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Abstract 

At present, members using functionally graded materials (FGMs) are widely applied to 

production of manned spaceships. This is to cope with the problem that the surface of 

the space-planes reaches an extremely high temperature and the covering heat-resistant 

ceramic peels off and falls out in the atmosphere. The new concept of heat-resistant 

material used to protect the aircrafts in the space plane from extremely high temperature 

proposes a member whose composition has been continuously changed from metal to 

ceramic in the cross section. This conception alleviates the problem of jointing 

constituents as well as has many other useful features such as no stress concentration 

which is commonly found in conventional composite materials (Composite). 

If such a member is applied to a large-scale building/civil engineering structure, the 

structure can be optimally distributed in intensity. As a result, it is possible to design 

homogeneous buildings or intentionally changed strength buildings.  

Currently, Fourier transform, Laplace transform, and theoretical solution are used for 

analysis of members having such characteristics; however, these are complicated and 

poor in versatility. Therefore, this research proposes a new analytical method by 

incorporating theoretical formulas that can analyze members using functionally graded 

technology by means of the finite element method (FEM). As part of the research, new 

shape functions are developed in order to obtain a minimum number of element 

divisions and high precision in numerical results. 

Chapter 1 describes the background and purpose of the research. 

Chapter 2 formulates FGM beam structures based on conventional beam theories, and 

proposes new shape functions as well.  

Chapter 3 describes the formulation of the FGM beam structures used in the finite 

element method. 

Chapter 4 describes analysis techniques using in the research, including co-rotational 

approach, incremental iteration method in combination with arc-length control method, 

and implicit average constant acceleration Newmark method. With the aid of these 
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techniques, not only the nonlinear equilibrium equations are solved but also the large 

deformation is analyzed, paving the way for performance of elastic-plastic and post-

buckling analyses.  

Chapters 5 and 6 examine the accuracy of new shape functions proposed in the research 

by using application examples of modified cross section beams in static analysis and 

dynamic analysis. The results are displayed in comparison with reference works. 

Chapter 7 describes the effectiveness of FGM beam structures in the dynamic problems. 

Chapter 8 investigates the behaviour after buckling of axially FGM beam structures. 

Chapter 9 analyzes the elastic-plastic of the FGM beam structure resting on elastic 

foundation. 

Chapter 10 summarizes the research and discusses future prospects.   
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Chapter 1: Introduction of FGM 

1.1. History 

Although the concept of Functionally Graded Materials (FGMs) was initiated by 

Japanese scientists in 1984 in Sendai [67], these sorts of materials have been 

exploited in numerous biological systems in nature such as bamboo, plant stems, 

leaf shafts or feathers, and human and animal bone, to name but a few. 

                                    

       (a) Bone                                                     (b) Bamboo 

Figure 1.1:  FGM in nature 

Bone and bamboo are two examples of natural FGMs displayed in Fig.1.1 as an 

illustration. While biological structures are living organisms that can be 

characterized by adaptability in order to accommodate to their physical 

environment, human-made FGM structures require a functional selection and 

combination of materials for special purposes. 

1.2. FGM as new materials 

FGMs have been of great importance to many researchers for a long time because 

of their wide range of applications in structural mechanics. The newly-created 

materials have promising applications in many fields such as space projects, the 

energy sector, communications projects, the defence industries, biomedical sectors 

and miscellaneous others (Figs. 1.2, 1.3). There is a comprehensive list of 
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publications on analyses of FGM structures subjected to different loadings is given 

in a review paper by Birman and Byrd [10]. Previously, Chakraborty [17] 

employed the solutions of the governing differential equations of an FGM 

Timoshenko segment as interpolation functions to formulate a shear deformation 

beam element for analyzing the thermo-elastic behaviour of FGM beams. In 2008, 

Kadoli [58] formulated a beam element based on the higher-order shear 

deformation beam theory for studying the static behaviour of FGM beams under 

ambient temperature. Simultaneously, Li [75] presented a unified approach for 

investigating the static and dynamic behaviour of FGM beams with rotary inertia 

and shear deformation included. Taking the shift in position of the neutral axis into 

account, Kang and Li [59], [60], in the two consecutive years of 2009 and 2010,  

derived expressions for tip displacements of a non-linear FGM cantilever beam 

under a tip load or a tip   moment. At the same time, Şimşek and his co-workers 

[114], [116] studied the vibration of FGM beams subjected to a moving load by 

using polynomial series as trial functions for the displacements and rotation of the 

beam. Singh and Li [119], in 2009, proposed a model for computing buckling loads 

of non-uniform axially FGM columns by approximating the column by another one 

with piecewise uniform geometric and material properties. Meanwhile, Sina [118] 

presented an analytical method based on a new beam theory for free vibration 

analysis of FGM beams. Two years later, in 2011, Alshorbagy [1] studied the free 

vibration of FGM Bernoulli beams with material gradation in axial or transversal 

directions through the thickness by using the finite element method. 

Simultaneously, Fallah and Aghdam [31] derived the non-linear governing 

differential equation for geometrically non-linear vibration and post-buckling 

analysis of FGM beams resting on a non-linear elastic foundation. Meanwhile, 

Shahba [111] used the static solutions of a homogeneous Timoshenko beam 

element to formulate the mass and stiffness matrices for computing the critical 

loads and vibration characteristics of tapered Timoshenko beams made of axial 

FGM. In 2014, Kocatürk [68] presented the post-buckling analysis of an FGM 

Timoshenko beam subjected to thermal loading by using the total Lagrangian 

Timoshenko beam formulation. A year later, taking the shift in the neutral axis 

position into account, Eltaher [30] derived the finite element formulation for 
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computing the natural frequencies, and showed that ignoring the shift in the neutral 

axis position leads to an overestimation of the computed natural frequencies. At the 

same year, Nguyen [91] investigated the dynamic response of functionally graded 

non-uniform sections of Timoshenko beams traversed by a variable speed moving 

load. Nguyen and his co-workers [90], [92], [93], then derived the finite element 

formulation for studying the large displacement behaviour of FGM beams and 

frames. 

  

Figure 1.2:  FGM as a new material 

            

Figure 1.3:  FGM used in ceramic–steel dental implant 
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1.3. Modelling effective FGM properties 

FGMs can be formed by varying the percentage of constituents in any desired 

spatial direction in order to create new materials with specific physical and 

mechanical properties. The effective properties of the resulting material exhibit 

continuous change, thus eliminating the interface problem and reducing the stress 

concentration that is often met in conventional composites. 

In general, FGMs consist of two distinct material phases of ceramic and metal alloy 

in order to take advantage of the good high temperature strength and creep 

resistance of ceramics together with the high fracture toughness and excellent 

thermal shock resistance of metallic materials. 

Various analytical approaches to FGM modelling are reported in [56]: 

• Self-consistent estimates 

• Mori–Tanaka scheme 

• Composite sphere assemblage model 

• Composite cylindrical assemblage model 

• The simplified strength of materials method 

• The methods of cells 

• Micromechanical model 

The following three popular types of variation in constructing FGMs are reported 

in [56], [117]: 

• The exponential law 

 2
( ) exp 1t

z
P z P

h
λ  = − −    

 (1.1) 

where  

 
1

ln
2

t

b

P

P
λ

 
=  

 
 (1.2) 

• The power law in the thickness direction 

 ( ) 1
( )

2

n

t b b

z
P z P P P

h
 = − + + 
 

 (1.3) 

in which P(z) is the effective material properties of the FGM structure (including 
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Young’s modulus E, shear modulus G, or mass density ߩ,...); h is the structure’s 

thickness; ௧ܲ  and ௕ܲ  are material properties at the top-most (z = h/2) and bottom-

most (z = −h/2) surfaces, respectively; n is the non-negative power law index. 

• The power law in the longitudinal direction 

 ( )( ) 1
n

l r r

x
P x P P P

L
 = − − + 
 

 (1.4) 

where Pl and Pr are material properties at the left-end and the right-end of the 

structures, respectively; L is the total length of the structures (beam). 
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Chapter 2: Beam made of FGM 

2.1 Beam theory 

Beam models have been helpful in solving a large number of engineering problems. 

Beam theories are extensively used to analyze the structural behaviour of slender 

bodies such as columns, arches, blades, aircraft wings, and bridges [33]. 

2.1.1 Euler–Bernoulli beam 

The Euler–Bernoulli beam theory is derived from the following assumptions: 

• the cross-section is rigid on its plane; 

• the cross-section rotates around a neutral surface remaining in-plane; 

• the cross-section remains perpendicular to the neutral surface during 

deformation. 

Displacement field  

According to the first hypothesis, the in-plane displacements ux and uz depend on the 

axial coordinate y only: 

 

0

0

0

x
xx

z
zz

x z
xz

u

x

u

z

u u

z x

ε

ε

γ

∂= =
∂

∂= =
∂

∂ ∂= + =
∂ ∂

 (2.1) 

 Thus 

 
1

1

( , , ) ( )

( , , ) ( )
x x

z z

u x y z u y

u x y z u y

=
=

 (2.2) 

Based on the second hypothesis, axial displacement ݑ௬ is linear versus the in-plane 

coordinates: 

 1( , , ) ( ) ( ) ( )y y z xu x y z u y y x y zφ φ= + +  (2.3) 
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where ߶௭ and ߶௫ are the rotation angles along the z- and x-axis, respectively. 

According to the third hypothesis and based on the definition of shear strains, the shear 

deformations are: 

 0yz yxγ γ= =  (2.4) 

 The rotation angles are obtained as functions of the derivatives of displacements: 

 

1

1

0

0

y x x
xy z

y z z
yz x

u u u

x y y

u u u

z y y

ε φ

ε φ

∂ ∂ ∂= + = + =
∂ ∂ ∂
∂ ∂ ∂= + = + =
∂ ∂ ∂

 (2.5) 

Thus 

 

1

1

x
z

z
x

u

y

u

y

φ

φ

∂= −
∂

∂= −
∂

 (2.6) 

The displacement field of the Euler–Bernoulli beam theory is then 

 

1

1 1
1

1

x x

x z
y y

z z

u u

u u
u u x z

y y

u u

=
∂ ∂= − −
∂ ∂

=

 (2.7) 

Strains 

According to the kinematic hypotheses, the Euler–Bernoulli beam theory accounts for 

the axial strain only: 

 
2 2

1 1 1
2 2

y y x z
yy

u u u u
x z

y y y y
ε

∂ ∂ ∂ ∂= = − −
∂ ∂ ∂ ∂

 (2.8) 

Stresses and stress resultants 

The axial stress, ߪ௬௬, is obtained from the axial strain: 

 
2 2

1 1 1
2 2

y x z
yy yy

u u u
E E x z

y y y
σ ε

∂ ∂ ∂= = − − ∂ ∂ ∂ 
 (2.9) 

The stress resultants: 
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• axial force N(y) 

 

  

2 2
1 1 1

2 2

2 2
1 1 1

2 2

( )

x z

yy

y x z

y x z

A S S

N y d

u u u
E x z d

y y y

u u u
E d xd zd

y y y

σ
Ω

Ω

Ω Ω Ω

= Ω

∂ ∂ ∂= − − Ω ∂ ∂ ∂ 
 
 ∂ ∂ ∂= Ω − Ω − Ω 

∂ ∂ ∂  
 





  

 

(2.10) 

• bending moment versus the z-axis Mz (y) 

 



2 2
1 1 1

2 2

2 2
1 21 1

2 2

( )

x xx xz

z yy

y x z

y x z

S I I

M y xd

u u u
E x z xd

y y y

u u u
E xd x d xzd

y y y

σ
Ω

Ω

Ω Ω Ω

= Ω

∂ ∂ ∂= − − Ω ∂ ∂ ∂ 
 
 ∂ ∂ ∂ = Ω − Ω − Ω

∂ ∂ ∂ 
 
 





  
 

 

(2.11) 

• bending moment versus the x-axis Mx (y) 

 



2 2
1 1 1

2 2

2 2
1 21 1

2 2

( )

z xz xx

x yy

y x z

y x z

S I I

M y zd

u u u
E x z zd

y y y

u u u
E zd xzd z d

y y y

σ
Ω

Ω

Ω Ω Ω

= − Ω
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 
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


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(2.12) 

where A is the cross-section area;  Sx  and Sz  are static momenta;  and Ixx,  Ixz  and Izz  

are momenta of  inertia. Eqs. (2.10), (2.11) and (2.12) can be written in matrix form: 

 
1

2

3

x z

z x zz xz

x z xz xx

A S S kN

M S I I k

M kS I I

    
    =    
    −    

 (2.13) 
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 2.1.2 Timoshenko beam 

In the Timoshenko beam theory, the third kinematic a priori assumption of the Euler–

Bernoulli beam theory is relaxed. 

Displacement field 

According to the previous a priori kinematic assumptions, the displacement field of the 

Timoshenko beam theory is 

 
1

1

1

( , , ) ( )

( , , ) ( ) ( ) ( )

( , , ) ( )

x x

y y z x

z z

u x y z u y

u x y z u y y x y z

u x y z u y

φ φ
=
= + +

=

 (2.14) 

Strains 

 

1

1

1

y y xz
yy

y x x
xy z

y z z
yz x

u u
x z

y y y y

u u u

x y y

u u u

z y y

φφε

γ φ

γ φ

∂ ∂ ∂∂= = + +
∂ ∂ ∂ ∂
∂ ∂ ∂= + = +
∂ ∂ ∂
∂ ∂ ∂= + = +
∂ ∂ ∂

 (2.15) 

 Stresses and stress resultants 

 

1

1

1

y xz
yy yy

x
xy z

z
yz x

u
E E x z

y y y

u
G

y

u
G

y

φφσ ε

σ κ φ

σ κ φ

∂ ∂∂= = + + ∂ ∂ ∂ 
 ∂= + ∂ 
 ∂= + ∂ 

 (2.16) 

where κ is the shear correction factor. 

