
Multiple-brane Solutions and
Singular Gauge Transformations

in Open String Field Theory

( 開弦の場の理論における多重ブレーン解と特異なゲージ変換 )

January, 2018

Physics Major
Graduate School of Science and Technology

Doctoral Course
Nihon University

SUGITA Kazuhiro



Contents

1 Introduction 1

2 Review of the Bosonic Cubic String Field Theory 4

2.1 Cubic Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Cubic Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Definitions by Using CFT . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 KBc Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Sliver Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Definition of String Fields K, B, c . . . . . . . . . . . . . . . . . . . 13
2.2.3 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Pure-gauge-form Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Tachyon Vacuum Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Trivial Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4 Gauge Invariant Observable . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Erler–Maccaferri Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Multiple-brane Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Murata–Schnabl Solution . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.2 Kϵ-Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 Equation of Motion in the Strong Sense . . . . . . . . . . . . . . . . 28
2.6.4 Energy and GIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Singular Gauge Transformation and the Erler–Maccaferri Solution 31

3.1 Construction of the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Equation of Motion in the Strong Sense . . . . . . . . . . . . . . . . . . . . 32
3.3 Energy and Gauge Invariant Observable . . . . . . . . . . . . . . . . . . . . 34
3.4 An Example: D24+D25-brane . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Review of the Modified Cubic Superstring Field Theory 36

4.1 Non-GSO-Projected Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 KBcGγ Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



4.3 Known Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Tachyon Vacuum Solution . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Half-brane Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Multiple-half-brane Solution 42

5.1 Gauge Equivalence between U1{2
2 and U1 . . . . . . . . . . . . . . . . . . . 42

5.1.1 From the Form of the Gauge Parameter . . . . . . . . . . . . . . . . 42
5.1.2 From the Energy of the Pure-gauge Solution Ũ´1QŨ . . . . . . . . . 43

5.2 Multiple-half-brane Solution Ψ3{2 . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Gϵ-Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Equation of Motion in the Strong Sense . . . . . . . . . . . . . . . . 48
5.2.4 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Double-brane Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Review of the Berkovits’ Open Superstring Field Theory 54

6.1 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Tachyon Vacuum Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Double-brane Solution in Berkovits’ Open SFT 59

7.1 Perturbative Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Double-brane Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.2 Gauge Invariant Observable . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusion 69

A Correlators and Formulae in the Bosonic Cubic String Field Theory 72

B KBcGγ Algebra 77

C Correlators in Modified Cubic String Field Theory 80

D Detailed Calculation of the Energy of the Half-brane Solution 83

E Detailed Calculations of the EOMS for Ψ3{2 86

F Detailed Calculation of the Energy of the Tachyon Vacuum Solution in Berkovits’
SFT 90

G Detailed Calculations of the Energy of the Double-brane Solution in Berkovits’ SFT 100

ii



Chapter 1

Introduction

The ultimate goal of the elementary particle physics is to understand the fundamental
dynamical variables and the laws of physics governing their dynamics. According to
the present understanding, except for the gravitational interaction, the standard model
describes particle physics by using the framework of the quantum field theory. How-
ever, in this framework, fundamental particles are basically regarded as points, i.e., zero-
dimensional objects, and there exist divergences coming from the quantum effects in the
ultra-violet region. In the case of the gravitational interaction, because of the serious
divergences, quantization based on the standard quantum field theory is not available.
Hence, constructing the framework of quantum gravity is one of the most important
theme in the research area of the elementary particle physics.

String theory is a candidate for the theory including the quantum gravity. This the-
ory avoids the above-mentioned divergences by treating “particles” as strings, i.e., one-
dimensional objects. However, at present, we have not yet understood any satisfactory
formulation of string theory which does not rely on the perturbation theory. String field
theory (SFT) is a candidate for such a non-perturbative formulation of string theory. In
1980’s, two types of the covariant open bosonic SFT actions were proposed. The first
action was constructed in [1], and the second one was constructed in [2]. These two types
of the actions adopted different definitions of the interaction of strings. We only consider
the latter type of the interaction in this thesis, i.e., the midpoint interaction. This action
was extended to the supersymmetric case in [3]. However, this supersymmetric action is
problematic concerning the existence of the picture changing operators (PCOs). Then,
in order to avoid the problem, a modified version of the action was proposed in [4–6],
and the theory defined by this action is called the modified cubic superstring field theory.
However, this action again is problematic with respect to the gauge fixing because of
the PCO.1 In 1990’s, another action for string fields in the Neveu–Schwarz (NS) sector
was constructed by Berkovits in [8, 9]. This action is free from the problem of the PCOs
because it does not use any PCOs.

SFT has been applied to analyses of the phenomenon called the tachyon condensation.
It is a transition from an unstable vacuum to another stable vacuum, and it requires
non-perturbative analyses. The vacuum in which the tachyon field has condensed is

1A recent development related to this issue is discussed in [7].
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called the tachyon vacuum, and it is a non-trivial classical solution of the equation of
motion (EOM) of SFT. Sen conjectured [10–12] that the value of the potential energy
at the tachyon vacuum is lower than the trivial vacuum by the value of the tension of
an unstable D-brane. After this conjecture was proposed, the calculations in studying
the tachyon condensation had been investigated by using the numerical technique [13]
known as the level truncation, and also analytic classical solutions had been searched
in the bosonic cubic SFT. Finally, in 2005, Schnabl found the analytic tachyon vacuum
solution [14]. Although the first form of the solution is complicated, now we have a simpler
form of the solution written in terms of the so-called KBc algebra which was introduced
by Okawa [15]. While the tachyon vacuum solution reproduces the energy of the vacuum
without any D25-brane, Murata and Schnabl proposed a multiple-brane solution, and
claimed that it reproduces the energy of the vacuum with n D25-branes [16, 17]. This
solution is constructed by using a singular gauge transformation [18–20], and hence in
general, the solution includes singular string fields. Therefore, it requires regularization
in order for the solution to be defined properly [16, 17, 21, 22]. After the appropriate
regularization, the multiple-brane solution is valid only when n “ 0, 1, 2.2 More recently,
Erler and Maccaferri proposed another type of multiple-brane solution (EM solution) [25],
which indeed can describe solutions with arbitrary number of D-branes. The EM solution
is an extension of the solution by Kiermaier, Okawa and Soler (KOS solution) [26], which
is also an extension of the solution based on the marginal deformation. Both of the EM
solution and the KOS solution are constructed by using the boundary condition changing
operators (BCCOs).

In this thesis, we discuss new multiple-brane solutions, by using singular gauge trans-
formations in three different theories. First, we discuss string fields which are constructed
by using singular gauge transformations for the EM solution in the bosonic cubic SFT.
We will give a support for the expectation that the singular gauge transformation creates
a D25-brane. Second, we discuss string fields which are constructed by using the singular
gauge transformation for the half-brane solution constructed by Erler [27] in the modified
cubic SFT. The energy of the half-brane solution is known to coincide with one half the
tension of a D9-brane. Although this solution might not have any physical significance,
the fact that the solution uses the extension of the KBc algebra is interesting. Third, we
discuss a string field which is constructed by using the singular gauge transformation for
the tachyon vacuum solution found by Erler [28] in the Berkovits’ SFT.

This thesis is organized as follows. In chapter 2, we review the bosonic cubic SFT. We
introduce the action for this theory, the KBc algebra and the pure-gauge-form solution to
construct the classical analytic solution of the EOM. Then, we further review the tachyon
vacuum solution, the EM solution and the multiple-brane solution. In chapter 3, we
discuss candidates for the new solutions by performing singular gauge transformations for
the EM solution. Here, the gauge parameter is the same as the one in the pure-gauge
form of the “simple” tachyon vacuum solution [29]. We evaluate the energy of the solution
and also the gauge invariant observable (GIO) [30]. Then, we study a concrete example of

2In this thesis we consider the singularity from K “ 0, and n ě 0. Other attempts can be found
in [23,24].
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the solution describing a D24-brane placed on a D25-brane. In chapter 4, we review the
modified cubic SFT. We consider the non-GSO-projected action so that the trivial vacuum
can correspond to an unstable D9-brane. We introduce an algebra in the modified cubic
SFT which includes string fields whose definition is based on the superconformal ghost
γ and the supercurrent G. We review some known solutions in the modified cubic SFT,
i.e., the tachyon vacuum solution and the half-brane solution. In chapter 5, we discuss a
solution obtained by performing a singular gauge transformation whose gauge parameter
is taken to be the same as the one in the pure-gauge form of the half-brane solution.
Since the solution includes a singular string field, we introduce a Gϵ-regularization as the
Kϵ-regularization. We check the EOMS and evaluate the energy. In chapter 6, we review
the Berkovits’ SFT and the tachyon vacuum solution in this theory. In chapter 7, we
discuss a candidate for the solution by performing a singular gauge transformation whose
gauge parameter is appeared in the tachyon vacuum solution in the bosonic cubic SFT,
the modified cubic SFT and the Berkovits’ SFT. We try to evaluate the energy and derive
its integral form. However, since the integral is rather complicated we do not reach the
result. Then alternatively, we try to evaluate the GIO. The chapter 8 is devoted to the
conclusion. Some detailed derivations of correlators and algebras, and also the detailed
calculations of energies and EOMS are given in the appendices.
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Chapter 2

Review of the Bosonic Cubic String Field
Theory

2.1 Cubic Action

We review the bosonic cubic SFT. Since the bosonic theory does not include the fermion,
it cannot describe our universe, i.e., it should be regarded as a kind of a toy model.
However, such a toy model is important in order to understand essential physics and to
develop methods of analyses of more realistic theories including fermions.

First, we review structure of the action, and next, we give definitions of building blocks
of the action by using conformal field theory (CFT). See e.g., [31–35], as textbooks and
pedagogiacal reviews.

2.1.1 Cubic Action

Let us consider the physical state condition:

QΨ “ 0, (2.1.1)

where Ψ is a ghost number one string field which is a state in the Hilbert space H of CFT:

Ψ P H, (2.1.2)

and Q is a Grassmann-odd operator called the BRST (Becchi–Rouet–Stora–Tyutin) op-
erator:

Q : H Ñ H. (2.1.3)

Since the BRST operator Q is nilpotent:

Q2 “ 0, (2.1.4)

the physical state condition is invariant under the following gauge transformation:

δΛΨ “ QΛ, (2.1.5)
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where the gauge parameter Λ is a ghost-number-zero string field. We use the BPZ
(Belavin–Polyakov–Zamolodchikov) inner product:

x‚, ‚y : H b H Ñ C, (2.1.6)

which satisfies the following properties

xφ1, φ2y “ p´qϵpφ1qϵpφ2qxφ2, φ1y, (2.1.7)

xQφ1, φ2y ` p´qϵpφ1qxφ1, Qφ2y “ 0. (2.1.8)

Here, ϵpφq is equal to 0 for a Grassmann-even φ and equal to 1 for a Grassmann-odd φ.
We can construct the free action by using the BRST operator and the BPZ inner

product:

SfreepΨq “ ´
1

2
xΨ, QΨy, (2.1.9)

which is invariant under (2.1.5):

δΛSfreepΨq “ ´
1

2
xQΛ, QΨy ´

1

2
xΨ, Q2Λy “ 0,

where we use the nilpotency of the BRST operator (2.1.4) and the property of the BPZ
inner product (2.1.8). By taking the variation, we obtain the equation of motion (EOM)
which reproduces the physical state condition (2.1.1).

Next, we introduce interactions by using a product between string fields. The product
is called the star product:

˚ : H b H Ñ H, (2.1.10)

and the gauge transformation is extended as

δΛΨ “ QΛ ` Ψ ˚ Λ ´ Λ ˚ Ψ. (2.1.11)

Witten constructed an action [2]:

SpΨq “ ´
1

2
xΨ, QΨy ´

1

3
xΨ,Ψ ˚ Ψy, (2.1.12)

which is invariant under the gauge transformation (2.1.11). Necessary condtions for the
invariance are the cyclicity of the BPZ inner product, the associativity of the ˚ product
and the Leibniz rule of the BRST operator Q:

xφ1, φ2 ˚ φ3y “ xφ1 ˚ φ2, φ3y, (2.1.13)

pφ1 ˚ φ2q ˚ φ3 “ φ1 ˚ pφ2 ˚ φ3q “ φ1 ˚ φ2 ˚ φ3 (2.1.14)

Qpφ1 ˚ φ2q “ pQφ1q ˚ φ2 ` p´qϵpφ1qφ1 ˚ Qφ2, (2.1.15)
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in addition to the properties (2.1.4), (2.1.7) and (2.1.8):

δΛSpΨq “ ´xδΛΨ, QΨy ´ xδΛΨ,Ψ ˚ Ψy

“ ´xQΛ, QΨy ´ xΨ ˚ Λ, QΨy ` xΛ ˚ Ψ, QΨy

´ xQΛ,Ψ ˚ Ψy ´ xΨ ˚ Λ,Ψ ˚ Ψy ` xΛ ˚ Ψ,Ψ ˚ Ψy

“ ´xΛ, QΨ ˚ Ψy ` xΛ,Ψ ˚ QΨy ´ xQΛ,Ψ ˚ Ψy

´ xΛ,Ψ ˚ Ψ ˚ Ψy ` xΛ,Ψ ˚ Ψ ˚ Ψy

“ 0. (2.1.16)

Here, from the cyclicity (2.1.7) and (2.1.13), we can derive the following relation:

xφ1, φ2 ˚ φ3y “ p´qϵpφ3qpϵpφ1q`ϵpφ2qqxφ3, φ1 ˚ φ2y “ p´qϵpφ1qpϵpφ2q`ϵpφ3qqxφ2, φ3 ˚ φ1y, (2.1.17)

and we used the equations. We also consider a finite gauge trasformation:

Ψg :“
8
ÿ

n“0

1

n!
δΛ

nΨ “

ˆ

1 ´ Λ `
1

2!
Λ ˚ Λ ´ ¨ ¨ ¨

˙

˚

ˆ

QΛ `
1

2!
QpΛ ˚ Λq ` ¨ ¨ ¨

˙

`

ˆ

1 ´ Λ `
1

2!
Λ ˚ Λ ´ ¨ ¨ ¨

˙

˚ Ψ ˚

ˆ

1 ` Λ `
1

2!
Λ ˚ Λ ` ¨ ¨ ¨

˙

“ e´Λ ˚ QeΛ ` e´Λ ˚ Ψ ˚ eΛ, (2.1.18)

where esΛ :“ 1 ` sΛ ` s2

2!
Λ ˚ Λ ` ¨ ¨ ¨ , ps P Cq. When we define u :“ eΛ and u´1 “ e´Λ, we

can rewrite the finite gauge transformation as

Ψ Ψg “ u´1pQ ` Ψqu,//
u (2.1.19)

where u´1pQ ` Ψqu is an abbreviation for u´1 ˚ Qu ` u´1 ˚ Ψ ˚ u, and the arrow with
u represents the gauge transformation whose gauge parameter is u. For the finite gauge
transformation, the action becomes

SpΨgq “ SpΨq ` Spu´1 ˚ Quq. (2.1.20)

Let us show this. We define the kinetic term of the action Skin and the interaction term
Sint:

SkinpΨq :“ ´
1

2
xΨ, QΨy, SintpΨq :“ ´

1

3
xΨ,Ψ ˚ Ψy. (2.1.21)

First, we perform the finite gauge transformation (2.1.19) for the kinetic term:

SkinpΨgq “ ´
1

2
xu´1pQ ` Ψqu,Qpu´1pQ ` Ψquqy

“ Skinpu´1 ˚ Quq ` SkinpΨq

´ xQu ˚ Qu´1,Ψy ´ xu ˚ Qu´1,Ψ ˚ Ψy. (2.1.22)
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Here we used
Qu´1 ˚ u “ ´u´1 ˚ Qu, 7 Qpu´1 ˚ uq “ 0. (2.1.23)

Second, we perform the finite gauge transformation (2.1.19) for the interaction term:

SintpΨ
gq “ ´

1

3
xu´1pQ ` Ψqu, u´1pQ ` Ψqu ˚ u´1pQ ` Ψquy

“ Sintpu
´1 ˚ Quq ` SintpΨq

` xQu ˚ Qu´1,Ψy ´ xQu ˚ u´1,Ψ ˚ Ψy. (2.1.24)

Here we used

xφ1 ` φ2, pφ1 ` φ2q ˚ pφ1 ` φ2qy

“ xφ1, φ1 ˚ φ1y ` 3xφ1 ˚ φ1, φ2y ` 3xφ1, φ2 ˚ φ2y ` xφ2, φ2 ˚ φ2y. (2.1.25)

Therefore, combining the two terms, we obtain

SpΨgq “ SkinpΨgq ` SintpΨ
gq

“ Skinpu´1 ˚ Quq ` SkinpΨq ´ xQu ˚ Qu´1,Ψy ´ xu ˚ Qu´1,Ψ ˚ Ψy

` Sintpu
´1 ˚ Quq ` SintpΨq ` xQu ˚ Qu´1,Ψy ´ xQu ˚ u´1,Ψ ˚ Ψy

“ SpΨq ` Spu´1 ˚ Quq. (2.1.26)

Let us show that Spu´1 ˚ Quq vanishes. First, the action can be written as

Spu´1 ˚ Quq “ ´
1

6
xu´1 ˚ Qu,Qu´1 ˚ Quy. (2.1.27)

Next, we introduce uτ s.t. u0 “ 1 and u1 “ u:

uτ :“ eτΛ. (2.1.28)

We consider the following quantity:

Cpτq “ xuτ
´1 ˚ Quτ , Quτ

´1 ˚ Quτy. (2.1.29)

By considering Bτcpτq, we find

BτCpτq “ x´Λ ˚ uτ
´1 ˚ Quτ , Quτ

´1 ˚ Quτy ` xuτ
´1 ˚ QpΛ ˚ uτ q, Quτ

´1 ˚ Quτy

` xuτ
´1 ˚ Quτ , Qp´Λ ˚ uτ

´1q ˚ Quτy ` xuτ
´1 ˚ Quτ , Quτ

´1 ˚ QpΛuτ qy

“ ´xΛ ˚ uτ
´1 ˚ Quτ , Quτ

´1 ˚ Quτy

` xuτ
´1 ˚ QΛ ˚ uτ , Quτ

´1 ˚ Quτy ` xuτ
´1 ˚ Λ ˚ Quτ , Quτ

´1 ˚ Quτy

´ xuτ
´1 ˚ Quτ , QΛ ˚ uτ

´1 ˚ Quτy ´ xuτ
´1 ˚ Quτ ,Λ ˚ Quτ

´1 ˚ Quτy

` xu´1
τ ˚ Quτ , Quτ

´1 ˚ QΛ ˚ uτy ` xu´1
τ ˚ Quτ , Quτ

´1 ˚ Λ ˚ Quτy

“ ´3xΛ, Q2puτ ˚ Quτ
´1qy

“ 0, (2.1.30)
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where we used the property of the BPZ inner product and Q, rQ, Bτ s “ 0 and uτ ˚Λ´Λ ˚

uτ “ uτ
´1 ˚ Λ ´ Λ ˚ uτ

´1 “ 0. Because Cp0q “ 0, we have

Cp1q “ xu´1Qu,Qu´1 ˚ Quy “ 0. (2.1.31)

Therefore, we obtain
Spu´1 ˚ Quq “ 0. (2.1.32)

By taking a variation of the action, we obtain the EOM:

δΨSpΨq “ ´
1

2
xδΨ, QΨy ´

1

2
xΨ, QδΨy

´
1

3
xδΨ,Ψ ˚ Ψy ´

1

3
xΨ, δΨ ˚ Ψy ´

1

3
xΨ,Ψ ˚ δΨy

“ ´xδΨ, QΨy ´ xδΨ,Ψ ˚ Ψy

“ 0 (2.1.33)

ô @δΨ, QΨ ` Ψ ˚ Ψ “ 0. (2.1.34)

2.1.2 Definitions by Using CFT

We give definitions of building blocks of the action of SFT by using CFT. See e.g., [36–38],
for textbooks on CFT.

The action of the string world sheet1 is given by:

SCFT “
1

2π

ż

d2z
´

BXµB̄Xµpz, z̄q ` bB̄cpz, z̄q ` b̃Bc̃pz, z̄q

¯

. (2.1.35)

where µ “ 0, ¨ ¨ ¨ , 25. This dimension is decided by demanding the nilpotency of the
BRST operator, Q2 “ 0. A string field φ is defined as the sum of the states of CFT:

φ :“

ż

d26k

p2πq26

´

T pkqc1|0; ky ` Aµpkqαµ
´1c1|0; ky `

i
?
2
Bpkqc0|0; ky

` ¨ ¨ ¨ ` Cpkqb´2c0c1|0; ky ` ¨ ¨ ¨

¯

, (2.1.36)

where αn, cn and bn are defined as2

αµ
n :“

?
´2

¿

dz

2πiz
zn`1BXµpzq, (2.1.37)

cn :“

¿

dz

2πiz
zn´1cpzq, (2.1.38)

bn :“

¿

dz

2πiz
zn`2bpzq. (2.1.39)

Here, the conformal weight of BXpzq, cpzq and bpzq is 1, ´1 and 2, respectively. These

1In this thesis, we use α1 “ 1.
2We use the doubling trick to define the contour integrals.
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operators satisfy the following (anti-)commutation relations:

rαµ
m, α

ν
ns “ mηµνδm`n,0, (2.1.40)

tbm, cnu “ δm`n,0. (2.1.41)

The state |0; ky is defined by |0; ky “ eikµX
µ
|0y, where |0y is the SLp2,Rq invariant vacuum:

αn|0y “ 0, n ě 0, (2.1.42)

cn|0y “ 0, n ě 2, (2.1.43)

bn|0y “ 0, n ě ´1. (2.1.44)

T pkq and Aµpkq, etc. are the component fields; T pkq is a tachyon field and Aµpkq is a
gauge field.

A conformal transformation of a weight h primary field is defined as

f ˝ Φpzq :“

ˆ

dfpzq

dz

˙h

Φ
`

fpzq
˘

. (2.1.45)

A correlator (N point function) of the CFT is defined as

xφ1pξ1q ¨ ¨ ¨φNpξNq yΣ :“

ż

Dφ
N
ź

n“1

φnpξnqe´SCFT , (2.1.46)

where Σ represents a two dimensional surface. The conformal invariance of the correlator
is described as

xφ1pξ1q ¨ ¨ ¨φNpξNq yΣ “ x f ˝ φ1pξ1q ¨ ¨ ¨ f ˝ φNpξNq yfpΣq, (2.1.47)

where fpΣq represents a transformed two dimensional surface.
By using the state-operator correspondence, the BPZ inner product is defined as fol-

lows:
xφ1, φ2y :“ x I ˝ φ1p0qφ2p0q yUHP. (2.1.48)

Here, the subscript UHP represents the upper half plane, and a conformal transformation
Ipξq is the inversion:

I : UHP Ñ UHP, (2.1.49)

Ipξq “ ´
1

ξ
. (2.1.50)

The UHP coordinate z is related to the strip coordinate pτ, σq through the conformal
transformation:

z “ eτ`iσ. (2.1.51)

We note that I is an involution:
I ˝ I “ id , (2.1.52)
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then, the cyclicity of the BPZ inner product is shown as

xφ1, φ2 y “ x I ˝ φ1p0qφ2p0q yUHP

“ x I2 ˝ φ1p0qI ˝ φ2p0q yUHP

“ p´qϵpφ1qϵpφ2qx I ˝ φ2p0qφ1p0q yUHP

“ p´qϵpφ1qϵpφ2qxφ2, φ1y, (2.1.53)

where in the second line we used the conformal invariance of the correlator and in the
third line we used the fact that I is an involution.

Next, we give the definition of the BRST operator:

Q :“

¿

dz

2πi
jBpzq, (2.1.54)

jBpzq :“ ´cTmpzq ` bcBcpzq `
3

2
B2cpzq, (2.1.55)

where Tmpzq is the matter energy-momentum tensor:

Tmpzq :“ ´BXµBXµpzq. (2.1.56)

The total energy-momentum tensor T pzq is given by T pzq “ Tmpzq ` T gpzq, where the
ghost energy-momentum tensor T gpzq is

T gpzq :“ Bb ¨ cpzq ´ 2Bpbcqpzq. (2.1.57)

The energy-momentum tensior T pzq is the generator of the conformal transformation.
The BRST operator Q is nilpotent iff the spacetime dimension is equal to 26. We can
show the nilpotency by using the following operator product expansions (OPEs):

BXµpzqBXνp0q „
´1

2
ηµν

z2
, (2.1.58)

bpzqcp0q „
1

z
, (2.1.59)

where ηµν is the Lorentz metric. The property (2.1.8) can be derived by using CFT:

xQφ1, φ2y “ x I ˝

ˆ
¿

0

dz

2πi
jBpzqφ1p0q

˙

φ2p0q yUHP

“ ´p´qϵpφ1qx I ˝ φ1p0q

ˆ
¿

0

dIpzq

2πi
jBpIpzqqφ2p0q

˙

yUHP

“ ´p´qϵpφ1qxφ1, Qφ2y, (2.1.60)

where the subscript z of
ű

z
represents that the contour encircles the point z.

We give the definition of the star product:

xφ1, φ2 ˚ φ3y :“ x f1 ˝ φ1p0qf2 ˝ φ2p0qf3 ˝ φ3p0q yUHP, (2.1.61)
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where fjpξq :“ tanp2
3
parctan ξ` cjqq, cj “ π

2
p2´ jq. Note that each string midpoint in the

UHP, ξ “ i, maps to itself:

fjpiq “ tan

ˆ

2

3
parctan i ` cjq

˙

“ i. (2.1.62)

We also consider the following conformal transformation:

f̃pξq :“ tan
´

arctan z `
π

3

¯

. (2.1.63)

This conformal transformation satisfies the following equations:

f̃ ˝ f1pξq “ f2pξq, f̃ ˝ f2pξq “ f3pξq, f̃ ˝ f3pξq “ f1pξq. (2.1.64)

By using these equations, we can show the cyclicity:

xφ1, φ2 ˚ φ3y “ x f̃ ˝ f1 ˝ φ1p0qf̃ ˝ f2 ˝ φ2p0qf̃ ˝ f3 ˝ φ3p0q yUHP

“ p´qϵpφ3qpϵpφ1q`ϵpφ2qqx f1 ˝ φ3p0qf2 ˝ φ1p0qf3 ˝ φ2p0q yUHP

“ p´qϵpφ3qpϵpφ1q`ϵpφ2qqxφ3, φ1 ˚ φ2y

“ xφ1 ˚ φ2, φ3y. (2.1.65)

By using the deformation of the contour in the BRST operator Q, we can show that Q is
a derivative:

xφ1, Qpφ2 ˚ φ3qy “ x f1 ˝ φ1p0q

¿

C2,3

dz

2πi

´

jBpzqf2 ˝ φ2p0qf3 ˝ φ3p0q

¯

yUHP

“ x f1 ˝ φ1p0q

ˆ
¿

f2p0q

dz

2πi
jBpzqf2 ˝ φ2p0q

˙

f3 ˝ φ3p0q yUHP

` p´qϵpφ2qx f1 ˝ φ1p0qf2 ˝ φ2p0q

ˆ
¿

f3p0q

dz

2πi
jBpzqf3 ˝ φ3p0q

˙

yUHP

“ xφ1, Qφ2 ˚ φ3y ` p´qϵpφ2qxφ1, φ2 ˚ Qφ3y, (2.1.66)

where the contour C2,3 encloses f2p0q and f3p0q.
We have demonstrated the properties of the BRST operator, the BPZ inner product

and the star product which are needed for the gauge invariance of the action by using
CFT.

2.2 KBc Algebra

The EOM of the bosonic cubic SFT:

QΨ ` Ψ ˚ Ψ “ 0,

consists of the BRST operator Q and the star product ˚. To construct solutions of the
EOM, we define a special set of string fields closed under Q and ˚. Okawa found the set
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of string fields [15], which is defined in a useful coordinate of CFT [39].

