Multiple-brane Solutions and
Singular Gauge Transformations
in Open String Field Theory

(FROBOEBRICHITZSETL—VREBELRS —VTH)

January, 2018

Physics Major
Graduate School of Science and Technology
Doctoral Course
Nihon University

SUGITA Kazuhiro



Contents

1 Introduction

2 Review of the Bosonic Cubic String Field Theory
2.1 CubicAction . . . . . . .
211 CubicAction . . . . . ..
2.1.2 Definitionsby Using CFT . . . . . .. .. .. ... ... ... ....
22 KBcAlgebra . . . ...
221 SliverFrame . . . . . . . ..
2.2.2 Definition of String Fields K, B,c¢ . . . . . . . . . .. .. ... ...
223 Algebra . . . ..
2.3 Pure-gauge-form Solution . . . . . . .. ..o
2.4 Tachyon Vacuum Solution . . . . . . .. .. ... oo
241 Solution . . . . ..
242 Energy . . . ...
2.4.3 Trivial Cohomology . . . . . . . . . . . . ..
2.4.4 Gauge Invariant Observable . . . . ... ... ... ... ... ...
2.5 Erler—Maccaferri Solution . . . . . . .. ..o
2.6 Multiple-brane Solution . . . . . .. ..
2.6.1 Murata—Schnabl Solution . . . . . . .. ... ... ... ... ...
2.6.2 K.-Regularization . . . . .. ..o
2.6.3 Equation of Motion in the Strong Sense . . . . . . . ... ... ...
26.4 EnergyandGIO . . . . . .. ..o

3 Singular Gauge Transformation and the Erler—Maccaferri Solution
3.1 Construction of the Solution . . . . . . . . .. ... ... ... ... ...
3.2 Equation of Motion in the Strong Sense . . . . . . . .. ... L.
3.3 Energy and Gauge Invariant Observable . . . . . . . . ... ... ... ...
3.4 An Example: D24+D25-brane . . . . . . . ..o

4 Review of the Modified Cubic Superstring Field Theory
4.1 Non-GSO-Projected Action . . . . . . . . . . ... ..
42 KBcGyAlgebra . . . . . .

11
12
13
14
16
18
19
19
20
21
23
27
27
27
28
30

31
31
32
34
34



4.3 Known Solutions . . . . . . . 39

4.3.1 Tachyon Vacuum Solution . . . . . . . . ... ... ... ... ..., 39
4.3.2 Half-brane Solution . . . . . . . ... L 40
Multiple-half-brane Solution 42
5.1 Gauge Equivalence between Uy p?and Uy . . . . . . .. ..o 42
5.1.1 From the Form of the Gauge Parameter . . . . . . . . ... ... .. 42
5.1.2 From the Energy of the Pure-gauge Solution U~'QU . . . . . .. .. 43
5.2 Multiple-half-brane Solution Wg,o . . . . . ... ... ... 46
5.2.1 Solution . . . . .. 46
5.2.2 G.-Reqgularization . . . . .. ..o 46
5.2.3 Equation of Motion in the StrongSense . . . . . . . ... ... ... 48
524 Energy . . . . . . 50
5.3 Double-brane Solution . . . . . ... 51
Review of the Berkovits’ Open Superstring Field Theory 54
6.1 Action . . . . . 54
6.2 Tachyon Vacuum Solution . . . . . . . . . . ... ... 55
Double-brane Solution in Berkovits’ Open SFT 59
7.1 Perturbative Vacuum . . . . ..o Lo 59
7.2 Double-brane Solution . . . . . . ... ... 60
721 Energy . . . .. 61
7.2.2 Gauge Invariant Observable . . . . . . ... ... ... .. ... .. 66
Conclusion 69
Correlators and Formulae in the Bosonic Cubic String Field Theory 72
K BcGy Algebra 77
Correlators in Modified Cubic String Field Theory 80
Detailed Calculation of the Energy of the Half-brane Solution 83
Detailed Calculations of the EOMS for V5, 86

Detailed Calculation of the Energy of the Tachyon Vacuum Solution in Berkovits’
SFT 90

Detailed Calculations of the Energy of the Double-brane Solution in Berkovits’ SFT 100

i



Chapter 1

Introduction

The ultimate goal of the elementary particle physics is to understand the fundamental
dynamical variables and the laws of physics governing their dynamics. According to
the present understanding, except for the gravitational interaction, the standard model
describes particle physics by using the framework of the quantum field theory. How-
ever, in this framework, fundamental particles are basically regarded as points, i.e., zero-
dimensional objects, and there exist divergences coming from the quantum effects in the
ultra-violet region. In the case of the gravitational interaction, because of the serious
divergences, quantization based on the standard quantum field theory is not available.
Hence, constructing the framework of quantum gravity is one of the most important
theme in the research area of the elementary particle physics.

String theory is a candidate for the theory including the quantum gravity. This the-
ory avoids the above-mentioned divergences by treating “particles” as strings, i.e., one-
dimensional objects. However, at present, we have not yet understood any satisfactory
formulation of string theory which does not rely on the perturbation theory. String field
theory (SFT) is a candidate for such a non-perturbative formulation of string theory. In
1980’s, two types of the covariant open bosonic SF'T actions were proposed. The first
action was constructed in [1]|, and the second one was constructed in [2]. These two types
of the actions adopted different definitions of the interaction of strings. We only consider
the latter type of the interaction in this thesis, i.e., the midpoint interaction. This action
was extended to the supersymmetric case in [3]. However, this supersymmetric action is
problematic concerning the existence of the picture changing operators (PCOs). Then,
in order to avoid the problem, a modified version of the action was proposed in [4-6],
and the theory defined by this action is called the modified cubic superstring field theory.
However, this action again is problematic with respect to the gauge fixing because of
the PCO.! In 1990’s, another action for string fields in the Neveu-Schwarz (NS) sector
was constructed by Berkovits in [8,9]. This action is free from the problem of the PCOs
because it does not use any PCOs.

SEF'T has been applied to analyses of the phenomenon called the tachyon condensation.
It is a transition from an unstable vacuum to another stable vacuum, and it requires
non-perturbative analyses. The vacuum in which the tachyon field has condensed is

LA recent development related to this issue is discussed in [7].
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called the tachyon vacuum, and it is a non-trivial classical solution of the equation of
motion (EOM) of SFT. Sen conjectured [10-12] that the value of the potential energy
at the tachyon vacuum is lower than the trivial vacuum by the value of the tension of
an unstable D-brane. After this conjecture was proposed, the calculations in studying
the tachyon condensation had been investigated by using the numerical technique [13|
known as the level truncation, and also analytic classical solutions had been searched
in the bosonic cubic SFT. Finally, in 2005, Schnabl found the analytic tachyon vacuum
solution [14]. Although the first form of the solution is complicated, now we have a simpler
form of the solution written in terms of the so-called K Bc algebra which was introduced
by Okawa [15]. While the tachyon vacuum solution reproduces the energy of the vacuum
without any D25-brane, Murata and Schnabl proposed a multiple-brane solution, and
claimed that it reproduces the energy of the vacuum with n D25-branes [16,17]. This
solution is constructed by using a singular gauge transformation [18-20], and hence in
general, the solution includes singular string fields. Therefore, it requires regularization
in order for the solution to be defined properly [16,17,21,22|. After the appropriate
regularization, the multiple-brane solution is valid only when n = 0,1, 2.2 More recently,
Erler and Maccaferri proposed another type of multiple-brane solution (EM solution) [25],
which indeed can describe solutions with arbitrary number of D-branes. The EM solution
is an extension of the solution by Kiermaier, Okawa and Soler (KOS solution) [26], which
is also an extension of the solution based on the marginal deformation. Both of the EM
solution and the KOS solution are constructed by using the boundary condition changing
operators (BCCOs).

In this thesis, we discuss new multiple-brane solutions, by using singular gauge trans-
formations in three different theories. First, we discuss string fields which are constructed
by using singular gauge transformations for the EM solution in the bosonic cubic SFT.
We will give a support for the expectation that the singular gauge transformation creates
a D25-brane. Second, we discuss string fields which are constructed by using the singular
gauge transformation for the half-brane solution constructed by Erler [27] in the modified
cubic SFT. The energy of the half-brane solution is known to coincide with one half the
tension of a D9-brane. Although this solution might not have any physical significance,
the fact that the solution uses the extension of the K Bc algebra is interesting. Third, we
discuss a string field which is constructed by using the singular gauge transformation for
the tachyon vacuum solution found by Erler [28] in the Berkovits’ SFT.

This thesis is organized as follows. In chapter 2, we review the bosonic cubic SF'T. We
introduce the action for this theory, the K Bc algebra and the pure-gauge-form solution to
construct the classical analytic solution of the EOM. Then, we further review the tachyon
vacuum solution, the EM solution and the multiple-brane solution. In chapter 3, we
discuss candidates for the new solutions by performing singular gauge transformations for
the EM solution. Here, the gauge parameter is the same as the one in the pure-gauge
form of the “simple” tachyon vacuum solution [29]. We evaluate the energy of the solution
and also the gauge invariant observable (GIO) [30]. Then, we study a concrete example of

2In this thesis we consider the singularity from K = 0, and n > 0. Other attempts can be found
in [23,24].
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the solution describing a D24-brane placed on a D25-brane. In chapter 4, we review the
modified cubic SFT. We consider the non-GSO-projected action so that the trivial vacuum
can correspond to an unstable D9-brane. We introduce an algebra in the modified cubic
SF'T which includes string fields whose definition is based on the superconformal ghost
~ and the supercurrent G. We review some known solutions in the modified cubic SF'T,
i.e., the tachyon vacuum solution and the half-brane solution. In chapter 5, we discuss a
solution obtained by performing a singular gauge transformation whose gauge parameter
is taken to be the same as the one in the pure-gauge form of the half-brane solution.
Since the solution includes a singular string field, we introduce a G.-regularization as the
K.-regularization. We check the EOMS and evaluate the energy. In chapter 6, we review
the Berkovits” SF'T and the tachyon vacuum solution in this theory. In chapter 7, we
discuss a candidate for the solution by performing a singular gauge transformation whose
gauge parameter is appeared in the tachyon vacuum solution in the bosonic cubic SF'T,
the modified cubic SF'T and the Berkovits’ SE'T. We try to evaluate the energy and derive
its integral form. However, since the integral is rather complicated we do not reach the
result. Then alternatively, we try to evaluate the GIO. The chapter 8 is devoted to the
conclusion. Some detailed derivations of correlators and algebras, and also the detailed
calculations of energies and EOMS are given in the appendices.



Chapter 2

Review of the Bosonic Cubic String Field
Theory

2.1 Cubic Action

We review the bosonic cubic SFT. Since the bosonic theory does not include the fermion,
it cannot describe our universe, i.e., it should be regarded as a kind of a toy model.
However, such a toy model is important in order to understand essential physics and to
develop methods of analyses of more realistic theories including fermions.

First, we review structure of the action, and next, we give definitions of building blocks
of the action by using conformal field theory (CFT). See e.g., [31-35], as textbooks and
pedagogiacal reviews.

2.1.1 Cubic Action

Let us consider the physical state condition:
QU =0, (2.1.1)
where ¥ is a ghost number one string field which is a state in the Hilbert space H of CFT:
UeH, (2.1.2)

and @ is a Grassmann-odd operator called the BRST (Becchi-Rouet—Stora—Tyutin) op-
erator:

Q:H—H. (2.1.3)
Since the BRST operator () is nilpotent:

Q* =0, (2.1.4)
the physical state condition is invariant under the following gauge transformation:

50 = QA, (2.1.5)
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where the gauge parameter A is a ghost-number-zero string field. We use the BPZ
(Belavin—Polyakov-Zamolodchikov) inner product:

(o,9) : HOH — C, (2.1.6)
which satisfies the following properties

{p1,p2) = (=) 05, 1), (2.1.7)
(Qep1,02) + (=) o1, Qpa) = 0. (2.1.8)

Here, €(¢) is equal to 0 for a Grassmann-even ¢ and equal to 1 for a Grassmann-odd ¢.
We can construct the free action by using the BRST operator and the BPZ inner
product:

Sfree(qj> = _%<\P7Q\Ij>’ (2'19)

which is invariant under (2.1.5):

nSine(F) = ~3(QA, Q) — (W, QM) =,

where we use the nilpotency of the BRST operator (2.1.4) and the property of the BPZ
inner product (2.1.8). By taking the variation, we obtain the equation of motion (EOM)
which reproduces the physical state condition (2.1.1).
Next, we introduce interactions by using a product between string fields. The product
is called the star product:
i HOH — H, (2.1.10)

and the gauge transformation is extended as
WV =QA+ T+ A—A=U. (2.1.11)
Witten constructed an action [2]:
S(V) = —%<\I/, QYY) — %(kll, LUERSY (2.1.12)
which is invariant under the gauge transformation (2.1.11). Necessary condtions for the

invariance are the cyclicity of the BPZ inner product, the associativity of the = product
and the Leibniz rule of the BRST operator :

(1,02 * 3) = {p1 * P2, P3), (2.1.13)
(1% p2) * 3 = 1% (P2 x P3) = 1% P2 = 3 (2.1.14)
Qi1 02) = (Qp1) * 2 + (=) Pp1 = Qs (2.1.15)



in addition to the properties (2.1.4), (2.1.7) and (2.1.8):

INS(U) = —(0AY, QW) — (AT, W« U)
= —(QA, QW) = (U= A, QU) + (A« ¥, QF)
QAT T — (T A, W U+ (AT T
= —(\,QU «TU) + (A, ¥ «QU) —(QA, ¥ = V)
— (AU U= W) + (AU =TT
_0. (2.1.16)

Here, from the cyclicity (2.1.7) and (2.1.13), we can derive the following relation:

<<p1, o * @3> _ (_)e(sos)(e(m)ﬂ(soz))@?’, Q1 * 902> _ (_)6(901)(6(%02)+€(903))<¢2’ 5 * @1>’ (2'1'17)

and we used the equations. We also consider a finite gauge trasformation:

0

1 1 1
W= ) 0" = (1—A+§A*A—~->*(QA+§Q(A*A)+~~>

n=0

1 1
+<1—A+§A*A—--~>*\P*<1+A+§A*A+--~>
=e M Qe e U el (2.1.18)

where e := 1 + sA + %A «A+---, (seC). When we define u := e and u™! = e, we
can rewrite the finite gauge transformation as

U —— U8 = H(Q + V), (2.1.19)

where u™1(Q + W¥)u is an abbreviation for u™' * Qu + u™! + ¥ x u, and the arrow with
u represents the gauge transformation whose gauge parameter is u. For the finite gauge
transformation, the action becomes

S(E) = S(¥) + S(u" * Qu). (2.1.20)
Let us show this. We define the kinetic term of the action Sy, and the interaction term

Sint:

Sian () = —%@,Q@, S () _%@p, U0, (2.1.21)

First, we perform the finite gauge transformation (2.1.19) for the kinetic term:

San(0%) = 5 (Q + W), QU (@ + W)
= Sian(u™" * Qu) + S (V)
—(Qu+Qu", W) — (ux Qu~, U« ). (2.1.22)



Here we used
Qutsxu=—ut+*Qu, L Qut v u) = 0. (2.1.23)

Second, we perform the finite gauge transformation (2.1.19) for the interaction term:

Su(W5) = (™ (Q + W, u™ (@ + W v ™ (@ + W)

= int(ufl * QU) + Sint(\p)
+{Qux Qu~, ) —(Quxu™, V=), (2.1.24)

Here we used

{1+ @2, (01 + @2) * (1 + ¥2))
= (1,01 * 1) + 31 * 01, 02) + 3P1, P2 * P2) + (P2, P2 * P2). (2.1.25)

Therefore, combining the two terms, we obtain

S(U8) = Syin(W8) + Sing (V8)
= Skin(u™! * Qu) + Siin(¥) — (Qu + Qu ', Uy — {u* Qu™", ¥ + ¥)
+ Sine (™ Qu) + Sine (V) + (Qu + Qu™, ¥) — (Qu s u™, ¥+ )
= S(U) + S(u™t * Qu). (2.1.26)

Let us show that S(u™' = Qu) vanishes. First, the action can be written as

S(u™'+Qu) = —é(u‘l + Qu, Qu '+ Qu). (2.1.27)
Next, we introduce u, s.t. ug =1 and vy = u:
u, = e™. (2.1.28)
We consider the following quantity:
C(1) = (ur 7" * Quy, Quy ' = Quyp ). (2.1.29)

By considering 0.¢(7), we find

0,C(T) = (=N *u, s Quy, Quy t x Quyy + (ur ™ x QA * uy), Quy ™+ Quiy)

G Qup, Q(—A ) = Quey + Cty L+ Quy, Qi+ Q(Awy))

— (A Qur, Qua T Quy)
+(u o QA xun, Quy T Quey + (u ! x Ak Quy, Quy ! Quiy)
— (ur s Quy, QA+ ur T x Qupy — (uyr T  Quin, A+ Quie Tt x Quiy)
s Qur, Quat =« QA gy + (st Quy, Quo 5 A+ Quy)

= 3ALQ(ur + Qu 1))

—0, (2.1.30)



where we used the property of the BPZ inner product and @, [@Q, 0;] = 0 and u, * A — A =
Uy = u, tx A — Axu, 7! = 0. Because C(0) = 0, we have

C(1) = u'Qu,Qu" * Qu)y = 0. (2.1.31)

Therefore, we obtain
S(u™t  Qu) = 0. (2.1.32)

By taking a variation of the action, we obtain the EOM:
1 1

_ %gm, W) — %@,5\1} F T — %@, U+ 50
— Q) (U, U D)
-0 (2.1.33)

< YoU, QU +UxW¥ =0. (2.1.34)

2.1.2 Definitions by Using CFT

We give definitions of building blocks of the action of SF'T by using CFT. See e.g., [36-38],
for textbooks on CFT.
The action of the string world sheet! is given by:

ScrT = 2i szz <5X“5Xu(z, Z) + bdc(z, Z) + boE(z, 2)) : (2.1.35)
m

where g = 0,---,25. This dimension is decided by demanding the nilpotency of the
BRST operator, Q% = 0. A string field ¢ is defined as the sum of the states of CFT:

[ T I
90"[(2@% (TR 1028+ Ay (k3o 1|05y + = BRI 06

b CR)bscoer |0 KD + - ) (2.1.36)

where o, ¢, and b,, are defined as?

d
R jﬂ T2l axn (), (2.1.37)
2miz
dz 1
= " 2.1.
Cn §2m'zz c(z), (2.1.38)
dz 40
=P —2" . 2.1.
bn §2m’zz b(z) (2.1.39)

Here, the conformal weight of 0X(z), c¢(2) and b(z) is 1, —1 and 2, respectively. These

In this thesis, we use o = 1.
2We use the doubling trick to define the contour integrals.
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operators satisfy the following (anti-)commutation relations:

[O%a aryz] = m77W5m+n,0, (2140)
{bs En} = Smmo- (2.1.41)

The state |0; k) is defined by |0; k) = e*»X"|0), where |0) is the SL(2, R) invariant vacuum:

a,0) =0, n=0, (2.1.42)
0> =0, n=2, (2.1.43)
bal0)> =0, n> 1. (2.1.44)

T(k) and A,(k), etc. are the component fields; T'(k) is a tachyon field and A, (k) is a
gauge field.
A conformal transformation of a weight h primary field is defined as

fod(z):= (%) ®(f(2)). (2.1.45)

A correlator (N point function) of the CFT is defined as

Cor(6r) - onlEn) D = j D[ [ onlen)e 5o, (2.1.46)

where Y represents a two dimensional surface. The conformal invariance of the correlator
is described as

Co1(&) - on(En) )z = fopi(&r) - fopn(én) s (2.1.47)

where f(X) represents a transformed two dimensional surface.
By using the state-operator correspondence, the BPZ inner product is defined as fol-
lows:

{p1,p2) = (T 0 p1(0)2(0) Jump- (2.1.48)

Here, the subscript UHP represents the upper half plane, and a conformal transformation
1(¢) is the inversion:

I : UHP — UHP, (2.1.49)
1
1) = — . (2.1.50)
§
The UHP coordinate z is related to the strip coordinate (7,0) through the conformal
transformation:
z=e M (2.1.51)
We note that I is an involution:
Iol =id, (2.1.52)



then, the cyclicity of the BPZ inner product is shown as

(1,2 = {1 0 1(0)p2(0) Yump
= (I? 0 01(0)1 0 ©2(0) yunp
= (=)L o py(0)p1 (0) Yump
= (=) PR oy, 1), (2.1.53)

where in the second line we used the conformal invariance of the correlator and in the
third line we used the fact that [ is an involution.
Next, we give the definition of the BRST operator:

Q= %%ﬁg(g), (2.1.54)
JB(2) == —cT™(2) + bede(z) + 2520(2), (2.1.55)

where T™(z) is the matter energy-momentum tensor:
T"(z) = —0X"0X,(2). (2.1.56)

The total energy-momentum tensor T'(z) is given by T'(z) = T™(z) + T%(z), where the
ghost energy-momentum tensor 7%(z) is

T8(z) == 0b- c(z) — 20(bc)(z). (2.1.57)

The energy-momentum tensior 7(z) is the generator of the conformal transformation.
The BRST operator () is nilpotent iff the spacetime dimension is equal to 26. We can
show the nilpotency by using the following operator product expansions (OPEs):

0X"(2)0X"(0) ~ _%ZZW, (2.1.58)
b(2)c(0) ~ 2 (2.1.59)

where n*” is the Lorentz metric. The property (2.1.8) can be derived by using CFT:

@ervo = (1o (§ 3 inle1en0)) 20 e

- o) (§ SE R0 o

—(=) o1, Qepa), (2.1.60)

Il

where the subscript z of §Z represents that the contour encircles the point z.
We give the definition of the star product:

{p1, P2 * @3) = f10¢1(0) f2 0 92(0) f3 0 03(0) Jume, (2.1.61)
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where f;(€) = tan(3(arctan +¢;)), ¢; = 5(2—j). Note that each string midpoint in the
UHP, ¢ = 4, maps to itself:

2
f(i) = tan (g(arctanz’ + cj)) =i (2.1.62)
We also consider the following conformal transformation:
f(€) == tan (arctanz + g) : (2.1.63)

This conformal transformation satisfies the following equations:

fofi(§) = fa(€),  [ofal€) = f3(8),  [fofs(§) = filE). (2.1.64)

By using these equations, we can show the cyclicity:

{prspa o3y = (fofropi(0)f o fropa(0)f o fs 0 ps(0) yump
— (_)e(sos)(e(sol)+€(<pz))< f1003(0) f2 0 ©1(0) f3 0 ©2(0) Yynp
- (_)e(«ps)(e(sol)%(«pz))@g’ ©1 * P2)
= {1 * 2, 3). (2.1.65)

By using the deformation of the contour in the BRST operator (), we can show that @) is
a derivative:

on Qe o) = Chon O 5= (im0 00 9a(0)) don
= (fio¢1(0) (jgf o d—z.jB(Z)fz o @2(0)> f30¢3(0) Yunp

271

+ (—)E(m)< Jio 901(0)f2 © 802(0) (§ %jB(Z)f?) © 903(0)) >UHP
f3(0) 270
= {1, Q02 * p3) + (=) o1, 02 + Qps), (2.1.66)

where the contour Cy 3 encloses f>(0) and f5(0).