The stress resultants 

• axial force N(y) 

 
1

yy

y xz

N d

u
E x z d

y y y

σ

φφ
Ω

Ω

= Ω

∂ ∂∂= + + Ω ∂ ∂ ∂ 




 (2.17) 
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• bending moment versus the z-axis Mz 

 
1 2

z yy

y xz

M zd

u
E z xz z d

y y y

σ

φφ
Ω

Ω

= Ω

∂ ∂∂= + + Ω ∂ ∂ ∂ 




 (2.18) 

•  bending moment versus the x-axis Mx 

 
1 2

x yy

y xz

M xd

u
E x x xz d

y y y

σ

φφ
Ω

Ω

= − Ω

∂ ∂∂= − + + Ω ∂ ∂ ∂ 




 (2.19) 

• shear force along the x-axis Vx 

 
1

1

x xy

x
z

x
z

V d

u
G d

y

u
G A

y

σ

κ φ

κ φ

Ω

Ω

= Ω

 ∂= + Ω ∂ 
 ∂= + ∂ 



  (2.20) 

•   shear force along the z-axis Vz 

 
1

1

z yz

z
x

z
x

V d

u
G d

y

u
G A

y

σ

κ φ

κ φ

Ω

Ω

= Ω

 ∂= + Ω ∂ 
 ∂= + ∂ 



  (2.21) 
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2.2. FGM in beam theory 

2.2.1. Prismatic FGM beam 

Consider the beam to have a cross-section assumed to be rectangular with width b and 

height h (Fig. 2.1). 

x

z

section A-BA

B

z

b

h
0h

generic beam element

1u

1w

1θ 2u

2w

2θ

 

Figure 2.1: FGM beam and its generic element 

The beam material is assumed to be an FGM composed of two constituent materials, 

and the effective material properties are graded in the thickness direction (z-direction) 

according to a power law distribution as 

 

( )( )

1
( )

2

1

n

b t b

n

t

t b

z
P z P P P

h

z
V z

h

V V

 = + −  
 

 = + 
 

+ =

 (2.22) 

where P(z) represents the effective material properties, including Young’s modulus,  

shear  modulus  and  mass  density;  Pt  and  Pb  are  the material properties of the 

material at the top and bottom surfaces, respectively. ௧ܸ  and ௕ܸ respectively denote 

the volume fractions  of  the  materials  at the top and bottom surfaces; n is the non-

negative power-law index, which defines the distribution of the constituent 

materials. 



12 
 

 

Figure 2.2: Variation in volume fraction through the thickness of FGM beams 

Fig. 2.2 shows the variation in the volume fraction through the beam thickness for 

various values of the index n of the FGM beam. Due to variation of the effective 

Young’s modulus, the neutral axis is no longer at the mid-plane, but it shifts from the 

mid-plane by a distance h0, which can be determined by imposing the axial resultant in 

a cross-section that vanishes: 

 0x

A

N dAσ= =  (2.23) 

then 

 
( )

( ) ( )

/2

/2
0 /2

/2

( )

2 2
( )

h

t bh
h

t b

h

E z zdz
hn E E

h
n E nE

E z dz

−

−

−
= =

+ +




 (2.24) 

Adopting Timoshenko beam theory, the axial and transverse displacements, u1(x, z, 

t) and u3(x, z, t), respectively at any point of the beam are given by 

 
1

3

( , , ) ( , ) ( , )

( , , ) ( , )

u x z t u x t z x t

u x z t w x t

θ= −
=

 (2.25) 

where u(x,t) and w(x, t) are the axial and transverse displacements of the point on 

the neutral axis x;  θ(x, t) is the rotation of the cross-section at a point with abscissa 
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x; z is the distance from any arbitrary point to the neutral axis. 

Based on the assumptions of Hooke’s law, the axial strain εx, shear strain γxz and 

their corresponding axial and shear stresses, σx and τxz, respectively, are as follows: 

 

( , ) ( , )

( , )
( , )

( )

( )

x

xz

x x

xz xz

u x t x t
z

x x
w x t

x t
x

E z

G z

θε

γ θ

σ ε
τ κ γ

∂ ∂= −
∂ ∂

∂= −
∂

=
=

 (2.26) 

The strain energy of the beam can be written as 

 

( )
2 2 2

11 12 22 33

0

1

2

1
2

2

x x xz xz

V

l

U dV

u u w
A A A A dx

x x x x x

σ ε τ γ

θ θ κ θ

= +

 ∂ ∂ ∂ ∂ ∂     = − + + −      ∂ ∂ ∂ ∂ ∂       




 (2.27) 

Kinetic energy is written as 

 

( )

( )

2 2

2 2 2
11 12 22

0

1
( )

2

1
2

2

V

l

T z u w dV

I u w I u I dx

ρ

θ θ

= +

 = + − + 





 

   
 (2.28) 

where κ  is the shear correction factor; E(z), G(z) and ρ(z) are the Young’s modulus,  

shear modulus and mass density of the material on the section with abscissa z; V is the 

volume; an over dot symbol denotes the time derivative; the stiffness coefficients and 

mass moment of inertia in Eq. (2.27) are defined as 

 

( ) ( )

( ) ( )

2
11 12 22

33

2
11 12 22

, , ( ) 1, ,

( )

, , ( ) 1, ,

A

A

A

A A A E z z z dA

A G z dA

I I I z z z dAρ

=

=

=







 
(2.29) 

where A is the cross-section area. 

It should be noted that due to the shift in the neutral axis position, the integrals in Eq. 

(2.29) should be computed in the manner described by Kang and Li [59], [60]. 
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−

−

−
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 
− 

  
 
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  
 
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  
 

= = + + − 
  

 

  

  

    

(2.30) 

 2.2.2. FGM beam in thermal environment 

The beam with total length L, cross-section height h and cross-section width b, 

shown in Fig. 2.3, will be investigated in this sub-section. 

 

Figure 2.3:  A simply supported FGM beam in thermal environment 

The x-axis is chosen to be on the mid-plane, and the z-axis is perpendicular to the 

mid-plane. The beam material is formed from ceramic and metal, where the volume 

fraction of ceramic (Vc) and metal (Vm) is assumed to be given by 

 
1

2

1

n

c

m c

z
V

h

V V

 = + 
 

+ =
 (2.31) 
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where n (0 ≤ n < ∞) is the grading index. 

In Eq. (2.31), the subscripts “c” and “m” are used to indicate ceramic and metal, 

respectively. The beam material is considered to be dependent on the 

temperature, and a typical property (P) is a function of temperature (T) as [132] 

 ( )1 2 3
0 1 1 2 31P P P T PT PT PT−

−= + + + +  (2.32) 

where T=T0+∆T, in which T0 = 300K is the reference temperature and ∆T is the 

temperature rise, in the current environment temperature; P−1, P0, P1, P2 and P3 are 

coefficients of T and they are unique to the constituents. The effective material 

properties are evaluated by Voigt’s model: 

 ( , ) ( ) ( )c c m mP z T P T V P T V= +  (2.33) 

From Eqs. (2.31) and (2.33), the effective Young’s modulus, thermal expansion and 

mass density are given by 

 

[ ]

[ ]

1
( , ) ( ) ( ) ( )

2

1
( , ) ( ) ( ) ( )

2

1
( ) ( )

2

n

c m m

n

c m m

n

c m m

z
E z T E T E T E T

h

z
z T T T T

h

z
z

h

α α α α

ρ ρ ρ ρ

 = − + + 
 

 = − + + 
 

 = − + + + 
 

 (2.34) 

where the mass density is considered to be independent of the temperature. In 

this work, the temperature is considered to vary in the thickness direction only, and 

it is assumed that the temperature being imposed is Tm   at the bottom surface and 

Tc at the top surface. With this condition, the distribution of temperature in the 

thickness can be obtained as the solution of the following Fourier equation: 

 ( ) 0
d dT

K z
dz dz

 − =  
 (2.35) 

where K(z) is the thermal conductivity, assumed to be independent of the 

temperature.  The solution of Eq. (2.35) has the form 



16 
 

 /2
/2

/2

( ) 1

( , )1

( , )

z
c m

c h
h

h

T T
T T dz

K z T
dz

K z T
−

−

−= + 


 
(2.36) 

If Tc=Tm, Eq. (2.36) gives a uniform temperature rise (UTR). Otherwise, it 

describes a non-linear temperature rise (NLTR). 

2.2.3. Non-prismatic FGM beam 

The beam shown in Fig. 2.4, with total length L and a constant cross-section height 

h, is assumed to be formed from two different materials. 

 

Figure 2.4:  Two types of non-prismatic FGM beam 

The solid cross-section area A(x) and moment of inertia I(x) are assumed to vary 

longitudinally in the two following manners: 

• Type A 

 

1
( ) 1

2

1
( ) 1

2

m

m

x
A x A

L

x
I x I

L

α

α

 = − − 
 
 = − − 
 

  

• Type B 

 

2

2

1
( ) 1

2

1
( ) 1

2

m

m

x
A x A

L

x
I x I

L

α

α

 = − − 
 

 = − − 
 

  

where Am, and Im denote the area and moment of inertia of the mid-span section, 
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respectively. 0 2α≤ < is the non-uniform section parameter, defining how the cross-

section varies. The effective property P (Young’s modulus, shear modulus and mass 

density) of the beam is assumed to vary in the longitudinal direction according to a 

power law equation as 

 ( ) ( ) 1
n

l r r

x
P x P P P

L
 = − − + 
 

 (2.37) 

where n is a non-negative power law index, which defines the distribution of the 

constituents along the longitudinal direction of the beam. The lower subscripts “l” and 

“r” stand for “left” and “right”, respectively. As seen from Eq. (2.37), the left and right 

end sections of the beam contain one pure material. Adopting Timoshenko beam 

theory, the axial and transverse displacements, u1(x, z, t) and u3(x, z, t), respectively at 

any point of the beam are given by 

 
1

3

( , , ) ( , ) ( , )

( , , ) ( , )

u x z t u x t z x t

u x z t w x t

θ= −

=
 (2.38) 

where u(x, t) and w(x, t) are the axial and transverse displacements of the point on 

the neutral axis x;  θ(x, t) is the rotation of the cross-section at a point with abscissa 

x; z is the distance from any arbitrary point to the neutral axis. Based on the 

assumptions of Hooke’s law, the axial strain εx, shear strain γxz and their 

corresponding axial and shear stresses, σx and τxz, respectively, are as follows: 

 

( , ) ( , )

( , )
( , )

( )

( )

x

xz

x x

xz xz

u x t x t
z

x x

w x t
x t

x

E x

G x

θε

γ θ

σ ε

τ κ γ

∂ ∂= −
∂ ∂

∂= −
∂

=

=

 (2.39) 

The strain energy and the kinetic energy for the non-uniform FGM Timoshenko beam 

can be written in the following forms: 
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 ∂ ∂   + +    ∂ ∂    =  ∂  − ∂   

 = + + 



  

 (2.40) 

where E(x), G(x), ρ(x) are the Young’s modulus, shear modulus and mass density 

of the material on the section with abscissa x. 

2.2.4. Elastic–plastic FGM beam 

Figure 2.5 shows a cantilever FGM beam made of ceramic and metal. 

 

Figure 2.5:  A cantilever FGM beam made of ceramic and metal 

L, h, b denote the length, height and width of the beam, respectively. The volume 

fractions of the two constituent materials follow a simple power-law function: 

 

1

2

1

n

c

c m

z
V

h

V V

 = + 
 

+ =

 (2.41) 

where z is the transverse coordinate; Vc and Vm are respectively the volume 

fractions of ceramic and metal, and n is the volume fraction exponent; the 

subscripts “c” and “m” stand for “ceramic” and “metal”, respectively. The linear 

elastic behaviour of FG material is described by Hooke’s law, and its effective 

material properties can be evaluated by micromechanics models used in 

conventional composites. The elastic–plastic behaviour of ceramic/metal FG 

materials is widely described by using the Tamura–Tomota–Ozawa (TTO) model 
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[121]. According to this model, the uniaxial stress σ and strain E of a two-phase 

composite are related to the corresponding average uniaxial stresses and strains of 

the two constituent materials [42],  [55]: 

 
c c m m

c c m m

V V

V V

σ σ σ

ε ε ε

= +

= +
 (2.42) 

In the TTO model, an additional parameter q representing the ratio of stress to 

strain transfer is introduced as 

 ,  0  q  c m

c m

q
σ σ
ε ε

<−
−

= < ∞  (2.43) 

The value of q depends on the properties of the constituent materials and the micro-

structural interaction in the composite. 

In the TTO model for a ceramic/metal FGM, the ceramic phase is assumed to be 

linearly elastic during its deformation process. Plastic deformation of the composite 

arises from plastic flow of the metal phase when the stress exceeds its yield limit. 

Here, a bilinear stress–strain relation with an isotropic hardening is assumed for the 

elastic–plastic behaviour of metal. Figure 2.6 represents a constant tangent modulus 

Etm when the stress in the metal phase exceeds its yield limit σYm. 

The elastic–plastic behaviour of the ceramic/metal FGMs also follows a bilinear 

isotropic hardening model representing a tangent modulus Et in the plastic region 

(blue lines in Fig.  2.6). 

 

Figure 2.6: Bilinear elastic-plastic model for FGM 

The effective properties such as Young’s modulus E, yield stress ߪ௒ and tangent 

modulus Et of the FGM are evaluated from the corresponding parameters of 

constituent materials and the parameter q by using the TTO model as 
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 + + + 

 (2.44) 

where E(z) is the elastic modulus; σY(z) is the yield stress, and Et(z) is the tangent 

modulus; Ec, Em are the Young’s modulus of the ceramic and metal constituents, 

respectively; E0m, σYm are the tangent modulus and yield stress of the metal 

constituent; and the parameter q is the ratio of stress to strain transfer between the 

two constituents. 

Since the Young’s modulus of the composite varies asymmetrically, the neutral 

axis of the beam is no longer on the mid-plane, but it shifts from the mid-plane by a 

distance h0, which can be determined by imposing the axial resultant in a cross-

section that vanishes: 

 

/2

/2
0 /2

/2

( )

0

( )

h

h
x h

A

h

E z zdz

N dA h

E z dz

σ −

−

= =  =





 (2.45) 

In order to calculate h0, Simpson’s rule is employed for numerical integration. The 

rule is described as follows: 

 ( ) ( ) 4 ( )
6 2

b

a

b a a b
f x dx f a f f b

−  +  ≈ + +      (2.46) 

Adopting the neutral surface as the reference plane, the axial and transverse 

displacements at any point according to Euler–Bernoulli beam theory are as 

follows: 
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0

( )

w
u u z h

x

u

u w x

∂= − −
∂

=

=

 (2.47) 

where u1, u2 and u3 are the displacements at any point in directions of the x-,  y- and 

z-axes. A degenerated form of Green strain can be adopted for the elastic–plastic 

analysis as 

 0 0 0

1
( ) ( )

2

u w
z h z h

x x
ε χ ε χ∂ ∂= + + − = + −

∂ ∂
 (2.48) 

where 0

1

2

u w

x x
ε ∂ ∂= +

∂ ∂
 is the membrane strain, and 

2

2

w

x
χ ∂= −

∂
 is the beam curvature. 