2.2.1 Sliver Frame

We introduce the sliver frame [39] which is a useful coordinate system to describe the star
product. The sliver frame is defined by the following conformal transformation:

fs : UHP Ñ sliver,

fspξq :“
2

π
arctan ξ. (2.2.1)

Note that the midpoint of the string in the sliver frame is given by

fspiq “ i8, (2.2.2)

and the upper unit semi-circle ξ “ eiθ, θ P r0, πsztπ
2
u in the UHP is mapped to the

semi-infinite vertical lines:

fspe
iθq “

#

1
2

` is, s ě 0 θ P r0, π
2
q,

´1
2

` is, s ě 0 θ P pπ
2
, πs,

(2.2.3)

and the origin maps to the origin
fsp0q “ 0. (2.2.4)

The upper half unit disk in the UHP maps to a “sliver.” 3

The star product can be realized by placing “slivers” side by side. In the correlator,
the left edge of the “sliver” and the right edge is glued, then it becomes a semi-infinite
cylinder. We have the identification z » z ` L where L is the circumference of the sliver
in the correlator.

Next, we introduce the wedge state. First we consider the following correlator:

xφtest, |0y y “ x fs ˝ φtestp0q1 yC2 “ x fs ˝ φtestp0q yC2 , (2.2.5)

where the subscript C2 denotes that the coordinate system is the sliver frame and the cir-
cumference of the cylinder is equal to 2. The state |0y in the left-hand side is the SLp2,Rq

invariant vacuum and by applying the state-operator correspondence, it corresponds to
the operator 1 in the right-hand side.

Let us increase the number of the state |0y by one in the left-hand side:

xφtest, |0y ˚ |0y y “ x fs ˝ φtestp0q yC3 , (2.2.6)

then the circumference is increased by 1 because the state |0y has the width 1 in the sliver
frame. Therefore,

xφtest, |0y ˚ |0y ˚ ¨ ¨ ¨ ˚ |0y y “ x fs ˝ φtestp0q yCn`1 , (2.2.7)

3Sliver means a slender fragment.
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where n P Zą0 is the number of |0y in the left-hand side. Next we extend the result as

xφtest,Ω
αy :“ x fs ˝ φtestp0q yCα`1 , (2.2.8)

where
α P Rě0. (2.2.9)

The string field Ωα is called the wedge state. The wedge state satisfies the following
equation:

xφtest,Ω
α ˚ Ωβy “ x fs ˝ φtestp0q yCα`β`1

“ xφtest,Ω
α`βy. (2.2.10)

It is known that the limit Ω8 is finite and this string field is called the sliver state. The
string field Ω0 is the identity string field under the star product:

xφtest,Ω
0 ˚ φy “ xφtest, φ ˚ Ω0y “ xφtest, φy “ x t ˝ fs ˝ φtestp0qfs ˝ φp0q yC2 , (2.2.11)

where the conformal transformation t is the translation z Ñ z ` 1 in the sliver frame.
This gives a precise definition of the identity string field 1, which appeared in (2.1.18).
We introduce a Tr:

Tr : H Ñ C,
Trr‚s :“ xΩ0, ‚y. (2.2.12)

If the star product of the two string fields is input in Tr, it is same as the BPZ inner
product.

Trrφ1 ˚φ2s “ xΩ0, φ1 ˚φ2y “ xΩ0 ˚φ1, φ2y “ xφ1, φ2y “ x t˝fs˝φ1p0qfs˝φ2p0q yC2 (2.2.13)

2.2.2 Definition of String Fields K, B, c

We introduce the string fields K, B, and c [15] defined in the sliver frame. These string
fields are closed under Q and ˚. Because of the form of the EOM, these string fields are
useful to construct solutions of the EOM. First we define the string field K:

Trrφtest ˚ Ks :“ x fs ˝ φtestp0q

ż

Ó 1
2

dz

2πi
T pzq yC1 , (2.2.14)

where we define
ż

Óx

:“

ż x´i8

x`i8

,

ż

Òx

:“

ż x`i8

x´i8

, x P R. (2.2.15)
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We can find that Ωα “ eαK from (2.2.10), (2.2.11) and the following equation:

BαTrrφtest ˚ Ωαs|αÑ0

“ Bαx fα`1Ñ1 ˝ fs ˝ φtestp0q yC1 |αÑ0

“ Bα

!

x fs ˝ φtestp0q yC1 ´ αx

¿

0

dz

2πi
zT pzqfs ˝ φtestp0q yC1 ` Opα2q

)ˇ

ˇ

ˇ

αÑ0

“ ´x fs ˝ φtestp0q

ż

Ó1´0

dz

2πi
pz ´ 1qT pzq yC1 ` x fs ˝ φtestp0q

ż

Ó`0

dz

2πi
zT pzq yC1

“ x fs ˝ φtestp0q

ż

Ó
` 1

2

dz

2πi
T pzq yC1

“ Trrφtest ˚ Ks. (2.2.16)

Here, we used the conformal transformation of the scaling:

fαÑβpzq :“
β

α
z, (2.2.17)

in the form
fα`1Ñ1pzq “

1

α ` 1
z “ z ´ αz ` Opα2q, (2.2.18)

and the periodicity z » z ` 1 in the x ‚ yC1 . Next, we define the string field B:

Trrφtest ˚ Bs :“ x fs ˝ φtestp0q

ż

Ó 1
2

dz

2πi
bpzq yC1 . (2.2.19)

In the end, we define the string field c:

Trrφtest ˚ cs :“ x fs ˝ φtestp0qcp1
2
q yC1 . (2.2.20)

In the next subsection, we demonstrate the algebras.

2.2.3 Algebra

Operations of the BRST operator Q for the string fields K, B and c are

QB “ K, QK “ 0, Qc “ c ˚ Bc “ c ˚ K ˚ c. (2.2.21)

Here, we define
Bc :“ K ˚ c ´ c ˚ K. (2.2.22)

Algebras among K, B and c are as follows:

rK,Bs “ 0, tB,Bu “ tc, cu “ 0, tB, cu “ 1, (2.2.23)

where we define

rφ1, φ2s :“ φ1 ˚ φ2 ´ φ2 ˚ φ1, tφ1, φ2u :“ φ1 ˚ φ2 ` φ2 ˚ φ1. (2.2.24)
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We demonstrate the above equations (2.2.21) and (2.2.23) by using the OPEs. First, we
list the OPE with the BRST current jB:

jBpzqjBp0q „ 0 ˆ
1

z
cB3c ` ¨ ¨ ¨ , jBpzqbp0q „

T p0q

z
, jBpzqcp0q „

cBcp0q

z
. (2.2.25)

By using these, we have the operation of Q for K, B, and c:

Trrφtest ˚ QBs “ x fs ˝ φtestp0q

¿

w

dz

2πi

ż

Ó 1
2

dw

2πi
jBpzqbpwq yC1

“ x fs ˝ φtestp0q

ż

Ó 1
2

dw

2πi
T pwq yC1

“ Trrφtest ˚ Ks, (2.2.26)

Trrφtest ˚ QKs “ Trrφtest ˚ Q2Bs “ 0, (2.2.27)

Trrφtest ˚ Qcs

“ x fs ˝ φtestp0q

¿

1
2

dz

2πi
jBpzqcp1

2
q yC1

“ x fs ˝ φtestp0qcBcp1
2
q yC1

“ x fs ˝ φtestp0qcp1
2
q

¿

1
2

dz

2πi
T pzqcp1

2
q yC1

“ x fs ˝ φtestp0qcp1
2
q

ˆ
ż

Ó 1
2 ´0

`

ż

Ò 1
2 `0

˙

dz

2πi
T pzqcp1

2
q yC1

“ x fs ˝ φtestp0qcp1
2
q

ż

Ó 1
2 ´0

dz

2πi
T pzqcp1

2
q yC1 ´ x fs ˝ φtestp0q

`

cp1
2
q
˘2
ż

Ó 1
2 `0

dz

2πi
T pzq yC1

“ Trrφtest ˚ c ˚ K ˚ cs. (2.2.28)

By using the following the OPEs:

bpzqbp0q „ Opzq, cpzqcp0q „ Opzq, bpzqcp0q „
1

z
, (2.2.29)
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and the Leibniz rule of Q, the remaining relations of the algebra are derived as

Trrφtest ˚ tB,Bus “ x fs ˝ φtestp0q

ż

Ó 1
2 ´0

dz

2πi

ż

Ó 1
2

dw

2πi
bpzqbpwq yC1

` x fs ˝ φtestp0q

ż

Ó 1
2

dw

2πi

ż

Ó 1
2 `0

dz

2πi
bpwqbpzq yC1

“ x fs ˝ φtestp0q

ż

Ó 1
2 ´0

dz

2πi

ż

Ó 1
2

dw

2πi
bpzqbpwq yC1

´ p´qϵpbqϵpbqx fs ˝ φtestp0q

ż

Ó 1
2

dz

2πi

ż

Ò 1
2 `0

dw

2πi
bpzqbpwq yC1

“ x fs ˝ φtestp0q

ż

Ó 1
2

dw

2πi

¿

1
2

dz

2πi
bpzqbpwq yC1

“ 0, (2.2.30)

Trrφtest ˚ tc, cus “ 2x fs ˝ φtestp0qpcp1
2
qq2 yC1 “ 0, (2.2.31)

0 “ Trrφtest ˚ QpB ˚ Bqs “ Trrφtest ˚ pK ˚ B ´ B ˚ Kqs, (2.2.32)

Trrφtest ˚ pB ˚ c ` c ˚ Bqs

“ x fs ˝ φtestp0q

ż

Ó 1
2 ´0

dz

2πi
bpzqcp1

2
q yC1 ` x fs ˝ φtestp0qcp1

2
q

ż

Ó 1
2 `0

dz

2πi
bpzq yC1

“ x fs ˝ φtestp0q

ˆ
ż

Ó 1
2 ´0

´

ż

Ó 1
2 `0

˙

dz

2πi
bpzqcp1

2
q yC1

“ x fs ˝ φtestp0q

ˆ
ż

Ó 1
2 ´0

`

ż

Ò 1
2 `0

˙

dz

2πi
bpzqcp1

2
q yC1

“

B

fs ˝ φtestp0q

¿

1
2

dz

2πi

1

z ´ 1
2

F

C1

“ x fs ˝ φtestp0q1 yC1

“ Trrφtest ˚ Is. (2.2.33)

Therefore, we obtain the KBc algebra:

rK,Bs “ 0, rK, cs “ Bc, tB, cu “ 1

QB “ K, QK “ 0, Qc “ cBc. (2.2.34)

2.3 Pure-gauge-form Solution

Let us consider the EOM:
QΨ ` Ψ2 “ 0,
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where we omit the star symbol ˚ hereafter. This equation is non-linear in terms of the
string field Ψ, and a string field is a superposition of any state of CFT with ghost number
1. Therefore, it is difficult to find an analytic solution. However there exists a solution
trivially satisfying the EOM, i.e.,

Ψ “ 0. (2.3.1)

We consider a regular gauge transformation u for this trivial solution, namely a trivial
pure-gauge solution:

0 u´1Qu “: Ψp.//
u (2.3.2)

The trivial pure-gauge solution Ψp always satisfies the EOM algebraically:

QΨp ` Ψp
2 “ Qpu´1Quq ` u´1Qu ¨ u´1Qu

“ Qu´1 ¨ Qu ´ Qu´1 ¨ Qu

“ 0. (2.3.3)

Conversely, a solution Ψs, i.e., QΨs `Ψs
2 “ 0, can be always written as “pure-gauge form”

formally [18, 40, 41], by using the homotopy operator A1 s.t. QA1 “ 1. By taking the
gauge parameter as

Us :“ 1 ` A1Ψs, (2.3.4)

we can construct the pure-gauge-form solution:

7 QUs “ QpA1Ψsq “ Ψs ´ A1QΨs

“ Ψs ` A1Ψs
2

“ UsΨs,

Ψs “ Us
´1QUs. (2.3.5)

When a solution is pure-gauge form but is not pure gauge, the gauge transformation
should be singular. We call such a gauge transformation the singular gauge transforma-
tion. For a singular gauge transformation U , we have

SpU´1QUq ‰ 0. (2.3.6)

Indeed, as we will see, the tachyon vacuum solution can be written as the pure-gauge
form, U´1QU . However, the tachyon vacuum solution is not pure gauge. Namely, it is
not gauge equivalent to the trivial solution 0 because of the energy or other property of
the solution.

Let us express the pure-gauge-form solution by using the KBc algebra [15]. We choose
the gauge parameter as

Upgq :“ Bc ` cBgpKq, (2.3.7)

where gpKq is the function of the string field K and the definition in the sliver frame will
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be discussed later. A product between these gauge parameters is as follows:

UpgqUpg1q “ pBc ` cBgpKqqpBc ` cBg1pKqq

“ BcBc ` Bc2Bg1pKq ` cBgpKqBc ` cBgpKqcBg1pKq

“ Bc ` cBgpKqg1pKq

“ Upgg1q. (2.3.8)

Here, we use the following equations, which we will use frequently in the rest of the thesis:

BcB “ Bp1 ´ Bcq “ B ´ B2c “ B, (2.3.9)

cBc “ cp1 ´ cBq “ c ´ c2B “ c, (2.3.10)

where the equations tB, cu “ 1 and B2 “ c2 “ 0 are used, and we assume rB, gpKqs “ 0,
since rB,Ks “ 0. We can find the inverse of Upgq formally:

pUpgqq´1 “ Upg´1q “ Bc ` cBgpKq´1, (2.3.11)

7 UpgqUpg´1q “ Upgg´1q “ Up1q “ Bc ` cB “ 1. (2.3.12)

Then, by using the explicit forms of Upgq and Upgq´1, the pure-gauge-form solution
Ψpgq :“ Upgq´1QUpgq can be written formally as follows:

Ψpgq “ Upgq´1Q
`

1 ` cBpgpKq ´ 1q
˘

“ pBc ` cBgpKq´1qp´cBKcqpgpKq ´ 1q

“ ´cBKgpKq´1cpgpKq ´ 1q. (2.3.13)

This is the pure-gauge-form solution using K,B, c which we study.

2.4 Tachyon Vacuum Solution

We review the tachyon vacuum solution written in the pure-gauge form found in [29],
which is the “simple” solution, though Schnabl first gave another form of the analytic
tachyon vacuum solution in [14]. The tachyon vacuum solution is the vacuum which
is the result of the tachyon condensation, i.e., the phenomenon of the disappearance of
an unstable D-brane. Since this phenomenon requires non-perturbative analyses, using
SFT is essential for studies of this phenomenon. In general, the form of the solution and
computations are simplest in the case of the tachyon vacuum solution among other known
solutions.
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2.4.1 Solution

The simple solution can be written in the pure-gauge form formally by choosing the gauge
parameter as:

U1 :“ Bc ` cBG1, (2.4.1)

G1 :“
´K

1 ´ K
. (2.4.2)

We give the relation between the trivial vacuum 0 “: Ψ1 and the simple solution Ψ0, and
also the explicit form of the simple solution:

Ψ1 Ψ0
oo
U1

´1

:“ U1
´1QU1

“ ´cBp1 ´ Kqc
1

1 ´ K

“ pQpBcq ´ cq
1

1 ´ K
. (2.4.3)

Here, the arrow with U1
´1 represents the gauge transformation whose gauge parameter is

U1
´1. The string field 1

1´K
, which is the function of the string field K, is defined by the

Laplace transformation:
1

1 ´ K
:“

ż 8

0

dx e´xΩx. (2.4.4)

This means that the string field 1
1´K

is the superposition (
ş8

0
dx) of the wedge state (Ωx)

with the weight (e´x).
In U1

´1, there exist the string field 1{K and we just assume that this string field is
the inverse of the string field K and that it is Q-closed. However, in the explicit form of
the solution (2.4.3), the string field 1{K does not exist.

2.4.2 Energy

Let us calculate the energy of the tachyon vacuum solution. The energy of a solution is
given by :

EpΨq :“ ´SpΨq “ Tr

„

1

2
ΨQΨ `

1

3
Ψ3

ȷ

. (2.4.5)

To compute the energy, we will use the following formulae:

Bccccrt1, t2, t3, t4s :“ TrrBcΩt1cΩt2cΩt3cΩt4s

“ ´
L2

4π3
pt3 sin 2θt1 ´ pt2 ` t3q sin 2θt1`t2 ` t2 sin 2θt1`t2`t3

` t1 sin 2θt3 ´ pt1 ` t2q sin 2θt2`t3 ` pt1 ` t2 ` t3q sin 2θt2q,

(2.4.6)

Bcdddrt1, t2, t3s :“ TrrBcBcΩt1BcΩt2BcΩt3s

“ ´
1

π
psin 2θt2 ` sin 2θt3 ´ sin 2θt2`t3q, (2.4.7)
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where
θx :“

πx

L
, (2.4.8)

and L is the circumference of the cylinder in the sliver frame. We will give the derivations
of these in appendix A.

First, we calculate the kinetic term:

´SkinpΨ0q “
1

2
Tr

„

`

QpBcq ´ c
˘ 1

1 ´ K
Q
´

`

QpBcq ´ c
˘ 1

1 ´ K

¯

ȷ

“
1

2
Tr

„

c
1

1 ´ K
cKc

1

1 ´ K

ȷ

“
1

2
lim
yÑ0

By

ĳ 8

0

dx1dx2 e
´px1`x2q Bccccrx1, y, x2, 0s

“ ´
3

2π2
. (2.4.9)

Second, we calculate the interaction term:

´SintpΨ0q “ ´
1

3
Tr

„

cBp1 ´ Kqc
1

1 ´ K
cBp1 ´ Kqc

1

1 ´ K
cBp1 ´ Kqc

1

1 ´ K

ȷ

“ ´
1

3
Tr

„

BcBc
1

1 ´ K
Bc

1

1 ´ K
Bc

1

1 ´ K

ȷ

“ ´
1

3

¡ 8

0

dx1dx2dx3 e
´px1`x2`x3q Bcdddrx1, x2, x3s

“
1

π2
. (2.4.10)

Therefore, the energy of the tachyon vacuum solution Ψ0 is

EpΨ0q “ ´SkinpΨ0q ´ SintpΨ0q “ ´
1

2π2
“ ´T25, (2.4.11)

where T25 is the tension of the D25-brane [12]. The energy of the tachyon vacuum solution
is lower than the perturbative vacuum by the tension of the D25-brane. Hence, Sen’s
conjecture has been proven.

2.4.3 Trivial Cohomology

Let us show another Sen’s conjecture, i.e., there is no physical excitation around the
tachyon vacuum solution [42]. We consider the homotopy operator A0 and the shifted
kinetic operator Q0 around the tachyon vacuum solution Ψ0:

A0 :“ ´
B

1 ´ K
,

Q0φ :“ Qφ ` Ψ0 ˚ φ ´ p´qϵpφqφ ˚ Ψ0. (2.4.12)

Since A0 does not have any singularity, it is well-defined in the sliver frame. The homo-
topy operator becomes the identity string field with the operation of the shifted kinetic
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operator:
Q0A0 “ 1. (2.4.13)

We can show that any Q0-closed state φ can be written in the Q0-exact form:

Q0pA0φq “ pQ0A0qφ ´ A0Q0φ “ φ. (2.4.14)

Since any Q0-closed state around the tachyon vacuum solution is Q0-exact, there is no
physical excitation around the tachyon vacuum solution.

2.4.4 Gauge Invariant Observable

Let us discuss another gauge invariant quantity (not the action). It is called the Ellwood
invariant or the gauge invariant observable (GIO) [30]. The definition of GIO is

W pφ,Vq :“ xVpiqfE ˝ φp0q yUHP

“ xVpi8qfs ˝ φp0q yC1 , (2.4.15)

where V is an on-shell closed string vertex operator V “ cc̃V p1,1q, V p1,1q is a matter p1, 1q

primary operator, and

fE : UHP Ñ UHP,

fEpξq “
2ξ

1 ´ ξ2
. (2.4.16)

We can show that the GIO W pφ,Vq is gauge invariant. First, since V is on-shell,

W pQΛ,Vq “ x

¿

0

dz

2πi
Vpiq

`

jBRSpzqfE ˝ OΛp0q
˘

yUHP

“ ´x

¿

i

dz

2πi

`

VpiqjBRSpzq
˘

fE ˝ OΛp0q yUHP

“ 0, (2.4.17)

where OΛp0q is the operator corresponding to the state Λ. Second, W pφ1 ˚φ2,Vq has the
cyclicity:

W pφ1 ˚ φ2,Vq “ xVpiqI ˝ φ1p0qφ2p0q yUHP

“ x I ˝ VpiqI ˝ I ˝ φ1p0qI ˝ φ2p0q yUHP

“ p´qϵpφ1qϵpφ2qxVpiqI ˝ φ2p0qφ1p0q yUHP

“ p´qϵpφ1qϵpφ2qW pφ2 ˚ φ1,Vq, (2.4.18)

then we have

W prφ,Λs,Vq “ W pφΛ,Vq ´ W pφΛ,Vq

“ 0. (2.4.19)
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Therefore, the GIO is gauge invariant:

W pδΛφ,Vq “ W pQΛ ` rφ,Λs,Vq

“ 0. (2.4.20)

Ellwood conjectured that the GIO for the solution Ψ satisfies the following equation:

W pΨ,Vq “ A˚pVq ´ A0pVq, (2.4.21)

where AipVq is a closed string one-point function on the disk:

A0pVq :“
1

2πi
xVp0qcp1q ydisk,

A˚pVq :“
1

2πi
xVp0qcp1q ydisk,BCFT˚ . (2.4.22)

Here, A0pVq is defined in the boundary conformal field theory (BCFT) corresponding to
the perturbative vacuum, while A˚pVq is defined in the different BCFT corresponding to
the solution Ψ. Indeed, this is true when Ψ is the tachyon vacuum solution Ψ0. The
tachyon vacuum solution is

Ψ0 “ ´Q
´

cB
1

1 ´ K

¯

´ c
1

1 ´ K
,

then, the GIO for Ψ0 is

W pΨ0,Vq “ ´W
´

c
1

1 ´ K
,V

¯

“ ´

ż 8

0

dx e´xxVpi8qcp0q yCx

“ ´

ż 8

0

dx e´xxVp0qhx ˝ cp0q ydisk

“ ´
1

2πi

ż 8

0

dx xe´xxVp0qcp1q ydisk

“ 0 ´ A0pVq. (2.4.23)

Here, hLpξq is a conformal transformation:

hL : sliver CL Ñ disk,

hLpξq :“ fd ˝ fs
´1 ˝ fLÑ2pξq “ e2πiξ{L, (2.4.24)

BξhLpξq “
2πi

L
e2πiξ{L. (2.4.25)
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Here, fdpξq is a conformal transformation:

fd : UHP Ñ disk,

fdpξq “
1 ` iξ

1 ´ iξ
, (2.4.26)

fd
´1pξq “ i

1 ´ ξ

1 ` ξ
, (2.4.27)

Bξfd
´1pξq “ i

´1

1 ` ξ
´ i

1 ´ ξ

p1 ` ξq2
. (2.4.28)

Moreover, if we choose a vertex operator V as

VG :“
2i

π
¨ cc̃BX0B̄X0, (2.4.29)

the value of the closed string one-point function A0pVGq is

A0pVGq “
1

2πi

2i

π
x cpiqcp´iq

´

´ i
1

2

¯´1

cp0q ybcS2 ˆ x BX0piqBX0p´iq yma
S2

“
1

2πi

2i

π
p2iqpi ` iqpi ´ 0qp´i ´ 0q ˆ

´1
2
η00

pi ` iq2

“
1

2π2
, (2.4.30)

i.e., the tension of the D25-barne T25. Therefore, the GIO of Ψ0 equals the energy of Ψ0:

W pΨ0,VGq “ EpΨ0q. (2.4.31)

More general discussion can be found in [43].

2.5 Erler–Maccaferri Solution

There exist different type of the solutions by Erler and Maccaferri [25] using the tachyon
vacuum solution. The solutions use other BCFT which is different from the BCFT in
which the original operators and states are defined. This has been done by using boundary
condition changing operators (BCCOs) σL,Rpzq which are used in the KOS solution [26].
The form of the solution is

Ψa
EM :“ Ψ0 ` Φa, (2.5.1)

then we have
QΨa

EM ` pΨa
EMq2 “ 0 ô Q0Φ

a ` pΦaq2 “ 0, (2.5.2)
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where we used the fact that Ψ0 is the solution of the EOM. The equation is satisfied if
the string field Φa is defined as

Φa :“ Σa
Lp´Ψ0qΣa

R, (2.5.3)

Σa
L :“ Q0

`

A0V1pKqσa
LV2pKq

˘

,

Σa
R :“ Q0pA0V2pKq´1σa

RV1pKq´1q, (2.5.4)

where V1,2pKq are functions of the string field K and the string fields σL,R are defined
by inserting the BCCO σL,Rpzq on the boundary of CFT as the string field c is made by
inserting cpzq. The EOM follows from the following relations:

Q0Σ
a
L,R “ Q0

2p ¨ ¨ ¨ q “ 0, (2.5.5)

Σa
RΣ

a
L “ 1. (2.5.6)

In the case of the KOS solution, the conformal weights of BCCOs should be 1, however
in [25], the BCCOs were modified as

σa
Lpzq :“ σa

˚Le
i
?
hX0

pzq, σa
Rpzq :“ σa

˚Re
´i

?
hX0

pzq. (2.5.7)

Here, the conformal weight of σa
L,R is 1, but because of the existence of the operator

e˘i
?
hX0 which does not have any physical effect, the conformal weight of σa

˚L,R can be
some different value h.

The energy of the EM solution is

EpΨa
EMq “ EpΨ0q `

ga
2π2

, (2.5.8)

where ga “ σa
Lσ

a
R is the disk partition function in BCFTa. The GIO is

W pΨa
EM,Vq “ AapVq ´ A0pVq. (2.5.9)

By using orthogonal BCCOs, σi
Rσ

j
L “ δij, the following string fields are also the solutions

of the EOM:
Ψa`b`¨¨¨

EM :“ Ψ0 ` Φa ` Φb ` ¨ ¨ ¨ . (2.5.10)

The energy and the GIO are

EpΨa`b`¨¨¨
EM q “ EpΨ0q `

1

2π2
pga ` gb ` ¨ ¨ ¨ q, (2.5.11)

W pΨa`b`¨¨¨
EM ,Vq “ pAapVq ` AbpVq ` ¨ ¨ ¨ q ´ A0pVq. (2.5.12)

When we choose the BCCOs as [44],

σai
L :“ eiki¨X , σai

R :“ e´iki¨X ,

kµi ki µ “ 0, kµi kj µ ă 0, (2.5.13)

where kµi is e.g., kµa “ pa, 1,
?
a2 ´ 1, 0, ¨ ¨ ¨ , 0q, we obtain the multiple-brane solution
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whose energy is
EpΨa1`a2`¨¨¨`an

EM q “ EpΨ0q ` nT25. (2.5.14)

As another concrete example of the EM solution, we review a lump solution. We
consider the BCCOs as σa

˚ “ σND
˚ , i.e., Neumann–Dirichlet (ND) twist operator [45], which

changes the Neumann boundary condition of X1 to the Dirichlet boundary condition.
Then, the EM solution describes the D24-brane. The conformal weight of σND

˚L,R is equal
to 1

16
[46]. By using the X-X Green function with ND twist operators [47], a three-point

function among σND
˚L,R and einX1{R [48] is

1

2πR
x e´inX1{Rpz1qσND

˚L pz2qσND
˚R pz3q yX

1

UHP “
2´2pn{Rq2

R

1

z12pn{Rq2z13pn{Rq2z231{8´pn{Rq2
.

(2.5.15)

Then, the correlator including σND
L,R in the sliver frame [26] is given by4

1

2πR
x fs ˝ e´inX1{Rp0qσND

L pt1qσ
ND
R pt1 ` t2q yma

CL
“

2´2pn{Rq2

R

ˆ

2 sin θt2
L sin θt1 sin θt1`t2

˙pn{Rq2

.