We have demonstrated the properties of the BRST operator, the BPZ inner product
and the star product which are needed for the gauge invariance of the action by using
CFT.

2.2 K Bc Algebra
The EOM of the bosonic cubic SFT:
QU + V¥ =V =0,

consists of the BRST operator ) and the star product . To construct solutions of the
EOM, we define a special set of string fields closed under ) and *. Okawa found the set
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of string fields [15], which is defined in a useful coordinate of CFT [39].

2.2.1 Sliver Frame

We introduce the sliver frame [39] which is a useful coordinate system to describe the star
product. The sliver frame is defined by the following conformal transformation:

fs : UHP — sliver,
2
fs(&) == —arctan&. (2.2.1)
T
Note that the midpoint of the string in the sliver frame is given by
£(i) = ioo, (2.2.2)

and the upper unit semi-circle £ = ¢, 6 € [0,7]\{3} in the UHP is mapped to the
semi-infinite vertical lines:

1 .
s+is, s=0 0el0,2),
fe?y =277 10.%) (2.2.3)
—1+is, =20 e (Z,7]
2 ’ PRESE B
and the origin maps to the origin
f5(0) = 0. (2.2.4)

The upper half unit disk in the UHP maps to a “sliver.”?

The star product can be realized by placing “slivers” side by side. In the correlator,
the left edge of the “sliver” and the right edge is glued, then it becomes a semi-infinite
cylinder. We have the identification z ~ z + L where L is the circumference of the sliver
in the correlator.

Next, we introduce the wedge state. First we consider the following correlator:

<§0testa ’O>> = <fs o (Ptest(o)l >Cz = <fs o (Ptest(o) >C27 (225>

where the subscript Cy denotes that the coordinate system is the sliver frame and the cir-
cumference of the cylinder is equal to 2. The state |0) in the left-hand side is the SL(2, R)
invariant vacuum and by applying the state-operator correspondence, it corresponds to
the operator 1 in the right-hand side.

Let us increase the number of the state |0) by one in the left-hand side:

(Prest: [0)#]0)) = (fs © prest (0) D5, (2.2.6)

then the circumference is increased by 1 because the state |0) has the width 1 in the sliver
frame. Therefore,

(Prests [0 [0y %% [0)) = (fs © Prest(0) )i (2.2.7)

3Sliver means a slender fragment.
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where n € Z~ is the number of |0) in the left-hand side. Next we extend the result as

<90test7 Qa> = <fs o (Ptest(o) >Ca+1a (228)

where
a € Ry. (2.2.9)

The string field Q% is called the wedge state. The wedge state satisfies the following
equation:

<90test7 0% Qﬁ> = <fs © (Ptest(o) >Ca+6+l = <(Ptest7 Qa+5>- (22'10)

It is known that the limit Q% is finite and this string field is called the sliver state. The
string field Q° is the identity string field under the star product:

(Prests 2% @) = {prest, 0 * Q°) = (Prest, ) = {t 0 f5 0 Prest(0) fs 0 0(0) D, (2.2.11)

where the conformal transformation t is the translation z — z + 1 in the sliver frame.
This gives a precise definition of the identity string field 1, which appeared in (2.1.18).
We introduce a Tr:

Tr:H — C,
Tr[e] := (Q°, o). (2.2.12)

If the star product of the two string fields is input in Tr, it is same as the BPZ inner
product.

Tr[1#@a] = (Q°%, 1202y = Q0% 01,02) = {1, p2) = (to fs001(0) fs002(0) o, (2.2.13)

2.2.2 Definition of String Fields K, B, ¢

We introduce the string fields K, B, and ¢ [15] defined in the sliver frame. These string
fields are closed under () and . Because of the form of the EOM, these string fields are
useful to construct solutions of the EOM. First we define the string field K:

Tr[prest * K] = ( fs © Prest (0) J —T(2) Yc,, (2.2.14)

l1 211
2

x—100 x—+100
J = J : f = J , zelR. (2.2.15)
lo x+i00 te z—i0

where we define
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We can find that Q% = X from (2.2.10), (2.2.11) and the following equation:

6aTT[SOtest * Qa] |a—>0
= aa< fa+1—>1 o fs O Sptest( ) >Cl ‘a—»O

= Oy {<fs 0 Prest (0) Yo, — O‘<j€ _ZT ) fs © prest (0) )y + O(&Q)}

= —{fs © Prest (0) J &

1o 211

% ()Y,

l+o

= (fs © prest (0) f

I, 27?2

1

= Tr[theSt * K]

Here, we used the conformal transformation of the scaling:

famp(2) = gz,

in the form 1
z=z—az+ 0(a?),

fa+1—>1(2) = o

dz

a—0

S = DTEDe, + (oo pun®) | 3227,

(2.2.16)

(2.2.17)

(2.2.18)

and the periodicity z ~ z + 1 in the (@ )¢,. Next, we define the string field B:

Teprest * Bl = { f. 0 ren (0) f b(z) Yo

il 2 v
In the end, we define the string field c:

Tr[gptest * C] = <fs © @test( ) (%) >01

In the next subsection, we demonstrate the algebras.

2.2.3 Algebra

Operations of the BRST operator () for the string fields K, B and c are

RQB=K, QK=0, Qc=c+dc=c=K=c.

Here, we define
oc=Ksc—cxK.

Algebras among K, B and c are as follows:
[K,B]| =0, {B,B}={cc}=0, {B,c}=1,

where we define

[o1, 2] = 1% 02 — o x 01, {@1, 02} = 01 % P2+ P2 Q1.

— 14 —
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(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)



We demonstrate the above equations (2.2.21) and (2.2.23) by using the OPEs. First, we
list the OPE with the BRST current jg:

. . 1 , T(0 , oc(0
Jo(2)in(0) ~ 0 x Tt p(b(0) ~ T2 jaz)e(0) ~ AN (225)
By using these, we have the operation of () for K, B, and c:
T+ @8] = (o g 55 | 520 e
2
dw
~ (feopunl0) | SET(w)e
b1 T
2
= Tr[gptest * K], (2226)
Tr[sptest * QK] = Tr[(ptest * QQB] = 0, (2227)
Tr[@test * QC]
dz . 1
= <fs o Sptest(o) % %]B(Z)C(i) >Cl
= <fs o SOtest( )C(?C( )>C1
dz
= <fs o Sptest(o)c(%> 1 Q_MT(Z)C(%) >Cl

= (o0 a0 %<£1 jl DE=LICEE P
>£h 1)
.

= <fSOSOtest(0) (% (%)>C1 <fso¢test(0) (C(%))QL Qd_;T(Z) >Cl
= Tr[prest * ¢ * K ) (2.2.28)
By using the following the OPEs:
b(2)b(0) ~ O(z), «¢(2)c(0) ~O(z), b(2)c(0) ~ %, (2.2.29)
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and the Leibniz rule of (), the remaining relations of the algebra are derived as

Telpren (B, BY] = (s o ren 0) j = ) g—;b<z>b<w> Yoo
+ <fs o Qotest J 27” J 27T’L ) >01
— (f20 pren(0) j = d—%(z)b(w) Yo,

1 271 I 21
2 2

_ (_)e(b)e(b)< fs © Vrest (0) J 52 f 27m (w) e,

= (o0 pun(0) j i, 2P

=0, (2.2.30)
Tr[‘ptest * {Ca C}] = 2< fs S (ptest«))( (%)) >01 = 0 (2231)
0 = Tr[prest * Q(B * B)] = Tr[prest * (K * B — B = K)], (2.2.32)

Tr[@test * (B = ¢+ ¢+ B)]

- (o ol0) | N j;w el e, + (oo pras®eh) [ 3501

~ o [ )j— oo,

= ( f5 © Prest (0 (£ ) )Qd— (3) ey

= <fs © Prest(0) 2m o >

= (fs 0 Prest(0)1 >01

= Tr[rees * 1. (2.2.33)
Therefore, we obtain the K Be algebra:

[K,B] =0, [K.d=dc, {B,c}=1
QB=K, QK=0, Qc=coc. (2.2.34)

2.3 Pure-gauge-form Solution

Let us consider the EOM:
QU + U =0,
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where we omit the star symbol = hereafter. This equation is non-linear in terms of the
string field ¥, and a string field is a superposition of any state of CFT with ghost number
1. Therefore, it is difficult to find an analytic solution. However there exists a solution
trivially satisfying the EOM, i.e.,

v =0. (2.3.1)

We consider a regular gauge transformation w for this trivial solution, namely a trivial
pure-gauge solution:

0 —— u 'Qu=:T,. (2.3.2)
The trivial pure-gauge solution ¥, always satisfies the EOM algebraically:
QU, + 0,2 =Qu'Qu)+u'Qu-u'Qu
=Qu ' Qu—Qu ' Qu
= 0. (2.3.3)

Conversely, a solution ¥y, i.e., QU+ V2 = 0, can be always written as “pure-gauge form”
formally [18,40,41], by using the homotopy operator A; s.t. QA; = 1. By taking the
gauge parameter as

Us:=1+ A1V, (2.3.4)

we can construct the pure-gauge-form solution:

QUS = Q(Al\ps) = \Ijs - AlQ\Ijs
=V, + A 02
= Us\Ilsa

U, = U, QU (2.3.5)

When a solution is pure-gauge form but is not pure gauge, the gauge transformation
should be singular. We call such a gauge transformation the singular gauge transforma-
tion. For a singular gauge transformation U, we have

S(UQU) # 0. (2.3.6)

Indeed, as we will see, the tachyon vacuum solution can be written as the pure-gauge
form, U~'QU. However, the tachyon vacuum solution is not pure gauge. Namely, it is
not gauge equivalent to the trivial solution 0 because of the energy or other property of
the solution.
Let us express the pure-gauge-form solution by using the K Be algebra [15]. We choose
the gauge parameter as
U(g) == Bc+ cByg(K), (2.3.7)

where g(K) is the function of the string field K and the definition in the sliver frame will
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be discussed later. A product between these gauge parameters is as follows:

U(g)U(g') = (Be+ cBg(K))(Bc + cBy'(K))
= BcBe + BE*Bg'(K) + ¢Bg(K)Bce + ¢cBg(K)eBg'(K)
= Be+ ¢Bg(K)¢'(K)
=Ul(gq). (2.3.8)

Here, we use the following equations, which we will use frequently in the rest of the thesis:

BeB = B(1 — Be) = B— B%*c = B, (2.3.9)
cBc=c(l1-cB)=c—-cB =c, (2.3.10)

where the equations {B, ¢} = 1 and B? = ¢* = 0 are used, and we assume [B, g(K)] = 0,
since [B, K] = 0. We can find the inverse of U(g) formally:

(U(g)) ' =U(g7") = Bc+ cBg(K)™, (2.3.11)

U(@)U(g ") =U(g9 ") =U(1) = Bc+cB = 1. (2.3.12)

Then, by using the explicit forms of U(g) and U(g)~', the pure-gauge-form solution
U(g) = U(g)"'QU(g) can be written formally as follows:

U(g) =U(g)'Q(1 + eB(g(K) — 1))
= (Bc+ cBg(K) 1) (—cBKc)(g(K) — 1)
— ¢BKg(K) ‘e(g(K) — 1). (2.3.13)

This is the pure-gauge-form solution using K, B, ¢ which we study.

2.4 Tachyon Vacuum Solution

We review the tachyon vacuum solution written in the pure-gauge form found in [29],
which is the “simple” solution, though Schnabl first gave another form of the analytic
tachyon vacuum solution in [14|. The tachyon vacuum solution is the vacuum which
is the result of the tachyon condensation, i.e., the phenomenon of the disappearance of
an unstable D-brane. Since this phenomenon requires non-perturbative analyses, using
SE'T is essential for studies of this phenomenon. In general, the form of the solution and
computations are simplest in the case of the tachyon vacuum solution among other known
solutions.
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2.4.1 Solution

The simple solution can be written in the pure-gauge form formally by choosing the gauge
parameter as:

Uy := Be+ ¢BGhy, (2.4.1)
-K

We give the relation between the trivial vacuum 0 =: ¥ and the simple solution ¥, and
also the explicit form of the simple solution:

\Ill <£ \IJO = Ul_lQUl
1
— ¢B(l-K
cB( TR
1
= Be) — . 2.4.
(Q(Be) — o)~ (243)

Here, the arrow with U; ! represents the gauge transformation whose gauge parameter is
U,~L. The string field ﬁ, which is the function of the string field K, is defined by the
Laplace transformation:

1 0 0]
— = dre "0, 2.4.4
- K L e (2.44)

This means that the string field L is the superposition ({ dz) of the wedge state (Q2)
with the weight (e=*).

In U;~!, there exist the string field 1/K and we just assume that this string field is
the inverse of the string field K and that it is ()-closed. However, in the explicit form of
the solution (2.4.3), the string field 1/K does not exist.

2.4.2 Energy

Let us calculate the energy of the tachyon vacuum solution. The energy of a solution is
given by :
1 1

zﬂwy:—snwzsﬁ[ﬁmQ@+§wﬂ. (2.4.5)

To compute the energy, we will use the following formulae:
Becec(ty, ta, ts, ta] = Tr[BcQ e e ]
L? . . :
= —4—7T3(t3 sin 260;, — (ty + t3) Sin 20y, 14, + toSin 26y, 44,14,

+ tl sin 2(9,53 - (tl + tg) sin 29t2+t3 + (tl + tz + tg) sin 20t2>7
(2.4.6)

Beddd[ty, to, t3] := Tr[BcdcQ 0cQ? 0|

1
= —;(Sin 20152 + sin 291&3 — sin 20t2+t3>7 (247)
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where

bo = —, (2.4.8)

and L is the circumference of the cylinder in the sliver frame. We will give the derivations
of these in appendix A.
First, we calculate the kinetic term:

— Sin(Wg) = %Tr [(Q(Bc) — ) _1K ((Q(BC) —c)q EK)]

1 1 1
= -Tr [c cKe ]

2 1-K 1-K
1
S hn%ﬁ JJ dxydrg e™@1+22) Beeee[xy, y, 22, 0]
y—)
3
= ——, 2.4.9
272 ( )
Second, we calculate the interaction term:
Sint(Po) 1T B(1-K) B(1 - K) L B(1-K) L
— . = —— T i i i
mdT0) = Ty | T-K° “1T-K° T-K
1 1 1 1
= ——Tr | Bco 0 0
3 rl T K 1T-K“1-K
1 0
= —gfff drydrodrs e @ e2423) Beddd[xy, g, 23]
0
1
- (2.4.10)
Therefore, the energy of the tachyon vacuum solution ¥y is
1
E(Vg) = —Skin(Vo) — Sint(¥o) = 53 = —Tss, (2.4.11)

where Ths is the tension of the D25-brane [12]. The energy of the tachyon vacuum solution
is lower than the perturbative vacuum by the tension of the D25-brane. Hence, Sen’s
conjecture has been proven.

2.4.3 Trivial Cohomology

Let us show another Sen’s conjecture, i.e., there is no physical excitation around the
tachyon vacuum solution [42]. We consider the homotopy operator Ay and the shifted
kinetic operator )y around the tachyon vacuum solution Wy:

B
1-K’
Qop == Qo + Wy x o — (=) Wp « Ty, (2.4.12)

AO = —

Since A, does not have any singularity, it is well-defined in the sliver frame. The homo-
topy operator becomes the identity string field with the operation of the shifted kinetic
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operator:

QAo = 1. (2.4.13)

We can show that any ()g-closed state ¢ can be written in the ()p-exact form:

Qo(Aop) = (QoAo)p — AoQop = . (2.4.14)

Since any (Qp-closed state around the tachyon vacuum solution is (Qy-exact, there is no
physical excitation around the tachyon vacuum solution.

2.4.4 Gauge Invariant Observable

Let us discuss another gauge invariant quantity (not the action). It is called the Ellwood
invariant or the gauge invariant observable (GIO) [30]. The definition of GIO is

Wip, V) = (V(i) fe o ¢(0) yunp
= (V(i%0) fs 0 0(0) )c,, (2.4.15)

where V is an on-shell closed string vertex operator V = c&V ) V1D is a matter (1,1)
primary operator, and

s : UHP — UHP,

2€
fe(§) = T—e (2.4.16)
We can show that the GIO W (¢, V) is gauge invariant. First, since V is on-shell,
d N
W(QA,V) = <§ Z_;V(l)(]BRS(z)fE o OA(0)) Yuup
0
d N
— —(§ 2= (Vijons()) fi o O 0)
=0, (2.4.17)

where 0, (0) is the operator corresponding to the state A. Second, W (p; = ¢3,)) has the
cyclicity:

W1 = 2, V) = V(i) 0 91(0)p2(0) yunp
= (Lo V(i) ol opi(0)]op(0))unp
= (=) V()] 0 02(0)1(0) Yump
= (=) PCIW (03 01, V), (2.4.18)

then we have

W(le,ALLY) = W(pA, V) = W(pA, V)
= 0. (2.4.19)
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Therefore, the GIO is gauge invariant:

W(dap, V) = W(QA + [¢, A], V)
—0. (2.4.20)

Ellwood conjectured that the GIO for the solution W satisfies the following equation:
W, V) = A(V) — Ay (V), (2.4.21)

where A;(V) is a closed string one-point function on the disk:

Ao(V) = ——(V(0)e(1) daime

271

A(V) = L V(0)e(1) )disk, BCFTy - (2.4.22)

271

Here, Ay(V) is defined in the boundary conformal field theory (BCFT) corresponding to
the perturbative vacuum, while A, () is defined in the different BCFT corresponding to
the solution W. Indeed, this is true when W is the tachyon vacuum solution ¥,. The
tachyon vacuum solution is

o

I
|
O
—
o
o
~——
|

then, the GIO for ¥y is

W (¥, V) = —W(c ! V> = — foo dz e *(V(i0)c(0) )¢,

S JOO dx e *(V(0)h, o ¢(0) daisk

1 o0
-5 i dx ze”*(V(0)e(1) aisk

—0— Ao(V). (2.4.23)

Here, hp(€) is a conformal transformation:

hr, : sliver Cp — disk,
hp(€) = fao fit o fraa(§) = ™F, (2.4.24)
21T
Ochr (&) = Temﬁ/L. (2.4.25)
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Here, fq(§) is a conformal transformation:

fa : UHP — disk,

14 1€
fal€) = = e (2.4.26)
_ 1-¢
ey =4——= 2.4.27
o1 1-¢
Ocfa (&) = — : 2.4.28
&fd (5) 21+§ Z(1+€)2 ( )
Moreover, if we choose a vertex operator V as
2050530
Vg i= — - cc0X 0X", (2.4.29)
T
the value of the closed string one-point function Ay(Vg) is
_L% . s _-1 -1 be O/ 0/_ -\ \ma
Ao(Ve) = 3= cli)e( 2)( ZQ) c(0) s x (AXO(3)aXO(—4) Y
12 . —3n"
= %?(22)(2 +1)(i — 0)(—i —0) x e
1
- (2.4.30)

i.e., the tension of the D25-barne T55. Therefore, the GIO of ¥, equals the energy of W:
W (W, Va) = E(Vy). (2.4.31)

More general discussion can be found in [43].

2.5 Erler—Maccaferri Solution

There exist different type of the solutions by Erler and Maccaferri [25] using the tachyon
vacuum solution. The solutions use other BCFT which is different from the BCFT in
which the original operators and states are defined. This has been done by using boundary
condition changing operators (BCCOs) op, g(z) which are used in the KOS solution [26].
The form of the solution is

Uiy = Yo + @7, (2.5.1)

then we have
QUiy + (Tiy)? =0 = Qud* + (9%)* =0, (2.5.2)
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where we used the fact that ¥g is the solution of the EOM. The equation is satisfied if
the string field ®* is defined as

O = X3 (— W) TR, (2.5.3)
5 = Qo(AoVi(K)ofVa(K)),
S8 Qo(AgVa(K) Lo Vi ()1, (2.5.4)

where V) o(K) are functions of the string field K and the string fields op, g are defined
by inserting the BCCO o, r(z) on the boundary of CFT as the string field ¢ is made by
inserting ¢(z). The EOM follows from the following relations:

QuXir = Q*(--) =0, (2.5.5)
yEYR = 1. (2.5.6)

In the case of the KOS solution, the conformal weights of BCCOs should be 1, however
in [25], the BCCOs were modified as

o?(2) = o VX" (2), op(z) = G:Re_i‘/gxo(z). (2.5.7)

Here, the conformal weight of of  is 1, but because of the existence of the operator
e*VhX® which does not have any physical effect, the conformal weight of o p can be
some different value h.

