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ABSTRACT

We analyzed X-ray data of two binary X-ray pulsars, 4U 1626–67 and X Persei, ob-
served by the GSC (Gas Slit Camera) contained in Monitor of All-sky X-ray Image
(MAXI) mounted on the International Space Station. By using the epoch folding
method, we derived the pulse period and pulse period derivative of 4U 1626–67 for
every 60-d interval from 2009 October to 2013 September, and those of X Persei
for every 250-d interval from 2009 October to 2016 Jun. In 4U 1626–67, the ob-
tained results indicated that 4U 1626–67 was in spin-up phase for all the intervals,
and the period derivative was correlated with the observed X-ray intensity, which
corresponds to the 2–20 keV flux. The periods were agreed with those derived by
the Fermi/GBM pulsar project. We then applied the accretion torque model in bi-
nary X-ray pulsars proposed by Ghosh & Lamb (1979) to the GSC data and past
observations, which include both spin-up and spin-down phases, and confirmed that
the model successfully explained the spin-up and spin-down behavior by changes
of the X-ray intensity. Because the accretion torque model contains the mass and
radius of the neutron star, the relation between the period derivative and X-ray in-
tensity can constrain those values. If we assumed the nominal mass and radius of
the neutron star, the source distance of 4U 1626–67 is obtained as 6–14 kpc, which
is equivalent with that given by Chakrabarty (1998). Applying the above method
to the observed relation of 4U 1626–67, we found that the mass and radius of the
neutron star were obtained as M = 1.34M⊙ and R = 11.6 km, although the result
suffer from considerable systematic uncertainties. In X Persei, the derived period
indicated that X Persei was in the spin-up phase, and its derivative is also correlated
with the X-ray intensity. We applied the same technique to the GSC data, as well as
the past observations including the spin-up and spin-down phases, and estimated the
surface magnetic field of the neutrons star. The obtained result gave that the neutron
star in X Persei prefer a relatively strong magnetic field of B = (4 − 20) × 1013 G,
which is stronger than that of the neutron star in general binary X-ray pulsars. The
value is consistent with that by a past study (Sasano, 2015).
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5.10 The obtained pulse profile of X Persei, which was folded with P =
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Chapter 1

INTRODUCTION

After the theoretical prediction of neutron stars (NSs) by Baade & Zwicky (1934),
the evidence for NSs was discovered by radio observations by Hewish et al. (1968).
Since then, about 104 NSs have been found in the Milky Way and nearby galaxies,
mainly through radio and X-ray observations. According to current understanding
of stellar evolution, NSs are produced by supernova explosions of high-mass stars
which initially have 8–20 solar mass (the solar mass is M⊙ = 2.0× 1030 kg). An NS
has typical mass of M ∼ 1.4M⊙ and a typical radius of R ∼ 12 km (e.g., reviews
by Bhattacharyya (2010) and Özel (2013)). Because the mass and radius of NSs
indicate very high density, they are suitable to investigate nuclear physics. Another
important physical parameter of NSs is the magnetic field, B = 108−15 G.

In order to investigate the structure of NSs, many equation of states (EoSs)
describing the relation between the pressure and the density were proposed theoret-
ically. However, the correct EoS has not yet been uniquely identified. Because M
and R are essential parameters to constrain the EoSs, various attempts to measure
them have been carried out. The values of M and R were mainly obtained by binary
motions of binary X-ray pulsars (BXPs) and X-ray bursts from weakly-magnetized
NSs in binaries, respectively. The obtained M and R are not yet accurate enough to
identify the correct EoS.

The values of B of isolated NSs (e.g., radio pulsars) have been estimated from
evolution of their rotation periods, assuming that they lose their rotational energy
into magnetic dipole radiation. The derived values distribute over B = 108−15 G.
Among then, those with the ultra-strong magnetic field (B = 1014−15 G) are called
magnetars, and their X-ray emission is thought to be powered by their magnetic
energies. The above technique cannot be applied to BXPs, since their spin evolution
is affected by the accretion torque. Instead, the magnetic fields of BXPs can be
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2 CHAPTER 1. INTRODUCTION

accurately measured by the cyclotron resonance scattering features (CRSFs) in their
spectra (e.g., Makishima et al. (1999)), because the resonance energy is proportional
to B. The CRSF of BXPs typically appears at energies of 10–70 keV, indicating B =
(1− 7)× 1012 G. However, this technique becomes difficult for B > 1013 G, because
the CRSF in this case would appear at > 100 keV, where observations become
much less sensitive than in lower energies. Therefore, it is not yet clear whether
some BXPs have ultra-strong magnetic fields which are comparable to those of
magnetars.

A BXP is a close binary system consisting of a mass-donating star (compan-
ion star) and a strongly-magnetized NS. The NS emit X-rays powered by accreting
matter from the companion star, and the X-ray intensity exhibit clean modulation
(pulsation) synchronized with the NS rotation. X-ray observations over the past
4 decades have established that a BXP generally spins up or spins down, by ex-
changing its angular momentum with the accreting matter. We hence expect that
the pulse-period P and its derivative Ṗ of a BXP should be correlated with its lumi-
nosity L. The relations between Ṗ and L have been very crudely explained by the-
oretical models, including Rappaport & Joss (1977), Ghosh & Lamb (1979) (GL79
hereafter), and Lovelace et al. (1995) (LRB95 hereafter). The main parameters of
the equation between Ṗ–L proposed by GL79 are M, R and B. When the equation
is calibrated accurately enough, the observed Ṗ–L relations are expected to give us
observational constraints on M and R, as well as B.

Monitor of All-sky X-ray Image (MAXI; Matsuoka et al. (2009)) is an X-ray
all-sky monitor on the International Space Station, and has been scanning the whole
sky every 92 min since 2009 August. MAXI observes long-time variability of X-ray
sources. The GSC (Gas Slit Camera; Mihara et al. (2011); Sugizaki et al. (2011)),
the main instrument of MAXI, detects X-rays in the 2–20 keV band. Because NSs
in BXPs mainly emit X-rays in the band, the GSC is suitable to observe BXPs.
Therefore, the MAXI/GSC data are useful to study the long-term variation of the
X-ray intensity, P, and then Ṗ.

In the present thesis, we analyze the MAXI/GSC data of two BXPs, and deter-
mine their flux,P, and Ṗ. We then apply the spin-up/downmodels to theMAXI/GSC
data, as well as the previous ones. By searching for a model that can best reproduce
the observed Ṗ–L relations, we try to constrain M and R in one BXP, and estimate
B in the other.



Chapter 2

REVIEW

2.1 Neutron Stars

2.1.1 An overview

After the discovery of neutrons in 1932 by J. Chadwick, Baade & Zwicky (1934)
predicted a theoretical concept of neutron stars (NSs), and suggested that NSs might
be produced by supernova explosions. However, there was no observational evi-
dence to confirm the prediction for over 30 years. In 1967, a radio pulsar (PSR
B1919+21) which emits regular pulsation with a period of 1.3 s was discovered by
Hewish et al. (1968). The radio emission is powered by rapid rotation of the NS.
NSs were confirmed by them, and have been mainly found by radio and X-ray ob-
servations. Rigorously speaking, signals from an NS had already been detected in
X-rays by Giacconi et al. (1962) in their discovery of cosmic X-ray sources, but it
took a decade until the source, Scorpions X–1, was recognized as a mass-accreting
NS.

According to the current understanding, NSs are produced by supernova explo-
sions of high-mass stars which have 8-20 solar masses at their birth (the solar mass
is M⊙ = 2.0 × 1030 kg). Since the pressure of degenerate neutrons competes with
gravity, NSs do not collapse to a point. Typical NSs are considered to have the mass
of M = 1.4 − 2.0M⊙ and radius of R = 8 − 15 km (e.g., reviews by Bhattacharyya
(2010) and Özel (2013)). Such a small radius with a large mass gives a very high
density to NSs. As a result, NSs are suitable to the investigation of physical states
of matter at the high density close to that of nuclei, or even higher.

To understand the structure of NSs, equation of states (EoSs), which give the
relation between the pressure and density of neutron matter, have been widely stud-
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4 CHAPTER 2. REVIEW

ied, and many equations were proposed. However, nobody knows the correct EoS.
Because accurate knowledge of M and R can constrain the EoSs, many observations
to measure them have been preformed so far. While M are mainly derived from bi-
nary motions of binary X-ray pulsars (BXPs), R are normally obtained by X-ray
bursts from weakly-magnetized NSs in X-ray binaries. The obtained values are not
yet accurate enough the requirements to determine the unique EoS. Therefore, the
method which can derive an accurate M and R should be developed.

Another important parameter to describe the NS physics is the surface magnetic
field strength B. In the case of isolated NSs (e.g., radio pulsars), the vales of B have
been estimated from changes of their rotation periods, because higher-B objects
will spin down more quickly, by emitting more luminous magnetic dipole radiation.
The values have a broad distribution as B = 108−15 G. Resent observations revealed
that NSs with ultra-strong magnetic fields (B = 1014−15 G) emit X-rays which are
probably powered by their magnetic energies, and these NSs are called magnetars.
On the other hand, B of NSs in BXPs have been derived from the cyclotron res-
onance scattering features (CRSFs) in their X-ray spectra (e.g., Makishima et al.
(1999)), because the resonance energy of CRSFs is almost directly proportional to
B. Although the technique is effective to measure the magnetic fields of B ∼ 1012

G which are equivalent to the resonance energies of 10–70 keV, we cannot easily
utilize this method for objects with B > 1013 G because of poorer photon statistics
at higher energies.

2.1.2 The structure

As sketched in figure 2.1, NSs are considered to consist of several radial layers (for
example, an outer crust, inner crust, outer core, and inner core). Pandharipande et
al. (1976) summarized explanations of the state of expected layers as follows. The
surface has relatively lower density (ρ ≤ 106 g cm−3) than the inner part of NSs,
and its temperature and magnetic fields affect EoSs. The outer crust is a solid region
(106 g cm−3 ≤ ρ ≤ 4.3×1011 g cm−3) composed of a Coulomb lattice of heavy nuclei
in β-equilibrium, and a relativistic degenerate electron gas. The inner crust (4.3 ×
1011 g cm−3 ≤ ρ ≤ 2.4 × 1014 g cm−3) consists of a lattice of neutron-rich nuclei,
superfluid neutron gas and an electron gas. The neutron liquid (2.4× 1014 g cm−3 ≤
ρ ≤ 1015 g cm−3) consists mainly of superfluid neutrons, a smaller concentration of
superfluid protons, and normal electrons. The core (ρ > 1015 g cm−3), in which pion
condensation is considered to take place, has a neutron solid or quark matter or other
particles, with a density close to or even higher than that of nuclei. The properties
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of these layers depend on the EoS. For example, stiff EoSs lead the density of ρ ≤
1015 g cm−3 in the center of NSs with M = 1.4M⊙.

Figure 2.1: A sketch of the inner structure of NSs with 1.4M⊙ (Pines, 1980).