(2.5.16)

Here, we assume that the direction X1 is compactified as X1 » X1 `2πR, and end points
of the string are at X1 “ 0. From the (2.5.16), the OPE between ND twist operators is

σND
L pzqσND

R p0q „
1

R
. (2.5.17)

Let us compute the tachyon profile of the solution to check that the lump solution
describes the lower dimensional D-brane. The tachyon field T pX1q is expanded as

T pX1q “
ÿ

nPZ

tne
inX1{R. (2.5.18)

The coefficient tn can be computed by using the state |T̃ny, which is dual to the tachyon
state |Tny satisfying TrrT̃nTms “ δn,m:

|Tny “ ceinX
1{Rp0q|0y,

|T̃ny “ ´
1

2πR
cBce´inX1{Rp0q|0y. (2.5.19)

For simplicity, by choosing V1,2pKq as V1pKq “ V2pKq´1 “ 1 ´ K, we have the explicit
expression:

ΦND “ cBp1 ´ KqσND
L

1

1 ´ K
σND
R p1 ´ Kqc

1

1 ´ K
. (2.5.20)

4We normalize the correlator by dividing by the volume of spacetime.
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´T pX1q

X1

´TrrT̃0Ψ0s

Figure 2.1: The profile of the tachyon field T pX1q is shown. The compactification radius
is taken to be R=20. We numerically computed by setting |n| ď 100. The minus sign of
´T pX1q comes form the difference of the notation.

The coefficient tn [25] is given by

tn “ Tr
”

T̃nΨ
ND
EM

ı

“ Tr
”

T̃nΨ0

ı

` Tr
”

T̃nΦ
a
ı

“ Tr
”

T̃0Ψ0

ı

δn,0

`

´π

2

¯´1
ĳ 8

0

dx1dx2 lim
u1,2Ñ0

p´Bu1qp´Bu2q

!

e´px1`x2`u1`u2q

ˆ Bccdcrx1 ` 1
2
, 0, 1

2
, u1 ` x2 ` u2s

ˆ x
1

2πi
fs ˝ e´ikX1

p0qσND
L p1

2
` u1qσND

R p1
2

` u1 ` x1q yma
C1`x1`x2`u1`u2

)

, (2.5.21)

where ´TrrT̃0Ψ0s “ 0.284394 . . . [29], and the definition of Bccdcrt1, t2, t3, t4s is given in
appendix A (A.19). Figure 2.1 shows the numerical result for the profile of the tachyon
field. Far away from X1 “ 0, the value of the tachyon field asymptotically approaches
that for the tachyon vacuum solution ´TrrT̃0Ψ0s.
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2.6 Multiple-brane Solution

2.6.1 Murata–Schnabl Solution

The multiple-brane solution [16, 17] in the pure-gauge form can be written by using the
gauge transformation for the tachyon vacuum solution:

Ψ0 Ψn
//

pU1
´1qn

:“ U1
n´1QU1

´pn´1q

“ cBKG1
n´1cp1 ´ G1

´pn´1qq, n P Zě0. (2.6.1)

At first, the energy of this solution is expected to reproduce the value which is equal to
n times the tension of the D25-brane. However by taking care of the singular string field
1{K, we obtain the correct energies only for the cases with n “ 0, 1 and 2.

2.6.2 Kϵ-Regularization

Except for the tachyon vacuum solution Ψ0 (and the trivial solution Ψ1 “ 0), the string
field Ψn has the singular string fields p1{Kq’s. We explain that the string field 1{K

needs a regularization. We consider 1{K is singular because the eigenvalue may be zero,
and the (inverse) Laplace transformation is not well-defined. First, we see that 1

1´K
is a

well-defined string field, i.e., it has the inverse and the Laplace transformation:

1

1 ´ K
p1 ´ Kq “

ż 8

0

dx e´xΩx lim
uÑ0

p´Buqte´uΩuu

“ ´

ż 8

0

dx lim
uÑ0

Bxte´px`uqΩx`uu

“ ´re´xΩxs8
0

“ ´p lim
xÑ8

e´xΩx ´ Ω0q

“ 1, (2.6.2)

where the string field Ω8 is finite [39]. Next, if we assume that the Laplace transformation
of the string field 1{K is

1

´K
?
“

ż 8

0

dz Ωz, (2.6.3)

then, the string field K is not the inverse

´
1

´K
K

?
“ ´

ż 8

0

dz Ωz lim
yÑ0

tByΩ
yu

“ ´rΩzs8
0

“ ´Ω8 ` 1 ‰ 1. (2.6.4)

Let us introduce the so-called “Kϵ-regularization” [17,21,22], in which we replace each
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string field K in the solution Ψn with Kϵ defined by

Kϵ :“ K ´ ϵ, 0 ă ϵ ! 1. (2.6.5)

We can check the string field 1{Kϵ is invertible:

´
1

´Kϵ

Kϵ “ ´

ż 8

0

dz e´ϵzΩz lim
y1Ñ0

By1te´ϵy1Ωy1u

“ ´
“

e´ϵzΩz
‰8

0

“ 1, (2.6.6)

before we take the limit ϵ Ñ 0. The algebra among Kϵ, B and c is given by

rKϵ, Bs “ 0, B2 “ c2 “ 0, tB, cu “ 0,

QKϵ “ 0, Qc “ cBc, QB “ Kϵ ` ϵ, (2.6.7)

where Bc “ rK, cs “ rKϵ, cs. In the following, we use the notation J‚Kϵ, in which all K’s
inside the square bracket with subscript ϵ are replaced with Kϵ:

JfpK,B, cqKϵ “ fpKϵ, B, cq. (2.6.8)

From the algebra (2.6.7), we have QJBKϵ ´ JQBKϵ “ ϵ and QJφKϵ ´ JQφKϵ “ 0, where φ
does not include B. Then, we obtain the relation:

QJ‚Kϵ ´ JQ‚Kϵ “ ϵ
B

BB
J‚Kϵ. (2.6.9)

Note that the statistics of B{BB is same as B.

2.6.3 Equation of Motion in the Strong Sense

We introduce an EOM in the strong sense (EOMS):

EOMSpφq :“ TrrφpQφ ` φ2qs. (2.6.10)

At first sight, if the string field φ is the solution of the EOM algebraically, it seems that
EOMSpφq is automatically zero. However, if the string field φ includes 1{K as Ψn, we
should regularize it and check whether EOMSpφq is zero or not, even if Ψn is in the pure-
gauge form, i.e., the solution of the EOM algebraically. By using (2.6.9), the EOMS in
the strong sense for JΨnKϵ can be written as

EOMSpJΨnKϵq “ ϵTr

„JΨnKϵ B

BB
JΨnKϵȷ , (2.6.11)

where we used the EOM: JQΨnKϵ ` JΨnKϵ2 “ 0. (2.6.12)
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This quantity is known [16,17, 21],

lim
ϵÑ0

EOMSpJΨnKϵq “ ´
npn ´ 1q

π
Imr1F1p2 ´ n, 2, 2πiqs, (2.6.13)

by using the s-z trick [16, 17]. The EOMS is zero in the case of n “ 0, 1 and 2, i.e., the
tachyon vacuum, the trivial vacuum and the double-brane solution.

Let us show that the double-brane solution,

lim
ϵÑ0

JΨ2Kϵ “ lim
ϵÑ0

cB
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

, (2.6.14)

satisfies the EOMS without using the s-z trick:

lim
ϵÑ0

EOMSpJΨ2Kϵq “ lim
ϵÑ0

ϵTr

„JΨ2Kϵ B

BB
JΨ2Kϵȷ

“ ´ lim
ϵÑ0

ϵTr

„

cB
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

c
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

ȷ

“ ´ lim
ϵÑ0

ϵTr

„

p´Bc ` KϵcqB
1

1 ´ Kϵ

pBc ` cKϵq
1

´Kϵ

ˆ p´Bc ` Kϵcq
1

1 ´ Kϵ

pBc ` cKϵq
1

´Kϵ

ȷ

“ 2 lim
ϵÑ0

ϵ

¡ 8

0

dx1dx2dz1 e
´p1`ϵqpx1`x2qe´ϵz1 Bcdddrx1, z1, x2s

“ ´
2

π
lim
ϵÑ0

ϵ

ż 8

0

a2da

ż 1

0

dc

ż c

0

db e´ap1´b`ϵq

ˆ
`

sinp2bπq ´ sinp2pb ´ cqπq ´ sinp2cπq
˘

“ ´2 lim
ϵÑ0

ϵp2 ` Opϵqq

“ 0. (2.6.15)

Here, we change the variables:

z1 “ ab, x1 “ ac ´ ab, x2 “ a ´ ac, (2.6.16)
´

a “ x1 ` x2 ` z1, b “
z1

x1 ` x2 ` z1
, c “

z1 ` x1
x1 ` x2 ` z1

¯

. (2.6.17)

In the case of the triple-brane, the EOMS is checked in the paper [21], and it was found
that limϵÑ0 EOMSpJΨ3Kϵq “ 6 ‰ 0.
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2.6.4 Energy and GIO

Let us compute the energy of the double-brane solution Ψ2:

lim
ϵÑ0

EpJΨ2Kϵq “ ´ lim
ϵÑ0

SpJΨ2Kϵq “ lim
ϵÑ0

ˆ

´
1

6
TrrJΨ2Kϵ3s `

1

2
EOMSpJΨ2Kϵq˙

“ ´ lim
ϵÑ0

1

6
Tr

„

cB
Kϵ

2

1 ´ Kϵ

c
1

´Kϵ

ˆ cB
Kϵ

2

1 ´ Kϵ

c
1

´Kϵ

cB
Kϵ

2

1 ´ Kϵ

c
1

´Kϵ

ȷ

“
1

6
Tr

„

BcBc
1

1 ´ K
Bc

1

1 ´ K
Bc

1

1 ´ K

ȷ

“ ´EpΨ0q

“ EpΨ0q ` 2T25. (2.6.18)

The energy is twice the tension of the D25-brane. It is known that the GIO for the
double-brane solution is

lim
ϵÑ0

W pJΨ2Kϵ,Vq “ 2A0pVq ´ A0pVq. (2.6.19)

We summarize the results for the calculation of the energies and the GIOs we obtained
so far:

EpΨ0q “ 0 ´ T25,

EpΨ1q “ T25 ` EpΨ0q,

lim
ϵÑ0

EpJΨ2Kϵq “ 2T25 ` EpΨ0q,

W pΨ0,Vq “ 0 ´ A0pVq,

W pΨ1,Vq “ A0pVq ´ A0pVq,

lim
ϵÑ0

W pJΨ2Kϵ,Vq “ 2A0pVq ´ A0pVq. (2.6.20)

We can understand that the singular gauge transformation U1
´1 increases the energy of

the solution by one unit of the tension of the D25-brane T25. Furthermore, we can expect
that the singular gauge transformation U1

´1 increases the D25-brane. The results for the
GIOs would be regarded as supports for the observation.
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Chapter 3

Singular Gauge Transformation and the
Erler–Maccaferri Solution

3.1 Construction of the Solution

We will give a support that the singular gauge transformation U1
´1 increases the D25-

brane. Let us discuss the string field constructed by performing the singular gauge
transformation U1

´1 n times for the EM solution Ψa
EM [49]. By performing the gauge

transformation once, we obtain

Ψa
EM Ψa

EM`1
//

U1
´1

:“ U1pQ ` Ψa
EMqU1

´1

“ U1Σ
a
Lp´Ψ0qΣ

a
RU1

´1

“ cBKσa
L

1

1 ´ K
σa
RKc

1

´K
, (3.1.1)

while performing it n times,

Ψa
EM Ψa

EM`n
//

pU´1
1 qn

:“ Un
1 pQ ` Ψa

EMqU´n
1

“ Ψn ` cBKG1
n´1σa

L

1

1 ´ K
σa
Rp´c ` Bc

1

´K
G1

´pn´1qq

“ Ψn ` Φa
n. (3.1.2)

Here, we define

Φa
n :“ cBKG1

n´1σa
L

1

1 ´ K
σa
Rp´c ` Bc

1

´K
G1

´pn´1qq, (3.1.3)

as the EM solution
Ψa

EM “ Ψ0 ` Φa.

Since the string field Ψa
EM`n is constructed by using the gauge transformation for the EM

solution, Ψa
EM`n satisfies the EOM formally. However, Ψa

EM`n has the singular string field
1{K. Therefore, we should implement the Kϵ-regularization as the double-brane solution
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Ψ2 Ñ JΨ2Kϵ:
Ψa

EM`n Ñ JΨa
EM`nKϵ “ JΨnKϵ ` JΦa

nKϵ. (3.1.4)

We expect that the string field Ψa
EM`n describes the EM solution with n D25-branes.

3.2 Equation of Motion in the Strong Sense

Since we use the Kϵ-regularization, we should check the EOMSpJΨa
EM`nKϵq. By using

(2.6.9) and (2.6.12), we consider the following difference:

EOMSpJΨa
EM`nKϵq ´ EOMSpJΨnKϵq

“ ϵTr

„

pJΨnKϵ ` JΦa
nKϵq B

BB
pJΨnKϵ ` JΦa

nKϵqȷ ´ ϵTr

„JΨnKϵ B

BB
JΨnKϵȷ . (3.2.1)

Since each Φa
n contains two BCCOs, the right-hand side of the equation seems to be

composed of terms with two BCCOs and also four BCCOs. The explicit form of the term
with four BCCOs is

Tr

„JΦa
nKϵˆϵ B

BB
JΦa

nKϵ˙ȷ “ ´ϵTr
”

cBKϵG1ϵ
n´1σa

L

1

1 ´ Kϵ

σa
RBc

1

´Kϵ

G1ϵ
´pn´1q

ˆ cKϵG1ϵ
n´1σa

L

1

1 ´ Kϵ

σa
RBc

1

´Kϵ

G1ϵ
´pn´1q

ı

, (3.2.2)

where G1ϵ :“ JG1Kϵ. This will be rewritten into the summation of the terms with two
BCCOs:

(3.2.2) “ ´ϵTr
”

rc,KϵG1ϵ
n´1sBσa

L

1

1 ´ Kϵ

σa
RBc

1

´Kϵ

G1ϵ
´pn´1q

ˆ rc,KϵG1ϵ
n´1sσa

L

1

1 ´ Kϵ

σa
RBc

1

´Kϵ

G1ϵ
´pn´1q

ı

`ϵTr
”

rc,KϵG1ϵ
n´1sBσa

L

1

1 ´ Kϵ

σa
RBccσa

L

1

1 ´ Kϵ

σa
RBc

1

´Kϵ

G1ϵ
´pn´1q

ı

`ϵTr
”

cBσa
L

1

1 ´ Kϵ

σa
RBc

1

´Kϵ

G1ϵ
´pn´1qrc,KϵG1ϵ

n´1sσa
L

1

1 ´ Kϵ

σa
RBc

ı

´ϵTr
”

cBσa
L

1

1 ´ Kϵ

σa
RBccσa

L

1

1 ´ Kϵ

σa
RBc

ı

. (3.2.3)

The first term including four BCCOs vanishes, as the result of the following very useful
relation:

TrrBφs “ TrrBcBφs “ TrrB2cφs “ 0, (3.2.4)

where the string field φ commutes with B, and we use B “ BcB and the cyclicity of
Tr. The remaining terms reduce to the terms with two BCCOs, by using that BCCOs
commute with ghosts, the cyclicity of the Tr and σa

Rσ
a
L “ 1. The contribution of Tr with

two BCCOs always reduces to the following correlator in the matter sector of CFT :

x σa
Lp0qσa

Rpz1q yma
CL

“ ga. (3.2.5)
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Since the correlator is independent of the positions fo the BCCOs, we have

x Bσa
Lp0qσa

Rpz1q yma
CL

“ 0. (3.2.6)

When we move the position of σa
L to the immediate left of σa

R, the remnants are commuta-
tors among σa

L and the function of K which become the derivatives such as Bσa
L “ rK, σa

Ls.
In Tr, they can be set to zero due to (3.2.6). Then, because the term with four BCCOs
vanishes, we can extract the factor ga “ σa

Lσ
a
R on the right-hand side, replacing σa

L,R by 1:

EOMSpJΨa
EM`nKϵq ´ EOMSpJΨnKϵq

“ ga

ˆ

ϵTr

„

pJΨnKϵ ` JΦa
nKϵq B

BB
pJΨnKϵ ` JΦa

nKϵqȷ ´ ϵTr

„JΨnKϵ B

BB
JΨnKϵȷ˙ ˇ

ˇ

ˇ

σa
L,R“1

“ ga
`

EOMSpJΨn`1Kϵq ´ EOMSpJΨnKϵq˘, (3.2.7)

where we used the relation:
Ψa

EM`n|σa
L,R“1 “ Ψn`1. (3.2.8)

Finally, the EOMS for Ψa
EM`n becomes

lim
ϵÑ0

EOMSpJΨa
EM`nKϵq “ lim

ϵÑ0

`

p1 ´ gaqEOMSpJΨn`1Kϵq ` gaEOMSpJΨnKϵq˘. (3.2.9)

Here, we recall (2.6.13):

lim
ϵÑ0

EOMSpJΨnKϵq “ ´
npn ´ 1q

π
Imr1F1p2 ´ n, 2, 2πiqs,

then, we find that Ψa
EM`n with n “ 1 satisfies the EOMS, while for n ą 1 it does not for

generic ga. We also find that there is a special value of ga for each n for which Ψa
EM`n

accidentally satisfies the EOMS.
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3.3 Energy and Gauge Invariant Observable

Let us check the energy of the solution Ψa
EM`1 (3.1.1). Since the EOMS vanishes, it can

be easily evaluated by using the cubic term

lim
ϵÑ0

EpJΨa
EM`1Kϵq “ lim

ϵÑ0

ˆ

´
1

6
TrrJΨa

EM`1Kϵ3s `
1

2
EOMSpJΨa

EM`1Kϵq˙
“ ´

1

6
lim
ϵÑ0

Tr

«

ˆ

cBKϵσ
a
L

1

1 ´ Kϵ

σa
RKϵc

1

´Kϵ

˙3
ff

“ ´
1

6
lim
ϵÑ0

Tr

„

BcBcσa
L

1

1 ´ Kϵ

σa
RBcσa

L

1

1 ´ Kϵ

σa
RBcσa

L

1

1 ´ Kϵ

σa
R

ȷ

“ ´ga
1

6
Tr

„

BcBc
1

1 ´ K
Bc

1

1 ´ K
Bc

1

1 ´ K

ȷ

“ ga
`

´ EpΨ0q
˘

“ EpΨa
EMq ` T25. (3.3.1)

We realize that the energy of the solution is increased by the tension of the D25-brane
T25 through the singular gauge transformation U1

´1. In addition, we calculate the GIO:

lim
ϵÑ0

W pJΨa
EM`1Kϵ,Vq “ lim

ϵÑ0
W

`JU1Σ
a
Lp´Ψ0qΣ

a
RU1

´1Kϵ,V˘
“ ´W pΣa

LΨ0Σ
a
R,Vq

“ AapVq

“
`

AapVq ` A0pVq
˘

´ A0pVq. (3.3.2)

It can be regarded as the increase of a D25-brane from the EM solution.

3.4 An Example: D24+D25-brane

As in the case of the EM solution, let us plot the tachyon profile T pX1q “
ř

n tne
inX1{R

for the solution: JΨND
EM`1Kϵ “ cBKϵσ

ND
L

1

1 ´ Kϵ

σND
R Kϵc

1

´Kϵ

. (3.4.1)

The coefficient tn for ΨND
EM`1 is given by

tn “ lim
ϵÑ0

Tr
”

T̃nJΨND
EM`1Kϵı

“ ´ lim
ϵÑ0

π

2

ĳ 8

0

dx1dz1 lim
y1,2Ñ0

By1By2
!

e´ϵpz1`y1`y2qe´p1`ϵqx1Bccdcrz1 ` 1
2
, 0, 1

2
, x1 ` y1 ` y2s

ˆ x
1

2πR
fs ˝ e´inR{X1

p0qσND
L p1

2
` y1qσ

ND
R p1

2
` y1 ` x1q yma

C1`x1`y1`y2`z1

)

. (3.4.2)

Figure 3.1 shows the numerical result for the profile of the tachyon field. Recall that
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X1

´T pX1q

Figure 3.1: The profile of the tachyon field T pX1q is shown. The compactification radius
is taken to be R=20. We numerically computed by setting |n| ď 100 and ϵ “ 0.001.

in the case of the EM solution ΨND
EM, far away from X1 “ 0, the value of the tachyon

field asymptotically approaches that for the tachyon vacuum solution ´TrrT̃0Ψ0s. In our
case of ΨND

EM`1, the tachyon field asymptotically approaches zero, i.e., the value of the
perturbative vacuum Ψ1 “ 0 representing the D25-brane. Therefore, we interpret the
solution ΨND

EM`1 to describe a multiple-brane solution in which the D24-brane is placed
near X1 “ 0 on the D25-brane.

From the construction of the solution:

Ψa
EM Ψa

EM`1,//
U1

´1

and the result of the energy, the GIO and the tachyon profile:

lim
ϵÑ0

EpJΨa
EM`1Kϵq “ EpΨa

EMq ` T25,

lim
ϵÑ0

W pJΨa
EM`1Kϵ,Vq “

`

AapVq ` A0pVq
˘

´ A0pVq,

lim
ϵÑ0

T pX1q|JΨND
EM`1Kϵ “ T pX1q|Ψ1 1 ! |X1|,

lim
ϵÑ0

T pX1q|JΨND
EM`1Kϵ ‰ T pX1q|Ψ1 |X1| „ 1,

we obtain the supports that the singular gauge transformation U1
´1 increases the D25-

brane.
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Chapter 4

Review of the Modified Cubic Superstring
Field Theory

4.1 Non-GSO-Projected Action

In the case of the supersymmetric theory, first Witten extended his bosonic cubic action [3]
so that it includes the supersymmetry. However, this action suffers from the contact term
problem of the picture changing operators (PCOs). Next, the action was modified to
avoid the contact problem [4–6]. And then to describe unstable D-branes, the non-GSO-
projected action [50] for NS sector was constructed:

SpΨ`,Ψ´q “ TrY´2

„

1

2
Ψ`QΨ` `

1

3
Ψ`

3 `
1

2
Ψ´QΨ´ ´ Ψ`Ψ´

2

ȷ

, (4.1.1)

where the string fields Ψ˘ is in the GSOp˘q sector, and Y´2 is the double-step inverse
PCO:

Y´2piq :“ Y piqỸ piq pi is the string midpoint in the UHPq, (4.1.2)

Y pzq :“ cBξe´2ϕpzq, (4.1.3)

and the trace (the BPZ inner product) TrY´2 is defined as

TrY´2rφtests :“ xY´2pi8qfs ˝ φtestp0q yC1 . (4.1.4)

The EOMs for the GSOp`q sector and the GSOp´q sector are derived from this action:

Y´2

`

QΨ` ` Ψ`
2 ´ Ψ´

2
˘

“ 0, (4.1.5)

Y´2pQΨ´ ` Ψ`Ψ´ ´ Ψ´Ψ`q “ 0. (4.1.6)

We can rewrite the action and the EOMs in a more simple form by using a matrix-valued
string field [51–53]:

Ψ̂ :“ Ψ` b a ` Ψ´ b b, (4.1.7)
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where a and b are N ˆ N matrices. Q and Y´2 are also the matrix-valued ones:

Q̂ :“ Q b q, (4.1.8)

Ŷ´2 :“ Y´2 b y. (4.1.9)

Let us determine the matrices a, b, q, y. When we demand that

(4.1.1) “ T̂rŶ´2

„

1

2
Ψ̂Q̂Ψ̂ `

1

3
Ψ̂3

ȷ

, (4.1.10)

where
T̂rŶ´2

rφ̂tests :“ TrY´2rφtests ˆ
1

N
Trryσµs, φ̂test :“ φtest b σµ, (4.1.11)

we have the follwing conditions:

Trryaqas “ Trrybabs “ N, (4.1.12)

Trryaqbs “ Trrybqas “ 0, (4.1.13)

Trrya3s “ N, (4.1.14)

Trryab2s “ ´Trrybabs “ Trryb2as “ ´N, (4.1.15)

Trrya2bs “ Trryabas “ Trrybaas “ 0, (4.1.16)

where we used the cyclicity propertiy (a state in the GSOp´q sector has a half-integer
conformal weight)

TrY´2rΨ`Ψ´
2s “ ´TrY´2rΨ´Ψ`Ψ´s “ TrY´2rΨ´

2Ψ`s. (4.1.17)

The conditions (4.1.12)-(4.1.16) are satisfies, if we demand the following equations:

y “ a, q “ a, a2 “ IN , b2 “ ´IN , ta, bu “ 0. (4.1.18)

For N “ 2, we find a solution for (4.1.18):

a “ σ3, b “ iσ2, (4.1.19)

then we have

Ψ̂ “ Ψ` b σ3 ` Ψ´ b iσ2 “

ˆ

Ψ` Ψ´

´Ψ´ ´Ψ`

˙

, (4.1.20)

where σi are the Pauli matrices. Therefore, the action and the EOMs become1

S “ T̂rŶ´2

„

1

2
Ψ̂Q̂Ψ̂ `

1

3
Ψ̂3

ȷ

, (4.1.21)

Ŷ´2pQ̂Ψ̂ ` Ψ̂2q “ 0. (4.1.22)

1If we only consider solutions which are constructed by using the string field in the extended KBc
algebra, we may think the EOM as QΨ ` Ψ2 “ 0 since there are no c and γ at the midpoint other than
the PCO.
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Unless the operator Y´2 exists, these are the same forms as the bosonic ones. Therefore,
the gauge transformation is same:

Ψ̂ Û´1pQ̂ ` Ψ̂qÛ ,//
Û (4.1.23)

where the string field Û is the matrix-valued gauge parameter.

4.2 KBcGγ Algebra

To construct analytic solutions, as in the case of the bosonic theory, we give the extension
of the KBc algebra in the superstring theory. We define the string fields K,B, c,G, γ [27]
which are closed under Q and ˚:

T̂rŶ´2
rφ̂test ¨ K̂s :“ xY´2pi8qfs ˝ φtestp0q ¨

ż

Ó 1
2

dz

2πi
T pzq yC1 ˆ

1

2
Trrσ3σµ ¨ I2s, (4.2.1)

T̂rŶ´2
rφ̂test ¨ B̂s :“ xY´2pi8qfs ˝ φtestp0q ¨

ż

Ó 1
2

dz

2πi
bpzq yC1 ˆ

1

2
Trrσ3σµ ¨ σ3s, (4.2.2)

T̂rŶ´2
rφ̂test ¨ ĉs :“ xY´2pi8qfs ˝ φtestp0q ¨ cp1

2
q yC1 ˆ

1

2
Trrσ3σµ ¨ σ3s, (4.2.3)

T̂rŶ´2
rφ̂test ¨ Ĝs :“ xY´2pi8qfs ˝ φtestp0q ¨

ż

Ó 1
2

dz

2πi
Gpzq yC1 ˆ

1

2
Trrσ3σµ ¨ σ1s, (4.2.4)

T̂rŶ´2
rφ̂test ¨ γ̂s :“ xY´2pi8qfs ˝ φtestp0q ¨ γp1

2
q yC1 ˆ

1

2
Trrσ3σµ ¨ iσ2s. (4.2.5)

Here,

T pzq “

ˆ

´BXµBXµ ´
1

2
ψµBψµ ´ Bb ¨ c ´ 2bBc ´

1

2
Bβ ¨ γ ´

3

2
βBγ

˙

pzq, (4.2.6)

Gpzq “

ˆ

i
?
2ψµBXµ ` Bβ ¨ c `

3

2
βBc ´ 2bγ

˙

pzq. (4.2.7)

T pzq is the energy momentum tensor and Gpzq is the super current in the superconformal
field theory.