The energy of the EM solution is

E(Wy) = E(W) + 2 (2.5.8)

om?’

where g, = ofof is the disk partition function in BCFT,. The GIO is
WUy, V) = Aa(V) — Ao(V). (2.5.9)

By using orthogonal BCCOs, O'%{O'i = 0,j, the following string fields are also the solutions
of the EOM:
U =W+ P+ O 4 - (2.5.10)

The energy and the GIO are

1
B(WET™) = B(%o) + 55 (g2 + 9o+ ), (2.5.11)
WL V) = (Aa(V) + A (V) + ) = A(V). (2.5.12)
When we choose the BCCOs as [44],
ol = X g = ek

where k! is e.g., k* = (a,1,4/a®>—1,0,---,0), we obtain the multiple-brane solution
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whose energy is
E(UR ™" ) = E(Wo) + nlbs. (2.5.14)

As another concrete example of the EM solution, we review a lump solution. We
consider the BCCOs as 02 = o2P, i.e., Neumann-Dirichlet (ND) twist operator [45], which
changes the Neumann boundary condition of X! to the Dirichlet boundary condition.
Then, the EM solution describes the D24-brane. The conformal weight of o}y is equal
to = [46]. By using the X-X Green function with ND twist operators [47], a three-point
function among o}"y and e YR [48] is

272(11/1%)2 1
R 21g(/RP (/R o 18— (n/R?
(2.5.15)

1 —inXx1 1
ﬁ<e KR (1) oD (22) 00 (23) Youp =

Then, the correlator including of p in the sliver frame [26] is given by*

—2(n, : (n/R)?
1 —inX'/R ND ND 2~ /R’ 2sin 0y,
Lo e mR(0)oNP (¢ t o+ o) Yl = S .
27TR<f ¢ (0o (t1)or" (11 +12) >CL R Lsin 0;, sin 0y, 44,

(2.5.16)

Here, we assume that the direction X' is compactified as X' ~ X'+ 27 R, and end points
of the string are at X' = 0. From the (2.5.16), the OPE between ND twist operators is

ot P(2)oRP(0) ~ T (2.5.17)

Let us compute the tachyon profile of the solution to check that the lump solution
describes the lower dimensional D-brane. The tachyon field T'(X!) is expanded as

T(X') =D tem /R (2.5.18)

neZ

The coefficient t,, can be computed by using the state ]Tn>, which is dual to the tachyon
state |T),) satisfying Tr[17,T,.] = dpm:

Ty = ce™/7(0)]0),

T,y = —=——coce” ™ 7(0)|0). (2.5.19)

2R
For simplicity, by choosing V;o(K) as Vi(K) = Vo(K)™! = 1 — K, we have the explicit

expression:
1

1-K'

1
PP = ¢B(1 — K)ang orP(1 — K)c (2.5.20)

- K

4We normalize the correlator by dividing by the volume of spacetime.
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Figure 2.1: The profile of the tachyon field T'(X"') is shown. The compactification radius
is taken to be R=20. We numerically computed by setting |n| < 100. The minus sign of
—T(X1') comes form the difference of the notation.

The coefficient t,, [25] is given by
t, = Tr _angﬁ]

=T [T w, | + T [Tncba]

=Tr _TO\IJO] 571,0
) o¢)

-1
+ <z> f dridrs lim (—6u1)(—8@){6_(“”2””“2)
J

2 0 u1,2—0

x Beede[zy + 3,0, 3, u1 + 22 + us]

1 — ! ma
X <2_me o g kX (O)UED(% + ul)UgD(% + uy + 1) >Cl+z1+z2+u1+u2 }, (2.5.21)

where —Tr[TyW¥,] = 0.284394 ... [29], and the definition of Becdc[ty, ty, ts, 4] is given in
appendix A (A.19). Figure 2.1 shows the numerical result for the profile of the tachyon
field. Far away from X' = 0, the value of the tachyon field asymptotically approaches
that for the tachyon vacuum solution —Tr[T,W,].
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2.6 Multiple-brane Solution

2.6.1 Murata—Schnabl Solution

The multiple-brane solution [16,17] in the pure-gauge form can be written by using the
gauge transformation for the tachyon vacuum solution:

U —1\n
\IJO (4>1 ) \Ifn = UlnilQUli(nil)

= ¢cBKG," 'c(1 -G, V), neZs,. (2.6.1)

At first, the energy of this solution is expected to reproduce the value which is equal to
n times the tension of the D25-brane. However by taking care of the singular string field
1/K, we obtain the correct energies only for the cases with n = 0,1 and 2.

2.6.2 K .-Regularization

Except for the tachyon vacuum solution ¥, (and the trivial solution ¥; = 0), the string
field ¥, has the singular string fields (1/K)’s. We explain that the string field 1/K
needs a regularization. We consider 1/K is singular because the eigenvalue may be zero,
and the (inverse) Laplace transformation is not well-defined. First, we see that =7 is a
well-defined string field, i.e., it has the inverse and the Laplace transformation:

1 w —x X 1: —u u
m(l—l()zf0 dx e *Q }Llir%)(—ﬁu){e 0}

o0
:—J mm%@wﬂﬂm“ﬂ
0 U=

- [0
= —(lim e Q" — Q°)

T—00

~1, (2.6.2)

where the string field Q* is finite [39]. Next, if we assume that the Laplace transformation
of the string field 1/K is

L2 J T (2.6.3)
_ = Z V.
K o '
then, the string field K is not the inverse
1 ? * - y
— [
— 0”41 1. (2.6.4)

Let us introduce the so-called “ K -regularization” [17,21,22], in which we replace each
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string field K in the solution ¥,, with K, defined by
Ko=K—-¢ 0<exl. (2.6.5)

We can check the string field 1/K. is invertible:

1 0
— K. = —f dz e Q7 lim 0, {e” ' Q"}
0 y1—0
_ [e—ezgz];o

=1, (2.6.6)
before we take the limit € — 0. The algebra among K., B and c is given by

[K.,B] =0, B*=c*=0, {B,c}=0,
QK. =0, Qc=cic, QB =K,+e, (2.6.7)

where dc = [K, c] = [K,c]. In the following, we use the notation [e]., in which all K’s
inside the square bracket with subscript € are replaced with K.:

Hf<K=B7C)]]€ = f<K67B7C)‘ (268)

From the algebra (2.6.7), we have Q[B]. — [@B]. = € and Q[¢]. — [Q¢] = 0, where ¢

does not include B. Then, we obtain the relation:

Qo] ~ [Qe]. = =[], (2.6.9)
Note that the statistics of 0/0B is same as B.
2.6.3 Equation of Motion in the Strong Sense
We introduce an EOM in the strong sense (EOMS):
EOMS () = Tr[p(Qp + ©?)]. (2.6.10)

At first sight, if the string field ¢ is the solution of the EOM algebraically, it seems that
EOMS(p) is automatically zero. However, if the string field ¢ includes 1/K as V¥, we
should regularize it and check whether EOMS(¢) is zero or not, even if W, is in the pure-
gauge form, i.e., the solution of the EOM algebraically. By using (2.6.9), the EOMS in
the strong sense for [¥,]. can be written as

EOMS([¥,].) = ¢Tr [[[q/n]]eﬁ%[[wn]q , (2.6.11)

where we used the EOM:
[QU.]c + [¥,.]* = 0. (2.6.12)

98 —



This quantity is known [16,17,21],

n(n—1)

lir% EOMS([¥,].) = — Im[, F1(2 —n,2,2m1)], (2.6.13)
by using the s-z trick [16,17]. The EOMS is zero in the case of n = 0,1 and 2, i.e., the
tachyon vacuum, the trivial vacuum and the double-brane solution.

Let us show that the double-brane solution,
K? 1

1— KECTK7 (2614)

lim[¥s]. = limeB
e—0 e—0
satisfies the EOMS without using the s-z trick:

11_1)% EOMS([[\IJQ]] ) = hm €lr [[[\Ifz]] [[‘112]] ]

K? 1 K? 1
1—K —K. “1- K —K.

= — lir% elr ch €

K)—
1_K6(8c+c 6)_KE

e—0

= —lim eTr[(—@c + K.c)B

1 1
X (—0dc+ K.c) = Kﬁ(é’c + cK,) K ]

= 211m EJJJ dzdredz, e~ (Ho@1tz2)g—ez Beddd|zy, 21, 2]

=——hmef QdaJ ch db e—o(1=b+€)
7T €—0

x ((sin(2bm) — sin(2 — sin(2cr))
= —2111% €(2 + O(e))

= 0. (2.6.15)
Here, we change the variables:

z1 =ab, x;=ac—ab, xy=a— ac, (2.6.16)
z1 21+ 2 )

<a=931+:v2+21, b= ——7—¥— c¢=

: (2.6.17)
X1+ To + 21 1+ T2+ 21

In the case of the triple-brane, the EOMS is checked in the paper [21], and it was found
that lim._,o EOMS([¥35].) = 6 # 0.
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2.6.4 Energy and GIO

Let us compute the energy of the double-brane solution Wy:

i B([¥a].) - ~ iy S([¥L) ~ liny (5 THI0aL] + SEOMS ([,

2
= —lim 1Tr ch K 1

0 6 1-K.‘_K.
K2 1 K.2 1
B < B <
T TR TR P - KEC—KE]
1 1 1 1
— Ty |B ) )
5 rl c&c1 — 0T 10T —K]
= —E(¥)
— E(Ty) + 2Ts. (2.6.18)

The energy is twice the tension of the D25-brane. It is known that the GIO for the
double-brane solution is

We summarize the results for the calculation of the energies and the GIOs we obtained
so far:
E(Wg) =0 — T,
E(U,) = Tos + E(¥y),
hI%E([[‘IJQ]]G = 2T25 + E(‘P()),

— 24,(V) — Ay(V). (2.6.20)

We can understand that the singular gauge transformation U;~! increases the energy of
the solution by one unit of the tension of the D25-brane T55. Furthermore, we can expect
that the singular gauge transformation U; ! increases the D25-brane. The results for the
GIOs would be regarded as supports for the observation.
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Chapter 3

Singular Gauge Transformation and the
Erler—Maccaferri Solution

3.1 Construction of the Solution

We will give a support that the singular gauge transformation U; ! increases the D25-
brane. Let us discuss the string field constructed by performing the singular gauge
transformation U; ™! n times for the EM solution W&, [49]. By performing the gauge
transformation once, we obtain

U —1
Ui —— Uiy = Un(Q + Wiy ) Uy
= U, 58 (—W) 22U, !
1

1
= CBKJ%WU?{KC?, (311)

while performing it n times,

a (U_l)n a n a —-n
UM — Venign = UT'(Q + i) Uy

1 1
= \I/n + CBKGln_I 2 U?{(—C + aCle_(n_l))

TI-K
— U, + 2. (3.1.2)
Here, we define
@ = cBKGY™ 0} —o(~c + do—Gy ") (3.3
n Ll — K R -K ’
as the EM solution
Uin = Yo + 07

Since the string field gy, ,, is constructed by using the gauge transformation for the EM
solution, Wiy, satisfies the EOM formally. However, gy, has the singular string field
1/K. Therefore, we should implement the K -regularization as the double-brane solution
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\112 — [[\112]]61
\D%M-&-n - [[‘I]%]M-q-n]]e = [[\Ijn]]e + [[(I)Z]]e (314)

We expect that the string field Wi, ,, describes the EM solution with n D25-branes.

3.2 Equation of Motion in the Strong Sense

Since we use the K.-regularization, we should check the EOMS([¥§yy,]e). By using
(2.6.9) and (2.6.12), we consider the following difference:

EOMS ([T n]e) — EOMS([¥,].)

- et (Wl + [0 vl + [0 | - en [l L] G2y

Since each ®2 contains two BCCOs, the right-hand side of the equation seems to be
composed of terms with two BCCOs and also four BCCOs. The explicit form of the term
with four BCCOs is

0 1. 1 a 1 —
Tr [[[cp;]]e (ea—/B[[CI)z]L)] = —eTr[cBK€G1€” 10L1 — KeoRﬁc_ KEGk (n=1)
1 1
X cKeGk”_lail e Jﬁé’c_KeGk—(”_l)], (3.2.2)
where Gy, := [G1]. This will be rewritten into the summation of the terms with two
BCCOs:
n—1 a 1 a 1 —(n-1)
(3.2.2) = —eTr[[c, K" Bot = ohie—p G,
n— a 1 a 1 —(n—
X [¢, KGie 1]0L1 — KGJRaC—KGGk ( 1)]
i 1 1
+eTr|[e, KoGo ™ Bot - ohdceot Tz oo Ke(;le—(”—l)]
i 1 1 1
+eTr _CBO'% 1_ Ke O'?{aC_KE Gle_(n_l) [C, KeGlgn_l]ail_—Keaﬁé’c]
I 1 1
—eTr _CBUil_—[(EO'?{aCCOEl_—KU;aC]. (323)

The first term including four BCCOs vanishes, as the result of the following very useful
relation:

Tr[By] = Tr[BeBy] = Tr[B*cp] = 0, (3.2.4)

where the string field ¢ commutes with B, and we use B = BcB and the cyclicity of
Tr. The remaining terms reduce to the terms with two BCCOs, by using that BCCOs
commute with ghosts, the cyclicity of the Tr and ofof = 1. The contribution of Tr with
two BCCOs always reduces to the following correlator in the matter sector of CF'T :

(ot (0)o(21) )¢ = Ga- (3.2.5)
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Since the correlator is independent of the positions fo the BCCOs, we have

(002 (0)0k (1) Y& = 0. (3.2.6)

When we move the position of of to the immediate left of of;, the remnants are commuta-
tors among of and the function of K which become the derivatives such as dof = [K, of].
In Tr, they can be set to zero due to (3.2.6). Then, because the term with four BCCOs
vanishes, we can extract the factor g, = ofoy on the right-hand side, replacing of y by 1:

EOMS([¥e, i, ,]c) — EOMS([W,.].)

— o (¢ |01+ (9175 I + 9300 | - erv w1500
= ga(EOMS([V,51]c) — EOMS([W,,].)), (3.2.7)

a —
O'L’R—l

where we used the relation:
‘P%M+n|UE’R:1 =V, .. (3.2.8)

Finally, the EOMS for W§,,,, becomes
lim BEOMS([Wiay,]c) = lim (1 = ga) EOMS([¥pi1]e) + uEOMS([,]0)).  (3.2.9)

Here, we recall (2.6.13):

n(n—1)

1i1% EOMS([¥,].) = — Im[, F1(2 — n,2,2m1)],

then, we find that W§,,,, with n = 1 satisfies the EOMS, while for n > 1 it does not for

generic g,. We also find that there is a special value of g, for each n for which Wg,,,
accidentally satisfies the EOMS.
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3.3 Energy and Gauge Invariant Observable

Let us check the energy of the solution Wy, ; (3.1.1). Since the EOMS vanishes, it can
be easily evaluated by using the cubic term

i B([0100) = i (S To[0,a1] + SEOMS([0s,a1.) )

e—0
.1 1\’
CBKEO'Ll K opKec— K

1 1 1
== hm Tr [Bcé’caL ! aﬁé’caﬁl—ffﬁé’cdfl—m%}

1
—— lim Tr

€E—>

e—0

1 1 1 1
= —gagTr [Bc@cl — K&cl — K@cl — K]
= ga( - E(\IIOD
= E(VEn) + Tos. (3.3.1)

We realize that the energy of the solution is increased by the tension of the D25-brane
Tys through the singular gauge transformation U;~!. In addition, we calculate the GIO:

lim W ([Waiyale, V) = lim W ([U155 (= Wo) SR e, V)
= —W(Z1 U2k, V)
= Aa(V)
= (AaV) + Ao (V) — Ao(V). (3.3.2)

It can be regarded as the increase of a D25-brane from the EM solution.

3.4 An Example: D24+D25-brane

As in the case of the EM solution, let us plot the tachyon profile T(X') = 3 t,eX"/R
for the solution:

1
[¥EMs1]e = ¢BK, aLNDl % o Kec— o

(3.4.1)

The coefficient ¢, for R, | is given by
ty, = lim Tr [T [[xngH]] ]

e—0

= lim > dxldzl lim 0,0,
2 0 y1,2—>0
{e’e(zﬁyﬁy?)e’(”e)mBccdc[zl + 3,0, 3,21 + Y1 + o)
—Zn 1 ma
<_ fs FIx (O) ND( + y1>0R (% Ty .731) >Cl+11+y1+y2+21 } (3'4'2)

Figure 3.1 shows the numerical result for the profile of the tachyon field. Recall that
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Figure 3.1: The profile of the tachyon field T'(X*') is shown. The compactification radius
is taken to be R=20. We numerically computed by setting |n| < 100 and e = 0.001.

in the case of the EM solution WY, far away from X' = 0, the value of the tachyon
field asymptotically approaches that for the tachyon vacuum solution —Tr[TOMIJO]. In our
case of WRY ., the tachyon field asymptotically approaches zero, i.e., the value of the
perturbative vacuum ¥; = 0 representing the D25-brane. Therefore, we interpret the
solution WY, to describe a multiple-brane solution in which the D24-brane is placed
near X! = 0 on the D25-brane.

From the construction of the solution:

U1_1
a a
\IJEM \IJEMJrla

and the result of the energy, the GIO and the tachyon profile:
li_{% E([VEnia]e) = E(Vin) + Tos,
lim W ([ W11, V) = (Aa(V) + Ao(V)) = Ao(V),
: 1 1
lim T'(X Mg, 1. =T(X e, 1< XY,
: 1 1
lim (XY gy, g, # T e, (X~ 1

we obtain the supports that the singular gauge transformation U;~! increases the D25-
brane.
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Chapter 4

Review of the Modified Cubic Superstring
Field Theory

4.1 Non-GSO-Projected Action

In the case of the supersymmetric theory, first Witten extended his bosonic cubic action [3|
so that it includes the supersymmetry. However, this action suffers from the contact term
problem of the picture changing operators (PCOs). Next, the action was modified to
avoid the contact problem [4-6]. And then to describe unstable D-branes, the non-GSO-
projected action [50] for NS sector was constructed:

1 1 1
S(U,,¥_)=Try, [E\LQ\L + gqfﬁ + 5\11_@11_ — qmp_?] , (4.1.1)

where the string fields W4 is in the GSO(+) sector, and Y_, is the double-step inverse
PCO:

Y_5(i) == Y (i)Y (i) (i is the string midpoint in the UHP), (4.1.2)
Y (2) i= cofe™(2),

and the trace (the BPZ inner product) Try_, is defined as
Try , [rest] = (Y_2(i%0) fs © ¢rest(0) )cy - (4.1.4)
The EOMs for the GSO(+) sector and the GSO(—) sector are derived from this action:

Yoo (QUy + W2 —W_?) =0, (4.1.5)
Y o(QU_ + W, W_ —¥_W,)=0. (4.1.6)

We can rewrite the action and the EOMs in a more simple form by using a matrix-valued
string field [51-53]:

A

U=V, ®a+¥Y_®H>, (4.1.7)
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where a and b are N x N matrices. ) and Y_5 are also the matrix-valued ones:

Q=0Q®yq, (4.1.8)
V., =Y.,®y. (4.1.9)

Let us determine the matrices a, b, q,y. When we demand that

~ 1~ ~x 1
(4.1.1) = Try | lim\y + gxlf?’] : (4.1.10)
where
R R 1 .
Trf/_Q [Sotest] = TrY_g [(;Dtest] X _Tr[yo—,u]a Ptest = Ptest ® Oy (4111)

N
we have the follwing conditions:

where we used the cyclicity propertiy (a state in the GSO(—) sector has a half-integer
conformal weight)

Try [U, U 2] = —Try [V ¥, U ] =Try [V *U,]. (4.1.17)
The conditions (4.1.12)-(4.1.16) are satisfies, if we demand the following equations:
y=a, q=a, a*=1Iy, bV =—Iy, {a,b}=0. (4.1.18)
For N = 2, we find a solution for (4.1.18):
a =03, b=ioy, (4.1.19)
then we have

R v _
U=",Q034+V_Q®ioy = ( qj q; ) (4.1.20)
—F—- ¥4+

where o; are the Pauli matrices. Therefore, the action and the EOMs become!

. 1. 1.2
S =Try | [5@@1/ + gqf?’] , (4.1.21)
V_o(QU + ¥?) = 0. (4.1.22)

'Tf we only consider solutions which are constructed by using the string field in the extended K Bc
algebra, we may think the EOM as QU 4 ¥2 = 0 since there are no ¢ and 7 at the midpoint other than
the PCO.
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Unless the operator Y_, exists, these are the same forms as the bosonic ones. Therefore,
the gauge transformation is same:

U
—

UHQ+ U,

U ; (4.1.23)

where the string field U is the matrix-valued gauge parameter.

4.2 K BcG~ Algebra

To construct analytic solutions, as in the case of the bosonic theory, we give the extension
of the K Be algebra in the superstring theory. We define the string fields K, B, ¢, G, v [27|
which are closed under () and =:

TA‘I‘Y,Q [@test ' K] = <Y_2(ZOO>fS o) SOtest(()) . Ll %T( >>Cl X %TI‘[O'gO'H . ]2], (421)
A . A . dz 1
Trf/,2 [()Otest ' B] = <Y_2(ZOO>fS o (Ptest(()) J %b( )>C1 X §Tr[0'30'u : 0'3], (422)
'frf/,g [@test ’ é] = <Y_2(ZOO)f o Sotest( ) ( )>C1 X TI'[O'gO'M 03] (423)
. . d
TI'f/72 [@test . G] = <Y_2(ZOO)fS o SOtest(O) J 27:; ( )>Cl X TI'[O'g(TM 0'1] (424)
TrY_g [Sbtest : :Y] = <Y,2(ZOO)fS O Ptest (O> (%) >C1 X ;TT[OBO'# 20'2] (425)
Here,
1 1 3
T(z) = (—ﬁX“éXM — éw”(%/}u —0b-c— 2bdc — 565 Sy = 5557) (2), (4.2.6)
G(z) = (i\@@b“@Xu + 0B -c+ ;/Bé’c - 2b7) (2). (4.2.7)

T'(z) is the energy momentum tensor and G(z) is the super current in the superconformal
field theory.
Next, we give the algebra obtained by using the following OPEs:

b(z)c(0)~§, 5(2)7(0)~—§, (4.2.8)
G(Z)G(O)~2TZ(O)+ | G(z)c(0)~_2z(0), G<z)7(0)~_822(0), (4.2.9)
o(in(0) ~ 0. j(:)p(0) ~ T2,

ae)e(0) ~ L0 G gy~ LD Z20DO) (4:2.10
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where,

1 1
J(2) = (CT”‘ +G" 4 ST + §7Gg> (2),

Q=Q®o0;, Q= TJB(Z), (4.2.11)
T

[K,B] =0, [K,é¢]:=0¢ [K,A] =07,
{B,B}={¢,¢} =0, {B,&}=1, {3,¢}={3B}=0, (4.2.12)
~ A N ~ ~ 14 ~ A A ~ A
0G = 2K, 0¢=24, 04 = 5@@, 04% = 0¢4, 0K =o6B =0, (4.2.13)
~A A A A ~ ~ ~ ~ ~ 14
QK =0, QB=K, Qé¢=¢cie+4%, QF=coy— 5&@7 (4.2.14)

Here, the equations (4.2.13) correspond to the superconformal transformation. We give
the derivations of the algebra in appendix B.