2.1.3 Equation of states

An EoS, describing the relation between the pressure and density of an NS, is the
most fundamental theoretical concept that determines the NS structure. Once an
EoS is specified, we can calculate the expected M vs. R relation. Conversely, si-
multaneous measurements of M and R, on a sufficient number of NSs, is regarded
as the best way to identify the correct EoS. Assuming that matter is composed of an
ideal gas of free neutrons in a high density region, Oppenheimer & Volkoff (1939)
proposed the first NS model. Since then, many EoSs have been developed. The
EoSs can be classified into soft, moderate and stiff ones, according to the compress-
ibility of the matter in an NS, which in turn depends on the nuclear force operating
among neutrons (and protons). The proposed EoSs are accurate enough to theoreti-
cally calculate the crust of a model NS, although there are some unsolved theoretical
problems. To identify the unique EoS, theoretical and observational studies are both
important.
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2.1.4 Mass and radius of neutron stars

In order to calculate a mass vs. radius relation of NSs, we need to specify an EoS,
and combine it to an equation describing hydrostatic equilibrium between gravity
and pressure, which the former has a variety depending on how to express the nu-
clear force, the latter is expressed uniquely by the general relativistic equation of
hydrostatic equilibrium which is called the Tolman-Oppenheimer-Volkoff equation,
given as

dP
dr
= −ρm

r2

(
1 +

P
ρ

) (
1 +

4πPr3

m

) (
1 − 2m

r

)−1
. (2.1)

Here, r is the radical coordinate, P is the pressure, ρ is its density, m is the proton
mass, the gravitational constantG and the velocity of light c is set unity. Combining
this with the simplest EoS, namely, that of an ideal Fermi gas (ignoring particle-
particle interactions though nuclear force), Oppenheimer & Volkoff (1939) then
calculated the relation between the mass and density of an NS. They also gave the
maximum mass MVO with the corresponding radius and the central density ρVO as

MVO = 0.7M⊙, R = 9.6 km, ρVO = 5 × 1015 g cm−3. (2.2)

After the first calculation, more realistic theoretical models have been proposed
by taking into account the nuclear force. By using the models together with the
Tolman-Oppenheimer-Volkoff equation (equation 2.1), various results on the rela-
tions between M and the central density, shown in figure 2.2 (left), were obtained.
Figure 2.2 (right) shows the corresponding M and R curves. These results reveal a
few general properties. A stiff EoS (e.g., BJ, TNI, TI and MF in figure 2.2 (left))
gives the maximum mass higher than that obtained from a soft EoS (e.g., R and π
in figure 2.2 (left)). An NS with a stiff EoS has a lower central density, a larger R
and a thicker crust, than that obtained from a soft EoS. If pion condensation occurs,
the maximum mass of an NS decreases.

So far, EoSs have been developed, each giving the M and R curve of its own.
Because the information on M and R can constrain EoSs, various observational
attempts to measure M and R have been carried out. The obtained values are M =
1.4 − 2.0M⊙ (mainly from binary radio pulsars) and R = 8 − 15 km (mainly from
weakly-magnetized neutron stars) (e.g. reviews by Bhattacharyya (2010) and Özel
(2013)). Figure 2.3 compares the M and R curves derived from various EoSs with
observed values of M. Thus, the observational information is not yet sufficient to
constrain the unique EoS. Therefore, a new method which can derive an accurate M
and R should be developed. We obviously need more information on R, and above
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Figure 2.2: The NS mass M calculated using various EoSs, shown as a function
of the density (left) and of the radius (right). Both taken from (Baym & Pethick,
1979).

all, simultaneous M and R measurements from a fair number of objects.

Figure 2.3: The M and R curves of NSs calculated from different EoSs (specified
by different curves), and the observed values of M for several representative NSs
(Demorest et al., 2010).
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2.1.5 Measurements of the mass

One of the key points in the observational study of NSs is measurements of their M.
A good method to determine the mass of a star is to utilize the Kepler’s third law.
The method is also useful to obtain M of an NS in binaries. The detail of that is as
follows.

Let us consider a binary system with a circular orbit, consisting of two point-
like stars which have the mass of M1 and M2. For simplicity, we may assume that
M1 refers to an NS, and M2 to its optical companion. Let the separation of the
binary system, and the distances between the stars and the barycenter be a, a1 and
a2, respectively. Then, we have

a = a1 + a2, (2.3)

M1a1 − M2a2 = 0. (2.4)

Equations (2.3) and (2.4) give

a =
M1 + M2

M2
a1. (2.5)

Because each star orbits around the barycenter, its pulsed emission suffers the effect
of Doppler shift. The amplitude of this variation is directly proportional to the
projected orbital velocity, which is expressed (for the component 1) as

v1 =
2π
Porb

a1 sin i, (2.6)

where Porb is the orbital period, i is the inclination angle which is the angle between
the normal to the orbital plane and the line of sight. By measuring Porb and v1,
we can hence calculate a1 sin i. An independent constraint is available from the
Kepler’s third law, as

G(M1 + M2)
a3

=

(
2π
Porb

)2
. (2.7)

From the above equations, we obtain

f1 =
(M2 sin i)3

(M1 + M2)2
=
Porb v13

2πG
. (2.8)

The function f1 is called the mass function for the star with M1, and depends only on
the observed values, Porb and v1 (or a1 sin i). Introducing the mass ratio q between
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the two components as
q =

M1

M2
, (2.9)

the equation to constrain M1 can be written as

M1 =
f1 q (1 + q)2

sin3i
. (2.10)

If q (or M2) is somehow estimated, e.g., from optical spectroscopy of the com-
panion, equation (2.9) and observed values (Porb and v1) allow us to calculate M1,
although the equation still depends on sin i.

To estimateM of NSs, various methods including the above technique have been
employed. The values of M thus derived are shown in figure 2.4. While M of an
NS in a double NSs binary have very small errors, those of slow pulsars (BXPs) are
not accurate enough.

2.1.6 Measurements of the radius

Another important quantity is R. The values of R are obtained mainly from X-ray
observations of thermonuclear X-ray bursts on the surface of an NS in low-mass
X-ray binaries. Because the X-ray spectra of these bursts are usually described
with a blackbody radiation model, the temperature kT of the NS surface can be
measured from observations. The luminosity L of each burst is also calculated from
the observed X-ray intensity F and an assumed source distance D, as

L = 4πD2F. (2.11)

Substituting the obtained kT and L into the Stefan-Boltzmann law,

L = 4πR2σT 4, (2.12)

we readily obtain R as

R = D
( F
σT 4

) 1
2

. (2.13)

The above measurements of R are still inaccurate, hampered by, e.g., uncertain-
ties in D and possible deviation of the burst spectrum from a pure blackbody. As
a result, the proposed EoSs in figure 2.3 cannot yet be constrained by the available
observations. As can be seen there, accurate measurements of R, rather than M, are
vitally needed.
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Figure 2.4: The values of M derived from various methods (Özel & Freire, 2016).
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2.2 Binary X-ray Pulsars

2.2.1 An overview

In 1962, X-ray sources outside the solar system were discovered by Giacconi et al.
(1962). So far, various classes of cosmic X-ray sources have been found. Among
them, BXPs, which are a system consisting of a magnetized neutron star and a stellar
companion, form one of the major classes. The coherent pulsations characterizing
them were first detected from Cen X-3 by Giacconi et al. (1971) in 1971. Since
then, some ∼100 BXPs have been found in the Galaxy and the Magellanic Clouds.
Because of strong interactions with accreting matter from a companion, their pulse
periods P are widely scattered, from ∼50 ms to > 104 s. The angular momentum
of the accreting matter from a companion is considered to be transferred to the NS.
The BXPs, then, show changes of P (spin-up or spin-down) due to variabilities of
the mass accretion rate Ṁ. Figure 2.5 shows history of the variability of observed
pulse frequencies. A mass transfer mode of BXPs is explained with Roche-Lobe
overflow or stellar wind of a companion. When an accretion disk is formed around
the NS in BXPs, the angular momentum of the accreting gas is transferred to the
NS at the inner edge of the accretion disk, and accelerates the NS rotation until it
finally reaches an equilibrium determined by Ṁ and B. If an NS rotation reaches the
equilibrium, it shows spin-up and spin-down by small changes of X-ray intensity.

Figure 2.5: The history of pulse frequencies of Cen X-3 observed with BATSE
(Bildsten et al., 1997).
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The majority of BXPs are found in high-mass X-ray binaries which have high-
mass (> 10M⊙) companion stars, while five BXPs have low-mass companions (LM-
BXPs). About half of the BXPs with high-mass companions are Be X-ray binary
pulsars (BeXBPs), which have Be star companions with optical emission lines (Hα
line) from a circumstellar disk. In this system, the accreting matter to the NS is
supplied by the circumstellar disk, and an accretion disk is considered to be formed
around the NS. The others are super giant X-ray binary pulsars (SGXBPs) consist-
ing of OB super giant (> 15M⊙), and they are considered that the accreting matter
to an NS is supplied by stellar wind of a companion. In LMBXPs, the accretion
flow is considered to take place via Roche-Lobe overflow, and to form an accretion
disk around the NS. Their properties are summarized in table 2.1.

Table 2.1: Properties of binary X-ray pulsars.

Subclass Companion Mass Transfer Mode Accretion Disk Period
(sec)

SGXBP OB super giant Stellar wind Usually absent1 0.7–104
(≥ 15M⊙) capture

BeXBP Be star Accretion from Yes 2.8–5600
(10–20M⊙) circumstellar disk

LMBXP Low-mass star Roche-Lobe Yes 1.2–140
(≤ 2M⊙) overflow

1 Some very luminous ones (Cen X–3, SMC X–1) are considered to have disks.

The X-ray emission from an NS in a BXP is powered by gravitational energy of
accreting matter, and the X-ray bolometric luminosity is written as

L =
GMṀ
R
. (2.14)

The X-ray spectrum is empirically described with an negative-positive exponential
cutoff power-law (NPEX) model consisting of two power-law components and a
common cutoff factor proposed by Mihara (1995). Some BXPs show CRSFs in
their X-ray spectra, and the value of B can be determined from its energy Ea as

Ea = 11.6 B12 (1 + zg)−1, (2.15)
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where B12 is B in units of 1012 G and zg is the gravitational redshift,

zg =
(
1 − 2GM

Rc2

)− 1
2

− 1. (2.16)

2.2.2 Accretion torque models

BXPs show the changes of P due to variability of X-ray intensity, which reflects
those of Ṁ. We hence expect that Ṗ is correlate with Ṁ. The correlation can be
basically explained as follows.