The incremental stress–strain relationship for the one-dimensional elastic–plastic 

analysis can be written in the form 

 epd E dσ ε=  (2.49) 

where Eep is the instantaneous modulus, and for the bilinear model adopted herein 

it has followed the simple form 

 
Y

ep
t Y

E ifd
E

E ifd

σ σσ
σ σε

≤
= =  >

 (2.50) 

where ߪ௒ and Et are the yield stress and tangent modulus of the FGM, respectively. 
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2.3. Shape functions 

2.3.1. Classical formulation 

In the classical formulation for shape functions, linear functions 1u

L x
N

L

−= and

2u

x
N

L
=  are used to interpolate the axial displacement u while the Hermite 

polynomials are applied for interpolation of transverse displacement w and rotation 

θ. Steps to build the Hermite shape functions are as follows: 

Nodal vector { } { }1 1 2 2

T
w wθ θ=q  

Length L of the beam is scaled to 1 using scaling parameter s: 

 

1

1

x x
s

L

ds dx
L

−=

=

 (2.51) 

The deflection curve w(s) in terms of s by using cubic functions can be written as  

 2 3
0 1 2 3( )w s a a s a s a s= + + +  (2.52) 

The rotation 

 ( )2
1 2 3

1
2 3

dw dw ds
a a s a s

dx ds dx L
θ = = = + +  (2.53) 

Applying boundary conditions 

 

1 2

1 2

(0) , ( )

(0) , ( )

w w w L w

dw dw
L

dx dx
θ θ

= =

= =
 (2.54) 

we have 
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1 0

1 1

1 0 1 2 3

1 1 2 3

(0)
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(0)
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1
( ) 2 3

w w a

dw
a

dx L

w w L a a a a

dw
L a a a

dx L

θ

θ

= =

= =

= = + + +

= = + +

 (2.55) 

Expressing four coefficients (ai, i=0..3) in nodal terms, one can obtain 

 

0 1

1 1

2 1 1 2 2

3 1 1 2 2

3 2 3

2 2

a w

a L

a w L w L

a w L w L

θ

θ θ

θ θ

=

=

= − − + −

= + − +

 (2.56) 

Replacing back into w(s) 

 

2 3 2 3
1 1

2 3 2 3
2 2

( ) (1 3 2 ) ( 2 )

(3 2 ) ( )

w s s s w L s s s

s s w L s s

θ

θ

= − + + − +

+ − + − +
 (2.57) 

or one can rewrite 

 [ ]
1

1
1 2 3 4

2

2

( ) ( ) ( ) ( ) ( )

w

w s N s N s N s N s
w

θ

θ

 
 
 =  
 
  

 (2.58) 

where Ni(s), (i=1..4) are called Hermite shape functions: 

 

2 3
1

2 3
2

2 3
3

2 3
4

( ) 1 3 2

( ) ( 2 )

( ) 3 2

( ) ( )

N s s s

N s L s s s

N s s s

N s L s s

= − +

= − +

= −

= − +

 (2.59) 
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2.3.2 Tapered prismatic beam 

Non-uniform (tapered) beam elements have been used widely in different types of 

engineering structures, such as high-rise buildings, bridges, ships and aircraft that 

are subject to static and dynamic loadings. The advantage of using such members is 

to achieve a better distribution of strengths and weights and very often to satisfy 

architectural and functional requirements. The beam element considered in this 

sub-section is a linearly solid rectangular tapered beam with its cross-section 

varying continuously along the length of the beam (Fig. 2.7). 

The equations used to vary linearly the width and heights of the beam are defined as 

follows: 

 
( ) , 0

( ) , 0

b x m nx x L

h x p qx x L

= + ≤ ≤

= + ≤ ≤
 (2.60) 

Parameters n and q are the linear rates of changes in the width and height of the 

cross-section along the beam x-axis, where L is the total length of the beam. 

 

Figure 2.7:  Linearly tapered beam cross-section 

The Euler–Lagrange equations for the Timoshenko beams are accordingly 

 ( ) 0
u

EA x
x x

∂ ∂  = ∂ ∂ 
 (2.61) 

 ( ) 0
w

GA x
x x

κ θ∂  ∂  − =  ∂ ∂  
 (2.62) 

 ( ) ( ) 0
w

EI x GA x
x x x

θ κ θ∂ ∂ ∂   + − =   ∂ ∂ ∂   
 (2.63) 

where A(x) and I(x) are respectively the cross-section area and moment of inertia 

m

p x

L
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linearly varying in the x direction. 

Integrating Eq. (2.61) results in 

 1( )
u

EA x k
x

∂ =
∂

 (2.64) 

where k1 is an integration constant. Solving for u(x), 

 

1

1

1

1
2

( )
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( )( )
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u x

EA x

k dx

E A x
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E m nx p qx

k m nx p qx
k

E np mq

=

=

=
+ +

+ − += +
−






 (2.65) 

Replacing the natural logarithmic term by using the Taylor series expanded at 

x=L up to the quadratic terms, 

 

[ ]

[ ]

2 2
3

2

2 2
3

2

( ) ( )
ln( ) ln( )

2( )

( ) ( )
ln( ) ln( )

2( )
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m nL m nL

q x L q x L
p qx p qL O x

p qL p qL

− −+ = + + − +
+ +

− −+ = + + − +
+ +

  

and further, applying the boundary conditions at the two end nodes of the beam, 

where u(0)=u1, u(L)=u2. 

Solving for k1, k2 and substituting back to Eq. (2.65),  the second-order shape 

functions for the axial displacement of the beam can be obtained as 

 [ ] 1
1 2

2

( ) u u

u
u x N N

u

 
=  

 
 (2.66) 

For the sake of simplicity, the axial displacement shape functions and their ݇௧௛order derivatives (k = 0, 1, 2) of the linear tapered beam varying in height 

and/or width can be given in a series form as α: 
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ui uijk k
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−

= =

   =   −    
  (2.67) 

where α is a constant defined from the taper coefficients (for a uniform section 

n = 0, q = 0, α = 2 22m p ); Ruij is the axial shape function coefficient 

corresponding to the i-th node and the j-th nodal displacement. 

In order to obtain the transverse displacement and rotation shape functions, we 

use Eqs.  (2.62) and (2.63). The solution of Eq. (2.62) can be obtained from 

 
1( )

w
GA x c

x
κ θ∂ − = ∂ 

 (2.68) 

Accordingly, Eq. (2.63) can be written as 

 
1( ) 0EI x c

x x

θ∂ ∂  + = ∂ ∂ 
 (2.69) 

where c1 is an integration constant. 

By integrating Eq. (2.69) and using Eq. (2.60), the beam axis rotation equation 

can be obtained from the following derivation: 

 

1 2

1 2
3 3

1 2
33 3

( )

12 12

( )( ) ( )( )

12 12
( )

( )( ) ( )( )

EI x c x c
x

c cx

x E m nx p qx E m nx p qx

c cx
x dx dx c

E m nx p qx E m nx p qx

θ

θ

θ

∂ = − +
∂

∂ = − +
∂ + + + +

= − + +
+ + + + 

 (2.70) 

where c2 and c3 are integration constants. 

The transverse displacement can be derived by integrating Eq. (2.68) and using Eq. 

(2.60) together with Eq. (2.70), which results in the following expression: 

 

1 1

1
4

1 1
( ) ( )

( ) ( )( )

1
( ) ( )

( )( )

c cw
x x

x G A x G m nx p qx

c
w x x dx dx c

G m nx p qx

θ θ
κ κ

θ
κ

∂ = + = +
∂ + +

= + +
+ + 

 (2.71) 

where c4  is an integration constant. 
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Applying the boundary conditions at the two end nodes of the beam to the shape 

functions, 

 

1

1

2

2

( 0)

( 0)

( )

( )

w x w

x

w x L w

x L

θ θ

θ θ

= =

= =

= =

= =

  

Replacing the natural logarithmic terms in both Eqs. (2.70) and (2.71) by using the 

quadratic and cubic Taylor series expansions respectively, and after several 

substitutions, the following expression for shape functions can be obtained: 

 [ ]
1

1
1 2 3 4

2

2

( ) w w w w

w

w x N N N N
w

θ

θ

 
 
 =  
 
  

 (2.72) 

 [ ]
1

1
1 2 3 4

2

2

( )

w

x N N N N
wθ θ θ θ

θ
θ

θ

 
 
 =  
 
  

 (2.73) 

In compact matrices summation forms, the shape functions can be defined as follows: 

 
( )4 3

1

1 !
( )

( )!

j kk

wi wijk k
i j k

d j x
N R

dx L j k Lγ

−

= =

   =   −    
  (2.74) 

 
( )4 3

1

1 !
( )

( )!

j kk

i ijk k
i j k

d j x
N R

dx L j k Lθ θγ

−

= =

   =   −    
  (2.75) 

where γ is a constant defined from the taper coefficients (for a uniform section n=0, 

p=0, γ = 12(1+ ϕ)m3p3; Rwij and Rθij are respectively the transverse and rotation shape 

function coefficients corresponding to the i-th node and the j-th nodal displacement. 

The following are the coefficient matrices for the shape functions given above:  
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 2

2

2

;

;

value at 0

i jh

jb jj

A mp A npl

A mql A nql
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x

l G
ϕ

κ
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= =

= =

 (2.76) 

 
2 2 2 2
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 (2.78) 
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 (2.79) 
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(2.82) 
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2.3.3 Axially FGM beam 

A beam, with total length L and rectangular cross-section, formed from two different 

materials, is considered. 

 

Figure 2.8: Two-node-six-degrees-of-freedom beam element 

The effective properties P (Young’s modulus, shear modulus and mass density) of the 

beam materials are assumed to vary linearly in the longitudinal direction as 

 
0

1
( ) 1

n
P x P x

L

− = + 
 

 (2.84) 

where P0  stands for the effective properties at the right end of the beam, and n is 

the ratio between the effective properties at the right end and those at the left end. 

The Euler–Lagrange equations for the uniform FGM Timoshenko beams are 

accordingly 

 ( ) 0
u

E x A
x x

∂ ∂  = ∂ ∂ 
 (2.85) 

 ( ) 0
w

G x A
x x

κ θ∂  ∂  − =  ∂ ∂  
 (2.86) 

 ( ) ( ) 0
w

E x I G x A
x x x

θ κ θ∂ ∂ ∂   + − =   ∂ ∂ ∂   
 (2.87) 

Integrating Eq.  (2.85) results in 

 
1( )

u
E x A k

x

∂ =
∂

 (2.88) 

where k1 is an integration constant. Solving for u(x), 
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[ ]
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1
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1
( )

( )

ln ( 1)

( 1)

k
u x dx k

A E x

k L L n x
k

AE n

= +

+ −
= +

−


 (2.89) 

Applying the boundary conditions at the two end nodes of the beam, where 

u|x=0 = u1, u|x=L = u2. 

Solving for k1, k2 and substituting into Eq. (2.95), the shape functions for the axial 

displacement of the beam can be obtained as 

 [ ] 1
1 2

2

( ) u u

u
u x N N

u

 
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 
 (2.90) 

where 

 
1 2
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( 1)u
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L n
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+

 (2.91) 

 
2 2

(2 )

( 1)u

x Ln x nx
N

L n

+ −=
+

 (2.92) 

It can be concluded from Eqs. (2.86) and (2.87) that the transverse displacement is one 

order higher than the rotation. Hence, the transverse displacement and rotation are 

assumed in polynomial equations as follows: 

 2
0 1 2( )x b b x b xθ = + +  (2.93) 

 2 3
0 1 2 3( )w x a a x a x a x= + + +  (2.94) 

The solution of Eq. (2.86) can be obtained from 

 
1( )

w
G x A c

x
κ θ∂ − = ∂ 

 (2.95) 

Accordingly, Eq. (2.87) can be written as 

 
1( ) 0E x I c

x x

θ∂ ∂  + = ∂ ∂ 
 (2.96) 
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By integrating Eq. (2.96) and substituting back to Eq. (2.86), the beam axis rotation 

equation can be obtained from the following derivation: 

 

1 2

1 2

1 2
3

( )
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( ) ( )

E x I c x c
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∂

= − + + 

 (2.97) 

The transverse displacement can be derived by substitution of Eq. (2.95) into Eq. 

(2.93), which results in the following expression: 
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1
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( )

( )

1
( ) ( )

( )

cw
x

x A G x

c
w x x dx dx c

A G x

θ
κ

θ
κ

∂ = +
∂
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 (2.98) 

Applying the boundary conditions at the two end nodes of the beam to the shape 

functions, 
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( 0)

( )
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w x w

x

w x L w
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θ θ

θ θ

= =

= =

= =

= =

 (2.99) 

By replacing the natural logarithmic terms in both Eqs. (2.97) and (2.98) using a cubic 

Taylor series expansion, and after several substitutions, the following expressions for 

shape functions can be obtained: 
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 (2.100) 
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where 
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 (2.103) 

in which 0
2

0

12 E I

l G A
φ

κ
=  where ,A I are the cross-section area and moment of inertia of the 

uniform beam, while 0 0,E G are the Young’s and shear moduli of the material at the left 
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end of the FGM beam. In the homogeneous case (n=1) the shape functions recover 

linear and Kosmatka functions. 

2.3.4 Thickness direction of FGM beam 

Following the idea put forward by Kosmatka [69] that the shape functions can be 

obtained by solving the governing differential equations of a homogeneous 

Timoshenko beam segment, here the shape functions for the displacements and the 

rotation are derived by solving the static part of the governing differential equations, 

namely 

 

2 2

11 122 2

2

33 2

2 2

12 22 332 2

0

0

0

u
A A

x x

w
A

x x

u w
A A A

x x x
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θ κ θ

∂ ∂− =
∂ ∂

 ∂ ∂− = ∂ ∂ 

∂ ∂ ∂ − − − = ∂ ∂ ∂ 

 (2.104) 

The solutions of Eq. (2.104) can be easily obtained with the aid of a symbolic software, 

for example by using the “dsolve” command in Maple [39] one can get the solutions of 

Eq. (2.104) in the forms 
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4 5 1 6 2

3 2
4 5 6 4 3

2
4 5 6

1
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1 1
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C x C x C

α α α
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 (2.105) 

where 
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=
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 (2.106) 
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The constants Ci (i=1:6) in Eq. (2.105) can be determined from the following element 

end conditions: u = u1, w = w1, θ = θ1 at x = 0 and u = u2, w = w2, θ = θ2 at x = L. The 

shape functions obtained are given in the forms 
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 (2.108) 
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 (2.109) 

where 
2

12( )

L

β λφ −= . 
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2.3.5 Exact shape functions for non-prismatic FGM beam 

The Euler–Lagrange equations for the Timoshenko non-prismatic FGM beam are 

accordingly 

 ( ) ( ) 0
u

E x A x
x x

∂ ∂  = ∂ ∂ 
 (2.110) 

 ( ) ( ) 0
w

G x A x
x x

κ θ∂  ∂  − =  ∂ ∂  
 (2.111) 

 ( ) ( ) ( ) ( ) 0
w

E x I x G x A x
x x x

θ κ θ∂ ∂ ∂   + − =   ∂ ∂ ∂   
 (2.112) 

Integrating Eq.  (2.110) results in 

 
1( ) ( )

u
E x A x k

x

∂ =
∂

 (2.113) 

where k1 is an integration constant. Solving for u(x), 
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Applying the boundary conditions at the two end nodes of the beam, where u(0) = u1, 

u(L) = u2. 