4.3 Known Solutions

4.3.1 Tachyon Vacuum Solution

We discuss tachyon vacuum solutions in the modified cubic superstring field theory. First,
the Schnabl-like tachyon vacuum solution 54| was constructed. Next, the “simple” tachyon
vacuum solution [55] was obtained from the following gauge parameter, which is appeared
in the bosonic cubic theory:

K

U = Be+cBGy, Gy = 1__—K (4.3.1)

Then the tachyon vacuum solution is expressed as

Uy S Uy = Uy 'QU;
= (-By* —cB(1 - K)c)l —1K
= —(Q(cB) + ¢ TR (4.3.2)

The symbol hat “ ~” which represents that the string field has the Pauli matrices is usually
omitted hereafter.
Let us check that the energy of the solution,

E(Vy) = —S(¥g) = —Try., B%quo + %%3] : (4.3.3)

is lower than the perturbative vaccum W; = 0 by the unit of the tension of the D9-brane
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Ty := 1/2m%. We calculate the kinetic term of the action:

| Q ((Q(CB) + o) K)]

K
1 1
:ﬂy2f1—KQﬁ—JJ

c +

1 1 | 1
K 2 : 4.3.4
1Tk K ﬁ-K”l—K] (4:3.4)

Try ,[VoQ¥o] = Try_, | (Q(cB) + ¢)

1—

= TI'y72

The first term in the last line vanishes because of the ¢ momentum conservation. The
¢ momentum conservation means that for non-vanishing Try ,[¢], including the effect of
Y 5, the ghost number of ¢ is the be-ghost number one and the ghost number three, i.e.,
© needs a ¢ and two 7’s in the algebra. Then, the kinetic term becomes

1 1
T Uyl =T 2
rY—Q[ 0@ 0] Ty , {Cl _ K’Y 1 —K]

a0
= Jf dxdzs 6_($1+x2)T1"y72 [chW?Q“] ) (4.3.5)
0

By using the following correlator [54], which we will derive in the appendix C:

2

L
Try_, [eQ"yQ°4Q"2] = ol (4.3.6)
we have the energy of the tachyon vacuum solution:
1((* (11 + x9)?
_ —(z1+22) \1 2
E(\I/()) = EJJO dl’ldl‘ge 1Tz 2—7_(2
1 o0 1 2
= ——J adaf dbe 12
6 0 0 27T2
1
- - T (4.3.7)

272

Here, we used the EOMS since there is no singularity in the tachyon vacuum solution.

4.3.2 Half-brane Solution
Next, we discuss the half-brane solution [27]?. By using the gauge parameter,

Ui, =B B
1/2 c+c —a

(4.3.8)

2For related work, see [56].
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the half-brane solution in the pure-gauge form is written formally as

U1/2_1 o —1 4
\Ill — \111/2 = U1/2 QUl/Q, ( 39)

1
1-G

= —(By* + ¢B(1 - G)Ge)

— —(Q(cB) + ¢BGc) (4.3.10)

1-G’
Note that the gauge parameter U/, can be obtained from U; by replacing K with G.

Let us give a brief summary of the calculation of the energy; detailed calculations are
given in the appendix D. Since we do not have to introduce the regularization, we can
evaluate the energy from the cubic term of the action:

1
E(\I/1/2) = _S(q/1/2) = ETI)LQ [\1’1/23]. (4.3.11)

The cubic term is

1
Try_, [¥12°] = —3Try., anﬁGcl — GCG] (4.3.12)

(CB(l - G)Gc1:1G>3

By using the following relation for the string field ¢ whose “internal CP factor” is o

+ TI‘)QQ

. (4.3.13)

3.

1 1
Try ,[Ge] = =Try_[Gp + pG] = =Try_,[d¢], (4.3.14)
2 2

where the string field d¢ is the superconformal transformation of the string field ¢, the
two terms of the cubic term are

3
43.12) = —
(1312) = 2,
6(m% —6) 12 — 72 3
Therefore, we have
1 3 3 1 1
EWip)==-|——-—=)=—-—=E =Ty. 4.3.16
1) = g (55~ ) =~ = B0 + 5T (43.16)

The energy of the half-brane solution is one half the tension of the D9-brane Ty.

3If  has another Pauli matrix, the Try_,[G] vanishes since Tr[o3010;%2] = 0.
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Chapter 5

Multiple-half-brane Solution

5.1 Gauge Equivalence between U, »* and U,

We would like to construct a new solution by using the K BcG~y algebra which reproduces
the energy as n-half times the tension of D9-brane, i.e., a multiple-half-brane solution.
The first step to construct it is to construct the tachyon vacuum solution by using the
algebra. The gauge transformation with the gauge parameter U,/ decreases the energy
by one half the tension of the D9-brane, Ty/2. So, we guess that the gauge parameter
Uyj2? is equivalent to U up to a regular gauge transformation. We see that this is fact.

5.1.1 From the Form of the Gauge Parameter

In [27], the pure-gauge-form solutions are classified from the form of the function of K
and G in the gauge parameter. In our notation, the gauge parameter is as follows:

U = Bc+ c¢Byg(K,G). (5.1.1)

By using the properties G* = K and [G, K] = 0, we can rewrite the function g(K,G) as
follows:!
9(K,G) = g+(K) + Gg-(K). (5.1.2)

The solutions are classified by ¢4 (K):

Pure Gauge :  ¢4(0) # 0, (5.1.3)
Half Brane : ¢, (0) =0, g_(0) # 0, (5.1.4)
Tachyon Vacuum : g¢4(0) =0, g_(0) =0, dxg4+(0) # 0. (5.1.5)
Let us assume that the gauge parameter Uy, belongs to the class (5.1.4), i.e.,
Unat = Be + ¢B(hi(K) + Gh_(K)), hy(0) =0, h_(0) 0. (5.1.6)

'We assume f(G) is the polynomyal of the G.
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Then, we can show that Uy =@ Be+cB(g, (K)+ Gg_(K)) satisfies the properties of the
tachyon vacuum (5.1.5). First, by using G* = K, [G, K| = 0 and (2.3.8), Upas®> becomes

Unait® = Be + ¢B(hy (K)* + h_(K)’K + G - 2hy (K)h_(K)), (5.1.7)

and then we find g4+ (K) and 0k g, (K) as

G (K)=h (K)* +h_(K)*K, (5.1.8)
G_(K) = 2h (K)h_(K), (5.1.9)
Ok gy (K) = 20xhy (K) - hy(K) + 20gh_(K) - h_(K)K + h_(K)?. (5.1.10)

Therefore, we obtain that g(K) satisfies the tachyon vacuum properties (5.1.5):

G+(0)=h_(0)* x0=0, (5.1.11)
G-(0) =h_(0) x 0 =0, (5.1.12)
Or§4+(0) = 20xh(0) x 0+ 20xh_(0) x 0+ h_(0)> = h_(0)* # 0. (5.1.13)

Here, we assume that |h_(0)], |0xh+(0)] < .

5.1.2 From the Energy of the Pure-gauge Solution U QU

We show that the gauge parameter U; »* is gauge equivalent to Uy more directly. We think
that the gauge transformation U connecting U, /22 and Uy, and we show that the gauge
transformation U is regular. The regularity can be read by calculating the energy of the
solution W := U~'QU, since the change of the action for the finite gauge transformation
is (2.1.20). The gauge parameter U s.t.

Uy QU2 = Wy —— W = U,'QUE, (5.1.14)
is given by
U=U; U
= Bc+cB (1—_GG)2 <1__KK>
= Bc+cB (—;—g) : (5.1.15)
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Here the explicit form of T, /2 is given by

26— 1
(1-G)?

= (Q (cB(?{[i—;(;) - 403Gc%> ® o3
+ <—2Q (cB(l[_(—f()z) - QCBGCS%—};) ® iy (5.1.16)

Note that the solution Wy, has the string fields in the GSO(—) sector.
Let us consider the pure-gauge-form solution whose gauge parameter is U is

\110/2 = (BV - CB(l - G) ¢)

U, —— U =U"'QU
1+G -2
B BK
v eBRI— > 1+ G
K -2
= (Q(CB) —|—20B1_G > el (5.1.17)

We check wether the energy of this solution U is zero or not. This solution ¥ does not
contain the singular string field, therefore we evaluate the energy only from the cubic
term:

B B
1+ G 71+G 71+G
_ ) 1+G -2
B~? BK
1+G 1 1+G° 1—G61+G]
9 1 ) 1 9
+G % +G }

Try, [@3] = Try, [B72 2 2 2 ]

+3Try, [372

I kS Be L pre L LS e L e

1+ G —2\?
T BK
+ Iy o [(C G G) ]

+ 3TI'Y 9 |:B’}/

K 1 K
=-3.2°T B 1.1
5 r”l%—GHGﬁ—G] (5.1.18)
1+G 1 \°
93
2°Try (CBKl—G 1+G) (5.1.19)
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The first term (5.1.18) in the last form is computed as

I K 1 K
1.18) = =3 - 2°T By*——(1
(5.1.18) 3 Iy , _ 7y 1—K( +G)01+G01—G]
I K 1 K
_ _9.03 2
=—-3-2"Try, _Bv —l—K([1+G7C]+C(1+G))1+G01—G]
[ K 1 K
=-3.2°T By? §
3y, 71—KC1+GCl—G]

-k 1+G6\|"1-G
—0, (5.1.20)

= —3-2Try, | BY? K o ! ([ ! ] ! c)K]

where we used Try ,[By| = 0 for ¢ s.t. [B,¢] = 0, and the ¢ momentum conservation.
The second term (5.1.19) is computed as

[ 1+G 1 1+G 1 1+G 1
5.1.19) = —2°T BK BK BK
(5.1.19) e | T G161+ 6" 1—G01+G]
[ K K 1 K 1 1
= —2°T B
e | € 1—Gcl+G1—Gcl—G1+Gcl+G]
[ K K K
= —2°T B
ry , _c T K501 — K<561 — K(SC
=0, (5.1.21)

where we used the ¢ momentum conservation. Therefore, the energy of the solution W is
Zero:

E(U) = (5.1.20) + (5.1.21) = 0. (5.1.22)
Namely, the gauge transformation U is regular. Since the regular gauge transformation
does not change the physics, the solution W, = U; /Q_QQUI /22 is gauge equivalent to the
tachyon vacuum W, = U; " *QU,;. We show this result in the following diagram.

Uyp™t Uyp™t
Voo ——— Wypp —— Uy

U U
U1t

Uy v

The arrows represent the gauge transformations whose gauge parameters are denoted with
the arrows.
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We list the energy of the solutions in the above diagram:

E(Wop) = E(P),

E(W,5) = B(¥) + %Tg,
E(U,) = B(V) = E(V) + T. (5.1.23)

5.2 Multiple-half-brane Solution V3,

5.2.1 Solution

Next, we construct a new solution by performing the singular gauge transformation Uy,
for the tachyon vacuum solution W, three times:

Upp™?

W2
The explicit form of the solution W3/ is given by

U39 = U1/23(Q + ‘1’0/2)U1/2_3
= U1/2QU1/271

GK
= | BY? +¢B
(7+01_G

c> _—1G (5.2.1)

We conjecture that the energy of this solution W35 is 3/2 times the tension of the D9-brane

2

Ty, E(Vsp) = E(Vo) + 3Ty, because the number of times of the gauge transformation
from the tachyon vacuum is 3 and the gauge transformation increases the energy by one
half of the tension of the D9-brane Tj.

5.2.2 (G.-Regularization
Since the string field 1/G 2 has the singular string field 1/K as follows:

1 ~ 1
= =G, (5.2.2)
G K

we need a regularization for G, as K. Since the K, ~regularization works well in the bosonic
cubic SFT, we would like to keep the regularization for K, so we demand

[[G]]EQ = [[K]]E (5.2.3)

2We again denote the hat in this subsection.
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This is satisfied by the following regularization?:
. A —/—€ G
Ge=G—V—-€®Qog = ( G \/je> . (5.2.4)

Here we denote [[f(C;',IA(?];’,é)]]6 = f(ée,Ke,B,é). We can check the G.-regularization
satisfies the equation (5.2.3):

(GG

2=/ =GR o105 — \/—€G® o301 + \/—62 ® 032)
K —¢)
K., (5.2.5)

—~

N N NN

where {0;,0;} =0, i # j. Then, we have the inverse of G

1 | 1 1 —y/—eL+  GLt
— =G —=G— —\/—e— = K. Ke . 5.2.6
) T K B0V @0 < oL _EKL) (5.2.6)

Similarly, we can check other relations in the algebra including the string field G:

A A A A A A 14
[Ge, ¢l =29, [G,B]=0, [G,K]|=0, {G,3}= 566, (5.2.7)
and
QG. = QG — QvV/—e® 1, = 0. (5.2.8)
We regularize the solution W3/, by using the G-regularization as
. . . G.K, 1
Usp]e = [ BY* + ¢B——S¢ | ——. 5.2.9
[¥s5/2] ( v 1—G€>—GE ( )

Once it is regularized, [[\i’g/Q]]e has the definition in the sliver frame.

3We also have the same result by taking the regularization as Ge=G+V/—€®os.
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5.2.3 Equation of Motion in the Strong Sense

Since we have regularized the solution, we have to check the EOMS as before. The EOMS
for the solution W3 is given by

lli% EOMS([[\Pg/Q]] ) = hm ETI'Y 2 |:[[\I/3/2]] Hlpg/z]] ]

) G.K, 1 9 G.K, 1
_lg%eTrKQ {(B’y +CBl—Gec) e ('y _Cl—GEC) _G€:|

1 GK 1
- —lg%eTry ) 7372_61601 — GEC_G6:| (5.2.10)
. C GEK. 1 4,1
+ lli%ETl”y_Q _CBl el Gefy _Ge] (5.2.11)
: [ GK. 1 GK. 1
— 11_1)%6Tr3/72 _CBl — Gec_Gec1 — ch—GE] . (5.2.12)
The EOMS decomposes into three terms. The first term (5.2.10) becomes
1 G K. 1
2.10) = —lim €T By?
(5:2.10) = =l eTry, | BY —ze7— C—Gg]
= —limeTr _B 2_1 (—0c + Gec) ! (Oc + cK.)— !
N e—0 Y2 | " _Ge ‘ 1_Ge Ge
= —limTr _B 2_1 (féc) ! (cK.) ! (5.2.13)
| 7_0 1- G\ a -
[ 1 1
_ 11_{% elry , 7B’y G (G. c)1 — Gg(@c)_GE] , (5.2.14)
where we used the following equations:
Try |, | By2— (=dc) ! (Oc) Lo (5.2.15)
Y_o ’Y_G 1—G. —G. = U, 2.
1 1
. 2 - _
11_{% eTry , [By —a (G. c)1 el (cK,) _G5:| 0. (5.2.16)
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Here we use Try ,[By] = 0 for ¢ s.t. [B, ] = 0 and take the limit ¢ — 0 since there is
no 1/K. or 1/G. The first term (5.2.13) becomes

(5.2.13)
= —limeTr _B 2 1 dc 1 cG
= um Y_o i Y *Gg 1— G€ €
[ 1
_ 1 2
- ?L%ETrY” _Bw GE_KE5C(1 + Ge)1 — KGCGG}
= —limeTr _B 2q L 5¢G L cG
- e—>0€ Y_o I Y E_Kg 61 — Ke €
[ 1
. 2
= lg%eTry_Q _B’y GE—Keécl — K€CK€]
— _lim <Try |6 ( 6e K. B
-y 1—K, 77 Tk,

1
—lim (%Tlry2 l(&c)—cKEByz

€ 1 1
=T oc———cK_.B
lim T K —Kj + 5 Ty, [ c1 _Kec (&cv)_K€]>

. € K, 1 1 1
- 11_1)% <§Try2 ch&cl — K€72 —KE] + eTry, [Bc@cw_K6 871 — KJ) . (5.2.17)

We can show that both terms in the last line vanish. The first term vanishes in the
following manner:

K. 1 . 1
li_r)% %Tl“;c2 [Bcﬁcl — Kefy? —KJ — _ 11_1)% %Try,Q [Bcﬁcl — KE’VQ]

~ lime x (finite)

e—0

= 0. (5.2.18)
Here, in the first equality, we use the following relation:

Try_,[Bcd* ey ~01]
= Try ,[BcK0cQ"yQ2yQ%] — Try [ BeocKQ ' Q20"
= Try_,[B([c, K] + Kc)ocQ" vQ22yQ"3] — Try_,[ Bedc K Q" Q2 ~y0"]
= 31/1—1% 0y{Bedgglto; t1 + t2 + t3 + y] — Bedgg[ta; t1 + to + t5 + y]}

— 0. (5.2.19)
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Here, the correlator Bedgg[ty;to] is defined in appendix C. The second term in (5.2.17)
also vanishes as follows:

0

1 1
eTry , Bc&c’y_K 871 % ] = 11_{% JJO dridz Z1,,1_1)1(1) ayef(hre):me*en

X e{Bcdgg[z1 +y;x+y+ ] —dlze Y+ 21]}

= lir% %(cos(we)Ci(we) +--)
—0, (5.2.20)
where Ci(me) = — {7 dt =L =loge + g + log 7 + O(€?), yg = 0.577 - -.
We can check that the remaining terms (5.2.11), (5.2.12) and (5.2.14) are also zero in

the limit € — 0, and hence the solution lim._o[W3/]. satisfies the EOMS. We will give
the calculations of the remaining terms in appendix E.

5.2.4 Energy

We conjectured that the energy of the solution W3, is 3/2 times the tension of the D9-
brane. So we check the conjecture. Since the EOMS is zero:

the energy can be calculated only by using the cubic term in the action:
. . 1
iy B([Wale) = ~ g S([¥aelo) = i 2Ty [0 Y. (5:220)

The cubic term decomposes into two terms:

| . 1 1 1
1 1 G K 1
. 2 2 € €
+311£)%TI‘Y,2 [BW *GEB/V GECBlGECGe]

1 G.K, 1 G.K, 1
. 2 elYe elle
+311£%T1‘y72 [Bv —GSCBl—GEC—G€CBl—G€C—GE:|

GK., 11\°
(CBl—GGC—Gﬁ)

+ lim Try
e—0

K 1 K,
— 3 2 € €
= 311_I>%T1"y_2 [B’y T Gec—Gecl — GJ (5.2.22)
. GEK. 1Y
+ ll_rj%Try_Q (CB1 — Gec—Ge) ] . (5.2.23)
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The first term (5.2.22) becomes

1 G. 1
(5.2.22) = 3lim Try., [BV2K€(1 +G.) — Kec_—KecKe(l +G.) . ]
K. G. KAG.
C C
1-K, —K. 1-K,
Ke € Ge KE
1- K., K. 1-K,

€

=3 lir% Try , [372

+31im Try, [BVQ

K G
. . 2 € € €
= 315% Try , [Bv K (0c) c ]

K. 1-K.
K. G K
3y Ty, [37 Ty L Ke]

3 1 , K 3 K 5 1
—2Try_2 lé (Cl _KB'y 1 _K(Sc)] + 2Try_2 ld ((501 — Kny T KC)]

0 1_1KB(2(57 v) (5] §T1'y72 [c ! By? K (86)]

= gl [C 2 1-K '1-K
K

1-K

3 1 1 K |
+ §T1'y72 l(@c)l —% ] Try ) léc KB(Q(H ) = Kc]

0
= GJJ dxidxs hm& e~ (@1t2)
0 0

X {Bcdgg[y + 21321 + 22 + y] + 3 - Bedgg[0; 21 + xo + y]}
3

=25 (5.2.24)

The second term (5.2.23) reduces to the same term (D.5), which we find in appendix D
where the energy of the half-brane solution is calculated:

) GK. 1 GK. 1 GK. 1
(5.2.23) = 11_1)%T1'y72 [CB1 — GEC—GECBl — Gec—GECBl — GEC_GE]
Ge

G G.

=—Try , [CB1 — Geécl — G6561 — Geéc
= —(D.5)
3
= (5.2.25)
Therefore, we have checked our conjecture:
. 1 1 3
lim E([W32]) = 6((5.2.24) +(5.2.25)) = o E(¥g) + 5o (5.2.26)
5.3 Double-brane Solution
We do not consider Wy : ot
W30 2, Wy, (5.3.1)
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since the gauge equivalent string field W5 does not satisfy the EOMS. The latter string
field ¥y can be written in the pure-gauge form by using the gauge parameter U; '

;71 K2 1
\Ifl L> \112 = UlQUl_l = (B’}/2 +cB C) - (532)

1-K K’
and its relation to other string fields are summarized in the following diagram.

Wy

-1
Uy -1

Uy — ‘1’3/2 — ‘1/4/2
Uijo 1/2

The EOMS for ¥, decomposes into four terms:

liné EOMS([W,].) = lir% €Try ,[[Va]cPB[Va]]

K2 1 K2 1
— limeTry , | ( By? + cB—< 2o
E11’%6 Iy, |:( Y C 1 ) ] (’7 C1 EC) €:|

c
1 1
1 2 2
=l | Bt |
[ 1 K? 1
N 2 €
el | BY ey —KEC—KE]
[ K? 1 1
+ 11_1)% eTry_, _CBl — EKec—Ke 72 —Ke]
[ K? 1 K? 1
_li_][)%eTQQ2 _CBl —EKec—KECl —EKGC—KE] : (5.3.3)
The first and the forth terms vanish:
Try_, | By = 7 ! =0 (5.3.4)
Y- —K.' —K. ’ i
K? 1 K? 1
Try , chl — KEC—Kecl — KEC—K}] =0, (5.3.5)
because of the ¢ momentum conservation. The second term is
1 K? 1
1 2 €
i eTry, [37 K.1- KGC—KE]
ee}
= 21in[1) eff drydzy e” 179716~ Bedgg[0; 21 + 21]. (5.3.6)
€E—> 0
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The third term reduces to the second term:

lim €T BKE L e l'T_21(§+K)1
1m r = — 111m I — €
o2 |“PT TR TR TR, emg Y | T T AT OO T RO T
i 1 K21
—limelry, 7372—[(601 —}(EC—KE]
I 1 K2 1
= —li_{%eTry_Q _B’yQ _K_Ec1 —GKGC—KE] . (5.3.7)

Therefore,

0
lim EOMS([¥3]) = 4lim EJJ dridz e” 19 e Bedgg[0; 2y + 2]

e—0 e—0 0
2
e—0 \ %€

However, the value of the cubic term coincides with the expected value for the double-
brane solution [57|:

2
% lim Try., [[¥].°] = 1. (5.3.9)

We show the solutions (at least algebraically) studied in this section in the following
diagram.