The matter at a distance RK from the center of the NS, rotates with the Keplerian
velocity VK, as

VK = (GMRK)
1
2 . (2.17)

The radius RA at which the magnetic pressure is equal to the gas pressure is called
the Alfven radius, and is though to scale as

RA ∝ µ
4
7 L−

2
7 , (2.18)

where µ is the magnetic dipole moment of the NS. At RA, the matter transfers its
angular momentum to the NS and accretes onto the NS along magnetic field lines.
The rate of this angular momentum is written as

NAC = ṀVKRA. (2.19)

This NAC is expected to cause the angular momentum of the NS NNS to change as

NAC = Iω̇, (2.20)

where I is the moment of inertia of the NS and ω̇ is derivative of the angular velocity
ω of the NS. Obviously, we have

ω̇ = 2πν̇ = 2π
(
− Ṗ
P2

)
, (2.21)

where ν̇ is the frequency derivative and Ṗ is the pulse-period derivative. From equa-
tions (2.18), (2.19) and (2.20), the relation between ω̇ and L ∝ Ṁ is given as

ω̇ ∝ µ 2
7 I−1 L

6
7 . (2.22)
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Finally, the equation between Ṗ and L is obtained as

− Ṗ
P2
∝ µ 2

7 I−1 L
6
7 . (2.23)

The above simple view of interactions between the NS magnetosphere and ac-
cretion flow have been developed into several more detailed models. Rappaport &
Joss (1977), Ghosh & Lamb (1979), Lovelace et al. (1995), and Bozzo et al. (2009)
proposed their accretion models and presented respective equations describing Ṗ as
a function of L, P, M, R and B of the NS. These models have been compared with
observational data by Joss & Rappaport (1984), Finger et al. (1996), Reynolds et al.
(1996), Bildsten et al. (1997), Klochkov et al. (2009) and Sugizaki et al. (2015). The
results show that the observed Ṗ–L relations are mostly consistent with the model
predictions. However, the validity of the models has not yet been fully confirmed,
because a detailed comparison would requires long-term monitoring of some suit-
able objects with known B, covering significant P and L ranges with a sufficient
sampling rate. When these models describing the accretion torque are better cali-
brated, the observed Ṗ–L relations can give us observational constraints on M and
R. Therefore, further studies of the Ṗ–L relations are expected to be valuable.

2.2.3 The Ghosh & Lamb model

To determine the coefficient of proportionality in equation 2.23, Ghosh & Lamb
(1979) (hereafter GL79) assumed that the accreting matter transfers the angular
momentum to the NS at the “outer transition zone”, r0. According to equation (11)
in GL79, it is given as r0 = 0.52 r(0)A , where r(0)A is the characteristic Alfven radius.
Substituting the numbers, we obtain

r(0)A = 3.2 × 10
8 Ṁ−

2
7

17 µ30
4
7

(
M
M⊙

)− 1
7

cm, (2.24)

r0 = 1.7 × 108 Ṁ
− 2
7

17 µ30
4
7

(
M
M⊙

)− 1
7

cm, (2.25)

where Ṁ17 is Ṁ in units of 1017 g s−1 and µ30 is µ in units of 1030 G cm3.

In this way, GL79 gave their theoretical Ṗ–L relation [equation (15) in GL79]
as

Ṗ = −5.0 × 10−5 µ30
2
7 n(ωs) S 1(M) P2 L37

6
7 s yr−1, (2.26)
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or
ν̇ = − Ṗ

P2
= 5.8 × 10−10 µ30

2
7 n(ωs) S 1(M) L37

6
7 Hz s−1, (2.27)

where L37 is L in units of 1037 erg s−1 and L is defined by L = Ṁ(GM/R). The
functions n(ωs) and S 1(M) are described respectively by equations (10) and (17) in
GL79 as

n(ωs) ≈ 1.39 [1 − ωs {4.03 (1 − ωs)0.173 − 0.878} ] (1 − ωs)−1, (2.28)

S 1(M) = R6
6
7

(
M
M⊙

)− 3
7

I45−1, (2.29)

where R6 is R in units of 106 cm and I45 is I in units of 1045 g cm2. Here, ωs is
the so-called fastness parameter, which is a dimensionless parameter, defined as
the ratio of the pulsar’s angular frequency to the Keplerian angular frequency of the
accreting matter at r0. This ωs is expressed approximately by equation (16) in GL79
as

ωs ≈ 1.35 µ30
6
7 S 2(M) P−1 L37−

3
7 . (2.30)

Here, S 2(M) is given by equation (18) in GL79 as

S 2(M) = R6−
3
7

(
M
M⊙

)− 2
7

. (2.31)

Equation (2.28) is effective in ωs = 0− 0.9 and is accurate within 5%. The behavior
of n(ωs) is plotted in figure 2.6. The zero crossover point is located at ωs ∼ 0.349,
below which the equation is positive and above which it is negative.

2.2.4 The Lovelace model

To explain the relation between Ṗ and Ṁ, Lovelace et al. (1995) (hereafter LRB95)
took into account not only the torque from the accreting matter, but also magnetic
outflows and magnetic breaking. After many numerical integrations they introduced
a characteristic radius rto, where the angular velocity ωa of accreting matter reaches
the maximum (dωa/dr = 0), and hence the matter transfers the angular momentum
to the NS therein. This rto is given by equation (16) in LRB95 as

rto ≈ 0.91 × 108
(
αDm

0.1

)0.3
µ0.5730 Ṁ−0.317

(
M
M⊙

)−0.15
cm, (2.32)
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Figure 2.6: The approximation function n(ωs) defined in equation 2.28, plotted
against ωs (Takagi et al., 2016).

where α is the viscous parameter in Shakura & Sunyaev (1973) and Dm is the mag-
netic diffusivity parameter. In LRB95, α is assumed as 0.01 to 0.1 and Dm is of
order unity. Basically, rto has the same nature as r0 in the GL79 model [equation
(2.25)].

Further employing the corotation radius defined as

rcr ≡
(
GM
ω∗2

) 1
3

≈ 1.5 × 108
(
M
M⊙

) 1
3

P
2
3 cm, (2.33)

where ω∗ = 2π/P is the NS’s rotation angular frequency, LRB95 classify the be-
havior into a magnetic outflow case (rto < rcr), and a case of magnetic braking of
the disk (rto > rcr). When rto is smaller than rcr, the NS shows spin-up with mag-
netic outflow. Equation (18b) in LRB95 describes Ṗ in terms of Ṁ and rto, and the
equation can be rewritten as

Ṗ ≈ − 5.8 × 10−5 P2 Ṁ17 I−145

(
M
M⊙

) 1
2 ( rto
108 cm

) 1
2
s yr−1. (2.34)
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By substituting Ṁ = LR/GM, we obtain

Ṗ ≈ − 4.3× 10−5 µ300.285
(
αDm

0.1

)0.15
R60.85

(
M
M⊙

)−0.425
I45−1 P2 L370.85 s yr−1, (2.35)

which is equivalent to equation (2.26) of GL79. The indices are the same, and the
factor is almost the same. The difference is the αDm factor instead of the n(ωs)
factor.

When rto is larger than rcr, magnetic braking takes place. It can work for either
spin-up or spin-down, although it mostly works as spin-down.

2.3 4U 1626–67

4U 1626–67 is a low-mass X-ray binary pulsar first detected with the Uhuru satellite
(Giacconi et al., 1972), and its 7.6-s coherent pulsation was discovered by Rappa-
port et al. (1977). Because no period modulation due to orbital motion has been
detected beyond an upper limit of ax sin i ≤ 13 lt-ms (ax is the orbital semi-major
axis of the NS and i is the orbital inclination angle), the mass of the companion
star is estimated to be very low (∼ 0.03 − 0.09M⊙ for 11◦ ≤ i ≤ 36◦; Levine et
al. (1988)). It is hence classified as an ultra compact X-ray binary (van Haaften et
al., 2012). The BeppoSAX observation revealed a CRSF at ∼ 37 keV, indicating
B = 3.2× 1012 (1+ zg) G (Orlandini et al., 1998). The feature was confirmed by the
Suzaku observation (Iwakiri et al., 2012). The source distance was estimated to be
5–13 kpc from the optical flux by assuming that the effective X-ray albedo of the
accretion disk is high (&0.9) (Chakrabarty, 1998).

Since the discovery of the 7.6-s pulsation in 1977, the values of P of 4U 1626–
67 has been repeatedly measured with various X-ray satellites (e.g. references in
Chakrabarty et al. (1997); Camero-Arranz et al. (2010)). Table 2.2 and 2.3 sum-
marize the X-ray fluxes, P, and Ṗ observed from 1978 to 2008, and figure 2.7 vi-
sualizes long-term behavior of these quantities. It clearly shows that the source
made transitions twice between the spin-up and the spin-down phases, at MJD ∼
48000 (1990 June) and MJD ∼ 54000 (2008 February), separated by ∼ 18 years.
In each phase, Ṗ was almost constant, and its absolute values were very similar as
|Ṗ| = 2 ∼ 5 × 10−11 s s−1. This period-change behavior suggests that 4U 1626–67
is close to an equilibrium state in which the net torque transfer from the accreting
matter to the NS is approximately zero. At the last transition in 2008, when the
source turned from the spin-down into the spin-up phase, the X-ray flux increased
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by a factor of ∼2.5 (Camero-Arranz et al., 2010). These properties, together with
the accurate knowledge of B, make this object ideal for our study.

Figure 2.7: Bolometric flux (top), P (middle) and Ṗ (bottom) of 4U 1626–67 ob-
tained by past X-ray observations from 1978 to 2008 (Takagi et al., 2016). In the
top panel, observed X-ray intensities are converted to the model flux in the 0.5–
100 keV band assuming the typical spectral model given by Camero-Arranz et al.
(2012). Filled circles and solid lines represent the past observations in table 2.2 and
2.3, and BATSE observations2, respectively.

2http://gammaray.nsstc.nasa.gov/batse/pulsar/data/sources/4u1626.html
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2.4 X Persei

4U 0352+309 (hereafter X Persei) is a Be X-ray binary pulsar consisting of an
NS with a long pulse period of ∼ 835 s (White et al., 1976) and a Be star (X
Persei). Although it has a relatively low luminosity (L ∼ 1035 erg s−1), its nearby
distance, 0.7–1.3 kpc (Lutovinov et al., 2012), makes it a relatively bright X-ray
source. X Persei has the orbital period of ∼ 250 d and a small eccentricity (e ∼ 0.11)
(Delgado-Martı́ et al., 2001). Then, the binary orbit is wide, and is approximately
circular unlike many other BeXBPs.

Since the source is persistent bright, many X-ray satellites have observed it and
derived its P for a long time (e.g., Acuner et al. (2014)). It then became clear that the
source shows both spin-up and spin-down behavior. As shown in the pulse-period
history in figure 2.8, the source was in a spin-up phase with Ṗ/P ∼ −1.5 × 104 yr−1

before 1978, and showed spin-down with Ṗ/P ∼ −1.3×104 yr−1 from 1978 to 2002.
At present, X Persei is a in spin-up phase with Ṗ/P ∼ −3.6 × 104 yr−1 (Acuner et
al., 2014).

Figure 2.8: The history of the observed P of X Persei (Acuner et al., 2014).