Next, we give the algebra obtained by using the following OPEs:

bpzqcp0q „
1

z
, βpzqγp0q „ ´

1

z
, (4.2.8)

GpzqGp0q „
2T p0q

z
` . . . , Gpzqcp0q „

´2γp0q

z
, Gpzqγp0q „

´Bcp0q

2z
, (4.2.9)

jBpzqjBp0q „ 0, jBpzqbp0q „
T p0q

z
,

jBpzqcp0q „
pcBc ´ γ2qp0q

z
, jBpzqγp0q „

pcBγ ´ 1
2
Bcγqp0q

z
, (4.2.10)
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where,

jBpzq “

ˆ

cTm ` γGm `
1

2
cT g `

1

2
γGg

˙

pzq,

Q̂ “ Q b σ3, Q “

¿

dz

2πi
jBpzq, (4.2.11)

rK̂, B̂s “ 0, rK̂, ĉs :“ B̂ĉ, rK̂, γ̂s :“ B̂γ̂,

tB̂, B̂u “ tĉ, ĉu “ 0, tB̂, ĉu “ 1, tγ̂, ĉu “ tγ̂, B̂u “ 0, (4.2.12)

δ̂Ĝ “ 2K̂, δ̂ĉ “ 2γ̂, δ̂γ̂ “
1

2
B̂ĉ, δ̂γ̂2 “ B̂ĉγ̂, δ̂K̂ “ δ̂B̂ “ 0, (4.2.13)

Q̂K̂ “ 0, Q̂B̂ “ K̂, Q̂ĉ “ ĉB̂ĉ ` γ̂2, Q̂γ̂ “ ĉB̂γ̂ ´
1

2
B̂ĉγ̂. (4.2.14)

Here, the equations (4.2.13) correspond to the superconformal transformation. We give
the derivations of the algebra in appendix B.

4.3 Known Solutions

4.3.1 Tachyon Vacuum Solution

We discuss tachyon vacuum solutions in the modified cubic superstring field theory. First,
the Schnabl-like tachyon vacuum solution [54] was constructed. Next, the “simple” tachyon
vacuum solution [55] was obtained from the following gauge parameter, which is appeared
in the bosonic cubic theory:

U1 “ Bc ` cBG1, G1 “
´K

1 ´ K
. (4.3.1)

Then the tachyon vacuum solution is expressed as

Ψ1 Ψ0
oo
U1

´1

“ U1
´1QU1

“ p´Bγ2 ´ cBp1 ´ Kqcq
1

1 ´ K

“ ´pQpcBq ` cq
1

1 ´ K
. (4.3.2)

The symbol hat “ ˆ ” which represents that the string field has the Pauli matrices is usually
omitted hereafter.

Let us check that the energy of the solution,

EpΨ0q “ ´SpΨ0q “ ´TrY´2

„

1

2
Ψ0QΨ0 `

1

3
Ψ0

3

ȷ

, (4.3.3)

is lower than the perturbative vaccum Ψ1 “ 0 by the unit of the tension of the D9-brane
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T9 :“ 1{2π2. We calculate the kinetic term of the action:

TrY´2rΨ0QΨ0s “ TrY´2

„

pQpcBq ` cq
1

1 ´ K
Q

ˆ

pQpcBq ` cq
1

1 ´ K

˙ȷ

“ TrY´2

„

c
1

1 ´ K
Qc

1

1 ´ K

ȷ

“ TrY´2

„

c
1

1 ´ K
cKc

1

1 ´ K
` c

1

1 ´ K
γ2

1

1 ´ K

ȷ

. (4.3.4)

The first term in the last line vanishes because of the ϕ momentum conservation. The
ϕ momentum conservation means that for non-vanishing TrY´2rφs, including the effect of
Y´2, the ghost number of φ is the bc-ghost number one and the ghost number three, i.e.,
φ needs a c and two γ’s in the algebra. Then, the kinetic term becomes

TrY´2rΨ0QΨ0s “ TrY´2

„

c
1

1 ´ K
γ2

1

1 ´ K

ȷ

“

ĳ 8

0

dx1dx2 e
´px1`x2qTrY´2

“

cΩx1γ2Ωx2
‰

. (4.3.5)

By using the following correlator [54], which we will derive in the appendix C:

TrY´2rcΩt1γΩ0γΩt2s “
L2

2π2
, (4.3.6)

we have the energy of the tachyon vacuum solution:

EpΨ0q “ ´
1

6

ĳ 8

0

dx1dx2 e
´px1`x2q px1 ` x2q

2

2π2

“ ´
1

6

ż 8

0

a da

ż 1

0

db e´a a
2

2π2

“ ´
1

2π2
“ ´T9. (4.3.7)

Here, we used the EOMS since there is no singularity in the tachyon vacuum solution.

4.3.2 Half-brane Solution

Next, we discuss the half-brane solution [27]2. By using the gauge parameter,

U1{2 :“ Bc ` cB
´G

1 ´ G
, (4.3.8)

2For related work, see [56].
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the half-brane solution in the pure-gauge form is written formally as

Ψ1 Ψ1{2
oo
U1{2

´1

:“ U1{2
´1QU1{2, (4.3.9)

“ ´pBγ2 ` cBp1 ´ GqGcq
1

1 ´ G

“ ´pQpcBq ` cBGcq
1

1 ´ G
. (4.3.10)

Note that the gauge parameter U1{2 can be obtained from U1 by replacing K with G.
Let us give a brief summary of the calculation of the energy; detailed calculations are

given in the appendix D. Since we do not have to introduce the regularization, we can
evaluate the energy from the cubic term of the action:

EpΨ1{2q “ ´SpΨ1{2q “
1

6
TrY´2rΨ1{2

3s. (4.3.11)

The cubic term is

TrY´2

“

Ψ1{2
3
‰

“ ´3TrY´2

„

Bγ2Gc
1

1 ´ G
cG

ȷ

(4.3.12)

` TrY´2

«

ˆ

cBp1 ´ GqGc
´1

1 ´ G

˙3
ff

. (4.3.13)

By using the following relation for the string field φ whose “internal CP factor” is σ23 :

TrY´2rGφs “
1

2
TrY´2rGφ ` φGs “

1

2
TrY´2rδφs, (4.3.14)

where the string field δφ is the superconformal transformation of the string field φ, the
two terms of the cubic term are

(4.3.12) “
3

2π2
,

(4.3.13) “ ´
6pπ2 ´ 6q

π4
´ 3 ˆ

12 ´ π2

π4
“ ´

3

π2
. (4.3.15)

Therefore, we have

EpΨ1{2q “
1

6

ˆ

3

2π2
´

3

π2

˙

“ ´
1

4π2
“ EpΨ0q `

1

2
T9. (4.3.16)

The energy of the half-brane solution is one half the tension of the D9-brane T9.

3If φ has another Pauli matrix, the TrY´2
rGφs vanishes since Trrσ3σ1σi‰2s “ 0.
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Chapter 5

Multiple-half-brane Solution

5.1 Gauge Equivalence between U1{2
2 and U1

We would like to construct a new solution by using the KBcGγ algebra which reproduces
the energy as n-half times the tension of D9-brane, i.e., a multiple-half-brane solution.
The first step to construct it is to construct the tachyon vacuum solution by using the
algebra. The gauge transformation with the gauge parameter U1{2 decreases the energy
by one half the tension of the D9-brane, T9{2. So, we guess that the gauge parameter
U1{2

2 is equivalent to U1 up to a regular gauge transformation. We see that this is fact.

5.1.1 From the Form of the Gauge Parameter

In [27], the pure-gauge-form solutions are classified from the form of the function of K
and G in the gauge parameter. In our notation, the gauge parameter is as follows:

U “ Bc ` cBgpK,Gq. (5.1.1)

By using the properties G2 “ K and rG,Ks “ 0, we can rewrite the function gpK,Gq as
follows:1

gpK,Gq “ g`pKq ` Gg´pKq. (5.1.2)

The solutions are classified by g˘pKq:

Pure Gauge : g`p0q ‰ 0, (5.1.3)

Half Brane : g`p0q “ 0, g´p0q ‰ 0, (5.1.4)

Tachyon Vacuum : g`p0q “ 0, g´p0q “ 0, BKg`p0q ‰ 0. (5.1.5)

Let us assume that the gauge parameter Uhalf belongs to the class (5.1.4), i.e.,

Uhalf “ Bc ` cB
`

h`pKq ` Gh´pKq
˘

, h`p0q “ 0, h´p0q ‰ 0. (5.1.6)

1We assume fpGq is the polynomyal of the G.
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Then, we can show that Uhalf
2 “: Bc`cBpg̃`pKq`Gg̃´pKqq satisfies the properties of the

tachyon vacuum (5.1.5). First, by using G2 “ K, rG,Ks “ 0 and (2.3.8), Uhalf
2 becomes

Uhalf
2 “ Bc ` cB

`

h`pKq2 ` h´pKq2K ` G ¨ 2h`pKqh´pKq
˘

, (5.1.7)

and then we find g̃˘pKq and BK g̃`pKq as

g̃`pKq “ h`pKq2 ` h´pKq2K, (5.1.8)

g̃´pKq “ 2h`pKqh´pKq, (5.1.9)

BK g̃`pKq “ 2BKh`pKq ¨ h`pKq ` 2BKh´pKq ¨ h´pKqK ` h´pKq2. (5.1.10)

Therefore, we obtain that g̃pKq satisfies the tachyon vacuum properties (5.1.5):

g̃`p0q “ h´p0q2 ˆ 0 “ 0, (5.1.11)

g̃´p0q “ h´p0q ˆ 0 “ 0, (5.1.12)

BK g̃`p0q “ 2BKh`p0q ˆ 0 ` 2BKh´p0q ˆ 0 ` h´p0q2 “ h´p0q2 ‰ 0. (5.1.13)

Here, we assume that |h´p0q|, |BKh˘p0q| ă 8.

5.1.2 From the Energy of the Pure-gauge Solution Ũ´1QŨ

We show that the gauge parameter U1{2
2 is gauge equivalent to U1 more directly. We think

that the gauge transformation Ũ connecting U1{2
2 and U1, and we show that the gauge

transformation Ũ is regular. The regularity can be read by calculating the energy of the
solution Ψ̃ :“ Ũ´1QŨ , since the change of the action for the finite gauge transformation
is (2.1.20). The gauge parameter Ũ s.t.

U1{2
´2QU1{2

2 “: Ψ0{2 Ψ0 “ U1
´1QU1,//

Ũ (5.1.14)

is given by

Ũ “ U1{2
´2U1

“ Bc ` cB

ˆ

1 ´ G

´G

˙2ˆ
´K

1 ´ K

˙

“ Bc ` cB

ˆ

´
1 ´ G

1 ` G

˙

. (5.1.15)
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Here the explicit form of Ψ̂0{2 is given by

Ψ̂0{2 “ pB̂γ̂2 ´ ĉB̂p1 ´ Ĝq2ĉq
2Ĝ ´ 1

p1 ´ Ĝq2

“

ˆ

Q

ˆ

cB
3K ´ 1

p1 ´ Kq2

˙

´ 4cBGc
KG

p1 ´ Kq2

˙

b σ3

`

ˆ

´2Q

ˆ

cB
KG

p1 ´ Kq2

˙

´ 2cBGc
3K ´ 1

p1 ´ Kq2

˙

b iσ2. (5.1.16)

Note that the solution Ψ̂0{2 has the string fields in the GSOp´q sector.
Let us consider the pure-gauge-form solution whose gauge parameter is Ũ is

Ψ1 Ψ̃//
Ũ

:“ Ũ´1QŨ

“

ˆ

Bγ2 ` cBK
1 ` G

1 ´ G
c

˙

´2

1 ` G

“

ˆ

QpcBq ` 2cB
K

1 ´ G
c

˙

´2

1 ` G
. (5.1.17)

We check wether the energy of this solution Ψ̃ is zero or not. This solution Ψ̃ does not
contain the singular string field, therefore we evaluate the energy only from the cubic
term:

TrY´2

“

Ψ̃3
‰

“ TrY´2

„

Bγ2
´2

1 ` G
Bγ2

´2

1 ` G
Bγ2

´2

1 ` G

ȷ

` 3TrY´2

„

Bγ2
´2

1 ` G
Bγ2

´2

1 ` G
cBK

1 ` G

1 ´ G
c

´2

1 ` G

ȷ

` 3TrY´2

„

Bγ2
´2

1 ` G
cBK

1 ` G

1 ´ G
c

´2

1 ` G
cBK

1 ` G

1 ´ G
c

´2

1 ` G

ȷ

` TrY´2

«

ˆ

cBK
1 ` G

1 ´ G
c

´2

1 ` G

˙3
ff

“ ´3 ¨ 23TrY´2

„

Bγ2
K

1 ´ G
c

1

1 ` G
c

K

1 ´ G

ȷ

(5.1.18)

´ 23TrY´2

«

ˆ

cBK
1 ` G

1 ´ G
c

1

1 ` G

˙3
ff

. (5.1.19)
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The first term (5.1.18) in the last form is computed as

(5.1.18) “ ´3 ¨ 23TrY´2

„

Bγ2
K

1 ´ K
p1 ` Gqc

1

1 ` G
c

K

1 ´ G

ȷ

“ ´3 ¨ 23TrY´2

„

Bγ2
K

1 ´ K

`

r1 ` G, cs ` cp1 ` Gq
˘ 1

1 ` G
c

K

1 ´ G

ȷ

“ ´3 ¨ 23TrY´2

„

Bγ2
K

1 ´ K
δc

1

1 ` G
c

K

1 ´ G

ȷ

“ ´3 ¨ 23TrY´2

„

Bγ2
K

1 ´ K
δc

1

1 ` G

ˆ„

c,
1

1 ´ G

ȷ

`
1

1 ´ G
c

˙

K

ȷ

“ 0, (5.1.20)

where we used TrY´2rBφs “ 0 for φ s.t. rB,φs “ 0, and the ϕ momentum conservation.
The second term (5.1.19) is computed as

(5.1.19) “ ´23TrY´2

„

cBK
1 ` G

1 ´ G
c

1

1 ` G
cBK

1 ` G

1 ´ G
c

1

1 ` G
cBK

1 ` G

1 ´ G
c

1

1 ` G

ȷ

“ ´23TrY´2

„

cB
K

1 ´ G
δc

K

1 ` G

1

1 ´ G
δc

K

1 ´ G

1

1 ` G
δc

1

1 ` G

ȷ

“ ´23TrY´2

„

cB
K

1 ´ K
δc

K

1 ´ K
δc

K

1 ´ K
δc

ȷ

“ 0, (5.1.21)

where we used the ϕ momentum conservation. Therefore, the energy of the solution Ψ̃ is
zero:

EpΨ̃q “ (5.1.20) ` (5.1.21) “ 0. (5.1.22)

Namely, the gauge transformation Ũ is regular. Since the regular gauge transformation
does not change the physics, the solution Ψ0{2 “ U1{2

´2QU1{2
2 is gauge equivalent to the

tachyon vacuum Ψ0 “ U1
´1QU1. We show this result in the following diagram.

Ψ0{2 Ψ1{2 Ψ1

Ψ0 Ψ̃
��
� �
� �
� �
� �
�

Ũ

//
U1{2

´1

//
U1{2

´1

��
� �
� �
� �
� �

Ũ

77ooooooooooooooooooooooo

U1
´1

The arrows represent the gauge transformations whose gauge parameters are denoted with
the arrows.
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We list the energy of the solutions in the above diagram:

EpΨ0{2q “ EpΨ0q,

EpΨ1{2q “ EpΨ0q `
1

2
T9,

EpΨ1q “ E
`

Ψ̃
˘

“ EpΨ0q ` T9. (5.1.23)

5.2 Multiple-half-brane Solution Ψ3{2

5.2.1 Solution

Next, we construct a new solution by performing the singular gauge transformation U1{2
´1

for the tachyon vacuum solution Ψ0{2 three times:

Ψ0{2 Ψ1{2 Ψ1 Ψ3{2.//
U1{2

´1

//
U1{2

´1

//
U1{2

´1

The explicit form of the solution Ψ3{2 is given by

Ψ3{2 “ U1{2
3pQ ` Ψ0{2qU1{2

´3

“ U1{2QU1{2
´1

“

ˆ

Bγ2 ` cB
GK

1 ´ G
c

˙

1

´G
. (5.2.1)

We conjecture that the energy of this solution Ψ3{2 is 3/2 times the tension of the D9-brane
T9, EpΨ3{2q

?
“ EpΨ0q ` 3

2
T9, because the number of times of the gauge transformation

from the tachyon vacuum is 3 and the gauge transformation increases the energy by one
half of the tension of the D9-brane T9.

5.2.2 Gϵ-Regularization

Since the string field 1{Ĝ 2 has the singular string field 1{K̂ as follows:

1

Ĝ
“ Ĝ

1

K̂
, (5.2.2)

we need a regularization for Ĝ, as K̂. Since theKϵ-regularization works well in the bosonic
cubic SFT, we would like to keep the regularization for K̂, so we demand

JĜKϵ2 “ JK̂Kϵ. (5.2.3)

2We again denote the hat in this subsection.
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This is satisfied by the following regularization3:

Ĝϵ :“ Ĝ ´
?

´ϵ b σ3 “

ˆ

´
?

´ϵ G

G
?

´ϵ

˙

. (5.2.4)

Here we denote JfpĜ, K̂, B̂, ĉqKϵ “ fpĜϵ, K̂ϵ, B̂, ĉq. We can check the Gϵ-regularization
satisfies the equation (5.2.3):

tĜϵ, Ĝϵu “ 2Ĝϵ ¨ Ĝϵ

“ 2
`

Ĝϵ
2 ´

?
´ϵG b σ1σ3 ´

?
´ϵG b σ3σ1 `

?
´ϵ

2
b σ3

2
˘

“ 2pK̂ ´ ϵ̂q

“ 2K̂ϵ, (5.2.5)

where tσi, σju “ 0, i ‰ j. Then, we have the inverse of Ĝϵ:

1

Ĝϵ

“ Ĝϵ
1

K̂ϵ

“ G
1

Kϵ

b σ1 ´
?

´ϵ
1

Kϵ

b σ3 “

˜

´
?

´ϵ 1
Kϵ

G 1
Kϵ

G 1
Kϵ

?
´ϵ 1

Kϵ

¸

. (5.2.6)

Similarly, we can check other relations in the algebra including the string field G:

rĜϵ, ĉs “ 2γ̂, rĜϵ, B̂s “ 0, rĜϵ, K̂s “ 0, tĜϵ, γ̂u “
1

2
B̂ĉ, (5.2.7)

and
Q̂Ĝϵ “ Q̂Ĝ ´ Q

?
´ϵ b I2 “ 0. (5.2.8)

We regularize the solution Ψ3{2 by using the Gϵ-regularization as

JΨ̂3{2Kϵ “

˜

B̂γ̂2 ` ĉB̂
ĜϵK̂ϵ

1 ´ Ĝϵ

ĉ

¸

1

´Ĝϵ

. (5.2.9)

Once it is regularized, JΨ̂3{2Kϵ has the definition in the sliver frame.

3We also have the same result by taking the regularization as Ĝϵ :“ Ĝ `
?

´ϵ b σ3.
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5.2.3 Equation of Motion in the Strong Sense

Since we have regularized the solution, we have to check the EOMS as before. The EOMS
for the solution Ψ3{2 is given by

lim
ϵÑ0

EOMSpJΨ3{2Kϵq “ lim
ϵÑ0

ϵTrY´2

„JΨ3{2Kϵ B

BB
JΨ3{2Kϵȷ

“ lim
ϵÑ0

ϵTrY´2

„ˆ

Bγ2 ` cB
GϵKϵ

1 ´ Gϵ

c

˙

1

´Gϵ

ˆ

γ2 ´ c
GϵKϵ

1 ´ Gϵ

c

˙

1

´Gϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

c
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

(5.2.10)

` lim
ϵÑ0

ϵTrY´2

„

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

γ2
1

´Gϵ

ȷ

(5.2.11)

´ lim
ϵÑ0

ϵTrY´2

„

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

c
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

. (5.2.12)

The EOMS decomposes into three terms. The first term (5.2.10) becomes

(5.2.10) “ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

c
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

p´δc ` Gϵcq
1

1 ´ Gϵ

pBc ` cKϵq
1

´Gϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

p´δcq
1

1 ´ Gϵ

pcKϵq
1

´Gϵ

ȷ

(5.2.13)

´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

pGϵcq
1

1 ´ Gϵ

pBcq
1

´Gϵ

ȷ

, (5.2.14)

where we used the following equations:

TrY´2

„

Bγ2
1

´Gϵ

p´δcq
1

1 ´ Gϵ

pBcq
1

´Gϵ

ȷ

“ 0, (5.2.15)

lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

pGϵcq
1

1 ´ Gϵ

pcKϵq
1

´Gϵ

ȷ

“ 0. (5.2.16)
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Here we use TrY´2rBφs “ 0 for φ s.t. rB,φs “ 0 and take the limit ϵ Ñ 0 since there is
no 1{Kϵ or 1{Gϵ. The first term (5.2.13) becomes

(5.2.13)

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

δc
1

1 ´ Gϵ

cGϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2Gϵ
1

´Kϵ

δcp1 ` Gϵq
1

1 ´ Kϵ

cGϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2Gϵ
1

´Kϵ

δcGϵ
1

1 ´ Kϵ

cGϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2Gϵ
1

´Kϵ

δc
1

1 ´ Kϵ

cKϵ

ȷ

“ ´ lim
ϵÑ0

ϵ

2
TrY´2

„

δ

ˆ

δc
1

1 ´ Kϵ

cKϵBγ
2 1

´Kϵ

˙ȷ

“ ´ lim
ϵÑ0

ˆ

ϵ

2
TrY´2

„

pBcq
1

1 ´ Kϵ

cKϵBγ
2 1

´Kϵ

ȷ

`
ϵ

2
TrY´2

„

δc
1

1 ´ Kϵ

cKϵBpBcγq
1

´Kϵ

ȷ˙

“ lim
ϵÑ0

ˆ

ϵ

2
TrY´2

„

BcBc
Kϵ

1 ´ Kϵ

γ2
1

´Kϵ

ȷ

` ϵTrY´2

„

BcBcγ
1

´Kϵ

Bγ
1

1 ´ Kϵ

ȷ˙

. (5.2.17)

We can show that both terms in the last line vanish. The first term vanishes in the
following manner:

lim
ϵÑ0

ϵ

2
TrY´2

„

BcBc
Kϵ

1 ´ Kϵ

γ2
1

´Kϵ

ȷ

“ ´ lim
ϵÑ0

ϵ

2
TrY´2

„

BcBc
1

1 ´ Kϵ

γ2
ȷ

„ lim
ϵÑ0

ϵ ˆ pfiniteq

“ 0. (5.2.18)

Here, in the first equality, we use the following relation:

TrY´2rBcB2cΩt1γΩt2γΩt3s

“ TrY´2rBcKBcΩt1γΩt2γΩt3s ´ TrY´2rBcBcKΩt1γΩt2γΩt3s

“ TrY´2rBprc,Ks ` KcqBcΩt1γΩt2γΩt3s ´ TrY´2rBcBcKΩt1γΩt2γΩt3s

“ lim
yÑ0

By
␣

Bcdggrt2; t1 ` t2 ` t3 ` ys ´ Bcdggrt2; t1 ` t2 ` t3 ` ys
(

“ 0. (5.2.19)
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Here, the correlator Bcdggrt1; t2s is defined in appendix C. The second term in (5.2.17)
also vanishes as follows:

ϵTrY´2

„

BcBcγ
1

´Kϵ

Bγ
1

1 ´ Kϵ

ȷ

“ lim
ϵÑ0

ĳ 8

0

dx1dz1 lim
yÑ0

Bye
´p1`ϵqx1e´ϵz1

ˆ ϵ
␣

Bcdggrz1 ` y;x1 ` y ` z1s ´ drz1;x1 ` y ` z1s
(

“ lim
ϵÑ0

ϵ

2
pcospπϵqCipπϵq ` ¨ ¨ ¨ q

“ 0, (5.2.20)

where Cipπϵq “ ´
ş8

πϵ
dt cos t

t
“ log ϵ ` γE ` log π ` Opϵ2q, γE “ 0.577 ¨ ¨ ¨ .

We can check that the remaining terms (5.2.11), (5.2.12) and (5.2.14) are also zero in
the limit ϵ Ñ 0, and hence the solution limϵÑ0JΨ3{2Kϵ satisfies the EOMS. We will give
the calculations of the remaining terms in appendix E.

5.2.4 Energy

We conjectured that the energy of the solution Ψ3{2 is 3/2 times the tension of the D9-
brane. So we check the conjecture. Since the EOMS is zero:

lim
ϵÑ0

EOMSpJΨ3{2Kϵq “ 0,

the energy can be calculated only by using the cubic term in the action:

lim
ϵÑ0

EpJΨ3{2Kϵq “ ´ lim
ϵÑ0

SpJΨ3{2Kϵq “ lim
ϵÑ0

1

6
TrY´2rJΨ3{2Kϵ3s. (5.2.21)

The cubic term decomposes into two terms:

lim
ϵÑ0

TrY´2rJΨ3{2Kϵ3s “ lim
ϵÑ0

TrY´2

„

Bγ2
1

´Gϵ

Bγ2
1

´Gϵ

Bγ2
1

´Gϵ

ȷ

` 3 lim
ϵÑ0

TrY´2

„

Bγ2
1

´Gϵ

Bγ2
1

´Gϵ

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

` 3 lim
ϵÑ0

TrY´2

„

Bγ2
1

´Gϵ

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

` lim
ϵÑ0

TrY´2

«

ˆ

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

˙3
ff

“ 3 lim
ϵÑ0

TrY´2

„

Bγ2
Kϵ

1 ´ Gϵ

c
1

´Gϵ

c
Kϵ

1 ´ Gϵ

ȷ

(5.2.22)

` lim
ϵÑ0

TrY´2

«

ˆ

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

˙3
ff

. (5.2.23)
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The first term (5.2.22) becomes

(5.2.22) “ 3 lim
ϵÑ0

TrY´2

„

Bγ2Kϵp1 ` Gϵq
1

1 ´ Kϵ

c
Gϵ

´Kϵ

cKϵp1 ` Gϵq
1

1 ´ Kϵ

ȷ

“ 3 lim
ϵÑ0

TrY´2

„

Bγ2
Kϵ

1 ´ Kϵ

c
Gϵ

´Kϵ

c
KϵGϵ

1 ´ Kϵ

ȷ

` 3 lim
ϵÑ0

TrY´2

„

Bγ2
KϵGϵ

1 ´ Kϵ

c
Gϵ

´Kϵ

c
Kϵ

1 ´ Kϵ

ȷ

“ 3 lim
ϵÑ0

TrY´2

„

Bγ2
Kϵ

1 ´ Kϵ

pδcq
Gϵ

´Kϵ

c
Kϵ

1 ´ Kϵ

ȷ

´ 3 lim
ϵÑ0

TrY´2

„

Bγ2
Kϵ

1 ´ Kϵ

c
Gϵ

´Kϵ

pδcq
Kϵ

1 ´ Kϵ

ȷ

“ ´
3

2
TrY´2

„

δ

ˆ

c
1

1 ´ K
Bγ2

K

1 ´ K
δc

˙ȷ

`
3

2
TrY´2

„

δ

ˆ

δc
K

1 ´ K
Bγ2

1

1 ´ K
c

˙ȷ

“ ´
3

2
TrY´2

„

c
1

1 ´ K
Bp2δγ ¨ γq

K

1 ´ K
δc

ȷ

´
3

2
TrY´2

„

c
1

1 ´ K
Bγ2

K

1 ´ K
pBcq

ȷ

`
3

2
TrY´2

„

pBcq
K

1 ´ K
Bγ2

1

1 ´ K
c

ȷ

´
3

2
TrY´2

„

δc
K

1 ´ K
Bp2δγ ¨ γq

1

1 ´ K
c

ȷ

“ 6

ĳ 8

0

dx1dx2 lim
yÑ0

Bye
´px1`x2q

ˆ

!

Bcdggry ` x1;x1 ` x2 ` ys ` 3 ¨ Bcdggr0; x1 ` x2 ` ys

)

“ ´
3

2π2
. (5.2.24)

The second term (5.2.23) reduces to the same term (D.5), which we find in appendix D
where the energy of the half-brane solution is calculated:

(5.2.23) “ lim
ϵÑ0

TrY´2

„

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

“ ´TrY´2

„

cB
Gϵ

1 ´ Gϵ

δc
Gϵ

1 ´ Gϵ

δc
Gϵ

1 ´ Gϵ

δc

ȷ

“ ´(D.5)

“
3

π2
. (5.2.25)

Therefore, we have checked our conjecture:

lim
ϵÑ0

EpJΨ3{2Kϵq “
1

6

`

(5.2.24) ` (5.2.25)
˘

“ `
1

4π2
“ EpΨ0q `

3

2
T9. (5.2.26)

5.3 Double-brane Solution

We do not consider Ψ4{2:
Ψ3{2 Ψ4{2,//

U´1
1{2

(5.3.1)
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since the gauge equivalent string field Ψ2 does not satisfy the EOMS. The latter string
field Ψ2 can be written in the pure-gauge form by using the gauge parameter U1

´1:

Ψ1 Ψ2 “ U1QU1
´1//

U1
´1

“

ˆ

Bγ2 ` cB
K2

1 ´ K
c

˙

1

´K
, (5.3.2)

and its relation to other string fields are summarized in the following diagram.