Solving for k1, k2 and substituting back to Eq. (2.113), the exact shape functions and the 

first order derivative of the axial displacement of the beam can be obtained as 
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where 10 1 0 1 1,x L x Lf f f f= == =  

The transverse displacement is assumed in the polynomial equation as follows: 

 

2 332
0 1

23
1 2

( )
2 6

2

aa
w x a a x x x

aw
a a x x

x

= + + +

∂ = + +
∂

 (2.117) 
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The solution of Eq. (2.111) can be obtained from 
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Replacing Eq. (2.117) into Eq. (2.119), 
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Replacing Eq. (2.120) into Eq. (2.119), 
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Accordingly, Eq. (2.112) can be written as 
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where ci (i=1,2,3,4) and ai (i=1,2,3,4) are constants, 
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Comparing the rotation and its derivatives from Eq. (2.119) and Eq. (2.122), as well as 

the transverse displacement between Eq. (2.117) and Eq. (2.121), we have the 

relationship between ai and ci : 
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Applying boundary conditions at the two end nodes of the beam where 
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By replacing ci, the expressions for the transverse and rotational shape functions can be 

obtained: 
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In summary, the detailed transverse and rotational shape functions and their derivatives 

are expressed as follows: 

 

30 3 2 2

2 4 3 4 3 4

20 4 3 4 3 4

( ) ( 3 )

( 6 ( 3 3 ))

(6 (3 3 ))

L L L

L L L L L L

L L L L L

f f L f f L

f f L f f f L f L

f f L f f f L f L

′ ′′− − +

′ ′ ′′ ′′ ′′′+ − + − + + −

′ ′ ′′ ′′ ′′′+ +

Φ

+ − −

=

 (2.128) 

 

4 3 4

20 2 2 2
3 3 4

1 20 3 2 30

2 3
30 3 2 2 2

3 6 6
( )

3
1

6 ( )

( )(6 3 )

L

w L L

L

f x f f
x f f

f x f x f x

N x f f f f
L

f f f x f x f x

′′ ′ + − 
−  ′ ′′ ′′′− + −  

 = − + − Φ Φ
 ′ ′′− − − +
 
  

 (2.129) 



42 
 

 

4 3

2 2
2 2 4 3

2
4

2 3 2 3

2
2 4 2 3

2 2
2 3 2 4

2

2 4 3

4 3 4

2

6 3

(3 ) 3

3 3

3

61

6 (6 (3

3 )

6
6

L L

L L

L

L L L L

L L L

L L L
w

L L

L L L

L

f f L

f x f x f L f L

f L

f f f f L

f f f f L

x f f L f f L
N

f f L f

f f L f L

f
f

′ ′− − 
 ′ ′′ ′′ ′′− + + 
 ′′′− 

′ ′− + 
 ′ ′ ′′+ + 
 ′′ ′′ ′+ − − = −

′ ′Φ  + +
  ′′ ′′ ′′′− − + 

′
− 4 3 4

3 4

3 4
2 2

3 4

(3 3

)

3 3
(3 )

L L L

L L

L L
L L

L L

L f f

f L f L

f f
x f f

f x f x

 
 
 
 
 
 
 
 
 
 
 
 
 
 

′ ′′+ −  
  ′′ ′′′− +  

 ′ ′′− ′ ′′ + −  ′′ ′′′− +   

 (2.130) 

 

2
30 3 2 2 2

2 2
3 2 20 3 4 3 4 3 4

20 3 2 30

(( )(6 3 )
1

( )(6 6 3 3 )

6( )

L

w L

L L

x f f f f x f x

N f f f f f x f x f x f x
L

f f f f

′ ′′ − − +
 

′ ′ ′′ ′′ ′′′= + − − − + + − Φ  + − 

 (2.131) 

 

30 3

42
2 2

3 4

2 2
3 4

3 30

4 3

2 2 2
4 3

2
44

4 3

2 20 4

2
3

6 6

6
(6 )

3 3

6 6

6 3
(3 )

3

6
6 3

(3 6 ) 3

L

L

L L

L L

L

L L

L L
L L

Lw

L L

L

L

f f

f
f f x

f L f L

f L f L

f f L

f f x
f f

f x f x
x

f xN

f f L

f x f f L

f L

− 
 ′+ ′′+  ′ ′′+ −
  ′′ ′′′− + 

− + 
 ′ ′+ + ′ ′′+ −  ′′ ′′− −
  ′′′+= −  Φ

′ ′− −
′ ′′+ + +

′′+ 2
4

3 3

4

2 20
3 4

2 2
3 4

6 6

6
6( )

3 3

L

L

L

f L

f f

f
f f

f x f x

f x f x

 
 
 
 
 
 
 
 
 
 
 
 
 
        ′′′−  
 −  

  ′−  + −  ′ ′′− + 
   ′′ ′′′+ −  

 

(2.132) 



43 
 

 [ ]1 2 3 30 20 3 3 2 30 3

1
6( ( ) ( ) ( ))L L LN f f f f f f f f f

Lθ = − + + − + − +
Φ

 (2.133) 

 
3 3 2 2 2 4 3 4

2
3 4 2 4 3 4 3 4

( ) (3 ) ( 6 ( 3 31

)) (6 (3 3 ))
L L L L L L

L L L L L L L L

f f L f f L f f L f f
N

f L f L f f L f f f L f Lθ

′ ′′ ′ ′ ′′− − + − + − + + 
= −  ′′ ′′′ ′ ′ ′′ ′′ ′′′− + + − − +Φ  

 (2.134) 

 3 1N Nθ θ= −  (2.135) 

 

2 3 30 2 30 2 3 2 4 2 3

2 2
2 30 2 3 2 4 2 3 2 30

4 2 2
2 3 2 4 20 3 3 4 3

2 2
4 3 4

6 ( ) 6 6 6 3

3 3 31

( 6 6 6 3

3 )

L L L L L

L L L L L

L L L L L

L L L

f f f f f f f f f f f

f f L f f L f f L f f L f f L
N

f f L f f L f f f f f L

f L f L f L

θ

′ ′− + − + − 
 ′ ′ ′′ ′′ ′′+ + − + − = −  ′′ ′′′ ′ ′Φ − + + − + − − 
 ′′ ′′ ′′′+ + − 

 (2.136) 

 
2 30 3 20 3 3 41

2 3 30 4

6( ( ) ( )1

( ))
L Lw

L

f f f f f f fN

f f f fx L

′− + + − − ∂ =  ′+ − + +∂ Φ  
 (2.137) 

 

( )

3 3 4 2 2

4 32
2

4 3 4

2 4 3 4 3 4

( ) (3 )

6 ( 31

3 )

6 (3 3 )

L L L

L Lw

L L L

L L L L L

f f f L f f L

f L fN
f

f f L f Lx

f L f L f f f L f L

 ′ ′ ′′− − −
 

′ ′− + − ∂  = − +   ′′ ′′ ′′′+ + −∂ Φ   
 ′ ′ ′′ ′′ ′′′+ + − − + 

 (2.138) 

 3 1w wN N

x x

∂ ∂= −
∂ ∂

 (2.139) 

 

( )

2 20 2 3 30 4

4 3 44
2 20 2 2

3 4

2 30 3 2 3 30 4

(6 6 )( )

6 3 31
( )

3 4

6 ( ) 3

L L

L L Lw

L L

L L L L

f f f f f f

f f L f LN
f f

x f L f L

f f f f f f L f

 ′′ ′− + − −
 

′ ′ ′′+ − ∂  = − + −   ′′ ′′′∂ Φ − +  
 ′ ′+ − + − + + 

 (2.140) 

 [ ]1
20 2 3 2 30 3

1
6(( ) ( ))L L

N
f f f f f f

x L
θ∂ ′ ′= − + − +

∂ Φ
 (2.141) 

 
( )2 4 3 4 3 42

3 2 2

6 (3 3 )1

( 3 )
L L L L L

L L L

f f L f f f L f LN

x f f f L
θ

′ ′ ′ ′′ ′′ ′′′+ − − + ∂ =  ∂ Φ ′ ′ ′′+ − + 
 (2.142) 

 3 1N N

x x
θ θ∂ ∂= −

∂ ∂
 (2.143) 



44 
 

 

30 3

4 320 24
3 2 22

4 32 2

2
4

6 6

6 36 61

33

L

L LL

L LL L

L

f f

f f Lf fN
f f

f L f Lx f L f L

f L

θ

 − 
  ′ ′+ +− + ∂   ′ ′= − +   ′′ ′′− −′ ′′∂ Φ − +    ′′′ +  

 (2.144)
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Chapter 3: FEM formulation for FGM beam 

3.1 Static analysis 

The potential energy of an arbitrary point in a Timoshenko beam can be expressed as 
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The minimum potential energy will give an FEM formulation of a static problem. By 

substituting shape functions into Eq. (3.1), the following FEM formulation can be 

obtained in matrix form as 

 KD = F  (3.2) 
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K is the beam stiffness matrix obtained from the element stiffness matrix k: 
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3.2 Free vibration analysis 

The strain energy and kinetic energy of a Timoshenko beam element can be given by 
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In the thermal environment in sub-section 2.2.2, there also exists the strain energy from 

initial stress due to the temperature rise UT : 
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where NT is the axial force resultant caused by elevated temperature, defined as 

 ( ), ( , )T

A

N E z T z T TdAα= − Δ  (3.7) 

 

2 2
, ,

0 ( )

2 2
, , ,

0 ( )

2 2 2
, , ,

0

, , ,

0

1
( )

2

1
( )

2

1
( ) ( ) ( )

2

( , , )

l

t t

A x

l

t t t

A x

l

t t t

l

t t t

T u w dAdx

u z w dAdx

A x u I x A x w dx

F u w dx

ρ

ρ θ ρ

ρ ρ θ ρ

θ

= +

 = − + 

 = + + 

=

 

 





 (3.8) 

By applying the principle of stationary total energy to the strain and kinetic energies, 

stiffness equations can be obtained in a matrix form as 

 
ex+ =MD KD F  (3.9) 

where K and M are the stiffness matrix and mass matrix of the beam, respectively, 

obtained by assembling the element stiffness matrix k and the mass matrix m by the 
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standard procedure of the finite element method; D  and D denote the structural vectors 

of nodal displacements and accelerations, respectively; Fex is the external nodal load 

vector. In the free vibration analysis, the right-hand side of Eq. (3.9) is set to zero and a 

harmonic response, ( )sin tω=D D is assumed so that Eq. (3.9) is deduced to an 

eigenvalue problem as 

 ( )2 0ω− =K M D  (3.10) 
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where ω is the circular frequency and D is the vibration amplitude. 
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3.3 Dynamic analysis 

One can write the strain and kinetic energies for the beam in terms of nodal 

displacements { }1 1 1 2 2 2

T
u w u wθ θ=d as 

 1

1

1

2

1

2

nel
T

i

nel
T

i

U

T

=

=

=

=





d kd

d md 
 (3.13) 

where k and m denote the stiffness and mass matrices for the element, respectively: 
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Using the derived element matrices, the discrete equations of motion for the beam can 

be written in the form 

 
ex+ =MD KD F  (3.16) 

where M, K are structural mass and stiffness matrices obtained from the element ones 

m, k, respectively. Fex is the external nodal load vector. 

3.3.1 Beam subjected to a harmonic moving load 

The potential of the external moving load can be written in the form 

 
0 cos( ) ( )T

P wV P t x vtδ= − Ω −N  (3.17) 

The nodal external load vector consists of all zero components, except for those relating 

to the element currently under loading. 
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 (3.18) 

3.3.2 Beam subjected to multiple moving point loads 

The potential of the external moving loads has a simple form: 

 
0

1

( ( ))
nload

T
w i

i

V P x s tδ
=

= − − N d  (3.19) 

The nodal external load vector consists of all zero coefficients, except for the elements 

currently under loading. In addition, the interpolation functions Nw|xi are evaluated at 

the current position of the i-th load. 
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3.4 Buckling analysis 

Consider a two-node beam element in a local system (x, z), where the x-axis coincides 

with the neutral axis. Adopting Timoshenko beam theory, the axial and transversal 

displacements of any arbitrary points are given by 

 0( , ) ( )

( , ) ( )

u x z u z x

w x z w x

θ= −
=

 (3.21) 

where u0 is the axial displacement of a point on the neutral axis; z is the distance from 

the considered point to the x-axis, and θ(x) is the rotation of the cross-section. The axial 

and shear strains are deduced from Eq. (3.21) as 

 

2
1

2 m

u w
z z

x x x

w

x

θε ε χ

γ θ

∂ ∂ ∂ = + − = + ∂ ∂ ∂ 
∂= −
∂

 (3.22) 

where εm, χ and γ are the membrane strain, curvature strain and shear strain, 

respectively. Assuming elastic behaviour, the axial and shear stresses associated with 

the strains of Eq. (3.22) are given by 

 ( )

( )

E x

G x

σ ε
τ κ γ

=
=

 (3.23) 

In order to express the displacement at an arbitrary point in terms of the nodal 

displacements, it is necessary to introduce shape functions for u, w and θ. 

By using the co-rotational approach here and noting that 1 1 2 0u w w= = = , one can 

write 

 
u

w

u N u

w N

Nθ

θ
θ θ

=

=

=
 (3.24) 

where 1 2{ }Tθ θ=θ ; , ,u w θN N N are the matrices of interpolating functions for u, w andθ , 

respectively. 
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Regularly, these interpolating functions are unbalanced, causing membrane locking for 

the element formulation. In order to avoid this problem, the membrane strain in Eq. 

(3.22) is replaced by the effective strain, defined as 

 2
,

0

1 1

2eff x xu w dxε  = + 
 




 (3.25) 

Substituting Eqs. (3.21), (3.22) and (3.24) into Eq. (3.25), one gets 

 

0

1

2
T T

eff u w wdxε
 

= +  
 
b u θ b b θ



 (3.26) 

where u
u

N
b

x

∂=
∂

 and w
w

N
b

x

∂=
∂

. 