Using satellites such as BeppoSAX (Di Salvo et al., 1998) and Suzaku (Sasano,
2015), the X-ray spectra of X Persei have been measured over broad energy bands,
typically from < 1 keV up to 100–200 keV. In energies below ∼ 20 keV, the spec-
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trum of X Persei is approximated by a power-law with the photon index Γ ∼ 2.2,
which is somewhat steeper than those of other BXPs (typically Γ = 1.0 − 1.5). In
the 20–100 keV band where those of other BXPs all exhibit steep cutoff proper-
ties, the spectra of X Persei is significantly harder, and continues to > 100 keV
with a very mild cutoff. These features are considered to suggest that X Persei
has rather strong magnetic field of > B13 G (Sasano, 2015). On the other hand, in
the 4–200 keV spectrum taken with INTEGRAL, Lutovinov et al. (2012) reported
an absorption feature at ∼ 23.5 keV, and attributed it to a CRSF corresponding to
B = (2.4 − 2.9) × 1012 G. However, the feature is very shallow and broad, and is
likely to be an artifact caused by wrong continuum modeling (Doroshenko et al.
(2012); Sasano (2015)).
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INSTRUMENT

3.1 Monitor of All-sky X-ray Image

Monitor of All-sky X-ray Image (MAXI; Matsuoka et al. (2009)) is an X-ray all-sky
monitor mounted on the Japanese Experiment Module of the International Space
Station (ISS). MAXI was launched by Space Shuttle Endeavor in 2009 July, and
has operated for over 7 years by the members of MAXI team consisting of Japan
Aerospace Exploration Agency (JAXA), Institute of Physical and Chemical Re-
search (RIKEN) and X-ray astronomy groups in several Japanese universities. The
main purposes of the MAXI mission are detections of new transients which in-
clude binary X-ray pulsars (BXPs), and to observe the changes of known X-ray
sources (e.g., history of pulse periods and flux variations). Since the in-orbit opera-
tion started in 2009 August, MAXI has been scanning the whole sky every 92 min
which is the orbital period of the ISS. Therefore, MAXI can observe not only new
X-ray transients but also long-time variability of X-ray sources. The information
of these events has been reported by the MAXI team to the astronomers over the
world, and encourages follow-up observations with X-ray satellites, as well as multi
wavelength observations. Figure 3.1 shows the all-sky map obtained by MAXI.

Figure 3.2 shows an overview of MAXI. MAXI has two different types of X-ray
detectors which are the Gas Slit Camera (GSC; Mihara et al. (2011); Sugizaki et al.
(2011)) consisting of one-dimensional gas proportional counters sensitive to X-rays
in the 2–20 keV band and the Solid-state Slit Camera (SSC; Tomida et al. (2011))
composed of X-ray charge-coupled-devices (CCDs) covering the X-ray energy of
0.7–7.0 keV. Because the GSC has a good time resolution (0.1 ms) and a large
effective area (5350 cm2), and covers the main energy band (2–20 keV) in which

1http://maxi.riken.jp/top/

23
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Figure 3.1: The 4.6-year all-sky map obtained from MAXI 1.

neutron stars of BXPs emit X-rays, it is suitable to study the sources. For these
reasons, we used only GSC data in this study.

3.2 Gas Slit Camera

The GSC, the main instrument of MAXI, is composed of one-dimensional gas pro-
portional counters and collimators (figure 3.3), and has field of views (FoVs) of
the horizontal direction and the zenithal direction. The proportional counters are
sensitive to X-ray photons of 2–20 keV, and have six parallel carbon wires with
one-dimensional position sensitivity. Directions of X-ray photons are determined
by collimators which limit the FoVs in the orthogonal direction to the wires. The
GSC has a detection area of 5350 cm2 in total and high sensitivity which is better
than previous all-sky monitors in the 2–20 keV band (see table 3.1 for detail of the
GSC). The GSC FoV typically scans a celestial point source for about 60 s in each
transit, which is long enough to study X-ray pulsars with several-second pulsations.
Thus, the GSC data are useful to study long-term variations of BXPs (e.g., fluxes,
periods, and period derivatives).
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Figure 3.2: An overview of MAXI (Matsuoka et al., 2009).

Table 3.1: The specifications of the GSC (Matsuoka et al., 2009).

X-ray detector 12 pieces of one-dimensional
gas proportional counters

Composition of gas Xe (99%) + CO2 (1%) 1.4 atm @ 0 ◦C
X-ray energy range 2–20 keV
Total detection area 5350 cm2

Energy resolution 18% (5.9 keV)
Field of view 1◦.5 (FWHM) × 160◦

Slit area for camera unit 20.1 cm2

Detector position resolution 1 mm
Localization accuracy 0◦.1
Absolute time resolution 0.1 ms
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Figure 3.3: A GSC unit (Matsuoka et al., 2009).
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OBSERVATIONAL DATA

Since 2009 August, the Gas Slit Camera (GSC), the main instrument of Monitor
of All-sky X-ray Image (MAXI) onboard the International Space Station (ISS), has
been observing the whole sky in the 2–20 keV band. Every 92 min of the ISS
orbital revolution, it scans X-ray point sources each for ∼60. Therefore, the GSC
allows long-term monitoring of some 100 bright X-ray sources. For these reasons,
the GSC data are useful in pursuing fluxes, periods, and period derivatives of BXPs.
Although the GSC thus provides one data point every 92 min for a given source,
the data are sometimes unavailable; e.g., when the source is dose to the sun, or it
is occulted by the ISS solar paddles, or the ISS happens to be in the South Atlantic
Anomaly, during the source transit. We should consider these data gaps carefully in
data analysis.

4.1 MAXI On-demand Process

Although the acquired GSC data are promptly released in the form of 3-band light
curves of ∼ 400 X-ray sources, these automatically-processed data are not neces-
sarily suited to detailed scientific studies. Instead, we can utilize the MAXI On-
demand process system1, which has been in public since 2011 November. It allows
us to produce screened MAXI data for scientific use, including X-ray spectra, light
curves and images of any X-ray sources, at any position in the sky and for any time
periods since the MAXI started its operation. In this process, users can also define
source and background extraction regions by themselves.

1http://maxi.riken.jp/mxondem/

27



28 CHAPTER 4. OBSERVATIONAL DATA

4.2 4U 1626–67

The Low-mass X-ray binary pulsar 4U 1626–67, described in § 2.3, is located at
(α, δ) = (248◦.070, −67◦.462). X-ray spectral analysis was performed using the
on-demand GSC data. In timing analysis, we need accurate arrival times of indi-
vidual X-ray photons. Therefore, for this purpose, we returned to the rawest form
of the GSC data, called event data, where the information on individual photons is
available. Figure 4.1 shows 4-band light curves of 4U 1626–67, produced from the
GSC public data. Thus, the source has been detected at an average intensity of 0.07
c s−1 in 2–20 keV. An apparent ∼70 day periodicity is caused by precession of the
ISS.

Figure 4.1: Light curves of 4U 1626–67 in the 2–20 keV, 2–4 keV, 4–10 keV and
10–20 keV bands obtained from the MAXI/GSC public data. Each data point rep-
resents a 1-day average.

4.3 X Persei

The Be X-ray binary pulsar X Persei, introduced in § 2.4, is located at (α, δ) =
(58◦.846, 31◦.046). We used the data obtained from the MAXI on-demand process
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both in timing and spectral analyses. This is because the pulse period of X Persei,
∼835 s, is much longer than the individual transit time (∼60 s), and hence we do
not need to retrieve accurate photon-arrival times. Figure 4.2 shows the same light
curves as figure 4.1, but for X Persei. Thus, the 2–20 keV intensity varied by a
factor of ∼1.2, on time scales of ∼1 year.

Figure 4.2: The same as figure 4.1, but for X Persei.
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DATA ANALYSIS

5.1 The Epoch Folding Method

In the timing analysis of this study, we used the epoch folding method in order
to derive pulse periods P and pulse-period derivatives Ṗ of binary X-ray pulsars
(BXPs). The epoch folding method is explained as follows.

First, we fold observed data with trial values of P and Ṗ, and obtain a folded
light curve. After the calculation of an averaged value of the folded light curve, χ2

of the folded light curve, defined as

χ2 =

n∑
i=1

[
(yi − ȳ)√yi

]2
, ȳ =

∑
( 1√yi )

2yi∑
( 1√yi )

2 , (5.1)

where n is the number of bins of the folded light curve and yi is the number of events
in the i-th bin, is derived. We search the maximum χ2 for each trial value of P and
Ṗ, and define the P and Ṗ with the maximum χ2 as the derived P and Ṗ in the data.
If we fold observed data with the true P and Ṗ, the folded light curve shows the
pulse profile of BXPs and gives the maximum χ2. On the other hand, wrong P and
Ṗ gives a flat folded light curve and a low χ2, because the light curve is averaged.

5.2 4U 1626–67

5.2.1 The X-ray light curve with MAXI

We extracted X-ray events of 4U 1626–67 from all-sky GSC data, and accumu-
lated every 60-d interval from MJD 55110 (2009 October 6) to MJD 56550 (2013

30
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Figure 5.1: The 2–20 keV flux (panel a), the P (panel b), and the Ṗ (panel c) of 4U
1626–67, obtained from the every 60 d MAXI/GSC data in between 2009 October
and 2013 September (Takagi et al., 2016). Panel (d) gives residuals from the best-
fit linear function to the period data in (b). The horizontal line in (c) indicates the
slope of the line in (b) (−2.87 × 10−11 s s−1). The Fermi/GBM results represented
by vertical line segments are also plotted.

September 15), using the On-demand process system provided by the MAXI team1.
To extract the on-source and background events, the following regions were em-
ployed: a 2◦ radius circle for the source region and an annulus with inner and outer
radii of 2◦.1 and 3◦, respectively, for the background region. Figure 5.2 shows these
regions and the 2–20 keV image of 4U 1626–67 for MJD 55290–55350. All the
obtained spectra were fittedwith a power-law model without absorption. The fitting

1http://maxi.riken.jp/mxondem



32 CHAPTER 5. DATA ANALYSIS

results were acceptable for all intervals, and gave photon indices of 1.0–1.3. As an
example, in figure 5.3, we show the X-ray spectrum in MJD 55290–55350 with the
best-fitting model, which has the photon index of 1.07 ± 0.05, the normalization
of (3.5 ± 0.3) × 10−2 and the χ2 value of 63.6 for 50 degrees of freedom (d.o.f.).
We derived the 2–20 keV model fluxes from the results, and plotted in figure 5.1a,
where errors are 1σ statistical uncertainties. The obtained fluxes indicate that the
X-ray intensity is almost constant at ∼ 8.6 × 10−10 erg cm−2 s−1 before MJD 56200,
and increased to ∼ 9.5 × 10−10 erg cm−2 s−1 after that.

Figure 5.2: The 2–20 keV image of 4U1626–67 obtained from the MAXI/GSC data
in MJD 55290–55350. The green solid circles indicate the source and background
regions. The green dotted circles express the exclude regions.
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Figure 5.3: The obtained X-ray spectrum of 4U 1626–67 in the 2–20 keV band for
MJD 55290–55350. The solid line indicates the best-fitting model with the photon
index of 1.07 ± 0.05 and the normalization of (3.5 ± 0.3) × 10−2. The χ2 value is
63.6 for 50 degrees of freedom.