Ψ2

Ψ1 Ψ3{2 Ψ4{2
//

U1{2
´1

77ooooooooooooooooooooooo

U1
´1

//

U1{2
´1

OO� � � � � � � � �
Ũ´1

The EOMS for Ψ2 decomposes into four terms:

lim
ϵÑ0

EOMSpJΨ2Kϵq “ lim
ϵÑ0

ϵTrY´2rJΨ2KϵBBJΨ2Kϵs
“ lim

ϵÑ0
ϵTrY´2

„ˆ

Bγ2 ` cB
K2

ϵ

1 ´ Kϵ

c

˙

1

´Kϵ

ˆ

γ2 ´ c
K2

ϵ

1 ´ Kϵ

c

˙

1

´Kϵ

ȷ

“ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Kϵ

γ2
1

´Kϵ

ȷ

´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Kϵ

c
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

ȷ

` lim
ϵÑ0

ϵTrY´2

„

cB
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

γ2
1

´Kϵ

ȷ

´ lim
ϵÑ0

ϵTrY´2

„

cB
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

c
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

ȷ

. (5.3.3)

The first and the forth terms vanish:

TrY´2

„

Bγ2
1

´Kϵ

γ2
1

´Kϵ

ȷ

“ 0, (5.3.4)

TrY´2

„

cB
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

c
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

ȷ

“ 0, (5.3.5)

because of the ϕ momentum conservation. The second term is

´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Kϵ

c
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

ȷ

“ 2 lim
ϵÑ0

ϵ

ĳ 8

0

dx1dz1 e
´p1`ϵqx1e´ϵz1Bcdggr0; x1 ` z1s. (5.3.6)
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The third term reduces to the second term:

lim
ϵÑ0

ϵTrY´2

„

cB
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

γ2
1

´Kϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

γ2
1

´Kϵ

p´Bc ` Kϵcq
1

1 ´ Kϵ

ȷ

´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Kϵ

c
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Kϵ

c
K2

ϵ

1 ´ Kϵ

c
1

´Kϵ

ȷ

. (5.3.7)

Therefore,

lim
ϵÑ0

EOMSprΨ2sϵq “ 4 lim
ϵÑ0

ϵ

ĳ 8

0

dx1dz1 e
´p1`ϵqx1e´ϵz1Bcdggr0; x1 ` z1s

“ lim
ϵÑ0

ˆ

2

π2ϵ
` Opϵq

˙

‰ 0. (5.3.8)

However, the value of the cubic term coincides with the expected value for the double-
brane solution [57]:

π2

3
lim
ϵÑ0

TrY´2rJΨ2Kϵ3s “ 1. (5.3.9)

We show the solutions (at least algebraically) studied in this section in the following
diagram.

Ψ2

Ψ0{2 Ψ1{2 Ψ1 Ψ3{2 Ψ4{2

Ψ0

//
U´1
1{2

��
� �
� �
� �
� �
�

Ũ

//
U´1
1{2

//

U´1
1{2

77ooooooooooooooooooooooo

U´1
1

//

U´1
1{2

OO� � � � � � � � �
Ũ´1

77ooooooooooooooooooooooo

U´1
1

Ψ0 and Ψ0{2 are the tachyon vacuum, Ψ1{2 is the half-brane solution [27], Ψ3{2 is our new
multiple-half-brane solution, while the string fields Ψ2 and Ψ4{2 do not satisfy the EOMS.
In all the cases of these string fields the following relation holds:

π2

3
lim
ϵÑ0

TrY´2rJΨnKϵ3s ` 1 “ n, tn “ 0, 0{2, 1{2, 1, 3{2, 2u. (5.3.10)
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Chapter 6

Review of the Berkovits’ Open Superstring
Field Theory

6.1 Action

The action of the Berkovits’ open superstring field theory [8, 9] is given by

Spgq “ ´
1

2

ż 1

0

dtTr
“

BtpΨηΨQq ` ΨttΨη,ΨQu
‰

, (6.1.1)

where each ΨD is a “connection”:

ΨQ :“ gptq´1Qgptq, Ψη :“ gptq´1η0gptq, Ψt :“ gptq´1Btgptq, (6.1.2)

and gptq, t P r0, 1s is defined as

gp0q “ 1, gp1q “ g. (6.1.3)

The string field g is in the NS sector, GSOp˘q1 sector, and in the large Hilbert space
Hlarge, i.e., the Hilbert space includes the zero mode of the ξ ghost, which does not exist
in the bosonization of the βγ ghost:

βpzq “ Bξe´ϕpzq, γpzq “ ηeϕpzq. (6.1.4)

Since, this action is in the same form as the WZW action by replacing

η0 Ñ B, Q Ñ B̄, (6.1.5)

the EOM is given by
η0pg´1Qgq “ 0, (6.1.6)

1We attach the “internal CP factor” as in the case of the modified cubic superstring field theory.
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and the action is invariant under the gauge transformation:

g gg “ ΛgΩ,//
pΛ,Ωq

QΛ “ 0, η0Ω “ 0, (6.1.7)

where we denote the pair of the gauge parameter Λ and Ω as pΛ,Ωq with the arrow.
Indeed, if we demand “axioms”:

Q2 “ η20 “ tQ, η0u “ 0, (6.1.8)

Q, η0 are derivatives under ˚ product, (6.1.9)

TrrQφs “ Trrη0φs “ 0, (6.1.10)

pφ1 ˚ φ2q ˚ φ3 “ φ1 ˚ pφ2 ˚ φ3q “ φ1 ˚ φ2 ˚ φ3, (6.1.11)

Trrφ1φ2s “ p´qϵpφ1qϵpφ2qTrrφ2φ1s, (6.1.12)

we can derive the EOM and show the invariance of the action. The action can be rewritten
as the following equation [58]:

Spgq “ ´

ż 1

0

dtTrrpη0ΨtqΨQs. (6.1.13)

Note that the action does not use the PCO, then the action is free from the contact term
problem.

6.2 Tachyon Vacuum Solution

The tachyon vacuum solution in Berkovits’ SFT found by Erler [28]2 can be written
formally as

g0 “ Q

ˆ

p1 ` q ¨ ζq
B

K

˙

U1, (6.2.1)

where ζ :“ cγ´1, U1 “ Bc ` cB ´K
1´K

, q P C. Here, the string field γ´1 is constructed by
inserting e´ϕξpzq on the boundary in the sliver frame with the Pauli matrix ´iσ2, then
γ´1 has the ξ zero mode. The explicit form of the solution g0 is

g0 “

ˆ

q ¨ Qζ ¨
B

K
` p1 ` q ¨ ζq

˙ˆ

Bc ` cB
´K

1 ´ K

˙

“ 1 ´ cB
1

1 ´ K
´ q ¨ cV B

1

1 ´ K
´ q ¨ γB

1

1 ´ K
` q ¨ ζ, (6.2.2)

where V :“ 1
2
Bcγ´1, Qζ “ cV ` γ.

We introduce a “matrix” notation [28]:

„

M11 M12

M21 M22

ȷ

:“ γpM11Bζ ` M12Bq ` cpM21Bζ ` M22Bq, (6.2.3)

2A related work can be found in [59].
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where rMij, Bu “ 0. We can show that a product among the above string fields is like a
matrix:

„

M11 M12

M21 M22

ȷ

˚

„

N11 N12

N21 N22

ȷ

“

´

pγM11 ` cM21qBζ ` pγM12 ` cM22qB
¯

ˆ

´

γpN11Bζ ` N12Bq ` cpN21Bζ ` N22Bq

¯

“ γM11BζpγN11Bζ ` γN12Bq ` γM12BpcN21Bζ ` cN22Bq

` cM21BζpγN11Bζ ` γN12Bq ` cM22BpcN21Bζ ` cN22Bq

“ γpM11N11Bζ ` M11N12Bq ` γpM12N21Bζ ` M12N22Bq

` cpM21N11Bζ ` M21N12Bq ` cpM22N21Bζ ` M22N22Bq

“

´

γpM11N11 ` M12N21q ` cpM21N11 ` M22N21q

¯

Bζ

`

´

γpM12N22 ` M11N12q ` cpM22N22 ` M21N12q

¯

B

“

„

M11N11 ` M12N21 M11N12 ` M12N22

M21N11 ` M22N21 M21N12 ` M22N22

ȷ

. (6.2.4)

This notation is especially useful when we search for the inverse of the string fields under
the ˚ product.

We rewrite the tachyon vacuum solution in the “matrix” notation. The each factor on
the right-hand side of (6.2.1) can be written as

Q

ˆ

p1 ` q ¨ ζq
B

K

˙

“ q ¨ cV
B

K
` q ¨ γ

B

K
` 1 ` q ¨ ζ

“

„

1 q ¨ 1
K

q 1 ` q ¨ V 1
K

ȷ

, (6.2.5)

and

U1 “ Bc ` cB
´K

1 ´ K
“

«

1 0

0 ´K
1´K

ff

. (6.2.6)

Then, g0 in the “matrix” notation is given by

g0 “

„

1 q ¨ 1
K

q 1 ` q ¨ V 1
K

ȷ

«

1
´K
1´K

ff

“

„

1 q ¨ 1
K

q 1 ` q ¨ V 1
K

ȷ „

1

´K

ȷ

«

1
1

1´K

ff

“

„

1 ´q

q ´K ´ q ¨ V

ȷ

«

1
1

1´K

ff

. (6.2.7)
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We define g0ptq s.t. g0p1q “ g0 and g0p0q “ 1. Here we take g0ptq as follows

g0ptq “ t̄ ` tg0, (6.2.8)

where t̄ :“ 1 ´ t, then we have

g0ptq “

„

t̄

t̄

ȷ

`

„

t ´α

α ´t ¨ K ´ α ¨ V

ȷ

«

1
1

1´K

ff

“

„

1 ´α

α t̄ ´ K ´ α ¨ V

ȷ

«

1
1

1´K

ff

“ v0u0. (6.2.9)

Here, α :“ qt, and string fields v0 and u0 are difined as

v0 :“

„

1 ´α

α t̄ ¨ I ´ K ´ α ¨ V

ȷ

, (6.2.10)

u0 :“

«

1
1

1´K

ff

, (6.2.11)

where I “ 1 is identity string field, and for latter calculations we leave it in the following
calculations.

Next, we derive the inverse g0ptq´1 of the string field g0ptq. We define the string field
det0 as

det0 :“ t̄ ¨ I ´ K ´ α ¨ V ` α2, (6.2.12)

then the inverse of the string field v0 in its “matrix” notation can be found:

v0
´1 “

«

1 ´ α2 ¨ 1
det0

α ¨ 1
det0

´α ¨ 1
det0

1
det0

ff

. (6.2.13)

We will give the definition of the string field 1
det0

:“ pt̄ ¨ I ´K ´α ¨ V `α2q´1 in appendix
F. Indeed, this is the inverse:

v0
´1v0 “

«

1 ´ α2 ¨ 1
det0

α ¨ 1
det0

´α ¨ 1
det0

1
det0

ff

„

1 ´α

α det0 ´ α2

ȷ

“

„

1

1

ȷ

“ Bc ` cB

“ 1. (6.2.14)

As for v0v0´1 “ 1, we can show it in a same way. For the later convenience we introduce
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ṽ0 :“ v0
´1 ´ Bc, the “matrix” notation of which is given by

ṽ0 “

«

´α2 ¨ 1
det0

α ¨ 1
det0

´α ¨ 1
det0

1
det0

ff

“

„

´α2 α

´α 1

ȷ

«

1
det0

1
det0

ff

“ wD0. (6.2.15)

Here the string fields w and D0 are defined as

w :“

„

´α2 α

´α 1

ȷ

, (6.2.16)

D0 :“

«

1
det0

1
det0

ff

. (6.2.17)

Note that w and D0 commute rw,D0s “ 0 since α P C. Therefore, we have

g0ptq “ v0u0, g0ptq´1 “ u0
´1pwD0 ` Bcq. (6.2.18)

Then, we compute the energy of the solution:

Epg0q “ ´Spg0q “

ż 1

0

dtTr
“

η0
`

g0ptq
´1Btg0ptq

˘

g0ptq´1Qg0ptq
‰

(6.2.19)

by using these results. The computation becomes very long, though it is straightforward.
So, we will give it in appendix F. The result reproduces the correct value of the tachyon
vacuum:

Epg0q “

ż 1

0

dt

„

t̄p2qα ´ 1q
α2

pt̄ ` α2q322
4

π2
´ t̄q

α

pt̄ ` α2q222
8

π2

ȷ

“ ´
1

2π2
. (6.2.20)

For |Rerqs| ą |Imrqs|, this is independent on q.
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Chapter 7

Double-brane Solution in Berkovits’ Open
SFT

7.1 Perturbative Vacuum

Since we find the tachyon vacuum g0 can be written in the pure-gauge form formally,
let us consider the solutions constructed by using singular gauge transformations. We
try to construct the double-brane solution as another non-trivial solution. We suggest
that if we replace U1 in (6.2.1) to U1

´1 by using the gauge transformation, we obtain the
double-brane solution.

First, we check that the string field g1 which is made by performing the gauge trans-
formation pΛ,Ωq once,

g0 g1 :“ Q

ˆ

p1 ` qζq
B

K

˙

,//
p1,U1

´1q
(7.1.1)

is gauge equivalent to the trivial solution g “ 1. Though g1 includes the ill-defined string
field 1{K, if we assume that 1{K is Q-closed (since QK “ 0) and also that 1{K is the
inverse of K algebraically, the EOM is satisfied because

g1
´1Qg1 “ 0. (7.1.2)

The above two assumptions pQ 1
K

“ 0 and K 1
K

“ 1q are satisfied if we implement the
Kϵ-regularization for the fundamental variable g as g Ñ JgKϵ for finite ϵ. However, for the
reason discussed later, we do not take this regularization. Hence, we may refer to them
as assumptions. Then, the energy of the solution g1 is Epg1q “ Epg0q ` T9 trivially, since
Qg1 “ 0.
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7.2 Double-brane Solution

Let us consider the string field g2 which is constructed by performing the singular gauge
transformation p1, U´1

1 q twice for the tachyon vacuum g0:

g0 g1 g2//
p1,U1

´1q
//

p1,U1
´1q

:“ Q

ˆ

p1 ` qζq
B

K

˙

U1
´1. (7.2.1)

Then, g2 is the solution of the EOM η0pg´1Qgq “ 0 since

g2
´1Qg2 “ U1QU1

´1 “ Ψ2 P Hsmall. (7.2.2)

Here, we assume 1{K P Hsmall, i.e., it does not have ξ0. The solution g0, s.t. g´1
0 Qg0 “ Ψ0,

reproduces the energy of the tachyon vacuum solution, therefore, we expect the solution
g2, s.t. g´1

2 Qg2 “ Ψ2, reproduces the energy of the double brane solution. To check this
expectation, we try to compute the energy. First, we write g2 in the “matrix” notation:

g2 “ Q

ˆ

p1 ` qζq
B

K

˙

U1
´1

“

„

1 ´q

q ´K ´ qV

ȷ

«

1
1

1´K

ff«

1

p1´K
´K

q2

ff

“

„

1 ´q

q ´K ´ qV

ȷ „

1
1´K
K2

ȷ

, (7.2.3)

and then we give g2ptq as in the case of the tachyon vacuum solution:

g2ptq “ t̄ ` tg2 “

„

t̄

t̄

ȷ

«

1
K2

1´K

ff

„

1
1´K
K2

ȷ

`

„

t ´α

α ´tK ´ αV

ȷ „

1
1´K
K2

ȷ

“

«

1 ´α

α t̄ K2

1´K
´ tK ´ αV

ff

„

1
1´K
K2

ȷ

“

„

1 ´α

α t̄Ω1 ´ K ´ αV

ȷ „

1
1´K
K2

ȷ

, (7.2.4)

where
Ω1 :“

K

1 ´ K
. (7.2.5)
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Then, by defining

v2 :“

„

1 ´α

α t̄Ω1 ´ K ´ αV

ȷ

, (7.2.6)

u2 :“

„

1
1´K
K2

ȷ

, (7.2.7)

det2 :“ t̄Ω1 ´ K ´ αV ` α2, (7.2.8)

D2 :“

«

1
det2

1
det2

ff

, (7.2.9)

g2ptq´1 is given by
g2ptq

´1 “ u2
´1pwD2 ` Bcq, (7.2.10)

as in the case of the tachyon vacuum

g0ptq
´1 “ u0

´1pwD0 ` Bcq. (7.2.11)

Then precise definition of the string field 1{ det2 is given in the next subsection.

7.2.1 Energy

To evaluate the energy of the solution, we need some regularization since the string field
1{det2 is singular at t “ 0 as we will see below. First, we might try to regularize the
solution as g2 Ñ Jg2Kϵ. However, this is not a desirable regularization. If we regularize
the solution g2 itself, this means that the solution is constructed by using a regular
gauge transformation p1, JU1

´1Kϵq from the perturbative vacuum. So the result is gauge
equivalent to the perturbative vacuum. To avoid this, we introduce the Kϵ-regularization
for the “connection” ΨD (6.1). This seems to be good because in the bosonic cubic
theory the regularization JU1QU1

´1Kϵ works well, and the regularization for ΨD includesJg2´1Qg2Kϵ “ JU1QU1
´1Kϵ as a case with D “ Q. In the bosonic cubic SFT and the

modified cubic SFT, we checked the EOMS as a condition for an acceptable solution.
However, in the present case, a suitable condition is not clear. Since extra ξ zero modes
do not seem to appear in the Kϵ-regularization, the inner product between η0Jg´1QgKϵ
with any other test string fields seems to be zero.

The computation of the energy can be obtained from the one of the tachyon vacuum
solution (F.43) in appendix G by replacing as I Ñ Ω1 and det0 Ñ det2. The result is
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given by

lim
ϵÑ0

Tr
“

η0
`Jg2ptq´1Btg2ptqKϵ˘Jg2ptq´1Qg2ptqKϵ‰

“ lim
ϵÑ0

t̄

˜

2qα2Tr

„sˆ
η0

1

det2

˙

1

det2
Bc

1

1 ´ K
Bγ

1

1 ´ K

{
ϵ

ȷ

(7.2.12)

´ 2qαTr

„sˆ
η0

1

det2

˙

1

det2
BΩ1cBcΩ1

{
ϵ

ȷ

(7.2.13)

` qαTr

„s
1

det2
V

ˆ

η0
1

det2

˙

1

1 ´ K
Bγ

1

1 ´ K
Bc

{
ϵ

ȷ

(7.2.14)

´ qTr

„s
1

det2
V

ˆ

η0
1

det2

˙

BΩ1cBcΩ1

{
ϵ

ȷ

(7.2.15)

´ αTr

„sˆ
η0

1

det2

˙

Ω1 1

det2
1

1 ´ K
Bγ

1

1 ´ K
Bc

{
ϵ

ȷ

(7.2.16)

` Tr

„sˆ
η0

1

det2

˙

Ω1 1

det2
BΩ1cBcΩ1

{
ϵ

ȷ

¸

, (7.2.17)

where we used

rΩ1, γs “
1

1 ´ K
Bγ

1

1 ´ K
,

Ω1cBc ´ KcrΩ1, cs “ ´Ω1cBcΩ1 ´ K

„

c,
1

1 ´ K

ȷ

Bc
1

1 ´ K
. (7.2.18)

We give the definition of the string field 1{det2 as 1{det0 (F.47):

1

det2
:“ pt̄Ω1 ´ K ´ αV ` α2q´1

“

ˆ

`

t̄K ´ Kp1 ´ Kq ´ αV p1 ´ Kq ` α2p1 ´ Kq
˘ 1

1 ´ K

˙´1

“ p1 ´ Kq
`

K2 ´ pα2 ` tqK ` α2 ´ αV p1 ´ Kq
˘´1

“ p1 ´ Kq

ˆ

1

F2

´ αV p1 ´ Kq

˙´1

“ p1 ´ Kq

ˆ

p1 ´ αV p1 ´ KqF2q
1

F2

˙´1

“ p1 ´ KqF2p1 ´ αV p1 ´ KqF2q
´1

“ p1 ´ KqF2

`

1 ` αV p1 ´ KqF2 ` αV p1 ´ KqF2αV p1 ´ KqF2 ` ¨ ¨ ¨
˘

“ p1 ´ Kq
`

F2 ` F2αV p1 ´ KqF2 ` F2αV p1 ´ KqF2αV p1 ´ KqF2 ` ¨ ¨ ¨
˘

. (7.2.19)

Here, we defined

F2 :“
1

K2 ´ pα2 ` tqK ` α2
, (7.2.20)
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which becomes singular string field at t “ 0:

F2|t“0 “
1

K2
(7.2.21)

and hence the regularization is needed. We adopt the Kϵ-regularization and define the
string field F2 in terms of the Laplace transformation:

JF2Kϵ “
1

Kϵ
2 ´ pα2 ` tqKϵ ` α2

“
1

k` ´ K

1

k´ ´ K

“

ż 8

0

dl

ż 8

0

dme´k`le´k´mΩl`m

“
1

k` ´ k´

ż 8

0

dn pe´k´n ´ e´k`nqΩn, (7.2.22)

where

k˘ :“
pα2 ` tq ˘

a

pα2 ` tq2 ´ 4α2

2
` ϵ. (7.2.23)

If we choose q as q P p0, 1
2
s, then k˘ satisfy

Rerk˘s ą 0, Imrk˘s “ 0. (7.2.24)

Then the Laplace transformation is well-defined at least for q P p0, 1
2
s.

We do not write all the calculation in this section since it will be long. We give the
calculation of the remaining terms in appendix G. So we only write the first term of
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(7.2.12)-(7.2.17):

(7.2.12) “ 2 lim
ϵÑ0

t̄qα2Tr

„sˆ
η0

1

det2

˙

1

det2
Bc

1

1 ´ K
Bγ

1

1 ´ K

{
ϵ

ȷ

“ 2 lim
ϵÑ0

t̄qα2Tr
”r

pη0
`

p1 ´ KqF2αV p1 ´ KqF2αV p1 ´ KqF2q
˘

ˆ p1 ´ KqpF2αV p1 ´ KqF2qBc
1

1 ´ K
Bγ

1

1 ´ K

z
ϵ

ı

` 2 lim
ϵÑ0

t̄qα2Tr
”r

pη0
`

p1 ´ KqF2αV p1 ´ KqF2q
˘

ˆ p1 ´ KqpF2αV p1 ´ KqF2αV p1 ´ KqF2qBc
1

1 ´ K
Bγ

1

1 ´ K

z
ϵ

ı

“ ´2 lim
ϵÑ0

t̄qα5Tr
”JF2KϵV p1 ´ KϵqJF2KϵV p1 ´ Kϵq

2JF2Kϵ2pη0V qJF2KϵBcBγı
` 2 lim

ϵÑ0
t̄qα5Tr

”JF2Kϵpη0V qp1 ´ Kϵq
2JF2Kϵ2V p1 ´ KϵqJF2KϵV JF2KϵBcBγı

“ ´ lim
ϵÑ0

t̄qα5

22
Tr
”

pη0γ
´1qJF2KϵBγJF2KϵBcBcγ´1p1 ´ KϵqJF2KϵBcγ´1

ˆ p1 ´ Kϵq
2JF2Kϵ2Bcı (7.2.25)

` lim
ϵÑ0

t̄qα5

22
Tr
”

pη0γ
´1qp1 ´ Kϵq

2JF2Kϵ2Bcγ´1p1 ´ KϵqJF2Kϵ
ˆ Bcγ´1JF2KϵBγJF2KϵBcBcı. (7.2.26)

The first term (7.2.25) is

ż 1

0

dt (7.2.25)|q“ 1
2

“ ´
1

28
lim
ϵÑ0

ż 1

0

dt t̄t5Tr
“

pη0γ
´1qJF2KϵBγJF2KϵBcBcγ´1

ˆ p1 ´ KϵqJF2KϵBcγ´1p1 ´ Kϵq
2JF2Kϵ2Bc‰

“ ´
1

28
lim
ϵÑ0

ż 1

0

dt t̄t5
ż 8

0

5
ź

i“1

dni

3
ź

j“1

lim
ujÑ0

p´Buj
q

"ˆ

1

k` ´ k´

˙5

pe´k´ni ´ e´k`niqe´p1`ϵquj

¨ eidiirn1, n2, u1 ` n3, u2 ` u3 ` n4 ` n5s

¨ Bcdddru1 ` n3, u2 ` u3 ` n4 ` n5, n1 ` n2s

*

ˆ
1

2
Trrσ3p´iσ2qiσ2σ3σ3σ3p´iσ2qσ3p´iσ2qσ3s. (7.2.27)

Here we define

eigiirt1, t2, t3, t4s

:“ x

¿

0

dz

2πi
ηpzqξp0qe´ϕp0qηeϕpt1qξe´ϕpt1 ` t2qξe´ϕpt1 ` t2 ` t3q y

ξηϕ
Ct1`t2`t3`t4

“ ´
π

L

sin θt1
sin θt1`t2 sin θt1`t2`t3

, (7.2.28)
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eidiirt1, t2, t3, t4s :“ lim
yÑ0

Byteigiirt1 ` y, t2, t3, t4s ´ eigiirt1, t2 ` y, t3, t4su

“ ´
π2

L2
cos θt1 csc θt1`t2 csc θt1`t2`t3 . (7.2.29)

However, the computations are difficult, because the number of the integrals and that of
the terms in the integrands are large. Therefore, we try to evaluate the solution another
way.
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7.2.2 Gauge Invariant Observable

The GIO [30] in Berkovits’ SFT is defined as

W pg,Vq :“ TrVrg´1Qgs, (7.2.30)

where

TrVrφtests :“ xVpi8qfs ˝ φtestp0q yC1 . (7.2.31)

Here, V is an NS-NS on-shell vertex operator:

V “ pξ ` ξ̃qcc̃e´ϕe´ϕ̃V p 1
2
, 1
2

q. (7.2.32)

Let us show the gauge invariance. The gauge transformation (6.1.7) of the GIO is given
by

W pgg,Vq “ TrVrΛ´1g´1Ω´1QpΩgΛqs

“ TrVrg´1Qg ` Λ´1QΛs. (7.2.33)

We define
Στ :“ Λτ

´1QΛτ , Λτ :“ eτλ, (7.2.34)

where λ is a string field in the small Hilbert space, i.e., η0λ “ 0. Then, we can show that
TrVrΣτ s does not depend on the parameter τ :

BτTrVrΣτ s “ TrVr´λΣτ s ` TrVrΛ´1
τ QpλΛτ qs

“ ´TrVrλΣτ s ` TrVrQλs ` TrVrλΣτ s

“ TrVrQλs

“ 0. (7.2.35)

Since Σ0 “ 0, this means
TrVrΣτ s “ 0. (7.2.36)

Then, we find the gauge invariance:

W pgg,Vq “ W pg,Vq ` TrVrΣ1s

“ W pg,Vq. (7.2.37)
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For the tachyon vacuum solution g0, the GIO becomes

W pg0,Vq “ TrVrΨ0s

“ TrV

„

pQpBcq ´ cq
1

1 ´ K

ȷ

“ ´TrV

„

c
1

1 ´ K

ȷ

“ 0 ´ A0pVq. (7.2.38)

For the trivial solution g1, it becomes

W pg1,Vq “ 0 “ A0pVq ´ A0pVq. (7.2.39)

For our solution g2, it is calculated as

lim
ϵÑ0

JW pg2,VqKϵ “ lim
ϵÑ0

TrVrJΨ2Kϵs “ lim
ϵÑ0

TrV

„ˆ

Bγ2 ` cB
Kϵ

2

1 ´ Kϵ

c

˙

1

´Kϵ

ȷ

“ lim
ϵÑ0

TrV

„

cB
Kϵ

1 ´ Kϵ

Bc
1

´Kϵ

ȷ

“ ´TrV

„

cB
1

1 ´ K
Bc

ȷ

“ TrV

„

BQc
1

1 ´ K

ȷ

“ TrV

„

c
K

1 ´ K

ȷ

“ TrV

„

c
1

1 ´ K

ȷ

“ 2A0pVq ´ A0pVq. (7.2.40)

Here, we used

TrVrBγ2fpKqs “ 0, (7.2.41)

which follows from the ϕ-momentum conservation, and also

TrVrφ1Qφ2s “ ´p´qϵpφ1qTrVrQφ1 ¨ φ2s, (7.2.42)

since V is on-shell. Our solution satisfies a needed property of the double brane solution.
Namely, the value of the GIO of our solution (7.2.40) is larger than that of the tachyon
vacuum solution by the value which seems to be consistent with the existence of two
D9-branes. When we choose the vertex operator V to be the time-like component of the
graviton

VG :“
i

2π
pξ ` ξ̃qcc̃e´ϕe´ϕ̃ψ0ψ̃0, (7.2.43)
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then the disk amplitude corresponds to the energy of the solution:

A0pVGq “
1

2πi

i

2π
x ξ ` ξ̃ y

ξ
UHPx e´ϕpiqe´ϕp´iq y

ϕ
S2

ˆ x cpiqcp´iqp´
1

2
iq´1cp0q ybcS2 xψ0piqψ0p´iq yma

S2

“
1

2πi

i

2π
p´2q

1

i ` i
ˆ p2iqpi ` iqpi ´ 0qp´i ´ 0q ˆ

η00

i ` i

“
1

2π2

“ T9. (7.2.44)

Then, we obtain

W pg0,Vgq “ Epg0q,

W pg1,Vgq “ Epg0q ` T9,

lim
ϵÑ0

JW pg2,VgqKϵ “ Epg0q ` 2T9. (7.2.45)
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Chapter 8

Conclusion

We constructed three types of the new multiple-brane solutions by using singular gauge
transformations in different theories.