Using the concept of effective strain, one can express the virtual work in the form 
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where 
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Eq. (3.27) gives the components of the local internal force vector as 

 0

0

[ ( )]

u u

w

f N dx

N M Q dxθ θ θ θ

=

= + + −





b

f e b b N




 (3.29) 

The tangent stiffness matrix in the local system can be expressed by sub-matrices as 

follows: 



53 
 

 uu u
t T

u

θ

θ θθ

 
=  
  

k k
k

k k
 (3.30) 
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where θ

θ
∂=
∂
e

B  
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Chapter 4: Technique for solving FGM beam 

4.1 Co-rotational approach 

The co-rotational approach is a convenient way to formulate geometrically non-linear 

finite elements. The central idea of the approach is to introduce a local coordinate 

system that continuously moves and rotates with the element during its deformation 

process. By using such a local system, the element deformation can be decomposed 

into a rigid body and pure deformation parts, and the geometrically non-linear 

configuration induced by the large body motion is incorporated in transformation 

matrices. 

In the co-rotational formulation which will be adopted in this sub-section, the 

kinematics is described in an element-attached local coordinate system. The finite 

element formulation is first formulated in this local system and then transferred to a 

global system with the aid of transformation matrices. Among others, the elements 

proposed by Hsiao and Huo [48], Meek and Xue [82], Pacoste and Eriksson [97], and 

Nguyen [89] are some of the co-rotational beam elements for analysis of planar beams 

and frames which can be cited in this work. 

 

Figure 4.1: A two-node planar beam element and its kinematics in a global coordinate 
system (X, Z) 

A local system (x, z) attached to the element is chosen, where its origin is always at 

node 1 and the x axis directs to node 2. By choosing such a local system, the axial 

displacement at node 1 and transverse displacement at both the nodes in the local 
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system are always zero. The local and global vectors of nodal displacements are 

respectively given by 

 { }1 2

T
u θ θ=d  (4.1) 

 { }1 1 1 2 2 2

T
u w u wθ θ=d  (4.2) 

In Eqs. (4.1) and (4.2), the superscript T denotes the transpose of a vector or a matrix, 

and the bar is used to indicate that the variable is defined in the local system. The 

vectors of nodal forces and moments associated with the nodal displacements of Eqs. 

(4.1) and (4.2) are as follows: 

 { }1 2

T

in N M M=f  (4.3) 

 { }1 1 1 2 2 2

T

in N Q M N Q M=f  (4.4) 

The components of the local vector d  in Eq. (4.1) can be computed as 
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2 2
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u

θ θ θ
θ θ θ

= −

= −

= −

 
 (4.5) 

In Eq. (4.5), l, ln and θr are respectively the initial, current length and rigid rotation of 

the elements, and they can be computed from coordinates of the nodes. 

Assuming the strain energy U of the element has been derived, the element nodal force 

vector fin and the tangent stiffness matrix kt in the global system can be obtained by 

successive differentiation of the strain energy with respect to the nodal displacements: 

 1
T

in in

U U∂ ∂ ∂= = =
∂ ∂ ∂

d
f T f

d d d
 (4.6) 
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 ∂ ∂ ∂ ∂= = = + + + ∂ ∂ ∂ ∂ 

d
k T k T T T

d d d d
 (4.7) 

In Eqs. (4.6) and (4.7), /in U= ∂ ∂f d , 2 2/t U= ∂ ∂k d are the local nodal force vector and 

tangent stiffness matrix, respectively. 
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T1, T2 and T3 are the transpose matrices which can be computed from Eq. (4.5) as 

 
22

1 2 32 2
; ; ru θ∂∂ ∂= = = −

∂ ∂ ∂
d

T T T
d d d

 (4.8) 
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4.2 Arc-length control method  

The element internal force vector and tangent stiffness matrix are assembled to 

construct structural equilibrium equations, which can be written in the form 

 
( , ) ( ) ( )

( )
in ex

in ex

λ λ
λ

= −
= − =

R D F D F

F D f 0
 (4.9) 

where the out-of-balance force vector R is a function of the current structural nodal 

displacements D and the load-level parameter λ; Fin is the structural internal nodal force 

vector, constructed from the element force vector Fin in standard way of the finite 

element method; fef is the fixed external loading vector. 

The non-linear equations (4.9) can be solved by an incremental/iterative procedure 

based on the Newton–Raphson method, in which the norm of vector R(D, λ) is guided 

towards zero. 

The success of the incremental-iterative solution process relies on the constraint 

strategy used. Load control methods have difficulty at limit points, such as in snap-

through buckling when the tangent matrix becomes singular. 

Displacement control methods overcome problems at limit points (maximum and 

minimum loads) but subsequently experience convergence difficulty at turning points 

when the response curve turns back on itself, as in snap-back behaviour. In order to 

trace complete equilibrium paths for the possible complex behaviours mentioned 

above, the arc-length control method developed by Crisfield [22] is employed. 

For this method, a constraint equation is introduced: 

 ( )2 2 2 0T T
ef efa lλ φ= Δ Δ + Δ − Δ =D D f f  (4.10) 

where ∆l is the fixed value chosen by the analyst. The vector ∆D and the scalar ∆λ are 

incremental and relate back to the last converged equilibrium state; φ  is the scaling 

parameter. 

For φ = 1, Eq. (4.10) defines a spherical surface with a radius ∆l in the load–

displacement space, and it defines a cylindrical surface when φ = 0. 
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With the constraint equation (4.10), instead of solving the equilibrium equations (4.9) 

directly, we find the intersection of the equilibrium path with the surface defined by Eq. 

(4.10). 

The iterative procedure is obtained from the truncated Taylor expansion of the vector R 

and a around the current equilibrium point as 

 
0 0 0

0 0 0t ef

δ δλ
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∂ ∂= + +
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= + + =

R R
R R D

D
R K D f 0

 (4.11) 

 2
0 2 2T T

ef efa a δ λδλφ= + Δ + Δ =D D f f 0  (4.12) 

where R|0 and a|0 are defined from the current equilibrium point. 

Eq. (4.11) gives the iterative displacement δD and iterative load parameter δλ as 
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As seen from Eq. (4.13), the augmented Jacobian matrix within the square brackets 

remains non-singular even when the Kt is singular. However, the Jacobian matrix in Eq. 

(4.13) is neither symmetric nor banded, and the computation based on the arc-length 

control method is expensive. The cylindrical arc-length method φ =0 is adopted in this 

work. 
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4.3 Implicit average constant acceleration Newmark method 

The Newmark method is a method of numerical integration used to solve differential 

equations. It is widely used in numerical evaluation of the dynamic response of 

structures and solids such as in finite element analysis to model dynamic systems. 

The finite difference approximations for the Newmark method are 

 

2

1 1

1 1

(1 2 ) 2
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 (4.14) 

In the case where β = 1/4 and γ = 1/2, the Newmark method is implicit and 

unconditionally stable. In this case, the acceleration within the time interval t ∈ [tn 

tn+1) is presumed to be constant. 
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Chapter 5: Static analysis of FGM structures 

5.1 Using consistent shape functions 

5.1.1 Cantilever beam with concentrated load 

In the first example, a cantilever tapered beam loaded at the tip end, as shown in Fig. 

5.1, is considered. 

 

Figure 5.1: Cantilever having a variable cross-section 

The beam is analyzed by using one element with the shape functions derived 

previously. The results of the tip end transverse displacements with and without 

considering shear deformation are compared with the theoretical solution of [27]. The 

results of analyses are shown in Table 5.1, where w2 is the transverse displacement at 

the tip end. In Table 5.1, (a) denotes a case where shear deformation is considered; (b) 

denotes a case where shear deformation is not considered. 

As shown in the table, both results using the formulated shape function are in good 

agreement with the theoretical results from the reference. 

Table 5.1: Analysis of variable cross-section cantilever 

   Present [27] 

 Q M w2 

(a) 1.0 1.0 1.203 1.203 

(b) 1.0 1.0 0.8977 0.897 
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5.1.2 Clamped-clamped beam with concentrated load 

In the second example, the effect of shear deformation is further investigated. To this 

end, two clamped-clamped (C-C) beams with geometric data shown in Fig. 5.2 are 

employed in the calculation with various values of L. The beam is analyzed by using 

two element divisions. 

 

Figure 5.2:  Clamped-clamped beam with height variation 

Deflection including shear deformation ws and neglecting shear deformation wns at the 

middle of the beams axes are listed in Tables 5.2 and 5.3, respectively. They are also 

compared with the results of [29]. Very good agreement can be observed from the 

tables. 

Table 5.2: Reaction forces and deflections of C-C tapered beam (h = 0.6) 

   ws wns 
L Q M Present [29] Present [29] 
1 0.5 0.25 0.4651 0.468 0.2939 0.294 
2 0.5 0.5 2.6929 2.700 2.3541 2.354 
3 0.5 0.75 8.4629 8.464 7.9360 7.944 
4 0.5 1.00 19.5208 19.524 18.8113 18.831 
5 0.5 1.25 37.6446 37.645 36.7407 36.779 

 

Table 5.3: Reaction forces and deflections of C-C tapered beam (h = 0.9) 

   ws wns 
L Q M Present [29] Present [29] 
1 0.5 0.25 0.2702 0.274 0.1362 0.137 
2 0.5 0.5 1.3694 1.370 1.0894 1.096 
3 0.5 0.75 4.1027 4.110 3.6777 3.698 
4 0.5 1.00 9.3041 9.315 8.7666 8.766 
5 0.5 1.25 17.7839 17.807 17.1216 17.120 
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5.1.3 Cantilever beam with distributed load 

The third example refers to another cantilever tapered Bernoulli beam (Fig. 5.3) with a 

length of 10 m, subjected to a uniformly distributed load q= 1 t/m. 

 

Figure 5.3:  Simply-supported beam subjected to distributed load 

The transverse displacements at the tip end are listed in Table 5.4. 

Table 5.4: Reaction forces and transverse displacements of cantilever beam at the tip 
(n=number of element) 

Case Present [32] Classical 

 Q M n = 1 n = 2 n = 1 n = 2 n = 10 n = 200 

A 10 50 3.1572 3.1572 3.1572 3.1572 3.1574 3.1572 
B 10 50 1.5431 1.5431 1.5431 1.5431 1.5683 1.5432 

 

The first row refers to a beam with unit depth and linearly varying width from 2 m at 

the clamped end to 0.25 m at the free end (Case A). The second row refers to a beam 

with unit width and varying depth between 2 m at the clamped end and 0.25 m at the 

free end (Case B). Let Young’s modulus E=300,000 t/ 2m for all cases. These 

displacements are compared to the numerical results of [32] and the classical, stepped 

rectangular cubic hermitian element approach. 
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5.1.4 Simply-supported beam with distributed load 

The fourth example relates to a simply-supported (S-S) Bernoulli beam (Fig. 5.4) with 

the length of 10 m, also subjected to a distributed load q=1 t/m. 

 

Figure 5.4:  Cantilever beam subjected to distributed  load 

The mid-span vertical displacement is reported in Table 5.5, where the first row refers 

to a beam with constant depth and linearly varying width from 2 m at the mid-span to 

0.25 m at the supported ends (Case A). The second row refers to a beam with constant 

width and varying depth between 2 m at the mid-span and 0.25 m at the supported ends 

(Case B). Let Young’s modulus E=300,000 t/ 2m  for all cases. 

Table 5.5: Reaction forces and transverse displacements of S-S beam at the mid span 
(n=number of element) 

Case Present [32] Classical 

 QL QR n = 1 n = 2 n = 1 n = 2 n = 10 n = 200 

A 5 5 3.7342 3.7350 3.7351 3.7351 3.7355 3.7351 
B 5 5 2.8679 2.8681 2.8682 2.8682 2.8714 2.8684 
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5.2 Using the exact shape functions 

By using the exact shape functions constructed following section 2.3.5, the results for 

Example 2 mentioned above, shown in Tables 5.6–5.7, are obtained by only two 

element divisions. 

Table 5.6:  Reaction forces and deflections of C-C tapered beam (h = 0.6) 
L Q M ws wns 
1 0.5 0.25 0.4670 0.2943 
2 0.5 0.5 2.700 2.3541 
3 0.5 0.75 8.464 7.9376 
4 0.5 1.00 19.524 18.831 
5 0.5 1.25 37.645 36.779 

Table 5.7:  Reaction forces and deflections of C-C tapered beam (h = 0.9) 
L Q M ws wns 
1 0.5 0.25 0.2748 0.1368 
2 0.5 0.5 1.3708 1.0950 
3 0.5 0.75 4.1105 3.6991 
4 0.5 1.00 9.315 8.7668 
5 0.5 1.25 17.8088 17.1203 

 

5.3 Conclusions 

• The consistent shape functions from sub-section 2.3.2 and the exact shape 

functions from sub-section 2.3.5 were applied in some numerical examples of 

the static analysis of tapered elements. 

• The accuracy was verified through comparison with published works. 

• The numerical results show that significant accuracies can be reached with 

least element division by using the consistent shape functions and the exact 

shape functions. 
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Chapter 6: Free vibration of FGM structures 

6.1 Using consistent shape functions 

By using the consistent shape functions, a tapered beam shown in Fig. 6.1 with various 
boundary conditions at both ends is analysed. 