5.2.2 Pulse periods and pulse-period derivatives with MAXI

Using the GSC event data of revision 1.5 with a time resolution of 50 µs, we per-
formed the pulsar timing analysis of 4U 1626–67. The events were extracted within
a 1◦.5 radius from the source position, and then the barycentric correction, which
converts a detection time of X-ray photons to that observed at the barycenter of the
solar system, was applied to their arrival times. In this analysis, we do not subtracted
background events from those events. We derived P and Ṗ from every 60-d interval
data, which is coincident with the light-curve time bins used in § 5.2.1, by using
the epoch folding method. We employed n = 32, and confirmed that the exposure
time of each bin is within ±0.5% from the average values. A search range was se-
lected from the P and Ṗ values obtained by the Fermi/GBM pulsar project2, and we
assumed that Ṗ was constant in each interval. As a typical example, we plotted the
obtained χ2 values on the P–Ṗ plane in figure 5.4, employing MJD 55290–55350.
The pulse profile in the above span is shown in figure 5.5. We can see a pulse profile

2http://gammaray.nsstc.nasa.gov/gbm/science/pulsars/lightcurves/4u1626.html
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with two sharp peaks, which is the typical pulse profile of 4U 1626–67 in spin-up
phases, in figure 5.5. We estimated the 1-σ errors of P and Ṗ with Monte-Carlo
simulations (see Appendix A). In order to select the suitable energy band, which
gives the highest χ2, the same analysis was performed for the energy bands of 2–20
keV, 2–10 keV, 2–4 keV, 4–10 keV and 10–20 keV, and we then selected the 2–10
keV band. Results from the other energy bands were consistent with that of the
2–10 keV band.

Figure 5.4: Distribution of χ2 of the folded light curve of 4U 1626–67 obtained
from the 2–10 keV MAXI/GSC data in MJD 55290–55350 (Takagi et al., 2016).
The right bar indicates the χ2 values. The maximum χ2 is 108 for 31 degrees of
freedom at P = 7.6777282 s and Ṗ = −2.64 × 10−11 s s−1.

Figure 5.1b and 5.1c indicate the obtained P and Ṗ, respectively. The value of Ṗ
was changed and correlated with the flux increase around MJD 56400. We fitted the
data points of P in figure 5.1b with a liner function, because their are almost linear.
The slope of the best-fit liner function was then derived as ⟨Ṗ⟩ = −2.87×10−11 s s−1.
We calculated the residuals from the best-fit line, and plotted these in figure 5.1d,
where those of the Fermi/GBM pulsar data are also overlaid. The results of the GSC
data agree with those of the Fermi/GBM within the errors.
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Figure 5.5: The obtained pulse profile of 4U 1626–67, which was folded with P =
7.6777282 s and Ṗ = −2.64 × 10−11 s s−1, in the 2–10 keV band for MJD 55290–
55350.

5.2.3 An estimation of bolometric fluxes

In the following sections, we apply the accretion torque models, proposed by GL79
and LRB95, to the observed data consisting of those from the previous results and
from the GSC data. For this purpose, we have to convert the fluxes of the individual
observations to the bolometric fluxes Fbol, taking account of different energy bands
used in different observations, and using spectral models obtained from wide-band
X-ray observations.

The energy spectrum of 4U 1626-67 was observed in both the spin-up and spin-
down phases (table 2.2 and 2.3), and the changes of the spectral shape between
these phases were studied (e.g., Jain et al. (2010); Camero-Arranz et al. (2012)).
According to Camero-Arranz et al. (2012), the observed spectra in both phases can
be fitted with a model consisting of a blackbody and a cutoff power law, and their
difference comes from the blackbody component. The temperature of the spin-up
phase and spin-down phase are ∼ 0.5 keV and ∼ 0.2 keV, respectively. We hence
selected these spectral models for the spin-up and spin-down phases, and calculated
the fluxes in the 0.5–100 keV band, which are assumed as Fbol, by using these in
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the 2–20 keV band obtained from the GSC data. Since the photon index of a power-
law continuum is ∼ 1 below ∼ 20 keV and the exponential cutoff is above ∼ 20
keV, the fluxes below 0.5 keV and above 100 keV are negligible. For example, the
conversion factor from the 2–20 keV flux obtained from the GSC data in the spin-up
phase to the 0.5–100 keV flux is 1.88. We also applied above calculation to the past
observations to derive Fbol, and indicated the obtained results in table 2.2 and 2.3.

The relation between the observed Ṗ and the calculated Fbol, including the past
results, are given in figure 6.1. It clearly shows negative correlation, expected from
the NS spin up due to the mass accretion.

5.3 X Persei

Figure 5.6: The 2–20 keV flux (top) and the P (bottom) of X Persei, obtained from
the every 250 d MAXI/GSC data between 2009 October and 2016 Jun.

5.3.1 The X-ray light curve with MAXI

X-ray events of X Persei were extracted from GSC data, and accumulated every
250-d interval from MJD 55134 (2009 October) to MJD 57550 (2016 Jun), using
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the On-demand process system. We employed the following regions to extract the
on-source and background events: a 1◦.6 radius circle for the source region and
an annulus with inner and outer radii of 1◦.7 and 3◦, respectively, for the back-
ground region. Figure 5.7 shows these regions and the 2–20 keV image of X Persei
for MJD 55300–55550. The obtained spectra were fitted with a typical model: a
power-law component and an exponential cutoff without absorption. The model
explained the observed data well, and the results gave photon indices of 0.19–
0.45 and cutoff energies of 4.2–5.2 keV. As an example, in figure 5.8, we show
the X-ray spectrum in MJD 55300–55550 with the best-fitting model, which has
the photon index of 0.22 ± 0.08, the cutoff energy of 4.2 ± 0.3, the normaliza-
tion of (7.3 ± 0.4) × 10−2 and the χ2 value of 116 for 102 d.o.f.. We calculated
the 2–20 keV fluxes from the results, and showed in figure 5.6 (top), where errors
are 1σ statistical uncertainties. The derived fluxes showed that the X-ray intensity
changed from ∼ 14×10−10 erg cm−2 s−1 to ∼ 9×10−10 erg cm−2 s−1 in MJD 55134–
55800. While the intensity is almost constant in MJD 55800–56800, it increased to
∼ 12 × 10−10 erg cm−2 s−1 after MJD 56800.

5.3.2 Pulse periods with MAXI

In the timing analysis of X Persei, we used light curves in 1 scan bin, in which
events in ∼60 s, corresponding to 1 scan transit of a point source, were accumu-
lated. These are obtained from the On-demand process system, because we were
not able to derive P from the GSC event data due to variabilities of background.
Since background is subtracted in the On-demand process system, we can avoid
that effect. We employed the same regions in § 5.3.1 to obtain the light curves, and
the 2–20 keV band. The heliocentric correction, which converts a detection time of
photons to that observed at the center of the sun, and binary orbit correction, which
converts a time of X-ray emission from a NS to that at the center of the NS orbit,
assuming a circular orbit, were applied to the light curves. We derived P from every
250-d interval data by using the epoch folding method, and then employed n = 32.
A search range was selected from the results of past observations, and we assumed
that Ṗ is constant in each interval. As a typical example, we plotted the obtained
χ2 values on the P–Ṗ plane in figure 5.9, employing MJD 55300–55550. The pulse
profile in the above span is shown in figure 5.10. We can see a pulse profile with a
sinusoidal shape, which is the typical pulse profile of X Persei. We calculated the
1-σ errors of P from a method proposed by Leahy (1987). The obtained P is plotted
in figure 5.6 (bottom). Although we derived the values of Ṗ by the epoch folding
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Figure 5.7: The 2–20 keV image of X Persei obtained from the MAXI/GSC data
in MJD 55300–55550. The green solid circles indicate the source and background
regions. The green dotted circles express the exclude regions.

method, Ṗ was calculated from the difference between two points of P because the
obtained Ṗ has a large uncertainty.

5.3.3 An estimation of bolometric fluxes

Lutovinov et al. (2012) performed spectral analysis of X Persei with data obtained
with RXTE/PCA, which include both spin-up and spin-down phases, and fitted the
obtained spectra in the 2–20keV band with a model consisting of an interstellar
absorption, power law and blackbody components. They, then, showed that there is
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Figure 5.8: The obtained X-ray spectrum of X Persei in the 2–20 keV band for MJD
55300–55550. The solid line indicates the best-fitting model with the photon index
of 0.22±0.08, the cutoff energy of 4.2±0.3, the normalization of (7.3±0.4)×10−2.
The χ2 value is 116 for 102 degrees of freedom.

no big difference of the parameters between spin-up and spin-down phases except
for the normalization factor. Di Salvo et al. (1998) analyzed the energy spectrum
of X Persei in the 0.1–200 keV band obtained from BeppoSAX in 1996 September
corresponding to the spin-down phase, and obtained the spectral model. Although
they did not give a model in the spin-up phase, we employed the obtained spectral
model to convert the observed flux to the bolometric flux for both the spin-up and
spin-down phases. The conversion factor from the 2–20 keV flux to the 0.1–200 keV
flux is 1.81. We also applied the correction to the past observations. The relation
between the observed Ṗ and the calculated Fbol is shown in figure 6.5. Although
data points in figure 6.5 are a little scattered, it shows negative correlation.
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Figure 5.9: Distribution of χ2 of the folded light curve of X Persei obtained from
the 2–20 keV MAXI/GSC data in MJD 55300–55550. The right bar indicates the
χ2 values. The maximum χ2 is 555 for 31 degrees of freedom at P = 835.71 s and
Ṗ = −1.70 × 10−8 s s−1.
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Figure 5.10: The obtained pulse profile of X Persei, which was folded with P =
835.71 s and Ṗ = −1.70 × 10−8 s s−1, in the 2–20 keV band for MJD 55300–55550.



Chapter 6

RESULTS

6.1 4U 1626–67

6.1.1 Model equations relating Ṗ to the flux

As reviewed in § 2.2.3, GL79 assumed that the accreting matter transfers its angu-
lar momentum to the neutron star (NS) at the “outer transition zone”, r0 [equation
(2.25)], and proposed a relation between Ṗ and L in binary X-ray pulsars (BXPs).
It is very similar to an earlier work by Rappaport & Joss (1977). Although their
equation contains an unknown parameter (ξvr/vff), its relation to their overall model
is calculable. Therefore, we employed the equation proposed by GL79.

According to GL79, Ṗ is described by equation (2.26). There, S 1(M) includes
the moment of inertia I, which is expressed as a function of M and R. Since I also
depends on the EoS, we used its approximation proposed by Lattimer & Schutz
(2005),

I ≃ (0.237 ± 0.008) MR2
1 + 0.42 (

M
M⊙

) ( R
10 km

)−1
+ 0.009

(
M
M⊙

)4 ( R
10 km

)−4 ,
(6.1)

which is utilized in most of the major EoS models for M/R & 0.07M⊙ km−1.

In 4U 1626–67, the value of B is accurately known from the CRSF (§ 2.1.1) as
B = 3.2×1012 (1+zg) G, and is considered to be the magnetic field strength near the
magnetic poles. GL79 assumed that the magnetic axis is aligned to the NS rotation
axis, and used the equation of µ at the equator described by

µ =
1
2
BR3. (6.2)

42
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Since equation (6.2) does not include relativistic effects, we employed the equation
considering that effect,

µ =
BR3

2
X3

3

[
−ln (1 − X) − X − X

2

2

]−1
, X =

2GM
Rc2

=

(
R
RS

)−1
, (6.3)

to calculate µ more accurately, where RS is the Schwarzschild radius (Wasserman
& Shapiro, 1983).