First, we constructed candidates for the solution of the EOM in the bosonic cubic
SFT. They were obtained by performing the singular gauge transformation whose gauge
parameter is U1

´1 for the EM soltuion; the number of times of the singular gauge trans-
formation is equal to n. Since, in general, these candidates include the singular string
field 1{K, we adopted the Kϵ-regularization and checked the EOM in the strong sense
(EOMS). After this checking, we realize that the only candidate which satisfies the EOMS
is the one for n “ 1. We evaluated the energy of our solution, and then we found that
the singular gauge transformation increases the energy by the value of the tension of the
D25-brane. We also calculated the tachyon profile, by using the Neumann–Dirichlet twist
operators as the boundary condition changing operators. The plotted figure shows that
our solution describes the D24-brane on the D25-brane; these D-branes are originated
from the EM solution and the gauge transformation, respectively. This result gives a
support for that the singular gauge transformation U1

´1 creates the D25-brane in this
case.

Second, in the modified cubic superstring field theory, we constructed a candidate for
the solution of the EOM by performing the singular gauge transformation for the tachyon
vacuum solution three times. Here we took the singular gauge parameter U1{2

´1. As our
first solution, this solution includes the singular string field 1{G, then we introduced the
Gϵ-regularization, and we checked that the solution satisfies the EOMS. We also evaluated
the energy, and the result is expected one, i.e., the energy of our solution is increased from
the energy of the tachyon vacuum solution by 3/2 times the tension of the D9-brane. Since
Ψ2 does not satisfy the EOMS, a pure-gauge-form string field U1{2

2QU1{2
´2, which is gauge

equivalent to Ψ2, does not satisfy the EOMS. Therefore, we did not consider further gauge
transformations with U1{2

´1.
Third, we constructed a candidate for the double-brane solution by performing the

singular gauge transformation from the tachyon vacuum in the Berkovits’ superstring
field theory. We gave the integral form of the energy of the candidate but did not reach
the final result because the integral is complicated and lengthy. We also discussed the
regularization in this theory. We gave another support that the candidate is the double-
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brane solution. This was given by evaluating the GIO, and we found the value which is
consistent with the double-brane solution.

Let us give some comments regarding future directions. Since we have not yet com-
pleted the computation of the energy of the double-brane solution in Berkovits’ SFT, to
accomplish this task should be the important future work. Since in this thesis, we mainly
evaluated the solutions by using their energies and EOMSs, it would be interesting to
investigate other properties of the solutions. Regarding such a direction, we would say
that the D-brane charge should be an interesting quantity to be studied. However, so-
lutions studied in this thesis does not include any stable BPS D-branes. What is more,
since the D-brane construction studied in this thesis is based on the singular gauge trans-
formations connecting the unstable perturbative vacuum and the tachyon vacuum, It is
not clear whether this method is, in any sense, useful to construct stable BPS D-branes
with charges. These issues including the investigations of further method of constructing
D-branes are important and interesting future directions.
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Appendix A

Correlators and Formulae in the Bosonic
Cubic String Field Theory

We give formulae of the correlators [15] in the sliver frame. The basic formula is

TrrcΩt1cΩt2cΩt3s “ ´

ˆ

L

π

˙3

sin θt1 sin θt2 sin θt3 , (A.1)

where L is the circumference of the sliver, now L “ t1 ` t2 ` t3, and θt :“ πt
L
. This can be

derived from the three point function of cpzq

x cpz1qcpz2qcpz3q ybcUHP “ z12z13z23, pzij :“ zi ´ zjq (A.2)

as follows:

TrrcΩt1cΩt2cΩt3s “ x cp0qcpt1qcpt1 ` t2q ybcCL

“ x fLÑ2 ˝ cp0qfLÑ2 ˝ cpt1qfLÑ2 ˝ cpt1 ` t2q ybcC2

“

ˆ

2

L

˙´3

x cp0qc

ˆ

2t1
L

˙

c

ˆ

2pt1 ` t2q

L

˙

ybcC2

“

ˆ

2

L

˙´3

x fs
´1 ˝ cp0qfs

´1 ˝ c

ˆ

2t1
L

˙

fs
´1 ˝ c

ˆ

2pt1 ` t2q

L

˙

ybcUHP

“

ˆ

2

L

˙´3ˆ
π

2

˙´3

cos2 θt1 cos
2 θt1`t2x cp0qcptan θt1qcptan θt1`t2q ybcUHP

“

ˆ

L

π

˙3

cos2 θt1 cos
2 θt1`t2

ˆ p0 ´ tan θt1qp0 ´ tan θt1`t2qptan θt1 ´ tan θt1`t2q

“

ˆ

L

π

˙3

sin θt1 sin θt1`t2psin θt1 cos θt1`t2 ´ sin θt1`t2 cos θt1q

“ ´

ˆ

L

π

˙3

sin θt1 sin θt1`t2 sin θt2

“ ´

ˆ

L

π

˙3

sin θt1 sin θt2 sin θt3 , (A.3)
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where fs´1pξq “ tan πξ
2
, Bξfs

´1pξq “ π
2

1

cos2 πξ
2

, sin θL´t “ sin θt. Next we give the correlator
with a string field B and four c’s:

TrrBcΩt1cΩt2cΩt3cΩt4s “ ´
t1
L

ˆ

L

π

˙3

sin θt1`t2 sin θt3 sin θt4

`
t1 ` t2
L

ˆ

L

π

˙3

sin θt1 sin θt2`t3 sin θt4

´
t1 ` t2 ` t3

L

ˆ

L

π

˙3

sin θt1 sin θt2 sin θt3`t4 (A.4)

“ ´
L2

4π3
pt3 sin 2θt1 ´ pt2 ` t3q sin 2θt1`t2 ` t2 sin 2θt1`t2`t3

` t1 sin 2θt3 ´ pt1 ` t2q sin 2θt2`t3 ` pt1 ` t2 ` t3q sin 2θt2q.

(A.5)

To derive this, we consider the following correlator:

TrrBcΩt1cΩt2cΩt3cΩt4s “ x

ż

Ó0

dz

2πi
bpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

. (A.6)

We start with the following relation:

x

ż

Ó´0

dz

2πi
zbpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

“ x

ż

Ó´0

dz

2πi
zbpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

` x

ˆ
ż

Ó`0

`

ż

Ò`0

˙

dz

2πi
zbpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

“ x

ˆ
ż

Ó´0

`

ż

Ò`0

˙

dz

2πi
zbpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

` p´qϵpbqϵpcqx cp0q

ż

Ó`0

dz

2πi
zbpzqcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

“ x

ˆ
¿

0

dz

2πi
zbpzqcp0q

˙

cpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

´ x cp0q

ż

Ó`0

dz

2πi
zbpzqcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

. (A.7)

After repeated uses of the similar relations around z “ t1, z “ t1 ` t2 and z “ t1 ` t2 ` t3,
we obtain

(A.7) “ x

ˆ
¿

0

dz

2πi
zbpzqcp0q

˙

cpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

´ x cp0q

ˆ
¿

t1

dz

2πi
zbpzqcpt1q

˙

cpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

` x cp0qcpt1q

ˆ
¿

t1`t2

dz

2πi
zbpzqcpt1 ` t2q

˙

cpt1 ` t2 ` t3q ybcCL

– 73 –



´ x cp0qcpt1qcpt1 ` t2q

ˆ
¿

t1`t2`t3

dz

2πi
zbpzqcpt1 ` t2 ` t3q

˙

ybcCL

` x cp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q

ż

ÓL´0

dz

2πi
zbpzq ybcCL

“ x p0q ¨ cpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

´ x cp0q ¨ pt1q ¨ cpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

` x cp0qcpt1q ¨ pt1 ` t2q ¨ cpt1 ` t2 ` t3q ybcCL

´ x cp0qcpt1qcpt1 ` t2q ¨ pt1 ` t2 ` t3q ybcCL

` x

ż

Ó´0

dz

2πi
pz ` Lqbpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

, (A.8)

where we used the periodicity z » z ` L of the cylinder. Then, we obtain the following
correlator:

x

ż

Ó´0

dz

2πi
zbpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

“ ´t1x cp0qcpt1 ` t2qcpt1 ` t2 ` t3qybcCL

` pt1 ` t2qx cp0qcpt1qcpt1 ` t2 ` t3q ybcCL

´ pt1 ` t2 ` t3qx cp0qcpt1qcpt1 ` t2q ybcCL

` x

ż

Ó´0

dz

2πi
pz ` Lqbpzqcp0qcpt1qcpt1 ` t2qcpt1 ` t2 ` t3q ybcCL

. (A.9)

Therefore, (A.4) is obtained:

TrrBcΩt1cΩt2cΩt3cΩt4s “
t1
L
TrrcΩt1`t2cΩt3cΩt4s

´
t1 ` t2
L

TrrcΩt1cΩt2`t3cΩt4s

`
t1 ` t2 ` t3

L
TrrcΩt1cΩt2cΩt3`t4s

“ ´
t1
L

ˆ

L

π

˙3

sin θt1`t2 sin θt3 sin θt4

`
t1 ` t2
L

ˆ

L

π

˙3

sin θt1 sin θt2`t3 sin θt4

´
t1 ` t2 ` t3

L

ˆ

L

π

˙3

sin θt1 sin θt2 sin θt3`t4 . (A.10)

Furthermore, by using

sinx1 sin x2 sin x3 “
1

4

`

´ sinpx1 ` x2 ` x3q ` sinpx1 ` x2 ´ x3q

` sinpx1 ´ x2 ` x3q ´ sinpx1 ´ x2 ´ x3q
˘

, (A.11)
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which can be derived from

sinpx1 ` x2 ` x3q “ sin x1 cos x2 cos x3 ´ sin x1 sin x2 sin x3

` cos x1 sin x2 cos x3 ` cos x1 cos x2 sin x3, (A.12)

we can rewrite it:

(A.10) “ ´
t1
L

ˆ

L

π

˙3
1

4

`

´ sin θpt1`t2q`t3`t4 ` sin θpt1`t2q`t3´t4

` sin θpt1`t2q´t3`t4 ´ sin θpt1`t2q´t3´t4q

`
t1 ` t2
L

ˆ

L

π

˙3
1

4

`

´ sin θt1`pt2`t3q`t4 ` sin θt1`pt2`t3q´t4

` sin θt1´pt2`t3q`t4 ´ sin θt1´pt2`t3q´t4

˘

´
t1 ` t2 ` t3

L

ˆ

L

π

˙3
1

4

`

´ sin θt1`t2`pt3`t4q ` sin θt1`t2´pt3`t4q

` sin θt1´t2`pt3`t4q ´ sin θt1´t2´pt3`t4q

˘

“ ´
L2

4π3
pt3 sin 2θt1 ´ pt2 ` t3q sin 2θt1`t2 ` t2 sin 2θt1`t2`t3

` t1 sin 2θt3 ´ pt1 ` t2q sin 2θt2`t3 ` pt1 ` t2 ` t3q sin 2θt2q, (A.13)

where t4 “ L ´ pt1 ` t2 ` t3q and sinpπ ´ θq “ sin θ. For simplicity, we define

Bccccrt1, t2, t3, t4s :“ TrrBcΩt1cΩt2cΩt3cΩt4s. (A.14)

By using this notation,

Bccccrt1, t2, t3, t4s “ ´
L2

4π3
pt3 sin 2θt1 ´ pt2 ` t3q sin 2θt1`t2 ` t2 sin 2θt1`t2`t3

` t1 sin 2θt3 ´ pt1 ` t2q sin 2θt2`t3 ` pt1 ` t2 ` t3q sin 2θt2q.

(A.15)

We further define

Bcdddrt1, t2, t3s :“ TrrBcBcΩt1BcΩt2BcΩt3s,

Bccddrt1, t2, t3, t4s :“ TrrBcΩt1cΩt2BcΩt3BcΩt4s,

Bcccdrt1, t2, t3, t4s :“ TrrBcΩt1cΩt2cΩt3BcΩt4s,

Bccdcrt1, t2, t3, t4s :“ TrrBcΩt1cΩt2BcΩt3cΩt4s, (A.16)

and by using
K “ BypΩyq|yÑ0, (A.17)

we obtain

Bcdddrt1, t2, t3s “ lim
yÑ0

By1Bccddry, t1, t2, t3s
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“ lim
y,y1Ñ0

ByBy1

!

Bcccdry, t1 ` y1, t2, t3s ´ Bcccdry, t1, t2 ` y1, t3s
)

“ lim
y,y1,y2Ñ0

ByBy1By2

!

Bccccry, t1 ` y1, t2 ` y2, t3s ´ Bccccry, t1 ` y1, t2, t3 ` y2s

´ Bccccry, t1, t2 ` y1 ` y2, t3s ` Bccccry, t1, t2 ` y1, t3 ` y2s

)

“ ´
1

π
psin 2θt2 ` sin 2θt3 ´ sin 2θt2`t3q (A.18)

Similary,

Bccdcrt1, t2, t3, t4s

“
L2

4π3

ˆˆ

2π

L

˙

`

´ pt1 ` t2 ` t3q cos 2θt2 ` pt2 ` t3q cos 2θt1`t2 ` t1 cos 2θt3
˘

` sin 2θt1 ` sin 2θt2`t3 ´ sin 2θt1`t2`t3

˙

. (A.19)
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Appendix B

KBcGγ Algebra

We summarize the derivations of the KBcGγ algebras.

• B̂2 “ ĉ2 “ 0

B2 b I “ c2 b I “ 0 (B.1)

• tB̂, ĉu “ 1

tB̂, ĉu “ pBc ` cBq b I2 ÑCFT

ż

Ó´0

dz

2πi
bpzqcp0q `

ż

Ó`0

dz

2πi
cp0qbpzq

“

ˆ
ż

Ó´0

`

ż

Ò`0

˙

dz

2πi
bpzqcp0q

“

¿

0

dz

2πi
bpzqcp0q

“1

ÑSFT 1 b I2 “ 1̂ :“ 1 (B.2)

• tγ̂, B̂u “ tγ̂, ĉu “ 0

tγ̂, ĉu “ pγc ´ cγq b iσ2σ3 “ 0, tγ̂, B̂u “ pγB ´ Bγq b iσ2σ3 “ 0. (B.3)

7 rγ,Bs “ rγ, cs “ 0.

• δ̂Ĝ “ 2K̂

δ̂Ĝ “ tĜ, Ĝu “ pGG ` GGq b I2

ÑCFT

ż

Ó0

dz

2πi

ż

Ó`0

dw

2πi
GpzqGpwq `

ż

Ó´0

dw

2πi

ż

Ó0

dz

2πi
GpwqGpzq

“

ż

Ó0

dz

2πi

ˆ
ż

Ó´0

`

ż

Ò`0

˙

dw

2πi
GpwqGpzq

“

ż

Ó0

dz

2πi

¿

z

dw

2πi

2T pwq

w ´ z
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“2

ż

Ó0

dz

2πi
T pzq

ÑSFT 2K b I2 “ 2K̂ (B.4)

• δ̂ĉ “ 2γ̂

rĜ, ĉs “ pGc ` cGq b σ1σ3 ÑCFT

ż

Ó´0

dz

2πi
Gpzqcp0q `

ż

Ó`0

dz

2πi
cp0qGpzq

“

ˆ
ż

Ó´0

`

ż

Ò`0

˙

dz

2πi
Gpzqcp0q

“

¿

0

dz

2πi

´2γp0q

z

“ ´ 2γp0q

ÑSFT ´ 2γ b ´iσ2 “ 2γ̂ (B.5)

• δ̂γ̂ “ B̂ĉ{2

tĜ, γ̂u “ pGγ ´ γGq b σ1iσ2 ÑCFT

ż

Ó´0

dz

2πi
Gpzqγp0q ´

ż

Ó`0

dz

2πi
γp0qGpzq

“

ˆ
ż

Ó´0

`

ż

Ò`0

˙

dz

2πi
Gpzqγp0q

“

¿

0

dz

2πi

´Bcp0q

2z

“ ´
1

2

ˆ
ż

Ó0´

dz

2πi
T pzqcp0q ´

ż

Ó0`

cp0qT pzq

˙

ÑSFT ´
1

2
Bc b p´σ3q “

1

2
B̂ĉ (B.6)

• δ̂γ̂2 “ 2δ̂γ̂ ¨ γ̂

rĜ, γ̂2s “ tĜ, γ̂uγ̂ ´ γ̂tĜ, γ̂u “ B̂ĉγ̂ (B.7)

• Q̂B̂ “ K̂

Q̂B̂ “ QB b I2 ÑCFT

¿

w

dz

2πi

ż

Ó0

dw

2πi
jBpzqbpwq

“

ż

Ó0

dw

2πi
T pwq

ÑSFT K b I2 “ K̂ (B.8)

• rK̂, B̂s “ 0

0 “ Q̂pB̂ ¨ B̂q
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“ Q̂B̂ ¨ B̂ ´ B̂Q̂B̂

“ K̂B̂ ´ B̂K̂ (B.9)

• Q̂K̂ “ 0

Q̂K̂ “ Q̂2B̂ “ 0 (B.10)

• Q̂ĉ “ ĉB̂ĉ ` γ̂2

Q̂ĉ “ Qc b I2 ÑCFT

¿

0

dz

2πi
jBpzqcp0q

“ cBc ´ γ2p0q

ÑSFT cBc b I2 ` γ2 b piσ2q2

“ ĉB̂ĉ ` γ̂2 (B.11)

• Q̂Ĝ “ 0

Q̂Ĝ “ QG b iσ2 “ 0 (B.12)

• Q̂γ̂ “ ĉB̂γ̂ ´ B̂ĉγ̂{2

Q̂γ̂ “ Qγ b σ3iσ2 ÑCFT

¿

0

dz

2πi
jBpzqγp0q

“pcBγ ´
1

2
Bcγqp0q

ÑSFT pcBγ ´
1

2
Bcγq b σ3iσ2

“ĉB̂γ̂ ´
1

2
B̂ĉγ̂ (B.13)
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Appendix C

Correlators in Modified Cubic String Field
Theory

To calculate energy of solutions, we introduce the formulae of the correlators. The non-
vanishing correlator in this theory is now normalized as

xcBcB2ce´2ϕpzqy
gh
UHP “ ´2. (C.1)

In the correlator, the ghost number is 3, the bc-ghost number is 3, the ϕ momentum is
´2, and the picture is ´2. We derive the basic correlator:

TrY´2rcγΩt1γΩt2s

“ xY´2pi8qcp0qγp0qγpt1q y
gh
CL

ˆ
1

2
Trrσ3σ3iσ2iσ2s

“ ´xY´2piqf´1
s ˝ fLÑ2 ˝ cp0qf´1

s ˝ fLÑ2 ˝ γp0qf´1
s ˝ fLÑ2 ˝ γpt1q y

gh
UHP

“ ´

´ 2

L

¯´1´ 1
2

ˆ2´π

2

¯´1´ 1
2

ˆ2´ 1

cos2 θt1

¯´ 1
2

ˆ x cBξe´2ϕpiqcBξe´2ϕp´iqcp0qηeϕp0qηeϕptan θt1q y
gh
S2

“ ´

´π

L

¯´2

cos θt1xcpiqcp´iqcp0qybcS2

ˆ x e´2ϕpiqe´2ϕp´iqeϕp0qeϕptan θt1q y
ϕ
S2

ˆ Bs1Bs2xξps1qξps2qηp0qηptan θt1q y
ξη
S2 |s1“i, s2“´i

“ ´p
π

L
q´2 cos θt1pi ` iqpi ´ 0qp´i ´ 0q

ˆ pi ` iq´4pi ´ 0q2pi ´ tan θt1q2p´i ´ 0q2p´i ´ tan θt1q2p0 ´ tan θt1q´1

ˆ Bs1Bs2tps1 ´ s2qps1 ´ 0q´1ps1 ´ tan θt1q´1

¨ ps2 ´ 0q´1ps2 ´ tan θt1q´1p0 ´ tan θt1qu|s1“i, s2“´i

“
L2 cos θt1

2π2
. (C.2)
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Here, the width of the sliver is L, and we used the doubling trick, and OPE:

η » e´χ, ξ » eχ, χpzqχp0q „ ln z,

ϕpzqϕp0q „ ´ ln z. (C.3)

Next, we derive the correlator TrY´2rBcΩt1cγΩt2γΩt3s by using the technique used
in the derivation of TrrBcΩt1cΩt2cΩt3cΩt4s. To derive this, let us consider the following
equations

xY´2pi8q

ż

Ó´0

dz

2πi
zbpzqcp0qcγpt1qγpt1 ` t2q y

gh
CL

“ xY´2pi8q

ˆ
ż

Ó´0

`

ż

Ò`0

˙

dz

2πi
zbpzqcp0qcγpt1qγpt1 ` t2q y

gh
CL

` xY´2pi8q

ż

Ó`0

dz

2πi
zbpzqcp0qcγpt1qγpt1 ` t2q y

gh
CL

“ xY´2pi8qt

¿

0

dz

2πi
zbpzqcp0qucγpt1qγpt1 ` t2q y

gh
CL

´ xY´2pi8q

ż

Ó`0

dz

2πi
cp0qzbpzqcpt1qγpt1qγpt1 ` t2q y

gh
CL

“ ´xY´2pi8q

˜

ż

Ót1´0

`

ż

Òt1`0

¸

dz

2πi
cp0qzbpzqcpt1qγpt1qγpt1 ` t2q y

gh
CL

´ xY´2pi8q

ż

Ót1`0

dz

2πi
cp0qzbpzqcpt1qγpt1qγpt1 ` t2q y

gh
CL

“ ´xY´2pi8qcp0qt

¿

t1

dz

2πi
zbpzqcpt1quγpt1qγpt1 ` t2q y

gh
CL

` xY´2pi8q

ż

ÓL´0

dz

2πi
cp0qcpt1qγpt1qγpt1 ` t2qzbpzq y

gh
CL

“ ´t1xY´2pi8qcp0qγpt1qγpt1 ` t2q y
gh
CL

` xY´2pi8q

ż

Ó´0

dz

2πi
pz ` Lqbpzqcp0qcpt1qγpt1qγpt1 ` t2q y

gh
CL
. (C.4)

Therefore,

TrY´2rBcΩt1cγΩt2γΩt3s “ xY´2pi8q

ż

Ó´0

dz

2πi
bpzqcp0qcγpt1qγpt1 ` t2q y

gh
CL

ˆ
1

2
Trrσ3σ3σ3σ3iσ2iσ2s

“ ´
t1
L

xY´2pi8qcp0qγpt1qγpt1 ` t2q y
gh
CL

“ ´
t1L cos θt2

2π2
. (C.5)

We define

Bccggrt1, t2;Ls :“ TrY´2rBcΩt1cγΩt2γΩt3s,
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Bcdggrt1;Ls :“ TrY´2rBcBcγΩt1γΩt2s. (C.6)

Formulae for the inner product including Bc, Bc, γ, γ is

TrY´2rBcΩt1BcΩt2γΩt3γΩt4s “ TrY´2rBprc,Ωt1s ` Ωt1cqBcΩt2γΩt3γΩt4s

“ TrY´2rBcBcΩt2γΩt3γΩt4Ωt1s

“ Bcdggrt3;Ls. (C.7)

Here, the first term in the first line vanishes because TrrBφs “ TrrB2cφs “ 0, for φ s.t.
rB,φs “ 0. Similarly,

TrY´2rBcΩt1γΩt2BcΩt3γΩt4s “ TrY´2rBcγΩt2BcΩt3γΩt4Ωt1s

“ TrY´2rBcΩt2BcΩt3γΩt4Ωt1γs

“ TrY´2rBcBcΩt3γΩt4Ωt1γΩt2s

“ Bcdggrt4 ` t1;Ls, (C.8)

TrY´2rBcΩt1γΩt2γΩt3BcΩt4s “ TrY´2rBcΩt4Ωt1γΩt2γΩt3Bcs

“ TrY´2rBcBcΩt4Ωt1γΩt2γΩt3s

“ Bcdggrt2;Ls. (C.9)

These only depend on the width between γ’s and total width L.
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Appendix D

Detailed Calculation of the Energy of the
Half-brane Solution

We give detailed calculation of the energy of the half-brane solution. We can compute it
from the cubic term in the action:

TrY´2rΨ1{2
3s “ TrY´2

„

Bγ2
´1

1 ´ G
Bγ2

´1

1 ´ G
Bγ2

´1

1 ´ G

ȷ

` 3TrY´2

„

Bγ2
´1

1 ´ G
Bγ2

´1

1 ´ G
cBp1 ´ GqGc

´1

1 ´ G

ȷ

` 3TrY´2

„

Bγ2
´1

1 ´ G
cBp1 ´ GqGc

´1

1 ´ G
cBp1 ´ GqGc

´1

1 ´ G

ȷ

` TrY´2

«

ˆ

cBp1 ´ GqGc
´1

1 ´ G

˙3
ff

“ ´3TrY´2

„

Bγ2Gc
1

1 ´ G
cG

ȷ

(D.1)

` TrY´2

«

ˆ

cBp1 ´ GqGc
´1

1 ´ G

˙3
ff

. (D.2)

The first term (D.1) becomes

(D.1) “ ´3TrY´2rBpBcγ ` γ2GqGcp1 ` GqΩxcs

“ ´
3

2
TrY´2rδpcΩxcBBcγqs ´ 3TrY´2rBγ2KcΩxcs

“ 6TrY´2rBcBcγ2Ωxs ´ 3TrY´2rBcΩxcγ
2Ks

“

ż 8

0

dx e´x1

ˆ

6 ¨ Bcdggr0; x1s ´ 3 lim
yÑ0

By ¨ Bccggrx1, 0; x1 ` ys

˙

“
3

2π2
, (D.3)
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where we used the following equation:

1

1 ´ G
“

1 ` G

p1 ´ Gqp1 ` Gq
“ p1 ` GqΩx, (D.4)

and we define Ωx :“ 1
1´K

. The second term (D.2) becomes

(D.2) “ TrY´2

„

cBp1 ´ GqGc
´1

1 ´ G
cBp1 ´ GqGc

´1

1 ´ G
cBp1 ´ GqGc

´1

1 ´ G

ȷ

“ TrY´2

”

cBG
`

r1 ´ G, cs ` cp1 ´ Gq
˘ ´1

1 ´ G

ˆ cBGpr1 ´ G, cs ` cp1 ´ Gqq
´1

1 ´ G
cBG

`

r1 ´ G, cs ` cp1 ´ Gq
˘ ´1

1 ´ G

ı

“ TrY´2

„

cBGδc
1

1 ´ G
cBGδc

1

1 ´ G
cBGδc

1

1 ´ G

ȷ

“ TrY´2

„

cBδc
G

1 ´ G
δc

G

1 ´ G
δc

G

1 ´ G

ȷ

(D.5)

“ TrY´2rcBδcpG ` KqΩxδcpG ` KqΩxδcpG ` KqΩxs

“ TrY´2rcBδcGΩxδcGΩxδcGΩxs (D.6)

` TrY´2rcBδcGΩxδcKΩxδcKΩxs (D.7)

` TrY´2rcBδcKΩxδcGΩxδcKΩxs (D.8)

` TrY´2rcBδcKΩxδcKΩxδcGΩxs. (D.9)

The first term (D.6) becomes

(D.6) “ TrY´2rcBδcΩxpBc ´ δcGqGΩxδcGΩxs

“
1

2
TrY´2rδpcBδcΩxBcΩxBcΩxqs ´ TrY´2rcBδcΩxBcΩxδcKΩxs

´
1

2
TrY´2rδpcBδcΩxδcKΩxδcΩxqs

“ ´
1

2
TrY´2rcBδcΩxBpδcqΩxBcΩxs ´

1

2
TrY´2rcBδcΩxBcΩxBpδcqΩxs

` TrY´2rBcδcΩxBcΩxδcKΩxs ´
1

2
TrY´2rcBpBcqΩxδcKΩxδcΩxs

`
1

2
TrY´2rcBδcΩxpBcqKΩxδcΩxs ´

1

2
TrY´2rcBδcΩxδcKΩxpBcqΩxs

“ 6

¡ 8

0

dx1dx2dx3 e
´px1`x2`x3q lim

yÑ0
By Bcdggry ` x1;x1 ` x2 ` x3 ` ys

“ ´
6 pπ2 ´ 6q

π4
. (D.10)

The second term (D.7) becomes

(D.7) “
1

2
TrY´2rδpδcKΩxδcKΩxcBδcΩxqs

“
1

2
TrY´2rpBcqKΩxδcKΩxcBδcΩxs
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´
1

2
TrY´2rδcKΩxpBcqKΩxcBδcΩxs

`
1

2
TrY´2rδcKΩxδcKΩxcBpBcqΩxs

“

¡ 8

0

dx1dx2dx3 e
´px1`x2`x3q lim

y,y1Ñ0
ByBy1

ˆ

!