 

Figure 6.1:  Various boundary conditions of tapered beams 

6.1.1 Clamped–free tapered beam 

Consider a clamped–free tapered beam shown in Fig. 6.1, referred to as case (a). The 

geometry and material data of the steel beam are as follow: 2 0
2

0

0.08
I

r
A L

= =  , 0.5m = , 

0.3p = , 
25

4 3

p
L = , 3.059

E

Gκ
= , 

2

3
κ = , 210E GPa= , 37850 /kg mρ = . The non-

dimensional frequencies of the beam is defined as 

 
4

0

0

A L

EI

ρμ ω=  (6.1) 

with different values of taper ratios α and β are listed in Table 6.1 in comparison with 

those of [5]. 
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Table 6.1: Non-dimensional natural frequencies of C–F tapered Timoshenko beam 

β  α = 0.0 α = -0.4 α = -0.6 α = -0.8 
Presen [5] Presen [5] Presen [5] Presen [5] 

0. μ 3.3241 3.3240 3.9112 3.8605 4.4307 4.2883 5.0656 5.0062 

 μ 16.294 16.288 17.228 17.127 18.011 17.786 19.034 18.902

 μ 36.773 36.707 37.531 37.360 38.215 37.921 39.064 38.984

 μ 58.538 58.277 59.313 58.877 60.009 59.432 61.008 60.546

- μ 3.4343 3.4247 4.0254 3.9544 4.5492 4.3953 5.1944 5.1198 

 μ 15.858 15.890 16.734 16.681 17.481 17.311 18.464 18.391

 μ 35.391 35.430 36.110 36.070 36.770 36.614 38.005 37.645

 μ 57.077 56.891 57.721 57.455 58.351 57.963 59.103 58.981

- μ 3.5881 3.5605 4.1840 4.0941 4.7127 4.5386 5.2870 5.2703 

 μ 15.255 15.352 16.075 16.097 16.784 16.696 17.890 17.742

 μ 33.543 33.787 34.251 34.418 34.894 34.949 35.960 35.954

 μ 54.620 54.756 55.243 55.302 55.835 55.781 56.776 56.737

- μ 3.8299 3.7623 4.4327 4.3011 4.9670 4.7498 5.5329 5.4887 

 μ 14.446 14.644 15.209 15.341 15.882 15.910 17.088 16.922

 μ 31.038 31.623 31.737 32.248 32.365 32.768 33.800 33.750

 μ 50.891 51.622 51.511 52.166 52.084 52.630 53.568 53.547

- μ 4.2137 4.1177 4.6301 4.6655 5.0703 5.1194 5.8328 5.8629 

 μ 13.767 13.757 14.172 14.405 14.808 14.943 15.918 15.922

 μ 28.636 28.636 29.116 29.251 29.348 29.762 30.714 30.725

 μ 46.818 46.828 47.449 47.381 47.719 47.843 48.735 48.739

 

Table 6.1 showing the results of non-dimensional frequencies in the clamped–free 

tapered example, the present formulation is in good agreement with the results reported 

by Attarnejad [5]. In both formulations, four element divisions for the beam were 

employed to obtain the results. 

6.1.2 Clamped–clamped tapered beam 

The following data of a tapered Timoshenko beam made of steel, shown in Fig. 6.1 

case (b), are employed in the following computation: 210E GPa= , 80G GPa= ,

37800 /kg mρ = , 2.54m p cm= = , 0α = , 0.5β = − , 0.667κ = , 25L cm= ,
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2
0 6.45A cm= , 1 00.5A A=  in which 0A and 1A are the cross-sectional areas at the left end 

and the right end of the beam, respectively. 

For comparison, the first five natural frequencies of the present formulation and the 

results by Cleghorn [20] are listed in Table 6.2 by varying the number of element 

divisions, nELE. The result shows the superior rate of convergence of the natural 

frequency in the present work. 

Table 6.2: Natural frequencies of a C–C tapered Timoshenko beam 

nELE  ω1 ω2 ω3 ω4 ω5 

2 
[20] 0.93856E+4 0.34163E+5    

Present 0.95200E+4 0.25770E+5    

3 
[20] 0.92332E+4 0.25050E+5 0.59150E+5 0.11991E+6  

Present 0.94300E+4 0.25260E+5 0.48360E+5 0.74550E+5  

4 
[20] 0.91972E+4 0.24561E+5 0.47191E+5 0.91471E+5 0.15040E+6

Present 0.92700E+4 0.24390E+5 0.45380E+5 0.71120E+5 0.10098E+6

5 
[20] 0.91845E+4 0.24359E+5 0.46219E+5 0.74565E+5 0.12980E+6

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5

6 
[20] 0.91788E+4 0.24261E+5 0.45701E+5 0.72990E+5 0.10616E+6

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5

7 
[20] 0.91758E+4 0.24208E+5 0.45389E+5 0.72051E+5 0.10389E+6

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5

8 
[20] 0.91740E+4 0.24176E+5 0.45195E+5 0.71395E+5 0.10248E+6

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5

9 
[20] 0.91728E+4 0.24155E+5 0.45067E+5 0.70944E+5 0.10138E+6

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5

10 
[20] 0.91720E+4 0.24141E+5 0.44979E+5 0.70628E+5 0.10057E+6

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5

11 
[20] 0.91714E+4 0.24131E+5 0.44916E+5 0.70398E+5 0.99963E+5

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5

12 
[20] 0.91710E+4 0.24123E+5 0.44869E+5 0.70226E+5 0.99506E+5

Present 0.92000E+4 0.24200E+5 0.44900E+5 0.69900E+5 0.98400E+5
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From Table 6.2, the results of the first five natural frequencies of the present work give 

better results than those in [20]. Furthermore, with only six element divisions, the 

present formulation shows faster convergence results compared to the 12 elements 

required in [20]. 

6.1.3 Various boundary conditions of tapered beam 

Let us consider a tapered beam in Fig. 6.1 with 2 0
2

0

0.08
I

r
A L

= = , 0.05m = , 0.3p = ,

5

3

p
L = , 3.12

E

Gκ
= ,

2

3
κ = , 210E GPa= , 37850 /kg mρ = under various boundary 

conditions: clamped–free, clamped–clamped, and clamped–pinned. The cross-session is 
rectangular with constant width and linear-varying height. The non-dimensional 
frequencies of the beam that are defined as 

 
4

0

0

A L

EI

ρμ ω=  
(6.2) 

with two height ratio values (0 and -0.2), are shown in Table 6.3 in comparison with 

those of Attarnejad [5]. 

From Table 6.3, the results of the non-dimensional frequencies of the present 

formulation show lower convergence results under various boundary conditions 

compared to the results in [5]. In both formulations, four element divisions for the beam 

were employed to obtain the results. 

Table 6.3: Non-dimensional natural frequencies of tapered Timoshenko beams with 
various boundary conditions 

β BC  μ1 μ2 μ3 μ4 μ5 

0 C-F Present 3.22720 14.47780 31.50240 48.19680 62.87280

  [5] 3.22713 14.46893 31.50254 47.90902 62.34702

 C-P Present 11.08680 27.17590 45.11830 59.44520 63.59720

  [5] 11.08250 27.11438 44.84353 59.20303 63.33950

 C-C Present 13.83890 28.58680 45.95580 61.42410 68.86960

  [5] 13.83476 28.51793 45.66595 61.86205 68.28361

-0.2 C-F Present 3.34530 14.32890 30.91900 48.13030 65.05240

  [5] 3.33065 14.28921 30.71080 47.75021 64.99695

 C-P Present 10.75020 26.31190 44.03880 62.05360 68.56940

  [5] 10.68689 26.10717 43.59072 61.65596 68.42075

 C-C Present 13.31860 27.95770 45.12020 61.90550 72.36990

  [5] 13.22227 27.77822 44.69713 61.80658 72.55473
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6.2 Using the exact shape functions 

Consider a prismatic FGM beam with a rectangular cross-section. The beam is 

made of two materials with a constant value of mass density while the effective 

Young’s modulus and shear modulus are assumed to vary in the longitudinal 

direction according to 

 

( ) ( ) 1

( ) ( ) 1

left ight right

left ight right

x
E x E E E

L

x
G x G G G

L

 = − − + 
 
 = − − + 
 

 (6.3) 

The simply-supported beam with geometric data: width b=0.4 m; height h=0.9 m 

and the total length L=20 m is employed in the computation of the fundamental 

frequencies. The results (with one element division) are compared with reference 

[38], which is computed with 10 element divisions. The very good agreement 

between the frequencies obtained in this work with those of the reference is shown 

in Table 6.4, where left
r

right

E
E

E
=  ; 1 2,μ μ  are respectively the first and the second 

fundamental frequency of the beam. 

Table 6.4: Frequencies of prismatic FGM beam 

µ1 µ2 

Er Present [38] Present [38] 

1 0.5 0.25 0.2748 0.1368 

2 0.5 0.5 1.3708 1.0950 

3 0.5 0.75 4.1105 3.6991 

4 0.5 1.00 9.315 8.7668 

5 0.5 1.25 17.8088 17.1203 
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6.3 Conclusions 

•  The consistent shape functions from sub-section 2.3.2 and the exact shape 

functions from sub-section 2.3.5 were applied in the calculation of a non-

prismatic homogeneous beam and a prismatic FGM beam. 

•  The accuracy was compared with references. 

•  By using the derived shape functions in this work, the solutions of vibration 

problems with least element divisions can approximate the results with high 

accuracy in both a homogeneous non-prismatic beam and a non-homogeneous 

prismatic beam. 
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Chapter 7: Dynamic analysis of FGM structures 

The problems of moving loads on an elastic beam are often met in the design of 

bridges, railways, highways and in many modern machining operations. A large 

number of investigations concerning the dynamic analysis of beams subjected to a 

moving load can be found in the literature. In the early and excellent monograph of 

Fryba [37],  a number of closed-form solutions for moving load problems have been 

derived by using Fourier and Laplace transforms. In 1984, Hino [47] derived the 

finite element formulation of a non-linear beam subjected to a moving load by 

using the Galerkin finite element method. Two years laters, Rieker [105] discussed 

the effect of discretization and boundary conditions on the accuracy of the finite 

element solution of beams subjected to moving loads. Lin and Trethewey [78], in 

1990, formulated a two-node beam element and used it to compute the dynamic 

response of a beam subjected to different types of moving load. Later, based on the 

analytical and finite element solutions to the fundamental moving load problem, 

Olsson [95] provided an interesting discussion and the reference data for studies of 

the moving load problem. In 1996, Thambiratnam and Zhuge [124] presented a 

finite element procedure for studying the dynamic behaviour of a Bernoulli beam 

resting on a Winkler foundation under a moving load, and then applied the method 

to investigate the dynamic response of railway tracks. One year later, Henchi [45] 

presented the dynamic stiffness method, followed by the modal fast Fourier 

transform approach for the moving load problem of a multi-span beam subjected to 

multiple moving point loads. Zheng [142], in 1998, studied the vibration of non-

uniform beams and bridges under the action of moving loads by using the modified 

beam vibration functions. Later, Ichikawa [54] investigated the dynamic behaviour 

of a multi-span continuous beam subjected to a constant speed moving mass. 

Recently, Nguyen [86] derived a finite element formulation for computing the dynamic 

response of a Timoshenko beam on a two-parameter elastic foundation by using the 

solution of the governing differential equations of a Timoshenko beam to interpolate 

the transverse displacement and rotation. 
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7.1 Multiple spans with single moving load 

 

Figure 7.1: A multi-span FGM beam traversed by a moving harmonic load and a 
generic beam element 

Fig. 7.1 shows a multi-span beam with length L subjected to a harmonic load, 

P=P0cos(Ωt), moving at a constant speed from left to right. In the figure, x1, x2,..., xN  

are the abscissas of the N intermediate supports. The prismatic beam made of steel and 

alumina is computed in this section. It is assumed that the beam is formed from spans 

having the same length. The Young’s modulus, mass density and Poisson’s ratio of 

steel are respectively 210 MPa, 7800 kg/m3, 0.3177, and those of alumina are 390 MPa, 

3960 kg/m3 and 0.3, respectively. 

Except for the mentioned cases, beams with L=20 m, h=1 m and b=0.5 m are chosen 

in the computation. Using the derived finite element formulation in sub-section 2.2.1 

with the shape functions obtained from sub-section 2.3.4, the dynamic response of 

multi-span FGM beams is computed. 

7.1.1 Formulation validation 

Firstly, the natural frequencies of a multi-span homogeneous beam are computed, 

and the obtained numerical results are listed in Table 7.1, where the corresponding 

results obtained by Ichikawa [54] are also given. 

The dimensionless natural frequency parameter, µi, in Table 7.1 is defined as 

 2 2 0

0
i i S

A
L

E I

ρμ ω=  (7.1) 

where ωi is the natural frequency; LS is the length of a span; E0, ρ0 are the Young’s 

modulus and mass density of the homogeneous beam, respectively. 
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It should be noted that since the Bernoulli beam theory is used in Ichikawa [54], 

and in order to ensure that the numerical results are comparable, the frequencies in 

Table 7.1 have been computed with an aspect ratio LS/h = 100, which is large 

enough to omit the effect of the shear deformation. As seen from Table 7.1, good 

agreement between the frequencies computed in the present work and those of 

reference [54] is noted. 

Table 7.1: Comparison of first five natural frequencies of multi-span homogeneous 
beams 

Number of spans µ1 µ2 µ3 µ4 µ5 

1 Present 3.1413 6.2811 9.4182 12.5522 15.6838 

 [54] π 2π 3π 4π 5π 

2 Present 3.1413 3.9258 6.2811 7.0648 9.4181 

 [54] π 3.9266 2π 7.0686 3π 

3 Present 3.1413 3.5559 4.2965 6.2811 6.7045 

 [54] π 3.5564 4.2975 2π 6.7076 

4 Present 3.1413 3.3928 3.9258 4.4621 6.2811 

 [54] π 3.3932 3.9266 4.4633 2π 

 

Secondly, the fundamental frequency of a one-span FGM beam composed of 

aluminium (Al) and alumina (Al2O3), previously studied in [118] and [116], is 

computed. The Young’s modulus, mass density and Poisson’s ratio of alumina are 

70 GPa, 2707 kg/m3 and 0.23, respectively. 

The computed fundamental frequency parameters of this work are listed in Table 

7.2 for various values of the aspect ratio, L/h. The corresponding values obtained 

by using an analytical method in [118] and a numerical method in [116] are also 

given in the table. The non-dimensional fundamental frequencies, µ in Table 7.2,  

have been defined according to [118] as 

 
2 11

2

0

( )
L

I
L

h E z dz

μ ω=


 (7.2) 

where ω is the fundamental frequency of the FGM beam. 

As seen from Table 7.2, the fundamental frequencies computed in this work are in 
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good agreement with those of [118] and [116], regardless of the aspect ratio. 

Table 7.2: Comparison of non-dimensional fundamental frequency of one-span 
FGM beam 

n L/h 10 30 100 
0.3 Present 2.692 2.737 2.742 

 [118] 2.695 2.737 2.742 
 [116] 2.701 2.738 2.742 

 

Thirdly, the maximum dynamic deflection factor at the mid-span and the 

corresponding speed of one-span FGM beams composed of steel and alumina with 

L=20 m, h=0.9 m and b=0.4 m, previously studied in [117], are computed. 

The obtained results are listed in Table 7.3. In the table, the dynamic deflection 

factor fD is defined as fD=max(w(L/2, t)/w0) where w0 is the static deflection of the 

steel beam under static load P0 acting at the mid-span. 