When the emission from an NS is isotropic, its L is estimated from Fbol and the
source distance D as

L = 4πD2Fbol. (6.4)

Since the emission is generally anisotropic, the equation is not exactly correct. We
use this approximation, and then evaluate the effect in a later section. In order to
calculate L including the relativistic effects, we also employed the equation,

L = c2Ṁ
[
1 − (1 − X)− 1

2
]
, (6.5)

described by Wasserman & Shapiro (1983).
By using equations (2.26), (6.1), (6.3), and (6.5), as well as the description for zg

[equation (2.16)], we derived a theoretical equation, which includes three unknown
parameters, D, M and R, to express the observed Ṗ–L relation as

Ṗ = −5.8 × 10−10 µ30
2
7 n(ωs) R6

6
7

(
M
M⊙

)− 3
7

I45−1 P2 L37
6
7 s s−1. (6.6)

6.1.2 Application of the Ghosh & Lamb relation to the data

To derive the possible parameter ranges of D, M and R of 4U 1626–67, we fitted
the obtained Ṗ–Fbol relation in figure 6.1 with equation (6.6). When some past
measurements do not have the associated errors of Ṗ, we added an arbitrarily small
value (∆Ṗ = 6 × 10−16 s s−1) to them. Since the errors of Fbol are dominant in the
obtained data, this effect was confirmed to little affect the fitting results. Because the
observed Ṗ–Fbol relation cannot simultaneously constrain the three parameters, we
assumed the source distance D to be in a range from 3 to 20 kpc, and then calculated
the allowed M–R regions for each assumed distance. For example, figure 6.1 shows
the fitting result when assuming D = 8 kpc. In this case, we have obtained the best
fit values of M = 1.34M⊙ and R = 11.6 km (the errors are considered later).

In order to understand how the theoretical curve depends on M and R, we show
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Figure 6.1: A relation between Ṗ and Fbol by the MAXI/GSC and past observations
of 4U 1626–67. Filled circles, open circles and squares represent the MAXI/GSC
data, the Swift/BAT data and the others in table 2.2 and 2.3, respectively. The
dashed-dotted horizontal line indicates Ṗ = 0. The solid line is the best fit model
calculated from equation (6.6) proposed by GL79, assuming a distance of 8 kpc.
The parameters are M = 1.34M⊙ and R = 11.6 km, with χν2 of 2.9 for 37 degrees
of freedom. Dashed two lines show the case when R is changed by ±1 km with M
kept unchanged, while dotted two lines those when M is varied by ±0.3M⊙ with R
fixed at 11.6 km. This figure was updated from Takagi et al. (2016).

in figure 6.1 the curves predicted by the GL79 relation, in which either M or R is
slightly changed. When R was changed with D and M fixed, the theoretical curve
shifted in parallel, with little changes in its slope. On the other hand, a change of
M, with D and R fixed, gave a change of the slope of the theoretical curve. In other
words, the observed Ṗ–Fbol relation can determine R and M simultaneously (if D is
given), from the zero-cross point and the Ṗ–Fbol slope, respectively. Below, let us
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consider physical meanings of this mechanism.

In figure 6.1, the zero-cross point represents a torque-equilibrium condition,
where the co-rotation radius of equation (2.33), which is almost uniquely deter-
mined by P with some dependence on M, becomes equal to the outer-transition
radius r0 of equation (2.25). At this radius, the gas pressure estimated from L ∝
D2Fbol balances the magnetic pressure, and this condition allow us to estimate the
value of µ. By comparing the obtained µ with B measured from the CRSF, we
can derive R via equation (6.2) or (6.3). As a result, the zero-cross point is more
sensitive to R rather than M. To be more quantitative, equation (2.30) in the torque-
equilibrium condition, in which it becomes 0.349, can be combined with equation
(6.2) or (6.3), to yield

Fbol ∝ M−
2
3R5D−2, (6.7)

where dependences on B and P were omitted. Thus, the zero-cross point value of
Fbol is very sensitive to R.

The slope of the Ṗ–Fbol relation in figure 6.1 expresses the dependence of the
NS rotation change on the luminosity, which is proportional to the accretion rate.
Since the rotation change depends on I, which is a function of M, an increase of
M gives a smaller slope. An increase of R also produces the same scenario through
I, but the effect is partially canceled by changes of µ in equation (6.6) when B is
fixed. As a result, the change of the slope mainly depends on M. We can describe
quantitatively in the following way. In the higher spin-up region which accurately
determines the slope, we can approximate ωs → 0. Then, n(ωs) becomes constant
from figure 2.6, and we can rewrite equation (6.6) as

−Ṗ ∝ M− 10
7 R−

2
7 L

6
7 ∝ M− 10

7 R−
2
7D

12
7 Fbol

6
7 , (6.8)

when the higher-order terms in equation (6.1) are ignored. From the above equation,
the slope is described as

− dṖ
dFbol

∝ M− 10
7 R−

2
7D

12
7 Fbol−

1
7 . (6.9)

Thus, the slope depends mainly on M, rather than on R.

We derived the best-fit M and R when D was assumed, and present the solu-
tions as a solid line in figure 6.2. The M–R relation in figure 6.2 can be analyti-
cally obtained as follows. When a value of D is assumed, the bolometric flux at
zero-point gives M−2/3R5D−2 via equation (6.7), while the slope in figure 6.1 gives
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M−10/7R−2/7D12/7F−1/7bol via equation (6.9). By eliminating D from these equations,
and ignoring the weakly varying factor F−1/7bol , we obtain

M ∝ R2 (6.10)

which roughly explains the locus in figure 6.2. The M–R relations from a few
representative EoSs, SLy (Douchin & Haensel, 2001), APR (Akmal et al., 1998),
and Shen (Shen et al. (1998a); Shen et al. (1998b)), all taken from Yagi & Yunes
(2013) are also shown in the figure 6.2.

So far, D has been treated as an unconstrained parameter. However, we may
require the obtained M and R to be in their nominal ranges, M = (1.0− 2.4) M⊙ and
R = 8.5 − 15 km (e.g. Bhattacharyya (2010); Özel (2013)). Then, the distance is
constrained as D = 6 − 14 kpc, which is consistent with the result by Chakrabarty
(1998).

In figure 6.1, the best-fit reduced chi-squared, χν2 = 2.9 for ν = 37 d.o.f., means
that the fit is not acceptable. One possible reason for the large χ2 is systematic errors
on the observed fluxes, because the fluxes taken from various past observations
must suffer from cross-calibration uncertainties among the different instruments.
We hence added various systematic errors on the flux, and found that χν2 ∼ 1 is
achieved if we employ systematic errors of 5.5%. This value is considered to be
reasonable, because it is in the uncertainty range (∼ 10%) of the fluxes obtained
from different instruments as estimated by Kirsch et al. (2005). Since the fitting
results gave that χν2 depend little on D, we have employed the systematic error of
5.5%, and derived the 68% confidence limits (χ2 increment ∆χ2 < 2.3 for 2 d.o.f.),
which include only the statistically errors. In figure 6.2, the obtained statistical
errors are expressed by a pair of dashed lines.

6.1.3 Systematic uncertainties

Although the fitting with the GL79 model has given a rather tight constraints on
M and R for an assumed value of D, the uncertainty region in figure 6.2 (dashed
lines) includes only statistical errors. Therefore, we have to evaluate systematic
errors arising from approximations and several assumptions which we are involved
in the GL79 formalism as well as in our analysis. Accuracy of the approximations of
equation (2.28) for n(ωs) in the GL79model, and equation (6.1) for I, are considered
to be within < 5% (GL79) and < 10% (Lattimer & Schutz, 2005), respectively.
Since these uncertainties are considered to be smaller than following uncertainties,
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we ignored these effects, and evaluated other systematic errors.
An obvious uncertainty arise from the assumption of the isotropic emission from

the NS; so far, we assumed that the observed time-averaged flux is equivalent to the
averaged one over the whole direction of the NS rotation. Although the uncertainty
involved in this assumption has not been evaluated in 4U 1626–67, Basko & Sun-
yaev (1975) estimated that the effect is at most 50% in a similar low-mass X-ray
binary pulsar Her X-1. Assuming that the result can be applied to 4U 1626–67 as
well, we set the systematic uncertainty on the observed flux to be ∼ 50%, which
directly affects the estimated L in equation (6.6). Another uncertainty in the present
study is the accretion geometry assumed by GL79, which includes the exact loca-
tion of the “outer transition zone” described by r0 of equation (2.25), and the angles
among the rotation axis of the NS, the NS’s magnetic axis, and the accretion plane.
In the GL79 model, they assumed that the rotation axis is aligned with the magnetic
axis, and these axes are perpendicular to the accretion plane. If these assumptions
do not hold, µ30 will change, typically by ∼50% (Wasserman & Shapiro, 1983).
Because r0 ∝ µ304/7 and equation (6.6) scales as ∝ µ302/7, the 50% uncertainty in
µ30 will translate to a geometrical uncertainty of ∼25% in equation (6.6).

In order to express all the above uncertainties, we have decided to employ an
artificial normalization factor A, and multiplied it to the right hand side of equation
(6.6). Then, we repeated the model fittingwith changing A from 0.5 to 1.5. In figure
6.2, the obtained M–R loci for A = 0.5, 0.8, 1.2, and 1.5 are also shown. Although
these uncertainties make the allowed M–R region wider, the GL79 model still gives
a very tight constraint on R if D is somehow specified.

6.1.4 Application of the Lovelace model to the data

As introduced in § 2.2.4, LRB95 proposed another (in a sense more sophisticated)
accretion torque model, Lovelace model hereafter, to describe the relation between
Ṗ and L with assumptions of magnetic outflows and/or magnetic breaking. Using
the “turnover radius” rto [equation (2.32)] and the co-rotation radius rcr [equation
(2.33)], the Lovelace model explains spin-up with outflows when rto < rcr, and
predicts both spin-up and spin-down behavior with magnetic braking by the disk
when rto > rcr. In order to understand both the spin-up and spin-down behavior of
4U 1626–67 with the Lovelace model, the model requires the condition of rto > rcr
in the spin-down phase. However, in the spin-down phase of 4U 1626–67, we found
that the parameters, which we employed, do not give the condition of rto > rcr.
Specifically, we obtained the values of rto = 1.3 × 108 cm and rcr = 7.0 × 108 cm
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Figure 6.2: Results of the GL79 model fits to the data of 4U 1626–67, shown on the
M–R plane. The thick solid line indicates a locus of the best-fit values of M and R
as D is varied. The thin solid lines express the cases of four different values of the
normalization factor A. A pair of dashed lines give 68% errors for the solutions of
A = 1.0, while dotted lines give a grid of constant values of D. The gray solid lines
represent M–R relations given by the EoSs of SLy, APR and Shen. This figure was
updated from Takagi et al. (2016).

from Fbol = 9.3 × 10−10 erg cm−2 s−1, M = 1.73M⊙, R = 11.1 km, D = 6 kpc,
and αDm = 0.01. Therefore, we found that the Lovelace model cannot explain the
spin-down behavior of 4U 1626–67.

Although the Lovelace model does not satisfy the required condition in the spin-
down phase, we applied the model to the observed data in the spin-up phase, because
rto < rcr is satisfied there in. We then should use the equation in the spin-up with
outflows proposed by LRB95, which expresses the Ṗ–L relation as equation 2.35.
In LRB95, they assumed that α is in the range of 0.01–0.1 and Dm is order of unity.
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While equations (2.35) and (6.6) have different factors, αDm and n(ωs), the other
factors in the equations are the same.