´ 4 ¨ Bcdggry ` x1;x1 ` x2 ` x3 ` y ` y1s

` 2 ¨ Bcdggrx1;x1 ` x2 ` x3 ` y ` y1s

)

“ ´
24 ´ 2π2

π4
´
π2 ´ 12

π4

“ ´
12 ´ π2

π4
. (D.11)

We can show that the remaining terms (D.8) and (D.9) are equal to (D.7):

(D.7) “ (D.8) “ (D.9). (D.12)

Therefore,

(D.2) “ (D.10) ` 3 ˆ (D.7) “ ´
3

π2
. (D.13)

We obtain the energy of the half-brane solution by adding (D.1) and (D.2):

1

6
TrY´2rΨ1{2

3s “
1

6

ˆ

3

2π2
´

3

π2

˙

“ ´
1

4π2
“ EpΨ0q `

1

2
T9. (D.14)
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Appendix E

Detailed Calculations of the EOMS for Ψ3{2

We give the detailed calculations of the remaining terms of the EOMS for Ψ3{2. The term
(5.2.14) becomes

(5.2.14) “ lim
ϵÑ0

ϵTrY´2

„

Bγ2c
1

1 ´ Gϵ

Bc
1

´Gϵ

ȷ

“ lim
ϵÑ0

ϵTrY´2

„

Bγ2cGϵΩϵBcGϵ
1

´Kϵ

ȷ

“ lim
ϵÑ0

ϵ

2
TrY´2

„

δ

ˆ

Bγ2cΩϵBpδcq
1

´Kϵ

˙ȷ

“ lim
ϵÑ0

ˆ

ϵ

2
TrY´2

„

BpBcγqcΩϵBpδcq
1

´Kϵ

ȷ

`
ϵ

2
TrY´2

„

Bγ2cΩϵB
2c

1

´Kϵ

ȷ˙

“ ´ lim
ϵÑ0

ϵTrY´2

„

BcBcΩϵBγ
1

´Kϵ

γ

ȷ

“ ´ lim
ϵÑ0

ϵ ¨ lim
yÑ0

By
␣

Bcdggrz1;x1 ` y ` z1s ´ Bcdggrz1 ` y;x1 ` y ` z1s
(

“ (5.2.20)

“ 0, (E.1)

where Ωϵ :“ 1
1´Kϵ

, and other notations are explained shortly. Therefore, the first term
(5.2.10) vanishes:

(5.2.10) “ (5.2.20) ` (E.1) “ 0. (E.2)

For simplicity, we use the certain letters xi and zi, as Schwinger parameters corre-
sponding to the following Laplace transformations:

1

1 ´ Kϵ

“

ż 8

0

dxi e
´p1`ϵqxiΩxi ,

1

´Kϵ

“

ż 8

0

dzi e
´ϵziΩzi . (E.3)

In the following, we omit
ş8

0
dxi and

ş8

0
dzi and also the exponential factors. For example,
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we abbreviate the term:

TrY´2

„

BcBcΩϵBγ
1

´Kϵ

γ

ȷ

“ lim
yÑ0

By

ĳ 8

0

dx1dz1e
´p1`ϵqx1e´ϵz1

ˆ tBcdggrz1;x1 ` y ` z1s ´ Bcdggrz1 ` y;x1 ` y ` z1su, (E.4)

as
lim
yÑ0

BytBcdggrz1;x1 ` y ` z1s1 ´ Bcdggrz1 ` y;x1 ` y ` z1s
1u. (E.5)

The second term (5.2.11) becomes

(5.2.11) “ lim
ϵÑ0

ϵTrY´2

„

p1 ´ Bcq
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

γ2
1

´Gϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

Bγ2
1

´Gϵ

c
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

` lim
ϵÑ0

ϵTrY´2

„

GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

γ2
1

´Gϵ

ȷ

“ (5.2.10) ´ lim
ϵÑ0

ϵTrY´2

„

Kϵ

1 ´ Gϵ

c
1

´Gϵ

γ2
ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

KϵGϵΩϵcGϵ
1

´Kϵ

γ2
ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

GϵΩϵBcGϵ
1

´Kϵ

γ2
ȷ

“ 0. (E.6)

Here, we use the following equation which holds for the string field φ anti-commuting
with B:

TrY´2rφs “ TrY´2rpBc ` cBqφs

“ TrY´2rBcφs ` TrY´2rcBφs

“ TtY´2rBcφs ´ TrY´2rBcφs

“ 0. (E.7)

The third term (5.2.12) becomes

(5.2.12) “ ´ lim
ϵÑ0

ϵTrY´2

„

cB
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

c
GϵKϵ

1 ´ Gϵ

c
1

´Gϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

cB
Kϵ

1 ´ Gϵ

δc
1

´Gϵ

c
Kϵ

1 ´ Gϵ

δc
1

´Gϵ

ȷ

“ ´ lim
ϵÑ0

ϵTrY´2

„

p´Bc ` KϵqB
1

1 ´ Gϵ

δc
1

´Gϵ

p´Bc ` Kϵcq
1

1 ´ Gϵ

δc
1

´Gϵ

ȷ

“ lim
ϵÑ0

ϵTrY´2

„

BcB
1

1 ´ Gϵ

δc
1

´Gϵ

Kϵc
1

1 ´ Gϵ

δc
1

´Gϵ

ȷ
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` lim
ϵÑ0

ϵTrY´2

„

KϵcB
1

1 ´ Gϵ

δc
1

´Gϵ

Bc
1

1 ´ Gϵ

δc
1

´Gϵ

ȷ

“ lim
ϵÑ0

2ϵTrY´2

„

Bc
1

1 ´ Gϵ

δc
1

´Gϵ

Bc
1

1 ´ Gϵ

δcGϵ

ȷ

“ lim
ϵÑ0

2ϵTrY´2

„

Bcp1 ` GϵqΩϵδcGϵ
1

´Kϵ

Bcp1 ` GϵqΩϵδcGϵ

ȷ

“ lim
ϵÑ0

2ϵTrY´2

„

BcΩϵδcGϵ
1

´Kϵ

BcΩϵδcGϵ

ȷ

(E.8)

` lim
ϵÑ0

2ϵTrY´2

„

BcGϵΩϵδcGϵ
1

´Kϵ

BcGϵΩϵδcGϵ

ȷ

. (E.9)

The terms (E.8) and (E.9) vanish as follows:

(E.8) “ lim
ϵÑ0

2ϵTrY´2

„

BcΩϵGϵδcGϵ
1

´Kϵ

BcΩϵδc

ȷ

“ lim
ϵÑ0

2ϵTrY´2

„

BcΩϵpBc ´ δcGϵqGϵ
1

´Kϵ

BcΩϵδc

ȷ

“ lim
ϵÑ0

ϵTrY´2

„

δ

ˆ

BcΩϵδcBcΩϵBc
1

´Kϵ

˙ȷ

“ lim
ϵÑ0

ˆ

ϵTrY´2

„

BpδcqΩϵδcBcΩϵBc
1

´Kϵ

ȷ

´ ϵTrY´2

„

BcΩϵδcBcΩϵBpδcq
1

´Kϵ

ȷ˙

“ 4 lim
ϵÑ0

ˆ

ϵTrY´2

„

BcBc
1

´Kϵ

BγΩϵγΩϵ

ȷ

´ ϵTrY´2

„

BcBcΩϵγΩϵBγ
1

´Kϵ

ȷ˙

“ 8 lim
ϵÑ0

lim
yÑ0

BytBcdggrx1; z1 ` y ` x1 ` x2s
1 ´ Bcdggrx1 ` y; z1 ` y ` x1 ` x2s

1u

“ ´ lim
ϵÑ0

ϵ

ż 8

0

da
4a p2a2 ´ π2 pea ´ 1qq e´apϵ`1q

π2 pa2 ` π2q

“ ´ lim
ϵÑ0

4ϵpCipπϵq cospπϵq ` ¨ ¨ ¨ q

“ 0, (E.10)

and

(E.9) “ lim
ϵÑ0

2ϵTrY´2

„

BcΩϵδcGϵ
1

´Kϵ

BcGϵΩϵδcKϵ

ȷ

“ ´ lim
ϵÑ0

2ϵTrY´2

„

BcΩϵδcGϵ
1

´Kϵ

BpδcqΩϵδcKϵ

ȷ

“ lim
ϵÑ0

2ϵTrY´2

„

BcΩϵδcGϵ
1

´Kϵ

δcKϵΩϵδcKϵ

ȷ

“ lim
ϵÑ0

ϵTrY´2

„

δ

ˆ

δcKϵΩϵδcKϵBcΩϵδc
1

´Kϵ

˙ȷ

“ lim
ϵÑ0

ˆ

ϵTrY´2

„

pBcqKϵΩϵδcKϵBcΩϵδc
1

´Kϵ

ȷ

´ ϵTrY´2

„

δcKϵΩϵpBcqKϵBcΩϵδc
1

´Kϵ

ȷ

` ϵTrY´2

„

δcKϵΩϵδcKϵBcΩϵpBcq
1

´Kϵ

ȷ˙
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“ lim
ϵÑ0

ˆ

4ϵTrY´2

„

BcBcKϵΩϵγΩϵBγ
1

´Kϵ

ȷ

` 4ϵTrY´2

„

BcBcΩϵBγ
1

´Kϵ

BγΩϵ

ȷ

´ 4ϵTrY´2

„

BcBc
1

´Kϵ

BγΩϵγKϵΩϵ

ȷ˙

“ lim
ϵÑ0

4ϵTrY´2

„

BcBcΩϵBγ
1

´Kϵ

BγΩϵ

ȷ

“ lim
ϵÑ0

4ϵ lim
y,y1Ñ0

ByBy1

!

Bcdggrz1 ` y1;x1 ` y ` z1 ` y1 ` x2s
1

´ Bcdggrz1;x1 ` y ` z1 ` y1 ` x2s1 ´ Bcdggry ` z1 ` y1;x1 ` y ` z1 ` y1 ` x2s
1

` Bcdggry ` z1;x1 ` y ` z1 ` y1 ` x2s
1
)

“ lim
ϵÑ0

ϵ

ż 8

0

da
2a pa3 ` pea ` 1q a2 ` π2a ´ π2 pea ` 1qq e´apϵ`1q

pa2 ` π2q
2

“ ´ lim
ϵÑ0

2ϵpCipπϵq cospπϵq ` ¨ ¨ ¨ q

“ 0. (E.11)

Then we obtain

lim
ϵÑ0

EOMSpJΨ3{2Kϵq „ lim
ϵÑ0

ϵ ˆ
`

log ϵ ` Opϵ0q
˘

“ 0. (E.12)

The solution limϵÑ0JΨ3{2Kϵ satisfies the EOMS.
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Appendix F

Detailed Calculation of the Energy of the
Tachyon Vacuum Solution in Berkovits’ SFT

We give detailed calculation of the energy of the tachyon vacuum solution in Berkovits’
SFT. The energy is given by

Epg0q “ ´Spg0q “

ż 1

0

dtTrrη0
`

g0ptq´1Btg0ptq
˘

¨ g0ptq
´1Qg0ptqs. (F.1)

We can rewrite the integrand:

Trrη0
`

g0ptq´1Btg0ptq
˘

¨ g0ptq
´1Qg0ptqs

“ Trrη0
`

pv0u0q´1Btpv0u0q
˘

pv0u0q
´1Qpv0u0qs

“ Trrη0pv
´1
0 Btv0qpv0

´1Qv0 ` Qu0 ¨ u0
´1qs

“ Trrη0pṽ0Btv0qṽ0Qv0s. (F.2)

Here we used g0ptq “ v0u0, Btu0 “ 0, v0´1 “ ṽ0 `Bc and the fact that the string fields u0,
u0

´1, Qu0 ¨ u0
´1, BcBtv0, and BcQv0 P Hsmall. We write down v0 expicitly:

v0 “

„

1 ´α

α t̄ ¨ I ´ K ´ αV

ȷ

“ 1 ` αζ ´ αγB ` cpt̄ ¨ I ´ K ´ αV ´ 1qB

“ 1 ` αζ ´ αQζ ¨ B ` cpt̄ ¨ I ´ K ´ 1qB. (F.3)

We perform Q for v0:

Qv0 “ αQζ ` αQζK ` Qc ¨ pt̄ ¨ I ´ K ´ 1qB ´ cpt̄ ¨ I ´ K ´ 1qK

“ cpαV p1 ` Kq ` Bcpt̄ ¨ I ´ K ´ 1qB ´ pt̄ ¨ I ´ K ´ 1qKq

` Bγ2pt̄ ¨ I ´ K ´ 1q ` αγp1 ` Kq

“ c
`

´ det0p1 ` Kq ` Bcpt̄ ¨ I ´ K ´ 1qB ` t̄ ¨ I ` α2p1 ` Kq
˘

` Bγ2pt̄ ¨ I ´ K ´ 1q ` αγp1 ` Kq. (F.4)

We perform Bt for v0:
Btv0 “ qζ ´ qγB ` cp´I ´ qV qB. (F.5)
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We decompose it as Btv0 “ 9vl ` 9vs0, depending on whether it is in Hsmall or not.

9vl :“ qζ ´ qcV B R Hsmall, (F.6)

9vs0 :“ ´qγB ´ cIB P Hsmall. (F.7)

We write down the explicit form of w and decompose it

w “

„

´α2 α

´α 1

ȷ

“ ´α2Bc ´ αζ ` αγB ` cB, (F.8)

wl :“ ´αζ, (F.9)

ws :“ ´α2Bc ` αγB ` cB. (F.10)

We want to calculate ṽ0Qv0, and for that purpose we first calculate wQv0:

wQv0 “
`

p´α2B ` αγ´1qc ` pαγ ` cqB
˘

ˆ pcϕ0 ` Bγ2pt̄ ¨ I ´ K ´ 1q ` αγp1 ` Kqq

“ ´α2Bγ2pt̄ ¨ I ´ K ´ 1q ` αcBγpt̄ ¨ I ´ K ´ 1q ´ α3Bcγp1 ` Kq

´ α2cp1 ` Kq ` αγBcϕ0 ` cϕ0 ` α2γBγp1 ` Kq ` αcBγp1 ` Kq

“ αγBpt̄αγ ¨ I ´ α2cp1 ` Kq ` cϕ0q

` cpt̄αBγ ¨ I ´ α2p1 ` Kq ` ϕ0q. (F.11)

Here we defined

ϕ0 :“ ´det0p1 ` Kq ` Bcpt̄ ¨ I ´ K ´ 1qB ` t̄ ¨ I ` α2p1 ` Kq. (F.12)

Because ṽ0Qv0 “ D0wQv0,

ṽ0Qv0 “ pγ
1

det0
Bζ ` c

1

det0
Bq

ˆ

´

αγBpt̄αγ ¨ I ´ α2cp1 ` Kq ` cϕ0q

` cpt̄αBγ ¨ I ´ α2p1 ` Kq ` ϕ0q

¯

“ pαγ ` cq
1

det0
Bpt̄αγ ¨ I ´ α2cp1 ` Kq ` cϕ0q

“ pαγ ` cq
1

det0
B
´

t̄αγ ¨ I ´ α2cp1 ` Kq

` c
`

´ det0p1 ` Kq ` Bcpt̄ ¨ I ´ K ´ 1qB ` t̄ ¨ I ` α2p1 ` Kq
˘

¯

“ pαγ ` cq
1

det0
B
`

t̄αγ ¨ I ´ cdet0p1 ` Kq ` t̄c ¨ I ´ Bcpt̄ ¨ I ´ K ´ 1q
˘

“ pαγ ` cq
1

det0
BΦ0. (F.13)
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Here, we defined

Φ0 :“ t̄αγ ¨ I ´ cdet0p1 ` Kq ` t̄c ¨ I ´ Bcpt̄ ¨ I ´ K ´ 1q. (F.14)

We rewrite (F.2) as

Trrη0pṽ0Btv0qṽ0Qv0s “ Trrη0
`

D0pw
l ` wsqp 9vl ` 9vs0q

˘

ṽ0Qv0s. (F.15)

The explicit forms of the terms in pwl ` wsqp 9vl ` 9vs0q are

wl 9vl “ ´αζpqζ ´ qcV Bq “ 0, (F.16)

wl 9vs0 “ ´αζp´qγB ´ cIBq “ qαcB, (F.17)

ws 9vl “ p´α2Bc ` pαγ ` cqBqpqζ ´ qcV Bq “ qpαγ ` cqBpζ ´ V q, (F.18)

ws 9vs0 “ p´α2Bc ` pαγ ` cqBqp´qγB ´ cIBq “ pqα2γ ´ αγI ´ cIqB (F.19)

Then, (F.15) becomes

(F.15) “ Trrη0D0 ¨ wl 9vs0ṽ0Qv0s (F.20)

` Trrη0pD0w
s 9vlqṽ0Qv0s (F.21)

` Trrη0D0 ¨ ws 9vs0ṽ0Qv0s. (F.22)

The factors η0D0 and η0pD0w
s 9vlq are calculated as follows:

η0D0 “ η0

ˆ

γ
1

det0
Bζ ` c

1

det0
B

˙

“ ´γ

ˆ

η0
1

det0

˙

Bζ ´ γ
1

det0
Bcpη0γ

´1q ´ c

ˆ

η0
1

det0

˙

B, (F.23)

η0pD0w
s 9vlq “ η0

ˆˆ

γ
1

det0
Bζ ` c

1

det0
B

˙

qpαγ ` cqBpζ ´ V q

˙

“ qη0

ˆ

αγ
1

det0
Bpζ ´ V q ` c

1

det0
Bpζ ´ V q

˙

“ ´qpαγ ` cqη0

ˆ

1

det0
Bpζ ´ V q

˙

. (F.24)

The first term (F.20) becomes

(F.20) “ Trrη0D0 ¨ wl 9vs0ṽ0Qv0s

“ ´Tr

„

c

ˆ

η0
1

det0

˙

BqαcBpαγ ` cq
1

det0
BΦ0

ȷ

“ qαTr

„ˆ

η0
1

det0

˙

1

det0
BΦ0c

ȷ
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“ qαTr

„ˆ

η0
1

det0

˙

1

det0
B

ˆ pt̄αγ ¨ Ic ´ c det0p1 ` Kqc ` t̄c ¨ Ic ´ Bcpt̄ ¨ I ´ K ´ 1qcq

ȷ

, (F.25)

where we used the cyclicity of Tr1, Trrφ1φ2s “ p´qϵpφ1qϵpφ2qTrrφ2φ1s. Here,

´ c det0p1 ` Kqc ` t̄c ¨ Ic ´ Bcpt̄ ¨ I ´ K ´ 1qcq

“ ´prc, det0s ` det0cqp1 ` Kqc ` t̄c ¨ Ic ´ Bcpt̄ ¨ I ´ K ´ 1qcq

“ ´prc, t̄I ´ K ´ αV ` α2s ` det0cqp1 ` Kqc ` t̄c ¨ Ic ´ Bcpt̄ ¨ I ´ K ´ 1qcq

“ ´pt̄ rc, Is ` Bc ` det0cqp1 ` Kqc ` t̄c ¨ Ic ´ Bcpt̄ ¨ I ´ K ´ 1qcq

“ ´det0cBc ´ t̄ rc, Isp1 ` Kqc ´ Bcp1 ` Kqc ` t̄cIc ´ t̄Bc ¨ Ic ` BcpK ` 1qc

“ ´det0cBc ´ t̄ rc, IsKc ´ t̄Bc ¨ Ic

“ ´det0cBc ´ t̄pcIKc ´ IcBc ` Bc ¨ Icq

“ ´det0cBc ` t̄pIcBc ´ KcIcq

“ ´det0cBc ` t̄pIcBc ´ KcrI, csq, (F.26)

where we used
rc, det0s “ t̄ rc, Is ` Bc. (F.27)

Therefore,
Φ0c “ t̄αγ ¨ Ic ´ det0cBc ` t̄pIcBc ´ KcrI, csq. (F.28)

We continue to calculate the term (F.25):

(F.25) “ qαTr

„ˆ

η0
1

det0

˙

1

det0
BΦ0c

ȷ

“ qαTr

„ˆ

η0
1

det0

˙

1

det0
B
´

t̄αγ ¨ Ic ´ det0cBc ` t̄
`

IcBc ´ KcrI, cs
˘

¯

ȷ

“ qαTr

„ˆ

η0
1

det0

˙

1

det0
B
´

t̄αγ ¨ Ic ` t̄
`

IcBc ´ KcrI, cs
˘

¯

ȷ

. (F.29)

Here, we used the following equation:

Tr

„ˆ

η0
1

det0

˙

1

det0
Bdet0cBc

ȷ

“ Tr

„

η0

ˆ

1

det0
BcBc

˙ȷ

“ 0, (F.30)

where the first and the second equality comes from rB, det0s “ 0 and Trrη0φs “ 0,
respectively.

The second term (F.21) becomes

(F.21) “ Trrη0pD0w
s 9vlqṽ0Qv0s

1In the case of the cubic theory, since the non-vanishing ghost number input in the trace is 3, then
ϵpφ1qϵpφ2q “ 0. While, in the case of the Berkovits’ SFT, since the ghost number is 2, it may appear a
minus sign in the cyclicty of the trace.
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“ ´Tr

„

qpαγ ` cqη0

ˆ

1

det0
Bpζ ´ V q

˙

pαγ ` cq
1

det0
BΦ0

ȷ

“ ´Tr

„

qpαγ ` cqη0

ˆ

1

det0
Bpζ ´ V qpαγ ` cq

˙

1

det0
BΦ0

ȷ

“ qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
BΦ0γ

ȷ

(F.31)

` qTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
BΦ0c

ȷ

. (F.32)

The first term (F.31) becomes

(F.31) “ qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
BΦ0γ

ȷ

“ qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
B

ˆ
`

t̄αγ ¨ I ´ c det0p1 ` Kq ` t̄c ¨ I ´ Bcpt̄ ¨ I ´ K ´ 1q
˘

γ

ȷ

“ qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
Bp´c det0p1 ` Kq ` t̄c ¨ Iqγ

ȷ

“ ´qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
Bprc, det0s ` det0cqp1 ` Kqγ

ȷ

` t̄qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
Bc ¨ Iγ

ȷ

“ ´qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
Bpt̄ rc, Is ` Bc ` det0cqp1 ` Kqγ

ȷ

` t̄qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
Bc ¨ Iγ

ȷ

“ ´qαTr

„

η0

ˆ

1

det0
pα ´ V qBcp1 ` Kqγ

˙ȷ

` t̄qαTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
Bc ¨ Iγ

ȷ

“ ´t̄qαTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

Bc ¨ Iγ

ȷ

, (F.33)

where we used TrrBφs “ 0 for φ s.t. rB,φu “ 0 and Trrη0φs “ 0. The second term (F.32)
becomes

(F.32) “ qTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
BΦ0c

ȷ

“ qTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
B

ˆ
`

t̄αγ ¨ Ic ´ det0cBc ` t̄pIcBc ´ KcrI, csq
˘

ȷ
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“ ´qTr

„

η0

ˆ

1

det0
pα ´ V qBcBc

˙ȷ

` qTr

„

η0

ˆ

1

det0
pα ´ V q

˙

1

det0
B
´

t̄αγ ¨ Ic ` t̄
`

IcBc ´ KcrI, cs
˘

¯

ȷ

“ ´qTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

B
´

t̄αγ ¨ Ic ` t̄
`

IcBc ´ KcrI, cs
˘

¯

ȷ

. (F.34)

Then, we reach the following form of (F.21):

(F.21) “ (F.33) ` (F.34)

“ ´t̄qαTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

Bc ¨ Iγ

ȷ

´ qTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

B
´

t̄αγ ¨ Ic ` t̄
`

IcBc ´ KcrI, cs
˘

¯

ȷ

“ ´t̄qαTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

rI, γsBc

ȷ

´ t̄qTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

B
`

IcBc ´ KcrI, cs
˘

ȷ

. (F.35)

The third term (F.22) becomes

(F.22) “ Tr rη0D0 ¨ ws 9vs0ṽ0Qv0s

“ Tr

„

η0D0pqα
2γ ´ αγI ´ cIqBpαγ ` cq

1

det0
BΦ0

ȷ

“ Tr

„

η0D0pqα
2γ ´ αγI ´ cIq

1

det0
BΦ0

ȷ

“ Tr

„ˆ

´γ

ˆ

η0
1

det0

˙

Bζ ´ γ
1

det0
Bcpη0γ

´1q ´ c

ˆ

η0
1

det0

˙

B

˙

ˆ pqα2γ ´ αγI ´ cIq
1

det0
BΦ0

ȷ

“ ´Tr

„

γ

ˆ

η0
1

det0

˙

Bζpqα2γ ´ αγI ´ cIq
1

det0
BΦ0

ȷ

(F.36)

´ Tr

„

γ
1

det0
Bcpη0γ

´1qpqα2γ ´ αγI ´ cIq
1

det0
BΦ0

ȷ

(F.37)

´ Tr

„

c

ˆ

η0
1

det0

˙

Bpqα2γ ´ αγI ´ cIq
1

det0
BΦ0

ȷ

. (F.38)