Table 7.3: Maximum deflection factor and corresponding speed of one-span FGM 
beam under a moving load 

n Present [117] 

 max(fD) v(m/s) max(fD) v(m/s) 

0.2 1.0346 222 1.0344 222 
0.5 1.1445 197 1.1444 198 
1 1.2505 178 1.2503 179 
2 1.3776 164 1.3776 164 

Pure alumina 0.9328 252 0.9328 252 
Pure steel 1.7324 132 1.7324 132 

 

Very good agreement between the numerical results of this work with those of the 

reference [117] is seen from the table. The numerical results listed in Tables 7.1–

7.3 have been computed by using 14 elements for each span. 
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7.1.2 Natural frequencies 

Table 7.4 lists the first three non-dimensional natural frequencies of the multi-span 

FGM beam for different values of the index n and for an aspect ratio LS/h=30. 

Table 7.4: The first three non-dimensional frequencies of a multi-span FGM beam 
for various values of index n (for LS/h=30) 

n Number of element µ1 µ2 µ3 

0.3 1 3.9819 7.9423 11.8624 

 2 3.9819 4.9707 7.9423 

 3 3.9819 4.5046 5.4370 

 4 3.9819 4.2990 4.9707 

1 1 3.6546 7.2893 10.8867 

 2 3.6546 4.5621 7.2893 

 3 3.6546 4.1343 4.9901 

 4 3.6546 3.9456 4.5621 

5 1 3.3682 6.7171 10.0302 

 2 3.3682 4.2041 6.7171 

 3 3.3682 3.8100 4.5982 

 4 3.3682 3.6362 4.2041 

 

The first three non-dimensional natural frequencies computed with various values 

of the aspect ratio are listed in Table 7.5 for an index n=0.5. 

It should be noted that the numerical results in Tables 7.4 and 7.5 are computed for 

multi-span beams composed of steel and alumina and the frequencies have been 

normalized according to Eq. (7.1). The influence of the number of spans, the index n, 

and the aspect ratio on the natural frequencies of the beam is clearly seen from the 

tables. 

Irrespective of the index n and the aspect ratio, the first frequency is unchanged, 

while the second and third frequencies of the beam reduce when increasing the 

number of spans, and this result is in agreement with that of the homogeneous 

beam reported in [54]. The natural frequencies, as seen from Table 7.4, are smaller for 

a beam associated with a larger index n, regardless of the number of spans. 

This is due to the fact that, as seen from Eq. (2.22), the beam with higher index n 

contains more steel and thus it is softer, and as a result, its fundamental frequency 

is lower. 
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The effect of the aspect ratio on the natural frequencies of the beam is clearly seen 

from Table 7.5, where the frequencies slightly reduce for the beam having a lower 

aspect ratio, regardless of the number of spans. In other words, the shear 

deformation slightly reduces the natural frequencies of the FGM beam. 

Table 7.5: Non-dimensional frequencies of a multi-span FGM beam for various 
aspect ratios LS/h (for n=0.5) 

Number of spans LS/h µ1 µ2 µ3 

2 10 3.8177 4.7215 6.4510 

 20 3.8411 4.7877 7.6360 

 100 3.8488 4.8100 7.6958 

3 10 3.8177 4.2963 5.1416 

 20 3.8411 4.3416 5.2330 

 100 3.6546 4.3567 5.2641 

4 10 3.8177 4.1081 4.5613 

 20 3.8411 4.1447 4.7877 

 100 3.8488 4.1569 4.8100 

7.1.3 Dynamic deflection 

The normalized deflections at the midpoint of the first and second spans of a four-

span FGM beam are shown in Figs. 7.2–7.4 for various values of the index n, speed 

parameter fv and excitation frequency. 

  

(a) fv  = 0.5 (b) fv  = 1.2 

Figure 7.2: Normalized deflection at midpoint of the first span with Ω = 0 
(four-span beam) 



77 
 

  

(a) fv  = 0.5 (b) fv  = 1.2 

Figure 7.3: Normalized deflection at midpoint of the first span with Ω = 20 (four-
span beam) 

  

(a) fv  = 0.5 (b) fv  = 1.2 

Figure 7.4: Normalized deflection at midpoint of the second span with Ω = 20 (four-
span beam) 

In the figures, w(LS/2,t) denotes the dynamic deflection at the midpoint of the i-

th span, and wS =P0LSi/48EbI is the static deflection of a simply supported beam 

with length LS under a static load P0 at the midpoint. 
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The speed parameter fv  is defined in accordance with [54], b
v S

b

A
f vL

E I

ρ= , and 

thus for the given data of the beam and for fv =0.5 and fv =1.2, the equivalent 

speed of the moving load is 37.5 m/s and 90 m/s for the beam with a span length 

of 20 m, respectively. 

As seen from the figures, the material heterogeneity which is governed by the index 

n clearly affects the dynamic deflection of the beam. The maximum normalized 

deflection of the beam associated with a higher index n is higher than that of the 

beam with lower index n. 

In Fig. 7.5, the relation between the speed parameter fD and the maximum dynamic 

deflection at the midpoint of the first span is shown for various values of the index 

n. 

 

Figure 7.5: Maximum normalized deflection at midpoint of the first span (Ω = 
0, four-span beam) 

The effect of the material heterogeneity and the moving speed is clearly seen from 

the figure, and the maximum dynamic deflection is higher for the beam associated 

with a higher index n, regardless of the moving speed. This is due to the fact that, 

as seen from Eq. (2.22), the beam with higher index n contains more steel and thus 

it is softer. 
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The normalized dynamic deflections at the first and second spans of the FGM beam 

with different numbers of spans computed with various values of the speed 

parameters are shown in Fig. 7.6 for Ω=0, n=1 and fv =1.2. 

 

First span 

 

Second span 

Figure 7.6: Normalized deflection at midpoint of the first and second spans for 
FGM beam with different numbers of spans (n = 1, Ω = 0, fv = 1.2) 

As seen from the figure, the maximum deflection at the midpoint of the first and 

second spans of the beam slightly reduces for the beam with the greater number of 

spans. The difference in the maximum dynamic deflection at the midpoint of the 

second span due to different numbers of spans tends to be larger than that of the 

first span. In Fig. 7.7, the normalized dynamic deflections at the midpoint of the 

first and second spans of a four-span beam are respectively depicted for various 

values of the excitation frequency Ω, and for n = 1, fv = 0.5. 
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First span Second span 

Figure 7.7: Normalized deflection at midpoint of the first and second spans of 
four-span beam with various values of excitation frequency fv = 0.5, n = 1 

It should be noted that the fundamental frequency of the FGM beam is ω1=49.8981 

rad/s for n=1. As seen from the figure, the beam executes more vibration cycles 

when it subjected to a moving load with a higher frequency. The maximum 

dynamic deflection steadily increases when raising the excitation frequency 

towards the fundamental frequency of the beam. Thus, the resonant phenomenon 

tends to occur when the excitation frequency approaches the fundamental 

frequency. 

7.1.4 Beam with different aspect ratios 

The effect of the aspect ratio, defined as a ratio of the span length to the beam 

height, LS/h, is investigated in this sub-section. To this end, keeping all the data 

above, the computation is performed with LS  = 5, 10 and 50. 

Fig. 7.8 shows the midpoint normalized deflection at the first and second spans 

of the beam for various values of the aspect ratios and for fv = 0.5, n=1, Ω = 0, 

respectively. 
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First span Second span 

Figure 7.8: Normalized deflection at midpoint of the first and second spans of 
four-span beam with various values of aspect ratio fv = 0.5, n  = 1, Ω = 0 

The effect of the aspect ratio is clearly seen from the figures, where the maximum 

dynamic deflection slightly increases by reducing the aspect ratio. Since the shear 

deformation is more pronounced for a beam with a lower aspect ratio, one can say 

that the shear deformation, which has been taken into consideration in the present 

work, increases the dynamic deflection of the beam. The numerical results depicted 

in the figures show the capability of the formulated element in modelling the shear 

deformation effect of the FGM beam. 
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7.1.5 Conclusions 

• The dynamic response of the multi-span FGM beam subjected to a moving 

harmonic load was presented. 

• The shift of the neutral axis position was taken into account in the calculation 

with the aid of the Newmark method. 

• A parametric study was carried out to highlight the influences of the material 

distribution, the number of spans, loading parameter, and the aspect ratio on 

the dynamic characteristics of the beam: 

- The material distribution and the aspect ratio affect the natural 

frequencies of the beam. The frequencies are smaller for a beam with 

a larger index n or a smaller aspect ratio L/h, regardless of the 

number of spans. 

- The material heterogeneity shows a clear influence on the dynamic 

deflection of the beam. In the beam with a higher index n it is bigger 

than that of the beam with a lower index n, regardless of moving 

speed. 

- The deflection of the beam slightly increases by reducing the aspect 

ratio L/h, or shear deformation can increase the deflection of the 

beam. 
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7.2 In thermal environment due to a moving harmonic load 

7.2.1 Numerical results 

This section investigates the FGM beam in sub-section 2.2.2 due to a moving 

harmonic load, as shown in Fig. 7.9. 

 

Figure  7.9:   A simply supported FGM beam under a moving load F 

=F0cos(Ωt) 

The material properties are considered to be temperature-dependent. Two types 

of temperature distribution, namely uniform and non-linear temperature rises, are 

considered. The temperature is assumed to vary in the beam thickness only, and 

its distribution is obtained from the steady-state Fourier equation. A simply 

supported FGM beam with rectangular cross-section under a load F=F0cos(Ωt) 

with F0 =100 kN, moving from right to left, as shown in Fig. 7.9, is considered. 

An aspect ratio L/h=20 is assumed, and a uniform increment time step, 

/ 500, /T T T L vΔ = =   as the total time for the load F to across the beam, is 

employed for computation. 

 

The investigation is carried out based on the following assumptions: 

• the load F is always in contact with the beam, and its velocity (v) is 

constant 

• the beam is initially at rest, and the inertial effect of the load F is 

negligible. 

The investigated beam is assumed to be composed of alumina (Al2O3) and steel 
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(SUS304). Table 7.6 lists the coefficients of the constituents of the beam 

considered in this work. 

Table 7.6:  Temperature-dependent coefficients of Al2O3 and SUS304 

Material Property P0 P−1 P1 P2 P3 

Al2O3 E(P a) 349.55×10
9
 0 −3.853×10

−4
4.027×10

−7
 −1.673×10

−10

 ρ(kg/m3) 3800 0 0 0 0 

 α(K
−1

) 6.8269×10
−6

0 1.838×10
−4

 0 0 

 
 

K(Wm/K) 
-14.087 -1123.6 −6.227×10

−3
0 0 

SUS304 E(P a) 201.04×10
9
 0 3.079×10

−4
 −6.534×10

−7
0 

 ρ(kg/m
3
) 8166 0 0 0 0 

 α(K
−1

) 12.330×10
−6

0 8.085×10−4 0 0 

 K(Wm/K) 15.379 0 −1.264×10
−3

2.092×10
−6

 −7.223×10
−10

 

Validation of the derived formulation is first confirmed by comparing the 

numerical results of the present paper with the data available in the literature. In 

Table 7.7, the frequency parameters, 2 / /S sL h Eω ω ρ= (where ω  is the 

fundamental frequency and ES, ρS are the Young’s modulus and mass density of 

steel), at various values of the UTR and NLTR of this work, are compared to the 

results obtained by the differential transform method in [25]. 
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Table 7.7: Comparison of frequency parameter ω  of FGM beam in thermal 
environment 

  n=0.1 n=0.2 n=0.5 n=1 ∆T  [25] Pr. [25] Pr. [25] Pr. [25] Pr. 

20K 
UT R 4.6536 4.6053 4.3867 4.3514 3.8974 3.8767 3.5193 3.5046 

NLTR 4.7018 4.6598 4.4334 4.4089 3.9354 3.9384 3.5474 3.5678 

40K 
UT R 4.4516 4.3944 4.1782 4.1350 3.6779 3.6510 3.2925 3.2726 

NLTR 4.6020 4.5603 4.3279 4.3093 3.8141 3.8380 3.4114 3.4659 

80K 
UT R 4.0148 3.9377 3.7212 3.6610 3.1834 3.1441 2.7693 2.7399 

NLTR 4.3956 4.3546 4.1087 4.1031 3.5591 3.6292 3.1216 3.2531 

 

As observed from the table, the results of the present work are in good agreement 

with those of [25]. To verify the formulation in evaluating the dynamic response of 

an FGM beam, the maximum dynamic amplification factor, max(DAF), and the 

corresponding velocity of a beam made of Al2O3 and aluminum (Al), previously 

investigated in [114], are computed and the result is given in Table 7.8. 

Table 7.8: Comparison of maximum amplification factor and corresponding 
velocity of FGM beam at room temperature 

n Present [114] 

 max(DAF) v(m/s) max(DAF) v(m/s) 

0.2 1.0361 222 1.0344 222 
0.5 1.1447 198 1.1444 198 
1 1.2503 179 1.2503 179 
2 1.3377 164 1.3376 164 

Al2O3 0.9329 252 0.9328 252 
SUS304 1.7326 132 1.7324 132 

 

Note that the beam with data given in [114] was used in the analysis and DAF is 

defined in the same way as that of an isotropic beam carrying a moving load, i.e. 

 [ ]0max ( / 2, ) / ostDAF w L t w=  (7.3) 

where w0st = F0L
3/48EmI is the maximum static deflection of the pure metal 
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beam under a load F0. As seen from Table 3.24, the maximum DAF and the 

corresponding velocity of the present work are in good agreement with those of 

[114]. It is worth mentioning that the results in Tables 7.7 and 7.8 are converged by 

using 20 elements, and this number of elements will be utilized for all the 

numerical examples. The effect of material distribution on the dynamic behaviour 

of FGM beams in the thermal environment can be seen from Fig. 7.10, where the 

time histories for the normalized deflection are illustrated for various values of the 

grading index n and v=20 m/s, Ω=15 rad/s, ∆T = 50K. 

 

Figure 7.10: Time histories for normalized mid-span deflection for various values of 
index n (v = 20 m/s,  Ω = 15 rad/s,  ∆T = 50K) 

In the figure and hereafter, the travelling time and the mid-span deflection are 

normalized by the total time and the maximum static deflection, that is t∗ = t/∑ ܶ 

and w∗ = w0(L/2, t)/w0st. 