Wy
U71
1 [7_1
Ul—/§ U;é
\1’0/2 — ‘111/2 vy o1 \If3/2 — ‘114/2
1/2 1/2
U
Ut
Wy

Uy and W5 are the tachyon vacuum, Wy, is the half-brane solution [27], U39 is our new
multiple-half-brane solution, while the string fields ¥, and W4/, do not satisfy the EOMS.
In all the cases of these string fields the following relation holds:

2
%lir% Ty [[U,]3] +1=n, {n=0,0/2 1/2,1,3/2 2). (5.3.10)
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Chapter 6

Review of the Berkovits’ Open Superstring
Field Theory

6.1 Action

The action of the Berkovits’ open superstring field theory [8,9] is given by

1

S(g) = —%L dt Te[0,(0,¥g) + ¥ {T,, Ug}], (6.1.1)

where each Vp is a “connection’
Tg = g(t)"'Qq(t), Wy=g(t) " 'mog(t), P::=g(t)" 0g(t), (6.1.2)
and ¢(t), t €[0,1] is defined as
g9(0)=1, ¢(1)=g. (6.1.3)

The string field ¢ is in the NS sector, GSO(4)! sector, and in the large Hilbert space
H'aree i e.. the Hilbert space includes the zero mode of the ¢ ghost, which does not exist
in the bosonization of the v ghost:

Blz) = de%(2),  ~(2) = ne(2). (6.1.4)
Since, this action is in the same form as the WZW action by replacing
m—0, Q-0 (6.1.5)

the EOM is given by
m(g~'Qg) = 0, (6.1.6)

We attach the “internal CP factor” as in the case of the modified cubic superstring field theory.
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and the action is invariant under the gauge transformation:
(1.9
g —— ¢®*=AgQ), QA=0, nQ =0, (6.1.7)

where we denote the pair of the gauge parameter A and 2 as (A, ) with the arrow.
Indeed, if we demand “axioms”:

Q* = = {Q.m} =0, (6.1.8)

Q, no are derivatives under * product, (6.1.9)
Tr[Qy] = Tr[nop] = 0, (6.1.10)

(1 % @2) * 3 = 1= (P2 * P3) = P1* P2 = 3, (6.1.11)
Tr[p1pa] = (=) PV T[], (6.1.12)

we can derive the EOM and show the invariance of the action. The action can be rewritten
as the following equation [58]:

S(g) = _L dt Te[(100,) U] (6.1.13)

Note that the action does not use the PCO, then the action is free from the contact term
problem.

6.2 Tachyon Vacuum Solution

The tachyon vacuum solution in Berkovits’ SFT found by Erler [28]> can be written
formally as

G0 =0Q ((1 +q- c)g) U, (6.2.1)

where ¢ == ¢y, U; = Be + ¢BA-, ¢ € C. Here, the string field v~ is constructed by
inserting e=?£(z) on the boundary in the sliver frame with the Pauli matrix —icos, then

~~1 has the ¢ zero mode. The explicit form of the solution g is

KK)

go=(?-QCj§+%1+q-O><BC+0311

1
—q-cVB—— —q-vB

=1—cB . 2.2
Tk - K —k o (6.2.2)
where V := 1dcy™!, QC = ¢V + 1.
We introduce a “matrix” notation [28]:
My, M
l H 12] = (M B + M3B) + (M B¢ + Ma B), (6.2.3)
Mo May

2A related work can be found in [59].
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where [M;;, B} = 0. We can show that a product among the above string fields is like a
matrix:

lMll M12] N [Nll N12:|
M21 M22 N21 N22
= ((’VMH + cMy) B¢ + (yMyp + CM22)B>
X <’7(N11.BC + ngB) + C(NngC + NQQB))
= ’)/MllBg(’}/NllBC + ’}/ngB) + ’}/MlgB(CNleC + CNQQB)
+ CMQlBC<’}/N11BC + ’)/ngB) + CMQQB(CNQlBC + CNQQB)
= (M N1 B¢ + My Ny B) + v(Mi2No1 BC + M1 Ny B)
+ C(MQINHBC + MglngB) + C(MQQNQlBC + MQQNQQB)
= (’Y(MHNH + Mia2Na1) + ¢( Mo Nyy + M22N21)>BC

+ (7(M12N22 + M1 N1g) + ¢( Moy Noo + M21N12)>B

_ [MllNll + MyiaNgyy M1y Nyg + M12N22]

6.2.4
M1 Ny + MyaNyy Moy Nig + Moo Noy ( )

This notation is especially useful when we search for the inverse of the string fields under
the = product.

We rewrite the tachyon vacuum solution in the “matrix” notation. The each factor on
the right-hand side of (6.2.1) can be written as

B B
1 ()= | = V— — +1
Q<(+q C)K> ¢Vt qygz+1+a-¢
1 q'%
- 6.2.5
[q 1+q~V%]’ (6.25)
and

—-K 1 0
:B B = . .2.
Uy c+c T K [0 1_;;] (6.2.6)

1 g¢-L 11
go = 1 Ve -K
q 1+q- Vg K

b ] | (6.2.7)
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We define go(t) s.t. go(1) = go and go(0) = 1. Here we take go(t) as follows
9o(t) =t + tgo, (6.2.8)

where t ;= 1 — t, then we have
t t —a
gO(t)_[ f]+[a —t-K—oz-V]

B 1 — 1
Cla t—-K-a-V ﬁ

= VoUg. (629)

Here, o := qt, and string fields vy and wug are difined as

1 —Q
= B 6.2.10
Yo [a t-[—K—a-V]’ ( )

Uy = [1 L ] : (6.2.11)

where [ = 1 is identity string field, and for latter calculations we leave it in the following
calculations.
Next, we derive the inverse go(t)~! of the string field go(t). We define the string field
detq as
detg:=1-1 - K —a-V +a? (6.2.12)

then the inverse of the string field vy in its “matrix” notation can be found:

1—ao? & a-
1)0_1 _ [ « 1deto « 1deto]_ (6.2.13)

- detg detg

We will give the definition of the string field ﬁ =(t-I—-K—a-V+a?) ™! in appendix
F. Indeed, this is the inverse:

1
U — 1—a? det " deto 1 —
0~ 1 a dety — a?
deto detg 0

-|! ] Be+ B

~ 1. (6.2.14)

As for vgvo~! = 1, we can show it in a same way. For the later convenience we introduce
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[ 2. L oL
,l'} — @ detg o detg
0 o 1
| detg detg
B 2 1
— -« Oé:| detg
1
L @ 1 detg
— wD,. (6.2.15)

w = [_a2 O‘] , (6.2.16)

detg

1
Dy = [deto ) ] (6.2.17)

Note that w and Dy commute [w, Dy] = 0 since a € C. Therefore, we have
go(t) = vouo, go(t)™t = ug  (wDy + Be). (6.2.18)

Then, we compute the energy of the solution:

1

E(go) = —5(g0) = f dt Tr [no(g0(t) " 0eg0(t)) 9o (t) ' Qao(t)] (6.2.19)

0

by using these results. The computation becomes very long, though it is straightforward.
So, we will give it in appendix F. The result reproduces the correct value of the tachyon

vacuuln:

B = |

For |Re[q]| > |Im[¢]|, this is independent on g.

_ o? 4 _ o 8 1
dt [t@qa Varaye Yiranme| T e (6220
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Chapter 7

Double-brane Solution in Berkovits’ Open
SFT

7.1 Perturbative Vacuum

Since we find the tachyon vacuum gy can be written in the pure-gauge form formally,
let us consider the solutions constructed by using singular gauge transformations. We
try to construct the double-brane solution as another non-trivial solution. We suggest
that if we replace U, in (6.2.1) to U;~! by using the gauge transformation, we obtain the
double-brane solution.

First, we check that the string field g; which is made by performing the gauge trans-
formation (A, ) once,

9o e g =0 ((1 + q()?) ; (7.1.1)

is gauge equivalent to the trivial solution g = 1. Though g¢; includes the ill-defined string
field 1/K, if we assume that 1/K is Q-closed (since QK = 0) and also that 1/K is the
inverse of K algebraically, the EOM is satisfied because

917 Qg = 0. (7.1.2)

The above two assumptions (Q% =0 and K % = 1) are satisfied if we implement the
K -regularization for the fundamental variable g as g — [¢]. for finite e. However, for the
reason discussed later, we do not take this regularization. Hence, we may refer to them
as assumptions. Then, the energy of the solution g; is E(g1) = F(go) + Ty trivially, since

Qg1 = 0.
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7.2 Double-brane Solution

Let us consider the string field go which is constructed by performing the singular gauge
transformation (1,U; ") twice for the tachyon vacuum go:

(1,U1_1) (1,U1_1)

90 9 92 = Q ((1 + qC)%) Ut (7.2.1)

Then, g, is the solution of the EOM ny(g~'Qg) = 0 since
92 'Qgx = U1QU, ™ = Wy e 7™, (7.2.2)

Here, we assume 1/K € H*™! ie., it does not have &. The solution go, s.t. g5 Qgo = Yo,
reproduces the energy of the tachyon vacuum solution, therefore, we expect the solution
g2, s.t. g5 'Qgo = Wy, reproduces the energy of the double brane solution. To check this
expectation, we try to compute the energy. First, we write g, in the “matrix” notation:

g =Q ((1 + qC)g) Ut

_ [1 —q ] 1 ] [1 ]
q —K—qV = (=K )2
B B K- qV] ll 1}{5] ! (7.2.3)

and then we give go(t) as in the case of the tachyon vacuum solution:

(t) =T+t [t 1 1 +t —a 1
PUZITR T el R T e K —av] | K

BE —a 1

T la 2 K —aV 1;5
1
«

1-K

Y —;(a_ av] ll IK] 7 (7.2.4)

K2

where
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Then, by defining

1 -
Vg = la K QV] s (726)
1
U = 1-K | » (727)
K2
dety == 1Y — K — oV + o?, (7.2.8)
1
Dy = [detz 1 ] , (7.2.9)
deto
go(t)™! is given by
g2(t)"t = uy (wD;y + Be), (7.2.10)

as in the case of the tachyon vacuum
go(t)™t = ug  (wDy + Be). (7.2.11)

Then precise definition of the string field 1/dets is given in the next subsection.

7.2.1 Energy

To evaluate the energy of the solution, we need some regularization since the string field
1/dety is singular at ¢ = 0 as we will see below. First, we might try to regularize the
solution as g — [¢2]. However, this is not a desirable regularization. If we regularize
the solution g, itself, this means that the solution is constructed by using a regular
gauge transformation (1, [U;7!].) from the perturbative vacuum. So the result is gauge
equivalent to the perturbative vacuum. To avoid this, we introduce the K.-regularization
for the “connection” Wp (6.1). This seems to be good because in the bosonic cubic
theory the regularization [U;QU; '] works well, and the regularization for ¥p includes
lg271Qgs]c = [U1QU; '], as a case with D = Q. In the bosonic cubic SFT and the
modified cubic SFT, we checked the EOMS as a condition for an acceptable solution.
However, in the present case, a suitable condition is not clear. Since extra £ zero modes
do not seem to appear in the K.-regularization, the inner product between n[g~Qg].
with any other test string fields seems to be zero.

The computation of the energy can be obtained from the one of the tachyon vacuum
solution (F.43) in appendix G by replacing as I — ' and dety — dety. The result is

— 61 —



given by

lim Tr [770 ([[gg(t)_latQQ(t)]]e> [[92(75)_1@92(t)]]e]

e—0

o
-

where we used

o det2

1 1 1 1
B
> detg Cl—Kary

1 1
— | —BQ cocY
"lo detg) det2 Cac :|] ¢ —|

1-K

1
— ) BQcocs
(vaas) o] |

|

1 1 1 1
Aoty (”Odet2> KT KBC}U

1 11 1
—aT 9% B
“ rH[(nodetg) 1K T-Fk Cﬂ]
+T LYo ooy
' nodetg det2 coe ¢ ’
, 1 1
(] = %15

QYede — K[, c] =

1

1
—QcocY — K [c, - K]

801

We give the definition of the string field 1/dety as 1/dety (F.47):

1 _
— =t - K—aV +a*)!

det2

= ((tK ~K1-K)-aV(1l-K)+d*(1-K))——

= (1- K)(K* — (a* + )K + a® — aV(1 - K))

=(1—K)(

—(1-K) ((1 —aV(l- K)FQ)F2> B

1
F—OZV

2

1
1-K

-1

(- K))l

1

=(1-K)FK(1—-aV(l—K)F)™!

=(1-K)R(1+aV(l-K)F,+aV(l— K)FaV(l— K)Fy+ )
=(1-K)(F+ FaV(1— K)F + FBaV(l — K)FaV(1— K)Fy + ).

Here, we defined

FQI

1
K?—(a?+t)K + o?’
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(7.2.12)

(7.2.13)
(7.2.14)
(7.2.15)

(7.2.16)

(7.2.17)

(7.2.18)

(7.2.19)

(7.2.20)



which becomes singular string field at ¢ = 0:

1

Fyli—o = K2

(7.2.21)

and hence the regularization is needed. We adopt the K .-regularization and define the
string field F5, in terms of the Laplace transformation:

1
R, =
LF2] K2 —(a?+t)K.+a?
1 1
—Kk_—
J dlf dme™ k:+l —k_ mgl-&-m
= kL dn (e7F=" — eF+mQn, (7.2.22)
where ,
t) + /(a2 + 1) — 4a?
py o DT V(z@ TP de? (7.2.23)
If we choose ¢ as ¢ € (0, 1], then ky satisfy

Then the Laplace transformation is well-defined at least for ¢ € (0, 5].
We do not write all the calculation in this section since it will be long. We give the

calculation of the remaining terms in appendix G. So we only write the first term of
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(7.2.12)-(7.2.17):

_ 1 1 1 1
2.12) = 2lim tga® T B
(7 ) eng 9 IH[(nodetQ)detz C1—1(671—KM
U]

_ zlii%fqam[[{( o (1= K)FaV (1 — K)FaV(1 — K)F))

1 1
< (1= K)(FaV(l = K)By)Ber—rpdy— Kﬂe]

+ 21iny fanTr[ [{(no((l — K)FyaV(1 - K)F))

< (1= K)(FaV (1~ K)FaV (1~ K)Fy)Ber——or——] |

= —2lim fan’Tr[[[FgﬂeV(l — KRV (1 - Kef[[Fz]]f(noV)[[Fg]]eBcav]

+ 211_1}(1) EQQSTY[HFQ]]E(HOV)(l - KE)Z[[F2]]62V<1 - KE)[[F2]]ev[[F2]]eBca/7]

T 5
= —h_r)n @ Tr[(nofyfl)[[Fg]]eaﬁy[[FQ]]eBcac”yfl(l — KE)[[FQ]]EGC’fl

e—0 22
x (1 KE)Z[[FQ]]jaC] (7.2.25)
. tga
i

5Tr[(nov‘l)(l — K’ [F]P0ey™ (1 — Ko [ Fa].

x 807_1[[F2]]667[[F2]]53660]. (7.2.26)
The first term (7.2.25) is

1
f dt (7.2.25)|,_1
0

1 .
= ——lim | dtit"Tx[(noy ") [Fo]e0v[Fo]eBeoey™

28 -0 Jo
x (1- >[[F2n dey (1 = K[ Fy].c]

1 5 1 ° —k_n; —king\ ,—(1+€)u;
:_ﬁg—{%‘} dtttf Hdnl‘ uljlgo 61){ <k+—k) (e — e Fmi)e j

-eidii[ng, ng, uy + N3, ug + ug + ng + s

-Beddd[uy + ng, us + usz + ny + ns,ny + ng]}
X §Tr[03(—i02)i02030303(—iag)og(—iag)ag]. (7.2.27)
Here we define

elgu tl, to, 13, t4]

— <§ e~ ?(0)ne? (t1)€e ?(ty + ta)le ™ (t1 + to + t3) >502f+t2+t3+t4

sin 0y,

; 7.2.28
L Sin O, 14, SIN O, 11,414 ( )
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eldll[tl7 to, t3, t4] = 111% &‘y{elgu[tl + v, to, 3, t4] - elgu[tl, to + Yy, ts, t4]}
y%

2

T
T T2 Or, €SC Ot 14, CSC Oty 11541, - (7.2.29)

However, the computations are difficult, because the number of the integrals and that of
the terms in the integrands are large. Therefore, we try to evaluate the solution another
way.
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7.2.2 Gauge Invariant Observable
The GIO [30] in Berkovits” SFT is defined as

W(g,V) = Try[g~'Qg], (7.2.30)

where

Try[prest] = {V(i90) f5 © prest (0) D, - (7.2.31)

Here, V is an NS-NS on-shell vertex operator:
V= (£ + O)cde etV a), (7.2.32)

Let us show the gauge invariance. The gauge transformation (6.1.7) of the GIO is given
by
W(g5, V) = Try[A g Q7 1Q(QgA)]
= Try[¢ ' Qg + ATQA]. (7.2.33)
We define
Y= ATTQA,, A, =™ (7.2.34)
where A is a string field in the small Hilbert space, i.e., noA = 0. Then, we can show that

Try[3,] does not depend on the parameter 7:

0, Tryp[E,] = Try[-AS,] + Trp[A ' Q(AA,)]
= —Try[AX:] + Try[QA] + Try[AY,]

= Try[QA]
0. (7.2.35)

Since ¥y = 0, this means
Try[3,] = 0. (7.2.36)

Then, we find the gauge invariance:

W(.gga V) = W(g7 V) + TrV[El]
—W(g, V). (7.2.37)
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For the tachyon vacuum solution gg, the GIO becomes
W(g0,V) = Try[ W]

-y | (@) - |

1-K
=Ty [01 —1K]
=0—Ay(V). (7.2.38)
For the trivial solution g¢;, it becomes
Wi(g,V) =0 = Ay(V) — Ay(V). (7.2.39)

For our solution g», it is calculated as

: : . K2 1
W (g2, V)], = lin Tro[[¥a], ] = lim Toy [(Bf et Kf) _KS]

K. 1]

1— KﬁaC—Ke

1
= —Try chl — K&c]

= lir% Try [CB

=T :BQC1 —1K]
= v|g f{ K}
=g —1K}
= 240(V) — As(V). (7.2.40)
Here, we used
Try[By*f(K)] = 0, (7.2.41)

which follows from the ¢-momentum conservation, and also

Try[1Qps] = —(—) ¥V Try[Qe1 - o], (7.2.42)

since V is on-shell. Our solution satisfies a needed property of the double brane solution.
Namely, the value of the GIO of our solution (7.2.40) is larger than that of the tachyon
vacuum solution by the value which seems to be consistent with the existence of two
D9-branes. When we choose the vertex operator )V to be the time-like component of the
graviton

Vg = %(f + é)cée_(’be_"}woizo, (7.2.43)
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then the disk amplitude corresponds to the energy of the solution:

AoVe) = 56+ Ele e (=)

X <C(i)0(—i)(—%i)lc(0) g2 (PO (0)y° (i) )gs
_ ﬁ%(_% X 00+ 00— 0)(—i = 0) x
1
T o2
. (7.2.44)
Then, we obtain
W(go, Ve) = E(g0),
W(g1,Vs) = E(g0) + T,
W (g2, Ve)le = E(go) + 2T5. (7.2.45)
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Chapter 8

Conclusion

We constructed three types of the new multiple-brane solutions by using singular gauge
transformations in different theories.

First, we constructed candidates for the solution of the EOM in the bosonic cubic
SE'T. They were obtained by performing the singular gauge transformation whose gauge
parameter is U; ! for the EM soltuion; the number of times of the singular gauge trans-
formation is equal to n. Since, in general, these candidates include the singular string
field 1/K, we adopted the K .regularization and checked the EOM in the strong sense
(EOMS). After this checking, we realize that the only candidate which satisfies the EOMS
is the one for n = 1. We evaluated the energy of our solution, and then we found that
the singular gauge transformation increases the energy by the value of the tension of the
D25-brane. We also calculated the tachyon profile, by using the Neumann-Dirichlet twist
operators as the boundary condition changing operators. The plotted figure shows that
our solution describes the D24-brane on the D25-brane; these D-branes are originated
from the EM solution and the gauge transformation, respectively. This result gives a
support for that the singular gauge transformation U; ™! creates the D25-brane in this
case.

Second, in the modified cubic superstring field theory, we constructed a candidate for
the solution of the EOM by performing the singular gauge transformation for the tachyon
vacuum solution three times. Here we took the singular gauge parameter Uy, *. As our
first solution, this solution includes the singular string field 1/G, then we introduced the
G-regularization, and we checked that the solution satisfies the EOMS. We also evaluated
the energy, and the result is expected one, i.e., the energy of our solution is increased from
the energy of the tachyon vacuum solution by 3/2 times the tension of the D9-brane. Since
W, does not satisfy the EOMS, a pure-gauge-form string field Uy »*QUi o2, which is gauge
equivalent to Wy, does not satisfy the EOMS. Therefore, we did not consider further gauge
transformations with U, /2*1.

Third, we constructed a candidate for the double-brane solution by performing the
singular gauge transformation from the tachyon vacuum in the Berkovits’ superstring
field theory. We gave the integral form of the energy of the candidate but did not reach
the final result because the integral is complicated and lengthy. We also discussed the
regularization in this theory. We gave another support that the candidate is the double-
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brane solution. This was given by evaluating the GIO, and we found the value which is
consistent with the double-brane solution.