We thus selected the data in the spin-up phase from tables 2.2 and 2.3, and fitted
them with equation (2.35), employing the parameter ranges of M = 1.0 − 2.4M⊙
and R = 8.5 − 15 km. In this analysis, we did not consider the relativistic effect in
µ or L. A fitting result with an assumed distance of D = 6 kpc and αDm = 0.01 is
shown in figure 6.3, in the same format as figure 6.2 (but limited to Ṗ < 0). The
obtained reduced chi-squared, χν2 = 46 for 30 d.o.f., indicates that the fitting result
is far from being acceptable. Even if we change D or αDm, the fit was not improved
significantly. The result is expected, because equation (2.35) can only take Ṗ = 0,
which is a torque-equilibrium condition, with Fbol = 0. The Lovelace model differs
on this point from that of GL79, and disagrees with our measurements. From these
results, we concluded that the accretion torque model proposed by LRB95 cannot
explain the relation observed from 4U 1626–67.
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Figure 6.3: The same as figure 6.1, but employing the Lovelace model (LRB95)
(Takagi et al., 2016). The dashed horizontal line gives Ṗ = 0. The solid line indi-
cates the best fit model calculated from equation (2.35) proposed by LRB95 with
M = 1.73M⊙, R = 11.1 km, D = 6 kpc, and αDm = 0.01. The obtained reduced
chi-squared is χν2 = 46 (1400/30) for 30 d.o.f..
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6.2 X Persei

6.2.1 Past observations

In order to study X Persei (§2.4) in the same way as in § 6.1, we combined the GSC
result with the past observations summarized in table 6.1. Figure 6.4 shows the Ṗ
and Fbol relation of X Persei obtained from the GSC and the past results. Although
we observe a negative correlation, the trend of the GSC data is different from that of
the past observations. This suggest that the GL79 theory is somehow inapplicable
to X Persei, or some of the employed data are wrong. We speculate that the latter is
the case, because the correlation will become much better if the three RXTE/PCA
data points by Acuner et al. (2014) are moved in the flux direction by a factor of ∼2.
In the following section, we therefore reanalyze the past results obtained by Acuner
et al. (2014), trying to solve the problem.

6.2.2 Re-analysis of the RXTE/PCA data

Although the 3–20 keV RXTE/PCA flux reported by Acuner et al. (2014) in their
figure 5 corresponds to ∼18 mCrab at ∼MJD 52500, the RXTE/ASM intensity ob-
tained by Lutovinov et al. (2012) is ∼25 mCrab at that time. The source intensity
calculated from the RXTE/PCA count rate given in figure 1 in Acuner et al. (2014)
in reality translates to is ∼30 mCrab instead of ∼18 mCrab. In contrast, the GSC
data points in figure 6.4 are considered correct, because the spectrum analysis and
the photon count rate (figure 4.2) gave consistent results. Therefore, we concluded
that the RXTE/PCA flux calculated by Acuner et al. (2014) is wrong.

We have hence decided to employ reanalyzed RXTE/PCA fluxes derived by
M. Nakajima (2016, private communication), which are also summarized in table
6.1. Thus, the RXTE/PCA fluxes have increased by a factor of 1.8–2.1, just as we
speculated. By using there revised flux values, Then, we obtained the Ṗ and Fbol
relation, figure 6.4 has changed in to figure 6.5. Now, most of the data points define
a single correlation.
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Figure 6.4: A relation between Ṗ and Fbol of X Persei obtained by the MAXI/GSC
and the past observations. Filled circles, open circles and a cross represent the
MAXI/GSC, the RXTE/PCA (Acuner et al., 2014) and the BeppoSAX (Di Salvo et
al., 1998) data summarized in table 6.1, respectively.
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6.2.3 Application of the Ghosh & Lamb relation to the data

In order to derive the possible NS parameters in X Persei, M, R and B, we fitted
the obtained Ṗ–Fbol relation in figure 6.5, with the GL79 theory of equation (6.6).
In X Persei, the number of unknown parameters in the equations is four, M, R, D,
and B, whereas the data have only two degrees of freedom, the zero-cross point
and the slope, as we confirmed in §6.1.2. Therefore, we tried to estimate only B,
while the other parameters are allowed to take arbitrary values in reasonable ranges
of M = (1.0 − 2.4) M⊙, R = 8.5 − 15 km, and D = 0.7 − 1.3 kpc. For example,
figure 6.5 shows a fitting result with M = 1.7M⊙, R = 13.7 km, D = 0.7 kpc, and
B = 5 × 1013 G. Although the data points are a little scatted, the theoretical curve
roughly explains the observed data.

To derive the preferred range of B in X Persei, we repeated the same analysis
by changing B. The obtained best-fit χ2 values are shown in figure 6.6 as a function
of B. Thus, the fit is clearly much better for B = (4 − 20) × 1013 G, where the χ2

value is constant due to degenerate solutions with different values of M, R, and D.
As indicated by a green line in figure 6.5, the model fails to explain the data if B is
higher than this range, and require the limiting value of R = 8.5 km trying to reduce
µ via equation (6.2). Similarly, values of B less than 4 × 1013 G (red line in figure
6.5) disagree with the data, and require the largest value of R = 15.5 km for the
same reason as above. Thus, the range of B = (4 − 20) × 1013 G is clearly preferred
in X Persei, although the obtained minimum χ2 value of 427 for 11 d.o.f. is still far
from being acceptable. In this fitting, we did not consider the uncertainties of the
model equations.

In obtaining figure 6.5, we have assumed for simplicity D = 0.7 kpc. However,
due to the degeneracy of solutions, the same fit as the black line in figure 6.5 can be
obtained even for different values of D. If, for example, we employ D = 0.8 kpc,
the best-fit solution can be reproduced by M = 1.9M⊙ and R = 14.7 km. In any
case, our conclusion on B does not change.
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Figure 6.5: The same as figure 6.4, but the flux values of the three RXTE/PCA data
points have been revised (table 6.1). The black solid line is the best fit GL79 model
of equation (6.6), which has M = 1.7M⊙, R = 13.7 km and B = 5.0 × 1013 G,
assuming a distance of 0.7 kpc. The red and green solid lines indicate the fitting
models with B = 3.0 × 1013 G and B = 4.0 × 1014 G, respectively. The parameters
in those models are described in this figure, where their colors correspond to those
of the models.
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Figure 6.6: Dependence of χ2 on the assumed B, obtained when fitting the observed
data of X Persei in figure 6.5 with equation (6.6).
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DISCUSSION

7.1 A Mass and Radius of the Neutron Star in 4U
1626–67

We applied the epoch folding method to the data of 4U 1626–67 observed with the
GSC, and then determined P, Ṗ, and the X-ray intensity of 4U 1626–67 for every
60-d interval from 2009 October to 2013 September. The obtained results indicate
that the NS in 4U 1626–67 has been in spin-up phase since the start time of the
GSC operation, and the values of the spin-up rate were correlated with the X-ray
intensity.

As shown in figure (6.1), we confirmed that these GSC results were fully con-
sistent with those obtained from the past observations summarized in table 2.2 and
2.3. The observed data in both spin-up and spin-down phases shows good correla-
tion of Ṗ–Fbol, and the change rate is Ṗ = −6× 10−11 s s−1 in the spin-up phase, and
Ṗ = 5×10−11 s s−1 in the spin-down phase. The past observations include the transi-
tions between the spin-up and spin-down phases. By using the favorable conditions,
we found that the accretion torque model proposed by GL79 successfully explains
the relation between Ṗ and Fbol observed in 4U 1626–67, while the model proposed
by LRB95 cannot explain the observed relation even limiting to the spin-up phase.

Another favorable condition is the accurate knowledge of the surface magnetic
field of the NS in 4U 1626–67. We found that the two unknown parameters, e.g., M,
R and D, can be constrained when the observed Ṗ–Fbol relation was fitted with the
accretion torque model proposed by GL79. The source distance can be constrained
to D = 6−14 kpc under the condition that M and R are limited to the nominal ranges
of M and R of NSs, M = (1.0 − 2.4) M⊙ and R = 8.5 − 15 km. This result is agree
with the limit D & 3 kpc calculated by Chakrabarty et al. (1997); they analyzed
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the behavior of Ṗ in 4U 1626–67 with the assumption of I = 1 × 1045 g cm2 and
M = 1.4 M⊙, then evaluated the mass accretion rate, Ṁ & 1 × 1016 g s−1, using a
similar consideration to the GL79 model, and compared the calculated luminosity
to the observed flux. Our result of the distance estimation also agrees with that by
Chakrabarty (1998), 5–13 kpc, which was obtained from the optical intensity and
assumption that the effective X-ray albedo of the accretion disk is & 0.9.

In other words, if we assume the source distance D, the observed Ṗ–Fbol relation
can constrain M and R simultaneously with small statistical errors. Thus, if other
measurements can determine D accurate enough, the allowed M and R region of 4U
1626–67 can be constrained to a narrow range, which is considered to be able to
select the unique EoS. Moreover, the method can give the information on R, which
is more important than that on M, when the obtained result suffer from various
systematic errors (figure 6.2).

To increase the accuracy of the GL79 model, it is important to evaluate the
systematic errors discussed in § 6.1.3. An application of the GL79 model to Be X-
ray binaries by Klus et al. (2014) should help to understand the uncertainties. They
compared the surface magnetic field of NSs in these binaries obtained from CRSF
(BC) with that calculated by the GL79 model (BGL79), and found that the ratio is
BGL79/BC = 3−4 in two systems, GRO J1008–57 and A0535+26. The derived ratio
corresponds to an uncertainty of ∼50%, which is equivalent to A = 1.5 evaluated
in § 6.1.3. These results require that it is important to apply this method to many
sources.

7.2 A Magnetic Field of the Neutron Star in X Persei

By using the same method in 4U 1626-67, we tried to estimate the surface magnetic
field of the NS in X Persei, and found that the referred range is B = (4 − 20) ×
1013 G. However, in this estimation, we did not consider the uncertainties of the
model equations and evaluate the errors of B. Although the result includes the
above problem, it is consistent with a suggestion that the NS in X Persei has a
strong magnetic field (Sasano, 2015). On the other hand, Lutovinov et al. (2012)
indicated an absorption feature in the X-ray spectrum observed with INTEGRAL,
and estimated the value of B = (2.4−2.9)×1012 Gwith assumption that the feature is
CRSF. The feature is very shallow and broad, and may arise from wrong continuum
modeling because it disappear using another continuum model. From these results,
we considered that the NS in X Persei has strong magnetic field (∼ 1013 G) which
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is stronger than that of a NS in general binary X-ray pulsars.



Chapter 8

CONCLUSIONS

In present study, we have found the below conclusions.

• Application of the accretion torque model proposed by Ghosh & Lamb (1979)
to the observed relation between Ṗ and Fbol can constrain the mass and radius
of the neutron star simultaneously with small statistical errors, which can
select the unique equation of states.

• In 4U 1626–67, although the model equations include the systematic uncer-
tainties, and the source distance has a large error, we constrained the mass
and radius of the neutron star.

• If the source distance of 4U 1626–67 is determined by some method, we can
obtain the information on R, and constrain the proposed equation of states.

• If the accretion torque model is improved, we also obtained an accurate value
of the mass and radius of the neutron star in 4U 1626–67.