The first term (F.36) becomes

(F.36) “ ´Tr

„

γ

ˆ

η0
1

det0

˙

Bζpqα2γ ´ αγI ´ cIq
1

det0
BΦ0

ȷ

“ Tr

„ˆ

η0
1

det0

˙

pqα2 ´ αIq
1

det0
BΦ0γ

ȷ
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“ Tr

„ˆ

η0
1

det0

˙

pqα2 ´ αIq
1

det0
B

ˆ
`

t̄αγ ¨ I ´ c det0p1 ` Kq ` t̄c ¨ I ´ Bcpt̄ ¨ I ´ K ´ 1q
˘

γ

ȷ

“ Tr

„ˆ

η0
1

det0

˙

pqα2 ´ αIq
1

det0
Bp´c det0p1 ` Kq ` t̄c ¨ Iqγ

ȷ

“ Tr

„ˆ

η0
1

det0

˙

pqα2 ´ αIq
1

det0
B
´

´
`

rc, det0s ` det0c
˘

p1 ` Kq ` t̄c ¨ I
¯

γ

ȷ

“ t̄Tr

„ˆ

η0
1

det0

˙

pqα2 ´ αIq
1

det0
Bc ¨ Iγ

ȷ

. (F.39)

The second term (F.37) vanishes

(F.37) “ ´Tr

„

γ
1

det0
Bcpη0γ

´1qpqα2γ ´ αγI ´ cIq
1

det0
BΦ0

ȷ

“ ´Tr

„

γ
1

det0
Bcpη0γ

´1qpqα2γ ´ αγIq
1

det0
BΦ0

ȷ

“ ´Tr

„

γ
1

det0
Bc

`

η0pγ
´1γq

˘

pqα2 ´ αIq
1

det0
BΦ0

ȷ

“ 0. (F.40)

The third term (F.38) becomes

(F.38) “ ´Tr

„

c

ˆ

η0
1

det0

˙

Bpqα2γ ´ αγI ´ cIq
1

det0
BΦ0

ȷ

“ ´Tr

„ˆ

η0
1

det0

˙

I
1

det0
BΦ0c

ȷ

“ ´Tr

„ˆ

η0
1

det0

˙

I
1

det0
B
´

t̄αγ ¨ Ic ´ det0cBc ` t̄
`

IcBc ´ KcrI, cs
˘

¯

ȷ

“ ´t̄Tr

„ˆ

η0
1

det0

˙

I
1

det0
Bpαγ ¨ Ic ` IcBc ´ KcrI, csq

ȷ

. (F.41)

Then, we reach the following form of (F.22):

(F.22) “ (F.39) ` (F.40) ` (F.41)

“ t̄Tr

„ˆ

η0
1

det0

˙

pqα2 ´ αIq
1

det0
Bc ¨ Iγ

ȷ

´ t̄Tr

„ˆ

η0
1

det0

˙

I
1

det0
Bpαγ ¨ Ic ` IcBc ´ KcrI, csq

ȷ

“ t̄qα2Tr

„ˆ

η0
1

det0

˙

1

det0
Bc ¨ Iγ

ȷ

´ t̄αTr

„ˆ

η0
1

det0

˙

I
1

det0
rI, γsBc

ȷ
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´ t̄Tr

„ˆ

η0
1

det0

˙

I
1

det0
BpIcBc ´ KcrI, csq

ȷ

. (F.42)

We summarize the above calculations:

Trrη0
`

g0ptq
´1Btg0ptq

˘

g0ptq´1Qg0ptqs

“ qαTr

„ˆ

η0
1

det0

˙

1

det0
B
´

t̄αγ ¨ Ic ` t̄
`

IcBc ´ KcrI, cs
˘

¯

ȷ

´ t̄qαTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

rI, γsBc

ȷ

´ t̄qTr

„

1

det0
pα ´ V q

ˆ

η0
1

det0

˙

BpIcBc ´ KcrI, csq

ȷ

` t̄qα2Tr

„ˆ

η0
1

det0

˙

1

det0
Bc ¨ Iγ

ȷ

´ t̄αTr

„ˆ

η0
1

det0

˙

I
1

det0
rI, γsBc

ȷ

´ t̄Tr

„ˆ

η0
1

det0

˙

I
1

det0
BpIcBc ´ KcrI, csq

ȷ

“ t̄

#

qα2Tr

„ˆ

η0
1

det0

˙

1

det0
Bγ ¨ Ic

ȷ

` qαTr

„ˆ

η0
1

det0

˙

1

det0
BpIcBc ´ KcrI, csq

ȷ

´ qα2Tr

„

1

det0

ˆ

η0
1

det0

˙

rI, γsBc

ȷ

` qαTr

„

1

det0
V

ˆ

η0
1

det0

˙

rI, γsBc

ȷ

´ qαTr

„

1

det0

ˆ

η0
1

det0

˙

BpIcBc ´ KcrI, csq

ȷ

` qTr

„

1

det0
V

ˆ

η0
1

det0

˙

BpIcBc ´ KcrI, csq

ȷ

` qα2Tr

„ˆ

η0
1

det0

˙

1

det0
Bc ¨ Iγ

ȷ

´ αTr

„ˆ

η0
1

det0

˙

I
1

det0
rI, γsBc

ȷ

´ Tr

„ˆ

η0
1

det0

˙

I
1

det0
BpIcBc ´ KcrI, csq

ȷ

+

“ t̄

#

2qα2Tr

„ˆ

η0
1

det0

˙

1

det0
BcrI, γs

ȷ

` 2qαTr

„ˆ

η0
1

det0

˙

1

det0
BpIcBc ´ KcrI, csq

ȷ

` qαTr

„

1

det0
V

ˆ

η0
1

det0

˙

rI, γsBc

ȷ

` qTr

„

1

det0
V

ˆ

η0
1

det0

˙

BpIcBc ´ KcrI, csq

ȷ

´ αTr

„ˆ

η0
1

det0

˙

I
1

det0
rI, γsBc

ȷ
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´ Tr

„ˆ

η0
1

det0

˙

I
1

det0
BpIcBc ´ KcrI, csq

ȷ

+

. (F.43)

In the tachyon vacuum solution, I “ 1,

6 Trrη0
`

g0ptq
´1Btg0ptq

˘

g0ptq´1Qg0ptqs “ t̄

"

p2qα ´ 1qTr

„ˆ

η0
1

det0

˙

1

det0
BcBc

ȷ

(F.44)

` qTr

„

1

det0
V

ˆ

η0
1

det0

˙

BcBc

ȷ*

. (F.45)

Let us calculate the energy of the solution:

Epg0q “ ´Spg0q “

ż 1

0

dtTrrη0
`

g0ptq´1Btg0ptq
˘

g0ptq
´1Qg0ptqs. (F.46)

We give a definition of the string field 1
det0

:

1

det0
:“ pt̄ ` α2 ´ K ´ αV q´1

“

˜

ˆ

1 ´ αV
1

t̄ ` α2 ´ K

˙ˆ

1

t̄ ` α2 ´ K

˙´1
¸´1

“
1

t̄ ` α2 ´ K

ˆ

1 ´ αV
1

t̄ ` α2 ´ K

˙´1

“
1

t̄ ` α2 ´ K

ˆ

1 ` αV
1

t̄ ` α2 ´ K
` αV

1

t̄ ` α2 ´ K
αV

1

t̄ ` α2 ´ K
` ¨ ¨ ¨

˙

“

´ 1

t̄ ` α2 ´ K
`

1

t̄ ` α2 ´ K
αV

1

t̄ ` α2 ´ K

`
1

t̄ ` α2 ´ K
αV

1

t̄ ` α2 ´ K
αV

1

t̄ ` α2 ´ K
` ¨ ¨ ¨

¯

“
1

β

´ 1

1 ´ K{β
`

1

1 ´ K{β

α

β
V

1

1 ´ K{β

`
1

1 ´ K{β

α

β
V

1

1 ´ K{β

α

β
V

1

1 ´ K{β
` ¨ ¨ ¨

¯

, (F.47)

where β :“ t̄ ` α2. In calculations, we will pick up suitable terms with bc-ghost number
three.

(F.44) becomes

Tr

„ˆ

η0
1

det0

˙

1

det0
BcBc

ȷ

“
α2

β4
Tr

„

η0

ˆ

1

1 ´ K{β
V

1

1 ´ K{β

˙

1

1 ´ K{β
V

1

1 ´ K{β
BcBc

ȷ

.

(F.48)
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We rescale K, B, c, γ and γ´1:

K Ñ βK, B Ñ βB, c Ñ
1

β
c, γ Ñ

1
?
β
γ, γ´1 Ñ

a

βγ´1,

ζ Ñ
1

?
β
ζ, V Ñ

a

βV. (F.49)

Then, (F.48) becomes

(F.48) “
α2

β322
Trrpη0γ

´1qpΩxq2Bcγ´1ΩxBcBcΩxBcs

“
α2

β322

˘ 8

0

4
ź

i“1

dxi e
´xi eiirx1 ` x2, x3 ` x4s ¨ Bcdddrx4, x1 ` x2, x3s

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3σ3σ3σ3s

“
α2

β322

ˆ

4

π2

˙

, (F.50)

where

eiirt1, t2s :“ x

¿

0

dz

2πi
ηpzqξp0qe´ϕp0qξpt1qe

´ϕpt1q y
ξηϕ
Ct1`t2

“ ´
π

t1 ` t2

1

sin θt1
. (F.51)

We calculate (F.45) as (F.44):

Tr

„

1

det0
V pη0

1

det0
qBcBc

ȷ

“ Tr

„

1

β

1

1 ´ K{β
V
1

β
η0

ˆ

1

1 ´ K{β

α

β
V

1

1 ´ K{β

˙

BcBc

ȷ

“
α

β222
Trrpη0γ

´1qΩxBcBcΩxBcγ´1ΩxBcs

“
α

β222

¡ 8

0

3
ź

i“1

dxi e
´xi eiirx1 ` x2, x3s ¨ Bcdddrx2, x3, x1s

ˆ
1

2
Trrσ3p´iσ2qσ3σ3σ3σ3p´iσ2qσ3s

“ ´
α

β222

ˆ

8

π2

˙

. (F.52)

Finally, we obtain the energy of the tachyon vacuum solution:

Epg0q “

ż 1

0

dt
`

t̄p2qα ´ 1q ¨ (F.50) ` qt̄ ¨ (F.52)
˘

“

ż 1

0

dt

ˆ

t̄p2qα ´ 1q
α2

β322
4

π2
´ t̄q

α

β222
8

π2

˙

“ ´
1

2π2
. (F.53)
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Appendix G

Detailed Calculations of the Energy of the
Double-brane Solution in Berkovits’ SFT

We give detailed calculations of the energy of the double-brane solution in Berkovits’ SFT.
We explicitly write down the omitted terms in the main text.

The term (7.2.26) becomes

ż 1

0

dt (7.2.26)|q“ 1
2

“
1

28
lim
ϵÑ0

ż 1

0

dt t̄t5Trrpη0γ
´1qp1 ´ Kϵq

2JF2Kϵ2Bcγ´1p1 ´ KϵqJF2Kϵ
ˆ Bcγ´1JF2KϵBγJF2KϵBcBcs

“
1

28
lim
ϵÑ0

ż 1

0

dt t̄t5 ¨ eiiidru1 ` u2 ` n1 ` n2, u3 ` n3, n4, n5s
1

ˆ Bcdddru1 ` u2 ` n1 ` n2, u3 ` n3, n5 ` n5s
1

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3p´iσ2qiσ2σ3σ3σ3s. (G.1)

Here, we define

eiiigrt1, t2, t3, t4s

:“ x

¿

0

dz

2πi
ηpzqξe´ϕp0qξe´ϕpt1qξe´ϕpt1 ` t2qeϕηpt1 ` t2 ` t3q y

ξηϕ
Ct1`t2`t3`t4

“ ´
π

L

sin θt1`t2`t3

sin θt1 sin θt1`t2

, (G.2)

eiiidrt1, t2, t3, t4s :“ lim
yÑ0

Byteiiigrt1, t2, t3 ` y, t4s ´ eiiigrt1, t2, t3, t4 ` ysu. (G.3)

We use the abbreviation explained around (E.3); in this case, we use the certain letter ni,
ui and yi:

JF2Kϵ “
1

k` ´ k´

ż 8

0

dnipe
´k´ni ´ e´k`niqΩni ,
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1 ´ Kϵ “ ´ lim
uiÑ0

Bui
te´p1`ϵquiΩuiu,

Kϵ “ lim
uiÑ0

Byite
´ϵyiΩyiu. (G.4)

For example, we abbreviate the term:

Trrpη0γ
´1qp1 ´ Kϵq

2JF2Kϵ2Bcγ´1p1 ´ KϵqJF2KϵBcγ´1JF2KϵBγJF2KϵBcBcs
“

ż 8

0

5
ź

i“1

dni

3
ź

j“1

lim
ujÑ0

p´Buj
q

ˆ

1

k` ´ k´

˙5

pe´k´ni ´ e´k`niqep1`ϵqui

ˆ eiiidru1 ` u2 ` n1 ` n2, u3 ` n3, n4, n5s

ˆ Bcdddru1 ` u2 ` n1 ` n2, u3 ` n3, n5 ` n5s

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3p´iσ2qiσ2σ3σ3σ3s, (G.5)

as

eiiidru1 ` u2 ` n1 ` n2, u3 ` n3, n4, n5s
1

ˆ Bcdddru1 ` u2 ` n1 ` n2, u3 ` n3, n5 ` n5s
1

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3p´iσ2qiσ2σ3σ3σ3s. (G.6)

The Second term (7.2.13) becomes

(7.2.13)

“ ´2 lim
ϵÑ0

t̄qαTr

„sˆ
η0

1

det2

˙

1

det2
BΩ1cBcΩ1

{
ϵ

ȷ

“ ´2 lim
ϵÑ0

t̄qαTrrp1 ´ KϵqJF2Kϵαpη0V qp1 ´ KϵqJF2Kϵ
ˆ p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵBJΩ1KϵcBcJΩ1Kϵs

“ ´2 lim
ϵÑ0

t̄qα3TrrJF2Kϵpη0V qp1 ´ Kϵq
2JF2Kϵ2V JF2KϵBKϵcBcKϵs

“ ´ lim
ϵÑ0

t̄qα3

2
Trrpη0γ

´1qp1 ´ Kϵq
2JF2Kϵ2Bcγ´1JF2KϵKϵBcBcKϵJF2KϵBcs. (G.7)

Then (G.7) becomes

ż 1

0

dt (G.7)|q“ 1
2

“ ´
1

25
lim
ϵÑ0

ż 1

0

dt t̄t3 ¨ eiiru1 ` u2 ` n1 ` n2, n3 ` y1 ` y2 ` n4s
1

ˆ Bcdddry2 ` n4, u1 ` u2 ` n1 ` n2, n3 ` y1s1

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3σ3σ3σ3s. (G.8)

The third term (7.2.14) becomes

(7.2.14)
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“ lim
ϵÑ0

t̄qαTr

„s
1

det2
V

ˆ

η0
1

det2

˙

ΩxBγΩxBc

{
ϵ

ȷ

“ lim
ϵÑ0

t̄qαTrrp1 ´ KϵqJF2KϵV η0`p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2Kϵ˘
ˆ ΩϵBγΩϵBcs

` lim
ϵÑ0

t̄qαTrrp1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵV η0`p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2Kϵ˘
ˆ ΩϵBγΩϵBcs

“ ´ lim
ϵÑ0

t̄qα3TrrJF2Kϵpη0V qp1 ´ KϵqJF2KϵV p1 ´ KϵqJF2KϵV JF2KϵBγBcs
` lim

ϵÑ0
t̄qα3TrrJF2KϵV p1 ´ KϵqJF2KϵV p1 ´ KϵqJF2Kϵpη0V qJF2KϵBγBcs

“ ´ lim
ϵÑ0

t̄qα3

23
Trrpη0γ

´1qp1 ´ KϵqJF2KϵBcγ´1p1 ´ KϵqJF2KϵBcγ´1JF2KϵBγJF2KϵBcBcs
(G.9)

` lim
ϵÑ0

t̄qα3

23
Trrpη0γ

´1qJF2KϵBγJF2KϵBcBcγ´1p1 ´ KϵqJF2KϵBcγ´1p1 ´ KϵqJF2KϵBcs.
(G.10)

Then (G.9) and (G.10) become

ż 1

0

dt (G.9)|q“ 1
2

“ ´
1

27
lim
ϵÑ0

ż 1

0

dt t̄t3Trrpη0γ
´1qp1 ´ KϵqJF2Kϵ

ˆ Bcγ´1p1 ´ KϵqJF2KϵBcγ´1JF2KϵBγJF2KϵBcBcs
“ ´

1

27
lim
ϵÑ0

ż 1

0

dt t̄t3 ¨ eiiidru1 ` n1, u2 ` n2, n3, n4s1 ˆ Bcdddru1 ` n1, u2 ` n2, n3 ` n4s1

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3p´iσ2qiσ2σ3σ3σ3s, (G.11)

and
ż 1

0

dt (G.10)|q“ 1
2

“
1

27
lim
ϵÑ0

ż 1

0

dt t̄t3Trrpη0γ
´1qJF2KϵBγJF2KϵBcBcγ´1p1 ´ KϵqJF2KϵBcγ´1p1 ´ KϵqJF2KϵBcs

“
1

27
lim
ϵÑ0

ż 1

0

dt t̄t3 ¨ eidiirn1, n2, u1 ` n3, u2 ` n4s
1 ˆ Bcdddru1 ` n3, u2 ` n4, n1 ` n2s1

ˆ
1

2
Trrσ3p´iσ2qiσ2σ3σ3σ3p´iσ2qσ3p´iσ2qσ3s. (G.12)

The fourth term (7.2.15) becomes

(7.2.15) “ ´ lim
ϵÑ0

t̄qTr

„s
1

det2
V

ˆ

η0
1

det2

˙

BΩ1cBcΩ1

{
ϵ

ȷ
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“ ´ lim
ϵÑ0

t̄qTrrp1 ´ KϵqJF2KϵV η0`p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2Kϵ˘
ˆ BJΩ1KϵcBcJΩ1Kϵs

“ ´ lim
ϵÑ0

t̄qTrrJF2KϵV p1 ´ KϵqJF2Kϵαpη0V qJF2KϵBKϵcBcKϵs

“ ´ lim
ϵÑ0

t̄qα

22
Trrpη0γ

´1qJF2KϵKϵBcBcKϵJF2KϵBcγ´1p1 ´ KϵqJF2KϵBcs. (G.13)

Then, (G.13) becomes

ż 1

0

dt (G.13)|q“ 1
2

“ ´
1

24
lim
ϵÑ0

ż 1

0

dt t̄tTrrpη0γ
´1qJF2KϵKϵBcBcKϵJF2KϵBcγ´1p1 ´ KϵqJF2KϵBcs

“ ´
1

24
lim
ϵÑ0

ż 1

0

dt t̄t ¨ eiirn1 ` y1 ` y2 ` n2, u1 ` n3s
1 ˆ Bcdddry2 ` n2, u1 ` n3, n1 ` y1s

1

ˆ
1

2
Trrσ3p´iσ2qσ3σ3σ3σ3p´iσ2qσ3s. (G.14)

The fifth term (7.2.16) becomes

(7.2.16) “ ´ lim
ϵÑ0

t̄αTr

„sˆ
η0

1

det2

˙

Ω1 1

det2
ΩxBγΩxBc

{
ϵ

ȷ

“ ´ lim
ϵÑ0

t̄αTrrη0
`

p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2Kϵ˘
ˆ JΩ1Kϵp1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵΩϵBγΩϵBcs

´ lim
ϵÑ0

t̄αTrrη0
`

p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2Kϵ˘
ˆ JΩ1Kϵp1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵΩϵBγΩϵBcs

“ ´ lim
ϵÑ0

t̄α4TrrJF2Kϵpη0V qJF2KϵKϵp1 ´ KϵqJF2KϵV p1 ´ KϵqJF2KϵV JF2KϵBγBcs
` lim

ϵÑ0
t̄α4TrrJF2KϵV p1 ´ KϵqJF2KϵV JF2KϵKϵp1 ´ KϵqJF2Kϵpη0V qJF2KϵBγBcs

“ ´ lim
ϵÑ0

t̄α4

23
Trrpη0γ

´1qJF2Kϵ2Kϵp1 ´ KϵqBcγ´1p1 ´ KϵqJF2Kϵ
ˆ Bcγ´1JF2KϵBγJF2KϵBcBcs (G.15)

` lim
ϵÑ0

t̄α4

23
Trrpη0γ

´1qJF2KϵBγJF2KϵBcBcγ´1p1 ´ KϵqJF2Kϵ
ˆ Bcγ´1JF2Kϵ2Kϵp1 ´ KϵqBcs. (G.16)

Then (G.15) and (G.16) become

ż 1

0

dt (G.15)|q“ 1
2

“ ´
1

27
lim
ϵÑ0

ż 1

0

dt t̄t4Trrpη0γ
´1qJF2Kϵ2Kϵp1 ´ KϵqBcγ´1

ˆ p1 ´ KϵqJF2KϵBcγ´1JF2KϵBγJF2KϵBcBcs
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“ ´
1

27
lim
ϵÑ0

ż 1

0

dt t̄t4 ¨ eiiidrn1 ` n2 ` y1 ` u1, u2 ` n3, n4, n5s
1

ˆ Bcdddrn1 ` n2 ` y1 ` u1, u2 ` n3, n4 ` n5s
1

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3p´iσ2qiσ2σ3σ3σ3s, (G.17)

and
ż 1

0

dt (G.16)|q“ 1
2

“
1

27
lim
ϵÑ0

ż 1

0

dt t̄t4Trrpη0γ
´1qJF2KϵBγJF2KϵBcBcγ´1

ˆ p1 ´ KϵqJF2KϵBcγ´1JF2Kϵ2Kϵp1 ´ KϵqBcs

“
1

27
lim
ϵÑ0

ż 1

0

dt t̄t4 ¨ eidiirn1, n2, u1 ` n3, n4 ` n5 ` y1 ` u2s
1

ˆ Bcdddru1 ` n3, n4 ` n5 ` y1 ` u2, n1 ` n2s
1

ˆ
1

2
Trrσ3p´iσ2qiσ2σ3σ3σ3p´iσ2qσ3p´iσ2qσ3s. (G.18)

Here, we define

eigiirt1, t2, t3, t4s

:“ x

¿

0

dz

2πi
ηpzqξe´ϕp0qeϕηpt1qξe

´ϕpt1 ` t2qξe
´ϕpt1 ` t2 ` t3q y

ξηϕ
Ct1`t2`t3`t4

“ ´
π

L

sin θt1
sin θt1`t2 sin θt1`t2`t3

, (G.19)

eidiirt1, t2, t3, t4s :“ lim
yÑ0

Byteiiigrt1, t2, t3 ` y, t4s ´ eiiigrt1, t2, t3, t4 ` ysu. (G.20)

The sixth term (7.2.17) becomes

(7.2.17) “ lim
ϵÑ0

t̄Tr

„sˆ
η0

1

det2

˙

Ω1 1

det2
BΩ1cBcΩ1

{
ϵ

ȷ

“ lim
ϵÑ0

t̄Trrη0
`

p1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2Kϵ˘
ˆ JΩ1Kϵp1 ´ KϵqJF2KϵαV p1 ´ KϵqJF2KϵBJΩ1KϵcBcJΩ1Kϵs

“ lim
ϵÑ0

t̄α2TrrJF2Kϵpη0V qp1 ´ KϵqJF2K2ϵKϵV JF2KϵBKϵcBcKϵs

“ lim
ϵÑ0

t̄α2

22
Trrpη0γ

´1qp1 ´ KϵqJF2K2ϵKϵBcγ
´1JF2KϵKϵBcBcKϵJF2KϵBcs. (G.21)

Then, (G.21) becomes

ż 1

0

dt (G.21)|q“ 1
2

“
1

24
lim
ϵÑ0

ż 1

0

dt t̄t2Trrpη0γ
´1qp1 ´ KϵqJF2K2ϵKϵBcγ

´1JF2KϵKϵBcBcKϵJF2KϵBcs
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“
1

24
lim
ϵÑ0

ż 1

0

dt t̄t2 ¨ eiiru1 ` n1 ` n2 ` y1, n3 ` y2 ` y3 ` n4s
1

¨ Bcdddry3 ` n4, u1 ` n1 ` n2 ` y1, n3 ` y2s
1

ˆ
1

2
Trrσ3p´iσ2qσ3p´iσ2qσ3σ3σ3σ3s. (G.22)

Then, we have the expression for the energy of the solution g2 with q “ 1{2:

lim
ϵÑ0

JEpg2qKϵ “ lim
ϵÑ0

ż 1

0

dtTrrη0
`Jg2ptq´1Btg2ptqKϵ˘Jg2ptq´1Qg2ptqKϵ s

“ (7.2.27) ` (G.8) ` (G.11) ` (G.12)

` (G.14) ` (G.17) ` (G.18) ` (G.22). (G.23)

If we complete this calculation, we obtain the energy of the solution of the solution g2.
Let us derive the correlators in Berkovits’ SFT. First, we note the normalization in

this thesis:
x ξcBcB2ce´2ϕ y

gh
UHP :“ 2, (G.24)

or
x ξ y

ξη
UHPx e´2ϕ y

ϕ
UHP :“ ´1, x cBcB2c ybcUHP :“ ´2. (G.25)

Let us derive the following correlator:

eiirt1, t2s “ x

¿

0

dz

2πi
ηpzqξe´ϕp0qξe´ϕpt1q y

ξηϕ
CL
, (G.26)

from Trrη0γ
´1Ωt1γ´1Ωt2s;

x

¿

0

dz

2πi
ηpzqξe´ϕp0qξe´ϕpt1q y

ξηϕ
CL

“ ´x ξpt1qy
ξη
UHPxe´ϕp0qe´ϕpt1q y

ϕ
UHP

“ ´x f´1
s ˝ fLÑ2 ˝ ξpt1q y

ξη
UHPx f´1

s ˝ fLÑ2 ˝ e´ϕp0qf´1
s ˝ fLÑ2 ˝ e´ϕpt1q y

ϕ
UHP

“ ´x ξptan θt1q y
ξη
UHP

´π

L

¯
1
2

¨2
ˆ

1

cos2 θt1

˙
1
2

x e´ϕp0qe´ϕptan θt1q y
ϕ
UHP

“ ´
π

L
x ξ y

ξη
UHP xe´2ϕ y

ϕ
UHP

1

cos θt1
p0 ´ tan θt1q´1

“ ´
π

L

1

sin θt1
. (G.27)

Here, hpξq “ 0, hpe´ϕq “ 1{2 and ϕpzqϕp0q „ ´ ln z. Similarly, we have the following
correlator:

eiiigrt1, t2, t3, t4s “ x

¿

0

dz

2πi
ηpzqξe´ϕp0qξe´ϕpt1qξe

´ϕpt1 ` t2qe
ϕηpt1 ` t2 ` t3q y

ξηϕ
UHP, (G.28)
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from Trrη0γ
´1Ωt1γ´1Ωt2γ´1Ωt3γΩt4s;

x

¿

0

dz

2πi
ηpzqξe´ϕp0qξe´ϕpt1qξe

´ϕpt1 ` t2qe
ϕηpt1 ` t2 ` t3q y

ξηϕ
UHP

“ ´
π

L

ˆ

1

cos2 θt1

˙
1
2
ˆ

1

cos2 θt1`t2

˙
1
2
ˆ

1

cos2 θt1`t2`t3

˙´ 1
2

ˆ x e´χptan θt1qe´χptan θt1`t2qe´χptan θt1`t2`t3q y
ξ
UHP

ˆ x e´ϕp0qe´ϕptan θt1qe´ϕptan θt1`t2qeϕptan θt1`t2`t3q y
ϕ
UHP

“
π

L

cos θt1`t2`t3

cos θt1 cos θt1`t2

p0 ´ tan θt1q´1p0 ´ tan θt1`t2q´1p0 ´ tan θt1`t2`t3q

“ ´
π

L

sin θt1`t2`t3

sin θt1 sin θt1`t2

. (G.29)

Here, hpηq “ 1, hpeϕq “ ´3{2, χpzqχp0q „ ln z. By performing the same procedure, we
have

eigiirt1, t2, t3, t4s “ ´
π

L

sin θt1
sin θt1`t2 sin θt1`t2`t3

. (G.30)
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