Let us give some comments regarding future directions. Since we have not yet com-
pleted the computation of the energy of the double-brane solution in Berkovits’ SFT, to
accomplish this task should be the important future work. Since in this thesis, we mainly
evaluated the solutions by using their energies and EOMSs, it would be interesting to
investigate other properties of the solutions. Regarding such a direction, we would say
that the D-brane charge should be an interesting quantity to be studied. However, so-
lutions studied in this thesis does not include any stable BPS D-branes. What is more,
since the D-brane construction studied in this thesis is based on the singular gauge trans-
formations connecting the unstable perturbative vacuum and the tachyon vacuum, It is
not clear whether this method is, in any sense, useful to construct stable BPS D-branes
with charges. These issues including the investigations of further method of constructing
D-branes are important and interesting future directions.
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Appendix A

Correlators and Formulae in the Bosonic
Cubic String Field Theory

We give formulae of the correlators [15] in the sliver frame. The basic formula is

7

N3
Tr[cQ" cQ2c0B] = — <—) sin 6y, sin 0y, sin Oy, (A.1)

where L is the circumference of the sliver, now L = t; + t5 + t3, and 6; := ”ft This can be
derived from the three point function of ¢(z)

(e(z1)e(za)e(23) Yiup = 212213223, (2ij = 21 — 2j) (A.2)
as follows:

Tr[cQ" 2] = (c(0)c(tr)c(ts + t2) )&,
= ( fro20¢(0) froz 0 c(tr) froz © c(ty + 12) ),

ORI
toconoe () ftoe (2 )

-3 -3
(g) cos? 0y, cos? 01, +1,{ c(0)c(tan 0, )c(tan by, 44,) >%CHP

2 2
cos” Oy, cos” Oy, 44,

3
) sin 0y, sin 6y, sin 0, (A.3)
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where f,7'(€) = tan 5> 6§f5 1) = %cosl —, sinfl;_, = sin#,. Next we give the correlator

2

2

with a string field B and four ¢’s:

t, (L)’
Tr[BcQ" cQ2 QB ] = _Zl (—) sin 6y, 14, sin Oy, sin 0y,

™

L 3
(—> sin 0, sin 6,1, sin 0,

™

ty+to+ty (L
s

3
I —) sin @tl sin 9t2 sin 6t3+t4 (A4)

L? ) . .
= —R@g Sin 29151 - (tg + t3> Sin 20t1+t2 + tQ S111 20151 +to+ts

+ t18in 20, — (t1 + t2) sin 204, 4, + (t1 + to + t3)sin 26,,).
(A.5)

To derive this, we consider the following correlator:

TI'[BCQtlcQt2CQt3CQt4] < 27TZ ( ) (O)C(tl)c(tl + tg)C(tl + 15 + tg) >I()ch (AG)
o

We start with the following relation:

¢ L L b ()el0)eltr)elts + to)elts + ta + t5) Y,

)

| L b()e(0)elt)elts + ta)elt + b + 1),

+¢ (LO LO) —zb )e(0)e(tr)e(ts + ta)c(ty + ta + t3) Y,

271

= (L 0 JM) —zb )e(0)e(tr)e(ts + ta)elty + to + t3) D&,

+ (=) O ¢(0) ﬁzb( Je(t)e(ty + ta)e(ts + ta + t3) Y%,
271

b+0
= ( —zb ) c(ty)c(ty + to)e(ty + to + t3) >%CL

21

- <c<o>fl T belt)elts + et + 12 + 1)), (AT

After repeated uses of the similar relations around z = t1, z = t; + t5 and z = t; + t5 + t3,
we obtain

<j€ —zb > c(ty)e(ty + to)e(ty + ty + t3) D
—{c(0) (j@tl ;—mzb(z)c(tl)) c(ty + ta)c(ty + ta + t3) D&,
+ (e(0)elt) @ 92 (et + tg)) ety + 1+ t) N

t1+t2 2mi
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—{c(0)e(ty)e(ty + t2) (jg ﬁzb( Je(ts + to + tg)) i

t1+to+i3 2mi

+ {e(0)e(ty)e(ty + to)e(ty + ta + t3) f d—zb( )>

Voo 271
= ((0) - c(ty)c(ts + ta)e(ts + ta + t3) D,
—{c(0) - (t1) ety + ta)e(ts + ta + t3) o5,
+ {c(0)e(ty) - (T + to) - c(ty + ta + t3) >2§L
—{c(0)e(tr)e (t1+t2)‘(t1+t2+t3)>léi

+< . %W + L)b(2)c(0)e(ty)e(ty + ta)c(ty + ta + t3) ), , (A.8)

iy’

where we used the periodicity z ~ z + L of the cylinder. Then, we obtain the following

correlator:

<£ . ;_;sz( )e(0)e(ty)e(ty + ta)e(ty + ta + t3) ),

= —t1{c(0)c(ty + ta)e(ty + ta + t3)>
+ (t1 + t2)c(0)c(ty)e(ty + to + t3)>
— (ty + to + t5){ c(0)c(t)e(ty + t2) ),

d
+< =2 (2 4+ L)b(2)c(0)c(ty)e(ty + ta)elty + t + ts) M5, (A.9)
Therefore, (A.4) is obtained:

t
Tr[BeY Q23] = ZlTr[cQtl 20 )]

ty +¢
— L2 e M)

t1 + to + 13
L
t1 (L

3
= —— | — | sinf 4, sinb;, sind,,
L\«

ti+ts (LN . .
+ 2 7 2 <—) sin 0y, sin 0,4, sin 6,

m
ty+ty+ts (L\°
—% (—) sin 0y, sin 0y, sin Oy, 14, . (A.10)

™

Tr[cQ" Q203 1]

Furthermore, by using

(= sin(zy + 22 + 23) + sin(zy + 22 — z3)

1 =

sin xry sin 9 sin rs =

+ sin(zy — o + x3) — sin(zy — z2 — x3)), (A.11)
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which can be derived from

sin(zy + 9 + x3) = sinxy cos Ty cos T3 — sin 1 sin x5 sin 3

+ €os 11 8in Ty COS T3 + COS T1 COS Xy Sin X3, (A.12)

we can rewrite it:
(LN, _
(A 10) L (;) Z( — sl 9(t1+t2)+t3+t4 + sin 9(t1+t2)+t3*t4
+ S0 04, 440)—ts44, — SID O, +t2)—t3—t4)
i+t (LN*1, ,
+ i (;) Z( — sin 9t1+(t2+t3)+t4 + sin 9t1+(t2+t3)—t4
+ sin 0t1—(t2+t3)+t4 — sin etl_(t2+t3)_t4)

ty +to + t3 (L

1, .
i ; Z( — S 9t1+t2+(t3+t4) + sin 9t1+t2—(t3+t4)

+ sin etl—t2+(t3+t4) — sin Qtl—tz—(t3+t4))
L? _ . .
= —ﬁ<t3 sin 260, — (to + t3) Sin 20, 14, + tosin 20y, 44,144

+ t18in 20, — (t1 + t2) sin 2604, 4, + (t1 + to + t3)sin26,,), (A.13)
where ty = L — (t; + t2 + t3) and sin(m — #) = sin . For simplicity, we define
Becec(ty, ta, t3, ta] = Tr[ B e cQ Q). (A.14)

By using this notation,

L? . . .
Becec[ty, ta, ts, ta] = —M(tg sin 260, — (ty + t3) Sin 20y, 14, + tosin 20, 44,144

+ t18in 260, — (t1 + t2) sin 2604, 14, + (t1 + to + t3) sin 26,,).

(A.15)
We further define
Beddd[ty, ta, t3] := Tr[BcdcQ™ 0cQ20c0],
Beedd[ty, to, t3, ty] := Tr[ B2 22 0c2" 0cQ™],
Beceed[ty, ta, ts, ta] = Tr[ B e e 0c™ ],
Beedc[ty, ta, ts, ta] = Tr[BcQ e 0c2™ ], (A.16)
and by using
K = 0,()]y—o0, (A.17)

we obtain

BCddd[tl, tQ, t3] = hII(l) ay/BCCdd[y, tl, tQ, tg]
y%
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= lim0 8y6yr{Bcccd[y, ty + o ta, t3] — Beeed[y, ty, ta + o/, tg]}
yy'—

= lim 0,0,0,
y7y/7y//_)0
{Bcccc[y, ty + 3 ta + 9, t3] — Beeeely, ty + ¢/, ta, t3 + 4]
— Beceely, t1,ta + ' + 4", t3] + Beeeely, 1, ta + ' t3 + y”]}
1
= ——(sin 29152 + sin 28153 — sin 20t2+t3) (A18)
T
Similary,
BCCdC[tl, tg, t3, t4]

L? 2
- H( (%) (= (t1 + ta + t3) cos 20, + (to + t3) coS 264, 14, + t; cOS20},)

+ sin 20,51 + sin 29t2+t3 — sin 29t1+t2+t3) . (A]_g)
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Appendix B

K BeGry Algebra

We summarize the derivations of the K BcG7y algebras.

e B2=¢=0
B*QI=c®I1=0 (B.1)
e {Bé}=1
A dz dz
{B,¢} = (Bc+ cB)® 1, HCFTJ 5= 0(2)c(0) +J —¢(0)b(2)
-0 T l+0 2mi
<£ 0 Jvh—o) 27”
~§ S0
=1
—spr 1@ L =1:=1 (B.2)
o {.B} = {3,¢} =0
{§,¢} = (ve — ¢7) ®ioz05 = 0, {4, B} = (yB — By) Q0303 = 0. (B.3)
[, Bl =[v,¢] = 0.
o 0G =2K
6G = {G,G} = (GG +GA)® I,
dz dw dz
*CFTN % . G0 + L ami J,, 2mi WG

(&

f 27rzﬂ€

lo 27” <£ 0 JT+o> 27”

dz dw 2T
2 w — 2
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=2 —T
LO 271 Z

—gpr 2K ® I = 2K

(B.4)
o6 = 24
[6.é] = (Get+ @) ® “ a@eo + [ L o6
,C = C C 0'10'3 —CFT N 0% i+0 %C zZ
c(0)
(.. LJ
_ﬂg dz —27
2771 z
= —2v(0)
—SFT  — 2’7@ —iUg = 2’3/ (85)
o 04 = 0¢/2
(G,4) = (G —+G) @i oo - [ Eaoaee
Vs = Y= 01102 —CFT l02m. z)Y . 27m'7 z
(] +] ) 0)
l-o T+o0
_§; dz —ﬁc
27m 22
1 dz
=—= =T — T
. ( L T L (0) <z>)
1 1.
—gpr — £ 0c® (—03) = S0¢ (B.6)
2 2
o 057 =205 -4
[G,4%] = {G, 4}y — 4{G, 4} = 0&% (B.7)
« OB - K
OB - QB®I 35 e (b(w)
2 TCFT 27rz , 2mi"
—T
lo 271 w
—spr K®L =K (B.8)
e [K,B] =0
0=Q(B-B)



o Q4 = 04 — 0&/2

A dz
Q¢ = Qc® Iy —crr T]B(Z)C(O)
0 21
= coc — v*(0)
—gpr c0c® I + 72 @ (i0g)?

= ¢0¢ + 4

AL . dz .
QY = Qv ® 03102 —crT —Z.JB(Z)V(O)

0 2m
1
=(c0y = 50e7)(0)
1 .
—gpr (cOy — 5807) ® 03109

. 1.
=0y — =0
oy — 506
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Appendix C

Correlators in Modified Cubic String Field
Theory

To calculate energy of solutions, we introduce the formulae of the correlators. The non-
vanishing correlator in this theory is now normalized as

{cOcd®ce™(2))8h, = —2. (C.1)

In the correlator, the ghost number is 3, the bc-ghost number is 3, the ¢ momentum is
—2, and the picture is —2. We derive the basic correlator:

Try , [c’yQtlnytQ]

= (Vi) 011 (0)(12) ), ;Tr[agagwm]

= —(Yoo(i) ft o frma0c(0) £ 0 froa 0 ¥(0) £ 0 froa 0 y(t1) Yop

()0 )

x (cote  (i)cote** (—=i)e(0)ne” (0)ne” (tan 0y, ) Y&
=~ (5) " cosbutelive(~i)e(0)s
x (e 2 (i)e ??(—i)e?(0)e? (tan 9t1)>52
X 0y 0, (E(51)E(52)n(0)n(tan 1,) )5h s, =4, 52—
- —(%)—2 cos 0y, (i + 1) (i — 0)(—i — 0)
x (i 414)"*i — 0)*(i — tan 6y, )*(—i — 0)*(—i — tan 6;,)*(0 — tan 6, )~
X 0y, 05y (51 — 52) (51 — 0) ' (51 — tan 6y, )"
(89— 0) " (sg — tan ;)71 (0 — tan Oy, ) Heymi, sy i

_ L?costy,
- op2

(=
(=

(C.2)
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Here, the width of the sliver is L, and we used the doubling trick, and OPE:

n~e ™, {x~eX x(2)x(0) ~Inz,
d(2)p(0) ~ —1In z. (C.3)

Next, we derive the correlator Try ,[BcQ"cyQ24Q"] by using the technique used
in the derivation of Tr[BcQ"cQ2cQcQ']. To derive this, let us consider the following
equations

<Y_z<z’oo>j B (2O (bt + ) Y

l-o0

2me
= (Y_5(i0) (ﬁ_o + Jm)) %zb(z)c(())cy(tl)v(tl + t9) >gh

#Ol) |Gttt + 0)E,
2 (700 {\(fo EZb (0)}ey(tr)y(ty + t2) >%hL

) | e+ ),

— (Y afie (L N L t ) o {0)ENet) ()1 + 1))
i) | 0Bt + )R,

_ (Y a(im)e {fft Sttt + 12))E,
( dz

+(Yoo(i0) | se(0)e(t)y(t)y(t + ta)2b(2) YE

Jir_o 21

= —1(Yoa(i0)c(0)y(h)y(t + t2) )8,

FOVal) | St DOt )0+ )2, (.
Therefore,
t t t . dz gh
Toy [BeQ ey Q2 Q] = (Y-(ion) L SEHEAO) () (0 + 1))

X ETr[agagagagiagiJQ]

_ _%<Y_2(ioo)c(0)7(t1)7(t1 +12) ),

_tiLcosb, (C.5)

27?2
We define

Beegglty, to; L] == Try_,[ BcQ eyQ24Q"5],
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Bedgg[ty; L] := Try ,[BedeyQQ]. (C.6)
Formulae for the inner product including Be, dc, v, 7 is

Try ,[BcQ"0cQ?4QB~0M] = Try L[ B([c, Q] + Q" ¢)0cQ2 Q30 ]
= Try_,[BcdcQP2yQB~y0M O]
= Bedgg|ts; L]. (C.7)

Here, the first term in the first line vanishes because Tr[By] = Tr[B%cyp] = 0, for ¢ s.t.
[B, ¢] = 0. Similarly,

Try_,[BcQ yQ"20cQ340M] = Try_, [ BeyQ?0c3 QM QM ]
= Try ,[BcQ”0cQByQ" 0]
= Try_,[BcocQB3yQH QM O]
= Bedgg|ts + t1; L], (C.8)

Try ,[BcQ" Q270 0cQ] = Try ,[BcQ" QM yQR2~Q50c]
= Try_,[BcdcQ" Q02401
= Bedgg|[te; L]. (C.9)

These only depend on the width between «’s and total width L.
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Appendix D

Detailed Calculation of the Energy of the
Half-brane Solution

We give detailed calculation of the energy of the half-brane solution. We can compute it
from the cubic term in the action:

-1
1-G

TrY—Q [\111/23] - Tl"y_2 |:BPVQ 1-G 1-G

—1 —1
372 B'yQ ]

—1 —1 —1
2 2 _
+ 3Try., [ny - By 1_GCB(1 G)G’c1 — }

-1 —1 —1
Try_, | By’ B(1 - B(1 -
+3 rY2l 1 c¢ ( G)Gcl_Gc ( G)Gcl_G]

1 \?
+ TI‘y72 [(CB(l — G)Gcl — G)

= —3Try, [szGcl _1 GCG] (D.1)

. (D.2)

1 \°
+ Try , [(CB(l - G)Gc1 — G)
The first term (D.1) becomes

(D.1) = —3Try,[B(dcy + v*G)Ge(1 + G)Que]
= —gTryg[é(chcB&‘c’y)] — 3Try_,[BY*K S, (]

= 6Try_,[Bcocy*Q,] — 3Try_,[BcQ,cv’ K|

e}
= f dxe ™ (6 - Bedgg|0; 1] — 3 1irr(1) 0y - Beegglzy, 0521 + y])
0 v

_3 (D.3)

o2’
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where we used the following equation:

1 1+G
—¢  a-aarg LT (D4

and we define €, := ﬁ The second term (D.2) becomes

(D.2) = Try ch(l—G)Gc ! cB(l—G)Gcl_l CB(1—G)GC1_1 ]

1-G -G -G
-1
= Tl"y_2 [CBG([l — G, C] + C(l — G))m
-1 —1
% eBG([L = Gue] + (1 = ) 7—zeBG([L = Gue] + (1 - G))m]
1 1 1
=Try , chG(Sc1 — GcBG(501 — GCBG’(SC1 — G]
G G G
= Try, chcScl — G501 — G(SCl — G] (D.5)
= Try ,[e¢Bdc(G + K)Q,0¢(G + K)Q,0¢(G + K)Q,]
= Try_,[¢BdcGQ,6cGQ,6cGSY, | (D.6)
+ Try_,[cBicGQ0cKQ,0c K, (D.7)
+ Try_,[cBicKQ,0cGQ0cK ), (D.8)
+ Try_,[cBicKQ,0cKQ,5cGS,]. (D.9)
The first term (D.6) becomes
(D.6) = Try_,[¢Bdc§,(0c — 6¢G) G 0G|
= %Try2 [6(cB6c§,0c§2,.0¢8,)] — Try ,[cBIc§,0c82,6c K, ]
1
— §Try_2[6(cBéch50KQxchx)]
= —%T:ry2 [cBdc£2,0(0¢) Q0¢8] — %Tryz[cBécQwacQwé(éc)Qz]
+ Try_,[BcdcQ2,0¢,6cKQ,| — %Try_2 [cB(0c),6cK Q0¢8]
+ %Tryz[cB(Sch(@c)KQxéch] — %Try2 [cBic£,0c K, (0c)€2, ]
= GJJJ drydzgdrs e~ (@1 rr2tes) lin% 0y Bedggly + 15 11 + @2 + 23 + Y]
0 v=
2 _
- _M. (D.10)

T4

The second term (D.7) becomes

(D.7) = %Try2 [0(0cKQ0cKQcBocS2,)]

1
= §Try72 [(0c) KQ,6¢KQ,cBIcsY, |

— 84 —



— %Try2 [6cKQ,(0c) KQ,cBics), |

1
+ §T1'y72 [6c¢KQ,0cKQ,cB(dc)),]
0
= H f drydrydrs e @24 3) Jim 9,0,
0 ¥,y —0

><{—4~Bcdgg[y+x1;x1+$2+$3+y+y/]

+ 2 - Bedgg[z1; 21 + 20 + 23+ y + ?//]}

24 — 272 w2 —12
B o 4

T
12 — 72
I

T

We can show that the remaining terms (D.8) and (D.9) are equal to (D.7):
(D.7) = (D.8) = (D.9).

Therefore,

(D.2) = (D.10) + 3 x (D.7) = — |

T2

We obtain the energy of the half-brane solution by adding (D.1) and (D.2):

1 s 1(3 3 1 1
g W2l = <§ - 7?) = g~ B+ 5T
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Appendix E

Detailed Calculations of the EOMS for W3

We give the detailed calculations of the remaining terms of the EOMS for W3/,. The term
(5.2.14) becomes

: 1 1
(5.2.14) = lim €Ty, lB’chl e de— GE]
1

= 11_1)% eTry , ley%GEQe&cGE —Ke]

€E—>

. 1
= 111% gTryf2 {5 <B720§268(5c) _Ke)]

. € 1 € 9 5 1
- 11_{% (§Try2 lB(&cv)cQﬁ(&)_KE] + 5TI‘y72 lBW Q0 c—Kj)

: 1
S 113(1) €Try ch&cQﬁv x 7]

= —lime- 1in(1) 8y{Bcdgg[zl; 1 +y+ 21| — Bedgg|z1 + y; 21 +y + 21]}
y—)

e—0

(5.2.20)
— 0, (E.1)

Where Q€ = ﬁ’
€

(5.2.10) vanishes:

and other notations are explained shortly. Therefore, the first term

(5.2.10) = (5.2.20) + (E.1) = 0. (E.2)

For simplicity, we use the certain letters x; and z;, as Schwinger parameters corre-
sponding to the following Laplace transformations:

1 ’ (140
_ d ; —(1+e xiQxi’
- K, L e

1 o0
y =f0 dz; e Q5. (E.3)

In the following, we omit SSO dx; and SSO dz; and also the exponential factors. For example,
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we abbreviate the term:

1
TI'Y 9 [ K :|
= lim 0 Jf dzidze” 1H)memen
y—0
x {Bedgg[z1; 71 +y + 21] — Bedgglz1 + y; 01 +y + 1]}, (E.4)
as

lirl(l) Oy{Bedgg[z1; 21 + y + z1] — Bedgglz1 + y; 21 + y + 21]'}- (E.5)
yg)

The second term (5.2.11) becomes

GK., 1 1
(5:2.11) = lim €Try, [(1 — Bc) 2 ]

1-G. . —a.
1 G.K.  liy Ty GK. 1 , 1
6. 1-6.°q. e TG 6T TGl

K. 1
= (5.2.10) — lim €Ty, [—c 72]

= — lir% elry , lB’ﬁ

1-G. —Ge

= —hmeTry2 lKGQCG 27]

. 1
= —limeTry lGEQeﬁcGE — 72]

~0. (E.6)

Here, we use the following equation which holds for the string field ¢ anti-commuting
with B:

Try ,[¢] = Try ,[(Bc + ¢B)y]
= Try ,[Beyp] + Try_,[cBy]
= Tty_,[Bep]| — Try_, | Bey]
=0. (E.7)

The third term (5.2.12) becomes

. [ GK. 1 G.K. 1
(5.2.12) = —lli%ETI‘y72 _CBI — GEC—GECI — GECGE]
[ K. 1 K. 1
= _lg%ETrY? _CBl—Geéc—Gecl—Ggéc—Ge]
lim eTry, | (= + K.) B be—(— e + K.c)—— s
= —lim Ty — ] — ]
lim Tty ; c =g deog (e o preRley
) 1 1 1 1
:ll_l;I(]]_ETrY_Q aCBl—GG(SC—GCKCCl—Gedc—GE]
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1 1 1 1
lim ety , | K.cB Se——0 5
+ e rY-Z’[ 1o m6 1. C—Ge]

[ 1 1 1
= lim 2eTry , | B dc oc 5CG€]

50 96T 6. TG

= lim 2eTry , | Be(1 + G)Q0cG,

e—0 —

_1K oc(l + GE)QeécGe]

€

1
= lim 2¢Try BcQchej&‘cQJcGe] (E.8)

e—0

;( 8cG6§2550G6] . (E.9)

€

+ lir% 2eTry [BCG€QE5CGE

The terms (E.8) and (E.9) vanish as follows:

1
(E.8) = lir% 2€Try [BchGeécGejéchéc]

1
= liné 2¢Try , [Bch(ac — (SCGG)GejacQEéc]

€

e—0 €

= limeTry , lé (&chéchQE&c .1K )]

