I(h ◦ g(pa

t ))

∋ cf(s).

Therefore, we obtain h ◦ g(p1
s → · · · → pa

s → p1
t → · · · → pa

t → q) ̸= 1, contradiction.

Lemma 6.5.5. If ∨ /∈ S, the following logics are equivalent for every m:

1. HS +X
{→}
Zm

2. HS + {T a
m | a ≥ 1}

3. HS + T 1
m

Proof. (1 ⊆ 3) By Proposition 3.4.11, it is sufficient to show V (HS +T 1
m) ⊆ V (X

{→}
Zm

) (recall
that V (L) is the class of all L-algebras for a given S-logic L). Let M be an S-algebra

satisfying M /∈ V (X
{→}
Zm

). Then we have an S-homomorphism f and a {→}-embedding
h : Zm −→ f(M) by Theorem 4.1.5. Let v be a valuation on f(M) defined by v(p1

i ) = h({ei})
and v(q) = h(∅). Then, we can easily verify v(T 1

m) = h({e0, . . . , em}) ̸= 1. Therefore, f(M)
also refutes T 1

m and it implies M refutes T 1
m by Theorem 3.3.13. We proved the contraposition.

(3 ⊆ 2) is trivial.

(2 ⊆ 1) By Proposition 3.4.11, it is sufficient to show V (X
{→}
Zm

) ⊆ V (HS + T a
m). Let M

be an S-algebra satisfying M /∈ V (HS + T a
m). Then there is a valuation g on M such that

g(T b
m) ̸= 1 for some b ≥ 1. Since T b

m is a {→}-formula, we obtain a finite {→}-subalgebra
N ⊆ M which refutes T b

m by Theorem 4.4.2. Therefore, by Lemma 6.5.4, we have {→}-
homomorphism h : N −→ h(N) and x ∈ h(N) satisfying r(x) ≥ m + 1. Therefore we can
assume that r(x) = {c0, . . . , cm}∪D for D−{c0, . . . , cm} ̸= ∅. Then, the element y = D → x
satisfies that r(y) = {c0, . . . , cm}. Moreover, for each subset Γ ⊆ {c0, . . . , cm}, we obtain the
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element e(Γ) = ({c0, . . . , cm} − Γ) → y such that r(e(Γ)) = Γ by Theorem 3.5.3. Similarly,
by Theorem 3.5.3, we have

r(e(Γ) → e(Σ)) =

{
Σ − Γ (Σ ̸⊆ Γ)

{1} (Σ ⊆ Γ).

Therefore, we obtain

e(Γ) → e(Σ) =

{
e(Σ − Γ) (Σ ̸⊆ Γ)

1 (Σ ⊆ Γ).

by Proposition 3.5.5. Therefore, {e(Γ) | Γ ⊆ {c0, . . . , cm}} ∪ {1} is {→}-isomorphic to Zm.

Consequently, by Theorem 4.1.5, N refutes X
{→}
Zm

. Thus, M also refutes X
{→}
Zm

. We proved
the contraposition.

Lemma 6.5.6. If ∨ /∈ S, the following logics are equivalent:

1. HS +X
{→}
Zm

;

2. HS + CIm;

3. HS + T 1
m.

Proof. (1 ⊆ 2) By Proposition 3.4.11, it is sufficient to show that V (HS + CIm) ⊆ V (HS +

X
{→}
Zm

). Let M be an S-algebra satisfying M /∈ V (HS + X
{→}
Zm

). Then we have there is an
S-homomorphism f and a {→}-embedding h : Zm −→ f(M) by Theorem 4.1.5. Let v be
a valuation on f(M) defined by v(pi) = h({e0, . . . , em} − {ei}) and v(q) = h(∅). Then we
obtain v(CIm) = h({e0, . . . , em}) ̸= 1. Therefore, f(M) refutes CIm. Thus M also refutes
CIm. We proved the contraposition.

(2 ⊆ 3) It follows from the fact HS + T 1
m ⊢ CIm, which is obtained by a substitution σ

defined by the following (σ satisfies σ(CIm) = Tm
1 ):

σ(ri) = {((p1 → · · · → pk−1 → (pk → q) → q)} (i = 1, . . . ,m);

σ(r0) = p1 → · · · → pm → q;

σ(s) = q.