• In X Persei, we found that the surface magnetic field of the neutron star prefer
a range of the B = (4 − 20) × 1013 G, by using the accretion torque model
proposed by Ghosh & Lamb (1979).

• The obtained result is consistent with a suggestion that the neutron star in X
Persei has relatively strong magnetic field of ∼ 1013 G (Sasano, 2015).
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Appendix A

ERROR ESTIMATIONS OF
PERIODS AND ITS DERIVATIVES

In order to derive a periodicity, e.g., a pulse period and its derivative in binary
X-ray pulsars, in light curve data, the epoch folding method presented in § 5.1 is
usually employed. Although we can easily derive a period from data, to estimate
its error is difficult. Then, we tried to estimate the errors, on which pulse period
and its derivatives obtained by the epoch folding method, with various method, and
evaluated these values.

A.1 Method 1 - The Parameter a and the Standard
Estimate -

First, we estimate the errors with a straight-forward method, which assumed that
the errors ∆P and ∆Ṗ are related to a difference of pulse number a in the total time
span Ts of the observation. Then we can express the errors as

∆P =
aP2

Ts
, ∆Ṗ =

2aP2

Ts2
. (A.1)

In this case, a is generally less than one pulse. The above equations (equation
A.1) can be led by the following explanation. The number of pulses n(t) from t0
to t is calculated by an integral of the pulse frequency ν(t) from t0 to t. In this
calculation, we assumed that the frequency ν only depends on time with a constant
ν̇, or we used only the first order of derivatives in Taylor expansion series. By using
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ν(t′) = ν0 + ν̇0(t′ − t0), we obtain an equation as

n(t) =
∫ t

t0
ν(t′) dt′ = ν0(t − t0) +

ν̇0
2
(t − t0)2. (A.2)

Substituting the whole time span Ts for (t − t0), we derive

n(t) = ν0Ts +
ν̇0
2
T 2
s . (A.3)

The obtained expression (equation A.3) can be considered as a function of ν0 and
ν̇0. Then the “variation of n(t)”, ∆n, can be described as a function of variations of
∆ν0 and ∆ν̇0,

∆n(∆ν0, ∆ν̇0) =
∂n(t)
∂ν0
∆ν0 +

∂n(t)
∂ν̇0
∆ν̇0 = Ts∆ν0 +

Ts2

2
∆ν̇0. (A.4)

In this section, employing ∆n = a, we derive equations of ∆ν0 and ∆ν̇0,

∆ν0 =
a
Ts

and ∆ν̇0 =
2a
Ts2
, (A.5)

from equation (A.4). Converting ∆ν0 and ∆ν̇0 in equation (A.5) to ∆P0 and ∆Ṗ0, we
obtain the equations, which depend on a, as

∆P0 =
aP02

Ts
and ∆Ṗ0 =

2aP02

Ts2
+
2aP0Ṗ0
Ts

. (A.6)

In our case, we can ignore the second term of ∆Ṗ0, the parameters which we used
give a condition of P0/Ts ≫ Ṗ0.

In this appendix, in order to understand the difference among various methods,
we employed the value of a. In Leahy (1987), a = 1/2 called the “standard esti-
mate”, and they gave

∆P
P
=

P
2Ts
. (A.7)

Applying the standard estimate (a = 1/2) to our case (Ts = 60 days = 5184000 s,
and P = 7.67 s), we derived the errors of P and Ṗ as

∆P = 5.7 × 10−6 s and ∆Ṗ = 2.2 × 10−12 s s−1. (A.8)

However, there is no reason to select a = 1/2.
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A.2 Method 2 - A Sinusoidal Pulse Case -

We can easily consider that a should be related to the reduced chi-square (χν2)
value, which is calculated from the folded light curve obtained by the epoch folding
method. By using the Monte-Carlo simulation, Leahy (1987) derived an empirical
relation between a and χν2,

∆P
∆PL

= 0.71 (χν2 − 1)
−0.63
, (A.9)

with assumption of a sinusoidal pulse shape, where ∆PL = P2/2Ts. In other words,
the above equation can be rewritten as

a =
1
2
× 0.71 (χν2 − 1)

−0.63
. (A.10)

When the reduced chi-square is within the range of χν2 = 3 − 110, we can use
the equation. In the case of 4U 1626–67, since the obtained reduced chi-square,
χν

2 = 3.48, is within the range, we can employ equation (A.10), and obtained
a = 0.20. By using the obtained a and equation (A.6), we calculated the error of P
as

∆P = 2.3 × 10−6 s. (A.11)

Although the error of Ṗ was not evaluated in Leahy (1987), we calculated the error
from equation (A.10) with an assumption that the calculated a is also effective in
this case as

∆Ṗ = 0.88 × 10−12 s s−1. (A.12)

A.3 Method 2Modified - Considering the Pulse Shape
-

In method 2, since the pulse shape is assumed as a sine function, which has the
broadest pulse width with full width at half maximum (FWHM) of 0.5, it is con-
sidered to give the worst case among various pulse shapes. In 4U 1626–67, the
obtained pulse profile shown in figure A.1 has sharp peaks, FWHM = 0.085, and it
can be considered to give a good estimation of periods. If we employ the assump-
tion, the errors of P and Ṗ would be smaller than that calculated by method 2 by a
factor of 0.085/0.5. In this case, we obtained a = 0.034 (a = 0.20× 0.085/0.5), and
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Figure A.1: Observed pulse profile of 4U 1626–67 in 2–10 keV band for MJD
55290–55350, and a pulse profile model, which consists of two gaussian represent-
ing the peaks and a constant, with χν2 = 1.30 (Takagi et al., 2016). The gaussians
have an equal height and width (σ = 0.036, or FWHM = 0.085). The background
rate is 440 counts/bin.

calculated the errors as

∆P = 0.39 × 10−6 s and ∆Ṗ = 0.15 × 10−12 s s−1, (A.13)

where we ignored the effect that the pulse profile has two peaks.

A.4 Method 3 - Deviation from the Best Pulse Profile
-

When data is fitted with a model with χν2 ∼ 1.0, we can derive the errors of the
parameters in the model. If the method can be applied to the estimation of the errors
of P and Ṗ, we obtained the values. Before the method is applied to our case, we
should note the following problem. While the parameters in a model are changed to



A.4. METHOD 3 - DEVIATION FROM THE BEST PULSE PROFILE - 65

estimate their errors in the χ2 fittingmethod, we calculate distribution of χ2 varying
the trial P and Ṗ, which are employed to make the folded light curve, and estimate
the errors from the distribution. First, we searched the best-fit model for the pulse
profile, and defined that, which has an acceptable χν2, as the model, shown in figure
A.1. After that, we calculated the distribution of χ2, and searched the region within
χ2 of the minimum value plus 1.0, which represents the one-parameter error region
for P and Ṗ. Figure A.2 shows the obtained distribution of χ2. By using the region,
we calculated the errors as

∆P = 0.2 × 10−6 s and ∆Ṗ = 0.4 × 10−12 s s−1. (A.14)

We calculated the values of a from the estimated errors of P and Ṗ, and obtained
that a is 0.02 and 0.09, respectively.

Figure A.2: Distribution of χ2, which indicates deviation for the assumed pulse
model shown in figure A.1 (Takagi et al., 2016). The right bar indicates the χ2
values. The obtained minimum χ2 is 17.48.
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A.5 Method 4 - Monte-Carlo Simulation -

We performed Monte-Carlo simulations to make simulated data of X-ray photons,
in which all the observational conditions, e.g., source intensity, background inten-
sity, accumulated area, exposure, and transit times of the scans, are considered. We
searched the most-likely P and Ṗ from the simulated data with the epoch folding
method, which is the same analysis in the real observation. As an example, the dis-
tribution of χ2 obtained from the simulated data is shown in figureA.3. It has similar
distribution and extension in the real case (figure 5.4). Repeating the analysis 200
times, we make a histogram of P and Ṗ obtained from each simulated data, shown
in figure A.4. In order to estimate the errors of P and Ṗ, we fitted the histogram
with the gaussian model, and calculated the 1-σ errors as

∆P = 0.48 × 10−6 s and ∆Ṗ = 0.63 × 10−12 s s−1. (A.15)

We calculated the values of a from the estimated errors of P and Ṗ, and obtained
that a is 0.042 and 0.14, respectively. We performed this simulation for each 60-d
interval, which corresponds to the intervals of the real case.

A.6 Discussion

By using the several method, we calculated the errors of P and Ṗ (∆P, ∆Ṗ) obtained
by the epoch folding method. In this appendix, we showed the test case of theMAXI
observation of 4U 1626–67 from MJD 55290 to MJD 55350. The obtained results
are summarized in table A.1 and figure A.5. If the pulse profile is sinusoidal, the
error of P calculated by Method 2 would be only appropriate. Since the peak width
of the observed pulse profile is sharper than that of a sinusoidal pulse, the error
in that case is considered to be a “loose error” or conservative error. Considering
the width of the pulse profile, we obtained the error, which is similar to that by
the Monte-Carlo simulation, although it is not exactly the same. In the case of the
error of Ṗ, the error calculated by Method 2 is the closest one. If we employed the
Monte-Carlo simulation, a for the error of Ṗ, which is 3 times larger a for that of P,
is derived, although the reason why the result was obtained is unclear. Evaluating
the errors of P and Ṗ estimated by various methods, we finally employed these
obtained by the Monte-Carlo simulation. We also performed the same analysis for
another span (MJD 56250–56310), and listed the obtained results in table ??. We
found almost the same relation in that span.
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Figure A.3: Distribution of χ2 calculated from the simulated data with the same
observation condition for MJD 55290–55350 (Takagi et al., 2016). The right bar
indicates the χ2 values. The maximum χ2 is 137 for 31 degrees of freedom at
P = 7.6777282 s and Ṗ = −2.66 × 10−11 s s−1.

Figure A.4: Histograms of P (left) and Ṗ (right) obtained from the simulated data
(Takagi et al., 2016). The number of trials is 200.
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Table A.1: Errors of P and Ṗ in MJD 55290–55350.

Method ∆P ∆Ṗ a
(10−6 s) (10−12 s s−1)

1 “standard” 5.7 2.2 0.5
2 Leahy 2.3 (0.88)1 0.20
2 modified 0.39 (0.15)1 0.034
3 pulse fit 0.2 0.4 0.022, 0.093
4 MC 0.48 0.63 0.0422, 0.143

1 ∆Ṗ is not given in Leahy (1987).
2 Calculated from P.
3 Calculated from Ṗ.

Figure A.5: Errors of P and Ṗ obtained by various methods (Takagi et al., 2016).
The numbers in the figure express the methods.
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Table A.2: Errors of P and Ṗ in MJD 56250–56310.

Method ∆P ∆Ṗ a
(10−6 s) (10−12 s s−1)

1 “standard” 5.7 2.2 0.5
2 Leahy 3.3 (1.3)1 0.29
2 modified 0.56 (0.21)1 0.049
3 pulse fit2 – – –, –
4 MC 0.90 1.07 0.0793, 0.244

1 ∆Ṗ is not given in Leahy (1987).
2 χ2 minimum region could not be determined.
3 Calculated from P.
4 Calculated from Ṗ.
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