€E—>

= lim (6TI’Y2 {6(50)9650369680 ;{ ] —eTry , [80955036968(50)_-1}( ])

€ €

1 1
K 67967961 —€eTry , { BcécheraviKJ)

= 8lir% lir% Oy{Bedgg[x1; 21 + y + o1 + x2]) — Bedgg[an + y; 21 + y + 21 + 22}
e—0 y—
0 da (2a2 — 12 (e® — 1 —a(e+1)
——limef da a(2a 72T (e )e
0 72 (a? 4+ 72)

= — lim 4¢(Ci(me) cos(me) + - - +)

e—0

= 4111% <€TI‘Y2 [Bcac

€E—>

— 0, (E.10)

and

1
I 6CGEQE(50K€]

€

(E.9) = lir% 2€¢Try [BCQG(SCGG

S linol 2¢Try {BCQJCGE%Q(&)QJCKE]

€

1
= 111% 2eTry [BCQ€5CG€—K§CKEQ€50K€]

Il

= lim eTry l(S (50K€§2650K€BCQ€50 _1K )}

e—0 €

= lim (6T1"y2 |:(aC)K€Q€(SCKEBCQE5C

e—0

1 1
7 ] —€Try |:5CK696(60)K€BCQ€50j:|

€ €

1
+ eTry [50K€Q€50KEBCQE(6C) = ] )
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1
0YS2e
K 7

€

1
= lir% (4€Tl'y_2 ch&cKEngQE&y I ] + 4eTry [Bc@chﬁfy

€

1
— 4eTry [Bc@c 7 (?nye’yKEQE] )

€

1
I 0%26]

€

= liII(l) 4eTry [308096&7

= lir% de limoé‘yﬁy/{Bcdgg[zl +y i ty+ 2+ Yy + xs
€e— Y,y —

— Bedgg[z1;01 +y + 21+ + 2] — Bedggly + 21 + v +y + 21+ Y+ 1]

+ Bedggly + 21301 +y + 21+ ¥ + xg]’}

= limefw da2a (ag + (ea + 1) a? 4+ w2q — 72 (ea + 1)) e—a(e+1)
€= 0 (CL2 +7T2)2
= — lil% 2¢(Ci(me) cos(me) + -+ -)
o (E.11)

Then we obtain
liII(l) EOMS([¥3)0]) ~ lin%e x (loge + O(e”)) = 0. (E.12)

The solution lim._,o[V3/,]. satisfies the EOMS.
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Appendix F

Detailed Calculation of the Energy of the
Tachyon Vacuum Solution in Berkovits’ SFT

We give detailed calculation of the energy of the tachyon vacuum solution in Berkovits’
SE'T. The energy is given by

E(go) = —5(g0) = Jo dtTr[n0 (g0(t) " rgo(t)) - 9o(t) " Qgo(t)]. (F.1)
We can rewrite the integrand:

r[10 (90 (t) " Orgo(t)) - go(t) ' Qgo(t)]

TT[TIO (voug) "0 Uouo))(vouo)le(Uouo)]

TY[UO(U Ayvo) (Vo™ Quo + Qug - up )]

Tr[1o(000vo) Vo Qo). (F.2)

Here we used go(t) = voug, dsug = 0, vy~ ' = 09 + Be and the fact that the string fields ug,
up ™, Qug - up ™, Bedyvg, and BeQuy € HS™!, We write down v, expicitly:

1 —Q

_ =1 —ayB t-I— K — - 1)B
0 Pl K—aV +af —ayB + c(t aV —1)

Vg =
=1l+a(—aQ¢-B+c(t-I-K-1)B. (F.3)
We perform () for vy:

Quo=aQC+aQCK +Qc-(t- I—K—-1)B—c(t-I-K—-1)K
=c(aV(1+K)+dc(t-I-K—-1)B—(t-1 - K —1)K)
+BY*(t-I-K—1)+ay(l+K)
=c(—deto(l+ K)+dc(t- I —K—-1)B+1-1+a*(1+K))
+By*(t-I—K—1)+ay(1 + K). (F.4)

We perform ¢; for vy:
Oy = qC — qyB + c(—1 — qV)B. (F.5)
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We decompose it as d;vyg = 0' + 0§, depending on whether it is in H™*! or not.

’l.}l — qg . QCVB ¢ Hsmall’
05 = —qyB — cI B € H™,

N
SIS
~N O
N— N

We write down the explicit form of w and decompose it

_O[2 [0 2
w = | = Bec —a( + ayB + ¢B, (F.8)
-

wh = —ad, (F.9)
w® == —a*Bc + ayB + ¢B. (F.10)

We want to calculate v9Qug, and for that purpose we first calculate wQuy:

wQuy = ((—a”B + oy ")e + (ay + ¢)B)
x (cgo+ By (t- 1 — K — 1)+ ay(1 + K))
= —a’By*(t- I - K—1)+acBy(t-I — K —1)—a’Bey(1 + K)
—a’c(1+ K) + ayBegy + cdo + &*yBy(1 + K) + acBy(1 + K)
= ayB(tay - I — o’c(1 + K) + cgy)
+c(taBy - I —a?(1+ K) + ). (F.11)

Here we defined
¢o = —deto(1+ K) +c(t- T — K —1)B +t-I+a*(1 + K). (F.12)

Because 1yQuy = DywQuy,

1 1
GoQuo = (Y——B( + c——B
UOQUO (Fydeto C * cdeto )

X <a*yB(foz7 I —a’c(1+ K) + ciy)
+c(taBy - I —ao*(1+ K) + ¢0)>

1 _
= (ay + C)EB(tafy I —a?c(1+ K) + cgy)

1 _
= (ay + C)MB<UI’7 I —a’c(1 + K)

+c(—det0(1+K)+ac(£~I—K—l)B+E-I+a2(1+K))>

1 _ _ _
= (a”y+c)EB(t0z7-[—cdeto(1 +K)+tc-I—ac(t-1-K—1))
0

1
= —— B, F.13
(07 + ) 3o B (F.13)
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Here, we defined

Oy :=tay- I —cdeto(l+ K) +tc- I —0dc(t-1— K —1).
We rewrite (F.2) as

Tr[10(Vo0v0)VoQuo | = Tr[no (Do(wl + w®) (0" + DS))@OQUO].
The explicit forms of the terms in (w' + w®)(v! + ©) are

w'' = —al(¢¢ — qcVB) =0,

W'y = —al(—qyB — cIB) = qacB,

W' = (—a?Be + (ay 4+ ¢)B)(q¢ — qcV B) = glay + ¢)B(¢ — V),
WS = (—a’Be + (ay + ¢)B)(—qyB — cIB) = (qa*y — ayl — cl)B

Then, (F.15) becomes

(F15) = Tl"[’r]oDO : ’lUll.}SﬁQQUQ]
+ Tr[1o(Dow®0") 5 Quo]
+ Tl"[noDo . wsbgfpoUo].

The factors 179Dy and 1(Dowt!) are calculated as follows:

1 1
Dy = +c—B
Moo 770<dt B¢ +c )

dety
= 7( dlt) B( - vditBC(nov ) - (nofto)B,
no(Dow%l):no(( dlto B¢ + ﬁB) (cw+C)B(C—V>>
=qno(avﬁ (e V)+cd%DB(C V))

1
—B Vv
~glan+ I (30 BE-1)).
The first term (F.20) becomes
(FQO) = TI'[?]()DO : ’(Ul?.}(s)f}oQU()]

1 1
= —Tr [c (WOE) BqacB(ay + C)EBQO]

1 1
— ¢aT — ) —Bd
qatt l <n0 det0> deto OC]
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1 1
= qa'T — | —B
gt l <770 deto ) detg

X (tay - Ic—cdeto(l + K)c+te-Ie—0c(t -1 — K —1)c)|, (F.25)

where we used the cyclicity of Tr!, Tr[pps] = (—) V) Tr[py,]. Here,

—cdeto(l+ K)e+te-Ie—0dc(t- 1 — K —1)c)
= —([c,detg] + detoc)(1 + K)c+tc-Ie—dc(t - I — K — 1)c)
= —([e,t] — K — aV + a?] + detoe)(1 + K)c+tc- Ic — dc(t- I — K — 1)c)
= —(t[e,I] + dc+ detoe)(1 + K)e+te-Ie—dc(t - I — K — 1)c)
= —detocdc — t[c, I[1(1 + K)c — de(1 + K)c + telc — toc - Ie + dc(K + 1)c
= —detgcdc — t[c, [|Kc—toc- Ic
= —detgcoc — t(cIKc — Icde + dc - Ic)
= —detgcdc + t(Icdc — Kelc)
—detocde + t(Icoc — K[l c]), (F.26)

where we used

[c,deto] = t[c, I] + dc. (F.27)

Therefore,
Doc = tay - Ie — detgede + t(Icde — Kc[1, c]). (F.28)

We continue to calculate the term (F.25):

[ 1 1
F.25) = qaT — | —Bd®
( ) qatt _(nodeto) detg OC:|
1

: o 7
=0T Mg, ) dety P71 Icoc— K[l
o -<n°deto) deto (Foy T = detoede + P(Teoe — Kef w]))]

[ 1 1 _ _
= qa'T — | —2B v Icoc— Ke|l . F.2
qga'Tr _<n0det0> oty (tory c+1t(lecde < ,c]))] (F.29)

Here, we used the following equation:

1 1 1
T —— | —— Bdet =T —B = F.
T [(770 det0> dote e Ocac] T lno (deto c@c)] 0, (F.30)

where the first and the second equality comes from [B,dety] = 0 and Tr[nyp] = 0,
respectively.
The second term (F.21) becomes

(F21) = TI‘[T]O (D()U)ST'JI)T)()QU()]

Tn the case of the cubic theory, since the non-vanishing ghost number input in the trace is 3, then
e(p1)e(p2) = 0. While, in the case of the Berkovits’ SFT, since the ghost number is 2, it may appear a
minus sign in the cyclicty of the trace.
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= —Tr lq(m + ¢ (ﬁtOB(C - V)) (ay + 0)%%3@0]

Ty lq(a’y T oo <LB<< V(o + c)> LB@O]

det dety
_ qaT L a-v))-L Bo (F.31)
= ol { e @ dotg D 20 '
1 1
T —(x — —B® . F.32
e (ot = 1)) o B (F.32)

The first term (F.31) becomes

(F.31) = ga'Tr [no (L(a — V)) LB<I>ov]

deto deto
= gaTr L(04 -V) LB
— 1 "o deto detg

X (tory-[—cdeto(1+K)+tc-[—8c(t-[—K—1))fy]

1 1 _
= qa'Tr {7}0 (E(a — V)> EB(—C deto(1 + K) + tc- I)y]

_ gaTr [UO (%to(a _ v>> %%B([c, det] + detoc) (1 + K)V]

ot (o) b

1 1 _
= —qga'T — (v — ——B(t|e, I det 1+ K
e r[no (deto(a V) p (t[c, I] + Oc + detge)(1 + )’y]
+ fgaT L)) Lper
v _ )
e o detg @ detg €

_ _gaTr [770 (%@‘ CV)Be(1 + K)yﬂ

1 1
T  a=V))—Be-I
+ tqa 1“[?70 (det()(a V)> detoBC ’y]
_ 1 1
— fgaTr|-——(a— ) Be-1I F.
qa rldeto(a V) (nodet0> c 7], (F.33)

where we used Tr[By] = 0 for ¢ s.t. [B, ¢} = 0 and Tr[nye]| = 0. The second term (F.32)
becomes

1 1
—qT L a-v))-Lnp
— 4o det() “ det()

x (tay - Ie — detocdc + t(Icdc — Ke[I, c]))]
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1
— —¢T — (a—V)B
i1 o (g V18eie) |

1 _
+ ¢Tr lno <E‘co(a - V)) d—B(ta’y e+ t(lede— K|, c]))]
1 _ _
= —qTr {—(a -V) <7]0—) B(tow Je+t(Iede — K[, c]))] . (F.34)
0 deto
Then, we reach the following form of (F.21):

(F.21) = (F.33) + (F.34)

_ it [ﬁo(a —V) ( dlto) Be- Iv]
g @ V) (g ) Bror - Teos (et sty o)

_ 1 1
— fqaTr|——(a—V) (ny—— ) [1,4]B
qor rldeto(a )(nodeto)[ 7] C}
_ 1 1
— tqTr lgto(a -V) (nom) B(Icoc — Kc[I, c])] : (F.35)
The third term (F.22) becomes

(F.22) = Tr 1o Do - w*vgtoQuo]

1
Tr | noDo(qa®y — ayI — cI)B(ay + c)—B@O]

det()

1
Tr [770D0 qoy — ayl — cI)EBCDO]

o (o ) i)

1
x (qga*y — ayI — c[)—BQJO]

deto
1 1
= —Tr |~y B((qay — ayl — cI)——B®, (F.36)
0 deto to detg
J— — 2 —_— —_— —
Tr[ T = Be(noy ) (qa?y — ayI cI)detOB(IDO] (F.37)
1 1
~T —— ) B(go?y — ayl — cI)——Bd | . F.
r lc (no deto) (goy —ayl = el) o 0] (F.38)
The first term (F.36) becomes
1
(F.36) [ ( ) B((qa*y — avI — c])d—BCI)O]
to

1 1
- T — — al)—B®
r[(nodeto)wa ) g B
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X (t_oxy-l—cdeto(l—FK)+fc-[—8c(f~I—K—1))’y]

T K%%to) (ga? — a[)ioB( cdeto(1 + K) + fe - 1)7]
—Tr l(%%to) (qa? — a[)&B( ([¢, deto] + detoc) (1 + K) + fc - 1>7]
— T [(mﬁo) (qa® — af)dLOBc m] (F.39)

The second term (F.37) vanishes

1 1
(F.37) = —Tr WBc(nofy Y(ga?y — ayI — C[)EB(I)O]

1 1
— _Tr|{r—B I)—B®
r th c(noy™ ") (gay — ay )dt 0}

= —Tr

1
—DB -t 2 _al —B(I>
o el ) (0® = al) B

- 0. (F.40)

The third term (F.38) becomes
[ 1 1
(F.38) = —Tr|c <770—> B(qa*y — ayI — c[)—BqDO]
deto

I detg
= -T _ ! I—DB®
B ' | nodeto de t() 0

- _Tr (UOL) ]LB<toz’y Ie — detocde + t(Iede — K[, c]))]

deto deto
_ 1 1
= —{Tr K%@to) IEB(OW Ic+ Icoc— Kc[l, c])] : (F.41)

Then, we reach the following form of (F.22):

(F.22) = (F.39) + (F.40) + (F.41)

1
—tTrl(no ) qa? —a[)ﬁBc I’y]

—t'T [—B Ic+ Icdc— Kc|l
trl det0> dote (ary-Ic+ Icoe | c])]

6
o)
{ Ly
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_ 1 1
—tT I——B(Icoc— Kc|I F.42
t| (e ) P BUIcte - Kelre)) | (F.42)
We summarize the above calculations:

Tr[no(go(t) 090 (t)) go(t) " Qgo(t)]
= gaTr l(noi) LB(tow Ie+t(Icoe — K[l c]))]

deto deto

_ 1 1
— tgaTr lgto(a -V) <n0E) [],’y]Bc]

Ty [%to(a — V) (noéto) B(Icdc — K[, c])]

_ 1 1
tqa®T —— | —DBc-1
Tlgardr |:(170 det0> deto ¢ ’7:|
taT: L I L [I,~]|B
—ltolr -— - C
"o deto deto 7

_ 1 1
—tT —— | [—B(lcoc — Kc|l
tTr [(nodeto) dote (Icoce < c])]
=1{ g’ Tr 7]0L —ny Ic| + qaTr 770L —B(ICOC—KC[I cl)
deto det() det() deto

1 1 1 1
— qa*Tr ld o <Uom> [, ]BC] + qa'Tr ld tov <U0¥t0> [IW]BC]

_ o [ dlto (UOL) B(Icoc — K[, c])]

det()
1

1
T B(Icoc — K[l
a1 | i (i ) Blrede - Kel1.a)|
+ qa*Tr LV L gy —am = IL[I 1Bc
g o deto de to i lo det[) deto Y

T [( d;to) [EB(IC(% _ Kd[I, c])] }

_ 1 1
— 11 2¢02T — ) —B¢[I
{ qo r[(%dem) ot c[ 7’7]]

+ 20Ty KUOL) L B(reoe - KdlI, c])]

deto deto

1 1
+ qo'Tr [d ” % (noﬁ) [[,’}/]BC]
T | =V (o= ) B(Icdc — Ke[I,¢])
T qetg " \ ™ et coem RanLe

1 1
—aT — | [—|1,v|B
att |: (770 det() ) deto [ ’ ’Y] C:|
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T [(”Oéto) [~ B(Icoe — K[l c])] } (F.43)

deto

In the tachyon vacuum solution, I =1,
_ 1
Tl an(0) )0 (6) ™ Qan(0)] = £ a0~ 1T | (s ) o Bece] ()

1 1
+ ¢Tr ldetgv (770 deto) Bcﬁc] } (F.45)

Let us calculate the energy of the solution:

1

E(go) = —S(g0) = J dtTr[no (go(t) " :g0(1)) go(t) ' Qgo(1)]. (F.46)

0

1 .
detg *

We give a definition of the string field

- B -1
T (t+a°—K—aV)

- ((1_0“/%@1—[() (fmi—f()_l)_l

1 1 -
S SR (W VS —
t+a2—K< “ t+a2—K>
1

1 1 1
=———(1+aV—sg—=+aV= V=
t+a2—K< ta t+a2—K+a fta2— K t+a2—K+ >

( 1 N 1 v 1
et — — a —
t+a2—K t+a?2—-K t+a2—-K

1
_ V- v )
+t+a2—Ka t+a2—Ka t+oz2—KJr

11 Ioa, 1
‘E<1—K/ﬁ+1—K/ﬁB - K/B

1 o 1 a 1
+1—K/5BV1—K/BBV1—K/5+"'>’ (F.47)

where 8 :=t + a?. In calculations, we will pick up suitable terms with be-ghost number
three.
(F.44) becomes

1 1 o? 1 1 1 1
B [(” deto) dcty BC@C] “pt [”“ (1 KB 1o K/ﬁ) K5 1o K/ﬁBcac] |
(F.48)
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We rescale K, B, ¢, v and v~ !

1 1
K_)ﬂK7 B_)ﬁBv ¢ — ¢, Y= =7 771_) 6’7717
3 VB v

(> —(, V=BV (F.49)

al-

Then, (F.48) becomes
o2

/8322
B322 //// H dr;e ™ eu[xl + X2, x3 + 374] BCddd[Z’47 T + X9, 1’3]

><§Tr[ 3(—i09)o3(—ios)03030303]

(F.48) = Tr[(noy ) (Q)?0cy 1 Q BedeS),0c]

2 /4
- 6322 (p) : (F.50)
where
d 1
eiifty, to] = <j€ 2;77( )E(0)e?(0)&(t)e (1) ), = T Ib . (F.51)

We calculate (F.45) as (F.44):

1 1 1 1 1 16} 1
Tr [detov( 0 3eto )Bc&c] [B—l — K/ﬁ\/gno (1 — K/BBV1 — K/ﬁ) Bc&c]
o}
— WTr[(nov_l)Qchéchﬁcv_lQxﬁc]
oo 3
a 71’1‘ .o
= ﬁ222 JJJO Z1?1[ d.fz e eu[:r:l + T, ]33] . BCddd[IQ, xs, l’l]

X §T1"[0'3(—i02)030'3030'3(—i0'2)03]

- (;) | (F.52)

Finally, we obtain the energy of the tachyon vacuum solution:

E(go) = Jl dt (£(2goc — 1) - (F.50) + gt - (F.52))

! a2 4 _ a 8
(2 = °
Jo dt ( t(2qa — )5322 2 tq5222 7r2>

1
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Appendix G

Detailed Calculations of the Energy of the
Double-brane Solution in Berkovits® SFT

We give detailed calculations of the energy of the double-brane solution in Berkovits’ SFT.
We explicitly write down the omitted terms in the main text.
The term (7.2.26) becomes

f dt (7.2.26)],_

0
1 ) rl B B
— ﬁhrr(” dttt‘r’Tr[(nofy 1)(1 — K.)? [F>]. 20y (1 — K. )[F2]e
€e— 0
X 807_1[[172]]6(97[[172]]63060]
1 rto
=5 lirréj dt tt° - eiiid[uy + up + 1y + N, uz + n3, Ny, ns)’
€E—> 0

x Beddd[uy + ug + ny + no, uz + nsz, ns + ns|’

X §Tr[03(—i02)03(—iag)ag(—iag)i02030303]. (G.1)

Here, we define

eilig[ty, to, t3, t4]

= <§ (0)e O (t)Ee (b + ta)eln(ty +to + ) )T, L,

T sin 91‘,1 +to+13

(G.2)

 Lsinf,, sinfy, .y,
ellld[tl, tQ, tg, t4] = hH(l) 8y{elllg[t1, tz, i3 + Yy, t4] - eulg[tl, tQ, t3, ty + ’y]} (G3)
y—)
We use the abbreviation explained around (E.3); in this case, we use the certain letter n,,
u; and y;:

1 0
(R = = | dnert - et

- 100 —



1-K, =— l.irnO 6’%{6_(1“)“’(2“1'},

K. = llimO Oy {e™ VI Y. (G.4)
For example, we abbreviate the term:

Te[(noy ") (1 = K’ [Fo]*0cy™ (1 — Ko)[Fo]dey ™ [Fo] 0y [ Fele Bedc]
1

o O 3 5
_ . : _ —k_n; _ —kini\, (14+e€)u;
— fo gdnlgul;glo( Ou;) (k+ — k‘_> (e e ke

X e111d[u1 + U + N1 + No, Us + N3, Ny, 7’L5]

x Beddd[uy + ug + ny + no, uz + ng, ns + ns|

X §Tr[03(—i02)03(—iJg)Ug(—’iUz)’iUngO’gUg], (G5)
as
eitid[ug + ug + ny + na, ug + ng, ng, 05|’
x Beddd[uy + ug + ny + no, uz + nz, ns + ns|’

X §T1"[0'3(—iO‘2)O’3(—iO’g)O‘g(—iO‘g)iO’gO’gO‘gO‘g]. (G6)
The Second term (7.2.13) becomes

(7.2.13)

o LN 1

= —2£i_I>IéfqozTr[(1 — K)[F]ca(noV)(1 — K.)[Fa].

x (1 — K)[Fs]eaV (1 — K)[F] B[] ccoc[Y]]
= —2lim tqa Tr[[Fa]c(noV) (1 — K)?[F] 2V [Fo] e BK ccocK,]

. tga?
= —lim
e—0 2

Tr[(noy (1 — K )?[Fy]20cy H[Fy] K. BedcK [ Fy].oc). (G.7)

Then (G.7) becomes

1 1

1. — ..

f dt (G.7)| =% hr% dt tt3 - eiifu; + ug + 1y + no,ng + Y1 + Yo + ngl’
0 =Y Jo

x Beddd[ys + 14, ur + ug + ny + na,ng + y1]/

1
X §Tr[03(—i02)03(—2'02)03030303]. (G.8)

The third term (7.2.14) becomes

(7.2.14)
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.- 1 1
= 11_{% tqaTr H[EV (nOE) Qxé‘nychﬂ 6]
= ll_r)% tqaTr[(1 — KE)[[FQ]]EVnO((l — K)[F]aV (1 — K)[F]aV (1 — KE)[[FQ]]e)

x .09 Bc]
+ lg%fanr[(l — K)[F]aV (1 - Ke)[[FQ]]J/nO((l — K)[F]aV (1 - Ke)[[Fg]]e)

x Q.09 Bc]
= —lim o Tr[[F2] e (noV) (1 = K]V (1 = K)[Fa] eV [Fa] 0y Be]

+lim fga T[]V (1~ K)IELV (1~ KB noV)[F]ovBd]

. tga? _ _ -
=~ lim =5 Tel (o0 ™)(1 = KBl (1= Ko [BLer [Fldy[ Bl Beoe]
(C.9)
. tga® - _ _ R
+ lim LT oy~ [Fal A [ Ba] Bedey™ (1 = Ko)[Fo]der™ (1 = K [Fo].ac].