(3 ⊆ 1) is already shown in Lemma 6.5.5.

Corollary 6.5.7. The following a hypersequent calculi and logics are equivalent for every S
(i.e., even if ∨ ∈ S):

1. HS +X
{→}
Zm

;

2. HS + {T a
m | a ≥ 1};

3. HS + T 1
m;
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4. HS + CIm.

Proof. Lemma 6.5.5 and 6.5.6 shows that these logics are equivalent if ∨ /∈ S, especially,
the case S = {→} (notice that the each of the above four logics is axiomatized by a {→}-

formula). Thus, these formula, X
{→}
Zm

, {T a
m | a ≥ 1}, T 1

m and CIm are provable in the all
above four logics for every S. Therefore, we obtain the corollary.

The above corollary and Lemma 6.5.3 implies the following conclusion.

Theorem 6.5.8. For every S, The following a hypersequent calculi and logics are equivalent.

1. m-GLCWS ;

2. HS + CIm;

3. HS + T 1
m;

4. HS +X
{→}
Zm

.

We obtain cut-elimination theorem m-GLCWS in the same way as the case m = 1.

Theorem 6.5.9. m-GLCWS admits the cut-elimination theorem if S ⊆ {→,¬}.
In the case ∨ ∈ S, the formula CIm can be applied in the method in Lemma 6.3.7. Let

Γ0 = {a1, . . . , am} and Γi = {a1, . . . , ai−1, ai → b ∨ c} for i = 1, . . . ,m. Then, we obtain the
following theorem for every m in the same way as the case m = 1.

Lemma 6.5.10. If ∨ ∈ S, the following hypersequent is provable in m-GLCWS with the
(cut) rule. However, without the (cut) rule, the following hypersequent is not provable:

Γ0 ⇒ b ∨ c | Γ2 ⇒ b ∨ c | · · · | Γm ⇒ b ∨ c | a1 → b ∨ c, b → d, c → d ⇒ d.

Theorem 6.5.11. m-GLCWS does not admit the cut-elimination theorem if ∨ ∈ S.

6.6 Conclusion

On GLCWS , the S-reduct of the hypersequent calculus characterized by all linear Kripke
frames, we revised Avron’s cut-elimination theorem for GLCW{→, ∨} and GLCW{→, ∨, ¬}.
Also, for m ≥ 2, we defined m-GLCWS , which are generalizations of GLCWS and proved
that Avron’s almost results still hold on m-GLCWS for any m.

Our idea is based on the fact that, a finite S-algebra M is linear if and only if every
element M is indecomposable. So, we define m-GLCWS by the concept of that, a finite
S-algebra N is an m-GLCWS-algebra if and only if every element of N can be represented
by m indecomposable elements, i.e., every x ∈ M satisfies |r(x)| ≤ m (see Section 3.5).
Therefore, we cannot generalization Avron’s result on the part of conservativity problem
(Section 6.4) since the fact M is m-GLCWS-algebra may not imply the fact M{∨} is m-
GLCWS∪{∨}-algebra.

Thus, we have the following question.
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Question. Let S = {→} or {→,¬} and m ≥ 2. Is m-GLCWS∪{∨} conservative extension
of m-GLCWS?

Also, in Chapter 5 and 6, we obtain two intermediate logics, m-GLCWS and Gabbay-de
Jongh logic Dm. We proved that they are equivalent to H +X→

Zm
and H + Tm respectively.

It is trivial that Tm can be embeddable in Zm, which implies m-GLCWS ⊆ Dm. Therefore
we can consider Mm, middle algebra between Zm and Tm, whose diagram is on the figure
below.
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Z

Z
Z
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t1

t
t t t
t t t

Z
Z

Z
Z
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�
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Z
Z

Z
Z

�
�

�
� �

�
�

�

Z
Z

Z
Z

M2

t1

t
t t t

Z
Z

Z
Z

�
�

�
�

T2

Question. Let m ≥ 2. Can we apply our technique and obtain result in the middle algebra
Mm. Precisely:

1. Is there a set of structural rules R such that a hypersequent calculus HLJ + R is
equivalent to H +X

{→}
Mm

?

2. Is there good definition of the set of H +X
{→}
Mm

-algebras?

3. Does conservativity condition holds on H +X
{→}
Mm

between S and S ′ such that S ⊆ S ′?
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