(G.10)

Then (G.9) and (G.10) become

1
f dt(G.9)|,_
0

L[ -
= 7 lim dt T3 Tr[(noy ™) (1 — K [F].

e—0 0

X 8cv_1(1 — KE)[[FQ]]E(?CV_I[[Fg]]eﬁvﬂFg]]eBcﬁc]

1 L
=5 linéj dt tt® - eiiid[u; + ny, us + 12, n3, ny] x Beddd[ug + ny, ug + ng, n3 + ny’
€E—> 0

1
X §Tr[03(—ia2)03(—iag)ag(—iag)i02030303], (G.11)

and

1
f dt (G.10)|q:%
0

1

= l lim | dt ft?’Tr[(noy_l)[[Fg]]eafy[[FQ]]eBcacv_l(l — KE)HFQH€867_1(1 — K.)[F3]c0c]
0

27 e
1 Lo
= lin% dt tt* - eidii[ny, ng, ug + ns, uy + ny]” x Beddd[ug + ns, ug + ng, ny + nyl’
€—> 0
1
X §Tr[03(—iag)iagagagag(—i02)03(—i02)03]. (G.12)

The fourth term (7.2.15) becomes

. s T 1 1 ’ /
(7.2.15) = 11_{% tqTr H[detgv <n0det2> BQ' c0c) ﬂ 6]
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= — lli% qur[(l - Ke)[[FQ]]EVT]()((l - Ke)[[FQ]]EOéV(l - Kg)[[FQ]]E)
x B[] ccoc[V]]
= - 11_{% tqTr[[F2] V(1 — Ko)[Fo]ea(noV ) [Fa] e BK ccOcK. ]

=— lirré t;]—QaTr[(no'y_l)[[Fg]]EKché’cKE[[FQ]]gécv_l(1 — KJ)[F]e0c].  (G.13)

Then, (G.13) becomes

1
f dt (G.13)] 1
0

1

__t lim | dt &t Tr[(noy 1) [Fo] e KeBeoeK [y dey™ (1 — K )[Fy]0c]

24 e—0 0
1 Lo
=5 lir% dttt - eii[ny + y1 + y2 + no, up + n3]’ x Beddd[ys + na, us + nz, ny + 41’
€ 0
1
X §Tr[03(—i02)03030303(—i02)03]. (G.14)

The fifth term (7.2.16) becomes

1210 = syt [ )t |

det2 detg
= —llmtaTr[no(( KJ)[F]aV (1 - K.)[F)].)
x [[Q]] ( - )[[F2]]605v<1 - Kﬁ)[[F2]]eaV(1 - Kﬁ)[[FZ]]eQEaVQEBC]
— hm taTr[no(( K)[F]eaV (1 — K)[Fy]eaV (1 — Ke)[[Fg]]E)

x [Q](1 — K)[Fa]caV (1 — K)[F2]Q07QBe]
== 11_1)%75_044TT[HF2L(7]0V)[[Fz]]eKe(l — K)[F] V(1 — Ko)[Fo] V[ Fo]c0vBc]

+ 11_1)137?&4Tr[[[p2]]6v(1 — K)[F] V] K (1 — K[ Fa]e(noV)[F2]0vBe]
= —tim Ty DBLK( - Kooy (1 - KR
x ey o] c0v[Fa] e Beoc] (G.15)
+lim t2—3Tr[(n071)[[F2]]€07[[F2]]EBC(7071(1 _ K)[R].
x dey M) 2K (1 — K.)od]. (G.16)

Then (G.15) and (G.16) become

r dt (G.15)|,_1

0

(B ) i
= —§11HIJ dt tt* Tr[(noy D [Fa] 2K (1 — K)oey ™!

=0 Jo
x (1 — K)[Fo]c0cy [Fy] 0y Fa] Beoc]
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1 Lo
=~ lir%f dt tt* - eiiid[ny + ny + y1 + uy, up + n3, ng, N5’
€E—> 0
x Beddd[ny + ng + 41 + ug, ug + ng,ny + ns’

X §Tr[03(—i02)03(—iag)ag(—iag)iagagagag], (G.17)

and

f 0t (G.16)],_s

1
= —lim ( dt tt* Tr[(noy ) [Fo] 0y [ Fo] Bedey ™
x (1 — K)[Fa]0ey [ Fa) 2K (1 — K,)oc]
1
= —lim [‘ dt tt* - eidii[ny, ng, u1 + nsg, ng + ns + Y1 + ug]’

Jo
x Beddd[uy + ng,ng + ns + y1 + uz, ny + no’

X §Tr[03(—iag)iagagagag(—2’02)03(—2'02)03]. (G.18)
Here, we define
elgu tl, tQ, t3, t4]

=< § “(0)efn(tr)Ee ™ (t + ta)e (b + o + t3) YE

Ciyttgtts+ty

sin 6y,

: (G.19)

L sin 9t1+t2 sin 9t1+t2+t3

eldll[tl7 to, t3, t4] = 11H(1] 8y{e111g[t1, to, 3 + Yy, t4] — eulg[tl, to,t3,t4 + y]} (G20)
y—)

The sixth term (7.2.17) becomes

(7.2.17) = llin tTr Hl(noﬁ) Q %BQ%&CQH ]
= lim Te[no (1 - K)[Fo]caV (1 — K)[F].)
< [Q].(1 = K)[F]aV (1 — K)[Fo] B[] ccoc]].]
= lim ta®Tr[[Fo]c(noV) (1 — K)[Fy)2K V[ Fy] . BK . cocK,]
= lim 752—2Tr[(7]071)(1 — K)[F]?K.0cy [Fy] K BcocK [Fy].oc].  (G.21)

e—0

Then, (G.21) becomes

1
f dt (G.21)|q:%
0
1

1
= o 111% dt t*Tr[(noy 1) (1 — K)[FR]? K. oey  [Fy] K BeocK, [ Fy].oc]
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1 L
= gllﬂé dt tt? -eii[u1 + Ny +ne+Y,N3 + Y2 + Y3 ~I—n4]'
e—0 Jg
- Beddd[ys + ng, ug + ny + ng + y1,n3 + yo’

X §Tr[03(—z'02)03(—iag)agagagag,]. (G.22)

Then, we have the expression for the energy of the solution go with ¢ = 1/2:

P_%[[E(gﬁ]]e = E}%L dt Tr[no([[gz(t)*lath(t)]]e) [92(t) " Qga(t)] ]
= (7.2.27) + (G.8) + (G.11) + (G.12)
+ (G.14) + (G.17) + (G.18) + (G.22). (G.23)

If we complete this calculation, we obtain the energy of the solution of the solution gs.
Let us derive the correlators in Berkovits’” SF'T. First, we note the normalization in
this thesis:
(EcOcd?ce™ Ve = (G.24)

or
<§>UHP 2 >%HP = -1, <C80(92€>%CHP =2 (G.25)

Let us derive the following correlator:
i[t1, to] &ne G.26
i ta] = (. 2(0)ée (1) L, (G.26)
from Tr[nyy 1QH~~1Q2];

¢ ;f & (e 0)e0 (1)

= _<€(t1)>UHP<6_¢( Je _¢(t1) >%HP
= (it o frma 0 &(t) Yol £ o froa 0 e ?(0) £ 0 froz 0 e (t1) Yomp

= —(&(tan by, ) ke (%)éa ( 1 >%<6_¢(0)6_¢(t3n 01,) Yourp

cos? 0y,
= __< § >UHP <€_2¢ >UHP

T 1
= —— ) G.2
L sin 0t1 ( 7)

89t1 (0 —tan@,,)~*

Here, h(£) = 0, h(e™?) = 1/2 and ¢(2)¢(0) ~ —Inz. Similarly, we have the following

correlator:

eilig(ty, ta, t3, t4] = <j£ n(2)€e=?(0)¢e™?(t1)&e ™ (ty + t2)e®n(ty + b2 + t3) >%n£p> (G.28)
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from Tr[nyy QU ~y~1QR2y~1OB~OH];

( l 2m.77<2)5 (0)€e™?(t1)€e™"(t1 + t2)€¢n(t1 + ty + t3) £UWHd)p
0

1 1 1
1 3 1 3 1 —3
L (C082 0, ) (C082 01, 11, ) <C082 9t1+t2+t3)

X < e (tan etl )eix (tan etl +t2 )eix (tan etl +t2+t3) >%HP

X < 6_¢(0)€_¢<tan 0t1 )e_d) (tan ‘9t1 +i2 )e¢(tan 9151 +t2+t3> >%HP
L —

=~ L cos 0, cosOr, 1, (0 — tanby,) =" (0 — tan 0, 41,) 7 (0 — tan Oy, sy 41,)

T SO 1yt

= (G.29)

L sin Qtl sin th +to )

Here, h(n) = 1, h(e?) = =3/2, x(2)x(0) ~ Inz. By performing the same procedure, we
have

T Sith
eigii[ty, ta, t3,t4] = ——— 1 . G.30
g [1 2,03 4] L81n9t1+t2 Sln9t1+t2+t3 ( )

- 106 —



References

1]

H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Manifestly Covariant Field
Theory of Interacting String, Phys. Lett. B 172, 186 (1986).

[2] E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268,

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

253 (1986).

E. Witten, Interacting Field Theory of Open Superstrings, Nucl. Phys. B 276, 291
(1986).

C. R. Preitschopf, C. B. Thorn and S. A. Yost, Superstring Field Theory, Nucl. Phys.
B 337, 363 (1990).

[. Y. Arefeva, P. B. Medvedev and A. P. Zubarev, New Representation for String Field
Solves the Consistency Problem for Open Superstring Field Theory, Nucl. Phys. B
341, 464 (1990).

[. Y. Arefeva, P. B. Medvedev and A. P. Zubarev, Background Formalism for Super-
string Field Theory, Phys. Lett. B 240, 356 (1990).

M. Kohriki, T. Kugo and H. Kunitomo, Gauge Fizing of Modified Cubic Open Super-
string Field Theory, Prog. Theor. Phys. 127, 243 (2012) [arXiv:1111.4912 |hep-th]].

N. Berkovits, SuperPoincare invariant superstring field theory, Nucl. Phys. B 450,
90 (1995) Erratum: [Nucl. Phys. B 459, 439 (1996)| |hep-th/9503099].

N. Berkovits, A New approach to superstring field theory, Fortsch. Phys. 48, 31 (2000)
[hep-th/9912121].

A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 9808, 012
(1998) [hep-th/9805170].

A. Sen, Descent relations among bosonic D-branes, Int. J. Mod. Phys. A 14, 4061
(1999) [hep-th/9902105].

A. Sen, Universality of the tachyon potential, JHEP 9912, 027 (1999) |hep-
th/9911116].

A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 0003,
002 (2000) |[hep-th/9912249|.

- 107 —



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

26]

27]

28]

29]

M. Schnabl, Analytic solution for tachyon condensation in open string field theory,
Adv. Theor. Math. Phys. 10, no. 4, 433 (2006) [hep-th/0511286].

Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in
Witten’s open string field theory, JHEP 0604, 055 (2006) [hep-th/0603159].

M. Murata and M. Schnabl, On Multibrane Solutions in Open String Field Theory,
Prog. Theor. Phys. Suppl. 188, 50 (2011) [arXiv:1103.1382 |hep-th]|.

M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP
1207, 063 (2012) [arXiv:1112.0591 [hep-th]]|.

I. Ellwood, Singular gauge transformations in string field theory, JHEP 0905, 037
(2009) [arXiv:0903.0390 |[hep-th]].

T. Erler and C. Maccaferri, Connecting Solutions in Open String Field Theory with
Singular Gauge Transformations, JHEP 1204, 107 (2012) [arXiv:1201.5119 [hep-th]].

T. Erler and C. Maccaferri, The Phantom Term in Open String Field Theory, JHEP
1206, 084 (2012) [arXiv:1201.5122 [hep-th]|.

H. Hata and T. Kojita, Winding Number in String Field Theory, JHEP 1201, 088
(2012) [arXiv:1111.2389 [hep-th]].

T. Erler and C. Maccaferri, Comments on Lumps from RG flows, JHEP 1111, 092
(2011) [arXiv:1105.6057 [hep-th]].

H. Hata and T. Kojita, Inversion Symmetry of Gravitational Coupling in Cubic String
Field Theory, JHEP 1312, 019 (2013) [arXiv:1307.6636 |[hep-th]].

T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions
in open string field theory, JHEP 1210, 113 (2012) [arXiv:1207.6220 [hep-th]].

T. Erler and C. Maccaferri, String Field Theory Solution for Any Open String Back-
ground, JHEP 1410, 029 (2014) [arXiv:1406.3021 [hep-th]].

M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing
operators in open string field theory, JHEP 1103, 122 (2011) [arXiv:1009.6185 |[hep-
th]|.

T. Erler, Ezxotic Universal Solutions in Cubic Superstring Field Theory, JHEP 1104,
107 (2011) [arXiv:1009.1865 [hep-th]|.

T. Erler, Analytic solution for tachyon condensation in Berkovits‘ open superstring
field theory, JHEP 1311, 007 (2013) [arXiv:1308.4400 [hep-th]]|.

T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation,
JHEP 0910, 066 (2009) [arXiv:0906.0979 |[hep-th]]|.

- 108 —



[30] I. Ellwood, The Closed string tadpole in open string field theory, JHEP 0808, 063
(2008) [arXiv:0804.1131 |[hep-th]|.

[31] K. Ohmori, A Review on tachyon condensation in open string field theories, hep-
th,/0102085.

[32] E. Fuchs and M. Kroyter, Analytical Solutions of Open String Field Theory, Phys.
Rept. 502, 89 (2011) [arXiv:0807.4722 [hep-th]|.

[33] M. Schnabl, Algebraic solutions in Open String Field Theory - A Lightning Review,
Acta Polytechnica 50, no. 3 (2010) 102 [arXiv:1004.4858 |[hep-th]]|.

[34] Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys. 128, 1001
(2012).

[35] N. Ishibashi and K. Murakami, Gen no ba no riron, SAIENSU-SHA Co.,Ltd. (2012),
(in Japanes).

[36] J. Polchinski, STRING THEORY VOLUME 1, Cambridge, UK: Univ. Pr. (1998)
402 p.

[37] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, New York,
USA: Springer (1997) 890 p.

[38] T. Eguchi and Y. Sugawara, Conformal Field Theory, Iwanami Shoten (2015), (in
Japanese).

[39] L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality,
JHEP 0109, 038 (2001) [hep-th/0006240].

[40] E. Fuchs and M. Kroyter, On the classical equivalence of superstring field theories,
JHEP 0810, 054 (2008) [arXiv:0805.4386 |[hep-th]]|.

[41] O. K. Kwon, Marginally Deformed Rolling Tachyon around the Tachyon Vacuum in
Open String Field Theory, Nucl. Phys. B 804, 1 (2008) [arXiv:0801.0573 [hep-th]|.

[42] I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum,
JHEP 0702, 096 (2007) |[hep-th/0606142].

[43] T. Baba and N. Ishibashi, Energy from the gauge invariant observables, JHEP 1304,
050 (2013) |arXiv:1208.6206 [hep-th]].

[44] I. Kishimoto, T. Masuda, T. Takahashi and S. Takemoto, Open String Fields as
Matrices, PTEP 2015, no. 3, 033B05 (2015) [arXiv:1412.4855 [hep-th]|.

[45] L. J. Dixon, D. Friedan, E. J. Martinec and S. H. Shenker, The Conformal Field
Theory of Orbifolds, Nucl. Phys. B 282, 13 (1987).

[46] J. Frohlich, O. Grandjean, A. Recknagel and V. Schomerus, Fundamental strings in
Dp - Dq brane systems, Nucl. Phys. B 583, 381 (2000) [hep-th/9912079).

- 109 —



[47] A. Hashimoto, Dynamics of Dirichlet-Neumann open strings on D-branes, Nucl.
Phys. B 496, 243 (1997) |hep-th/9608127|.

[48] P. Mukhopadhyay, Oscillator representation of the BCFT construction of D-branes
in vacuum string field theory, JHEP 0112, 025 (2001) [hep-th/0110136].

[49] A. Miwa and K. Sugita, Singular gauge transformation and the Erler—Maccaferri
solution in bosonic open string field theory, PTEP 2017, no. 9, 093B01 (2017)
larXiv:1707.00585 |[hep-th]].

[50] I. Y. Aref’eva, A. S. Koshelev, D. M. Belov and P. B. Medvedev, Tachyon condensa-
tion in cubic superstring field theory, Nucl. Phys. B 638, 3 (2002) [hep-th/0011117].

[51] N. Berkovits, The Tachyon potential in open Neveu-Schwarz string field theory, JHEP
0004, 022 (2000) [hep-th/0001084].

[52] N. Berkovits, A. Sen and B. Zwiebach, Tachyon condensation in superstring field
theory, Nucl. Phys. B 587, 147 (2000) [hep-th/0002211].

[53] I. Y. Arefeva, D. M. Belov and A. A. Giryavets, Construction of the vacuum string
field theory on a nonBPS brane, JHEP 0209, 050 (2002) [hep-th/0201197].

[54] T. Erler, Tachyon Vacuum in Cubic Superstring Field Theory, JHEP 0801, 013
(2008) [arXiv:0707.4591 |[hep-th]].

[55] R. V. Gorbachev, New solution of the superstring equation of motion, Theor. Math.
Phys. 162, 90 (2010) [Teor. Mat. Fiz. 162, 106 (2010)].

[56] S. Inatomi, I. Kishimoto and T. Takahashi, On Nontrivial Solutions around a
Marginal Solution in Cubic Superstring Field Theory, JHEP 1212, 071 (2012)
larXiv:1209.6107 [hep-th]].

[57] E. Aldo Arroyo, Comments on multibrane solutions in cubic superstring field theory,
PTEP 2014, no. 6, 063B03 (2014) [arXiv:1306.1865 [hep-th]].

[58] N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field
theory, JHEP 0411, 038 (2004) [hep-th/0409018|.

[59] I. Kishimoto and T. Takahashi, Comments on observables for identity-based
marginal solutions in Berkovits’ superstring field theory, JHEP 1407, 031 (2014)
larXiv:1404.4427 [hep-th]].

- 110 —



	1 Introduction
	2 Review of the Bosonic Cubic String Field Theory
	2.1 Cubic Action
	2.1.1 Cubic Action
	2.1.2 Definitions by Using CFT

	2.2 KBc Algebra
	2.2.1 Sliver Frame
	2.2.2 Definition of String Fields K, B, c
	2.2.3 Algebra

	2.3 Pure-gauge-form Solution
	2.4 Tachyon Vacuum Solution
	2.4.1 Solution
	2.4.2 Energy
	2.4.3 Trivial Cohomology
	2.4.4 Gauge Invariant Observable

	2.5 Erler--Maccaferri Solution
	2.6 Multiple-brane Solution
	2.6.1 Murata--Schnabl Solution
	2.6.2 K-Regularization
	2.6.3 Equation of Motion in the Strong Sense
	2.6.4 Energy and GIO


	3 Singular Gauge Transformation and the Erler--Maccaferri Solution
	3.1 Construction of the Solution
	3.2 Equation of Motion in the Strong Sense
	3.3 Energy and Gauge Invariant Observable
	3.4 An Example: D24+D25-brane

	4 Review of the Modified Cubic Superstring Field Theory
	4.1 Non-GSO-Projected Action
	4.2 KBcG Algebra
	4.3 Known Solutions
	4.3.1 Tachyon Vacuum Solution
	4.3.2 Half-brane Solution


	5 Multiple-half-brane Solution
	5.1 Gauge Equivalence between U1/22 and U1
	5.1.1 From the Form of the Gauge Parameter
	5.1.2 From the Energy of the Pure-gauge Solution -1Q

	5.2 Multiple-half-brane Solution 3/2
	5.2.1 Solution
	5.2.2 G-Regularization
	5.2.3 Equation of Motion in the Strong Sense
	5.2.4 Energy

	5.3 Double-brane Solution

	6 Review of the Berkovits' Open Superstring Field Theory
	6.1 Action
	6.2 Tachyon Vacuum Solution

	7 Double-brane Solution in Berkovits' Open SFT
	7.1 Perturbative Vacuum
	7.2 Double-brane Solution
	7.2.1 Energy
	7.2.2 Gauge Invariant Observable


	8 Conclusion
	A Correlators and Formulae in the Bosonic Cubic String Field Theory
	B KBcG Algebra
	C Correlators in Modified Cubic String Field Theory
	D Detailed Calculation of the Energy of the Half-brane Solution
	E Detailed Calculations of the EOMS for 3/2
	F Detailed Calculation of the Energy of the Tachyon Vacuum Solution in Berkovits' SFT
	G Detailed Calculations of the Energy of the Double-brane Solution in Berkovits' SFT