As seen from Fig. 7.10, at the given values of the moving load velocity, excitation 

frequency and temperature rise, the maximum mid-span deflection increases with 

the increase of the index n, regardless of the temperature. The curves for the time 

histories obtained in the UTR are similar to those obtained in the NLTR, except for 

the higher amplitude. The increase of the mid-span deflection by raising the 

grading index n can also be seen from Fig. 7.11, where the relation between the 

DAF and the index n is depicted for different temperature rises. 
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Figure 7.11: Relation between DAF and grading index n with different temperature 
rises (v = 30 m/s, Ω = 0) 

The DAF values steadily increase with the increase in the index n, irrespective 

of the temperature distribution. The DAF of the beam subjected to NLTR is 

smaller than that of the beam under UTR, but the relations between DAF and n 

for the two temperature distributions are very similar. The influence of the 

temperature rise on the dynamic behaviour of the FGM beam is illustrated in Figs. 

7.12–7.14. The maximum mid-span deflection of the beam, as seen from Fig. 7.12, 

increases by both the UTR and NLTR. 

Figure 7.12: Effect of temperature rise on time histories for normalized mid-span 
deflection for n = 3, v = 20 m/s, Ω = 15rad/s 
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The situation for the DAF, as can be seen in Fig. 7.13, is similar, and the DAF 

increases with increasing temperature. The influence of the UTR is more 

significant than that of the NLTR, and the DAF increases more significantly by the 

UTR. 

 

Figure 7.13: Relation between DAF and moving load velocity v for various 
temperature rises and n = 3, Ω = 0 

The curves exhibit that the relation between the DAF and the moving load velocity 

has similar forms to that of a homogeneous beam subjected to a moving force 

[101], and the DAF experiences a repeated increase and decrease period before 

reaching a peak value, regardless of the temperature rise. The increase of the DAF 

with the temperature rise can also be seen from Table 7.9, where the DAF is given 

for various values of the moving load velocity, the temperature rise and the grading 

index n. 

Table 7.9: DAF for different values of moving load velocity, temperature rise and 
index n 

 v(m/s) ∆T (K) n =0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 

UT R 25 50 0.9173 0.9562 1.1114 1.2334 1.3043 1.4525 

  100 1.2536 1.3929 1.6645 2.1392 2.6394 3.1685 

 50 50 1.0034 1.0633 1.1657 1.2114 1.3902 1.6104 

  100 1.3454 1.4349 1.7777 2.4255 3.1721 4.1644 

NLTR 25 50 0.814 0.8442 0.9223 1.0174 1.083 1.1336 

  100 0.9097 0.9404 1.0823 1.1994 1.2767 1.4233 

 50 50 0.8761 0.9222 1.0056 1.0551 1.0671 1.1749 

  100 0.9937 1.0473 1.1415 1.1883 1.3397 1.5744 
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Irrespective of the moving load velocity and the index n, the DAF in the table 

clearly increases with the temperature rise. The axial stress at the mid-span 

section, as seen from Fig. 7.14, also increases with the temperature rise, and the 

increase of the stress by the UTR is more significant than by the NLTR. 

 

Figure 7.14: Effect of temperature rise on thickness distribution of normalized axial 
stress for n = 0.3, v = 20 m/s, Ω = 0 

The stress in Fig. 7.14 is calculated at the time when the load arrives at the mid-

span and it is normalized by F0/A. 

In Fig. 7.15, the time histories for the normalized mid-span deflection are depicted 

for various values of the excitation frequency Ω and n = 3, v = 20 m/s, ∆T = 50K. 

Figure 7.15: Time histories for normalized mid-span deflection for  various values of 
excitation  frequency  n = 3,  v = 20 m/s,  ∆T = 50K 

The effect of the excitation frequency on the dynamic behaviour of the beam is 
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clearly seen from the figure. The number of vibrations which the beam executes 

increases with the increasing excitation frequency. The vibration amplitude is 

much higher for the excitation frequency near the fundamental frequency, which is 

equal to 34.4359 rad/s and 38.4791 rad/s for the UTR and NLTR of the figure, 

respectively. The influence of the excitation frequency on the dynamic behaviour 

of the beam can be seen more clearly from Fig. 7.16, where the relation between 

the DAF and the excitation frequency is illustrated for different temperature rises 

and n = 3, v = 20m/s. 

 

Figure 7.16: Relation of DAF and excitation frequency for different temperature 
rises (n = 3, v =20 m/s) 

The DAF rapidly increases when the excitation frequency approaches the 

fundamental frequency, irrespective of the temperature rise. Since the damping 

effect is ignored in the present work, resonance will occur, and the DAF becomes 

infinity when the excitation frequency equals the fundamental frequency. The 

excitation frequency at which the resonance can occur, as seen from Fig. 7.16, 

changes with the temperature of the environment, and this should be taken into 

consideration in designing FGM beams subjected to moving harmonic loads. 

The resonant frequencies corresponding to the curves in Fig. 7.16 are 39.0262 

rad/s, 34.4359 rad/s, 28.9872 rad/s for the  UTR and 40.4788 rad/s, 38.4791 rad/s 

and 36.3454 rad/s for the NLTR. 
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7.2.2 Conclusions 

The two main conclusions of the sub-section can be summarized as follows: 

• The dynamic characteristics of FGM beams under a moving load, 

including the mid-span dynamic deflection, DAF and axial stress are 

significantly influenced by the temperature, and they are increased by the 

increase of the temperature rise. Of the two types of temperature 

distribution considered in the present work, the UTR has a stronger effect 

on the dynamic response than the NLTR does. 

• The excitation frequency plays an important role in the dynamic behaviour 

of the FGM beams due to the moving harmonic load, and resonance can 

occur when the excitation frequency and the fundamental frequency are 

identical. The resonant frequency, however, changes with the change of 

the environment temperature, and this should be taken into account in 

designing FGM beams in a thermal environment subjected to moving 

harmonic loads. 
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7.3 Single span with multiple moving loads 

A simply-supported beam made of axially FGM (as in section 2.2.3) subjected to 

multiple moving loads is investigated, as shown in Fig. 7.17. 

 

Figure 7.17: Simply-supported FGM beam subjected to multiple moving loads 

Linear and Kosmatka shape functions are employed in this section as interpolation 

functions. 
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where 0 0
2

0 0

12 E I

l G A
λ

ψ
=  with A0, I0, E0, G0 are the cross-section area, moment of inertia, 

Young’s and shear moduli of the homogeneous uniform beam, respectively. 

Otherwise stated, the geometric data for the beam are: bm=0.5m, h =1m, L=5m 

and 20m, where bm, h, and L are the width of the mid-span cross section, height 

and total length of the beam, respectively. 

The beam is assumed to be composed of steel and alumina with data about the 

Young’s modulus and mass density as in section 7.1. The beam material is graded, 

with pure alumina at the left end and pure steel at the right end. The amplitude of 

each load is Q0 =100 kN. A Poisson’s ratio ν=0.3 and a shear correction factor 

κ=5/6 are used in all the computation in this section. The total time ∆T necessary 

for a constant moving speed load to cross the beam is L/v, where v is the moving 

speed of the load. In the computation, a prismatic time increment of dt =∆T/500 

is used for the Newmark method. 

The dimensionless parameters representing the maximum mid-span deflection and 

moving load speed are introduced as 

 0

0
1

( / 2, )
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v

w L t
f

w

v
f

w

π

 
=  

 
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where w0  = Q0L
3/48ErIm  is the static deflection of a prismatic steel beam under a 

static load Q0 acting at the mid-span, and
2

0
1 2

r m

r m

E I

L A

πω
ρ

 
=  
 

is the fundamental 

frequency of the simply supported prismatic steel beam. fD is called the dynamic 

deflection factor. 

7.3.1 Verification of formulation 

In order to verify the accuracy of the non-prismatic FGM beam in sub-section 2.2.3 

within the derived formulation in section 3.3, the fundamental frequencies of a 

prismatic FGM beam composed of steel and alumina are computed and compared 

with the numerical results of reference [117]. 
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To this end, for consistency with [117], an FGM beam with width b = 0.4 m, 

height h = 0.9 m and length L = 20 m is employed in the computation. 

Tables 7.10–7.11 list the values of the first two non-dimensional fundamental 

frequencies of the beam with various values of the modulus ratio, Eratio = El/Er, 

and the power law index n for an assumed constant value of mass density, ρratio 

= ρl/ρr = 1. 

Table 7.10: First dimensionless frequency parameter of prismatic FGM beam 
 Power law index n 
 1 2 5 

Eratio Present [117] Present [117] Present [117] 
0.25 2.7482 2.7532 2.9220 2.9278 3.0772 3.0834 
0.5 2.9056 2.9104 3.0069 3.0122 3.0997 3.1052 
1 3.1350 3.1399 3.1350 3.1399 3.1350 3.1399 
2 3.4554 3.4611 3.3193 3.3243 3.1877 3.1922 
4 3.8866 3.8937 3.5737 3.5794 3.2625 3.2667 

Table 7.11: Second dimensionless frequency parameter of prismatic FGM beam 
 Power law index n 
 1 2 5 

Eratio Present [117] Present [117] Present [117] 
0.25 5.4372 5.4729 5.7283 5.7675 6.0213 6.0639 
0.5 5.7685 5.8047 5.9359 5.9739 6.1060 6.1459 
1 6.2317 6.2703 6.2317 6.2703 6.2317 6.2703 
2 6.8599 6.9030 6.6372 6.6782 6.4094 6.4482 
4 7.6893 7.7399 7.1755 7.2208 6.6495 6.6900 

 

Very good agreement between the frequencies obtained in the present work and 

those of the reference [117] is shown in the tables. The non-dimensional 

fundamental frequency in the tables is defined as 

 
2 2

2 r m

r m

A L

E I

ω ρμ =  (7.8) 

where ω is  the  natural frequency of  the beam. 

To verify the element formulation further, the maximum dynamic deflection factor 

and its corresponding speed of an axially FGM beam are evaluated and compared 

with the published data [117]. The computed result is listed in Table 7.12 for 

various values of the index n, where the numerical results from [117] are also 

given. 
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Table 7.12: Maximum normalized dynamic deflection factors of the beam and 
corresponding speeds for α = 0, L/h = 20 

index n v [m/s] max(fD) 
 Present [117] Present [117] 

0.3 219 220 1.0195 1.01947 
1 178 179 1.2064 1.20435 
3 144 144 1.5146 1.51669 

Pure Steel 132 132 1.7386 1.73247 
 

The numerical results shown in Table 7.12 were obtained by varying the moving 

speed with an increment of 1m/s. Very good agreement between the results is 

achieved. It should be noted that the numerical results listed in Tables 7.10–7.12 

have been obtained by using 10 elements. 

In order to verify the formulation and numerical procedure in modelling multiple 

moving loads, the time history for mid-span deflection of a prismatic homogeneous 

beam subjected to three point loads Q0=5324.256 N , moving with a constant speed 

v=22.5 m/s, is computed and the result is shown in Fig. 7.18, where the numerical 

result obtained by using the dynamic stiffness method in [45] is depicted by small 

circles. 

 

Figure 7.18: Time history for mid-span deflection of uniform homogeneous beam 
under three moving loads d = L/4 

The beam material properties and geometric data in this computation, adopted from 
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[45], are as follows: L= 24.384 m, m=9.576×103 kg/m, A =0.576 m, 

I=2.95×10−3 m4, E=19×1011 N/m2, where L, m, A, I, E are the total length, 

mass per unit length, section area, moment of inertia and Young’s modulus, 

respectively. Good agreement between the numerical results of the present work 

and those of [45] is observed from the figure. 

7.3.2 Fundamental frequency 

The effect of the section parameter α on the non-dimensional fundamental 

frequency µ1 of the Type A FGM beam having the aspect ratio, L/h, is shown in 

Fig. 7.19 for an index n = 3. 

 

Figure 7.19: Effect of section parameter on the dimensionless fundamental 
frequency of type A FGM  beam with different values  of the aspect ratio (n=3) 

It can be observed that the fundamental frequency of the beam is considerably 

affected by the section parameter and the aspect ratio. The frequency µ1 steadily 

reduces by raising the section parameter α, regardless of the aspect ratio. In 

addition, the frequency is smaller for a beam associated with a lower aspect ratio. 

In other words, the shear deformation which has been taken into account in the 

present work reduces the fundamental frequency of the FGM beam. Thus, the 

numerical result obtained in this sub-section shows the good ability of the proposed 

formulation in modelling the shear deformation of the FGM beam. 
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It should be noted that the frequency parameter shown in Fig. 7.19 has been 

obtained by using 28 elements, which is much more than the number of elements 

previously used for the prismatic beam. 

As seen from Table 7.13, the convergence of the fundamental frequency of the 

non-prismatic FGM beams depends on the section parameter, and the beam with a 

higher section parameter requires a greater number of elements in evaluating the 

fundamental frequencies. 

Table 7.13: Convergence of present elements in evaluation of fundamental 
frequency µ1 of non-prismatic FGM beam with various values of α (n=1, L/h 

=20) 
Number of elements 

nel 
α 

 0.5 1 1.5 1.8 
4 3.5007 3.4923 3.4706 3.4427 
8 3.4993 3.4902 3.4668 3.4369 

12 3.4991 3.4898 3.4657 3.4346 
14 3.4991 3.4897 3.4654 3.4338 
16 3.4991 3.4896 3.4652 3.4333 
18 3.4990 3.4895 3.4650 3.4328 
20 3.4990 3.4894 3.4648 3.4322 
22 3.4990 3.4894 3.4647 3.4319 
24 3.4990 3.4894 3.4646 3.4315 
26 3.4990 3.4894 3.4646 3.4313 
28 3.4990 3.4894 3.4646 3.4313 

7.3.3 Effect of material non-homogeneity  

The material non-homogeneity distribution along the longitudinal direction is 

defined through the power law index n in Eq. (2.37), and the effect of this index on 

the dynamic response of the beam is examined in this sub-section. 

In Fig. 7.20, the relation between the deflection factor and the speed parameter 

of the Type A beam subjected to a single moving load is depicted for a non-

prismatic section parameter α = 0.5, and for two aspect ratios, L/h = 5 and L/h = 

20. 
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One load with L/h=5 One load with L/h=20 

Figure 7.20: Relations of deflection factor and moving speed parameter of Type A 
beam (α = 0.5) 

As depicted in the figure, the dynamic deflection fD is higher for a beam associated 

with a higher index n, regardless of the moving speed and the aspect ratio. This is 

due to the fact that, referring to Eq. (2.37), the beam with a higher index n contains 

more steel and thus it is softer. The dependency of the deflection factor fD upon the 

speed parameter fv observed from Fig. 7.20 is similar to that of the homogeneous 

beams in [95], where fD increases when increasing the speed parameter fv, and it 

then reduces after reaching a peak value, regardless of the index n and the aspect 

ratio. The effect of the material non-homogeneity and the moving speed on the 

dynamic deflection factor can also be observed clearly from Fig. 7.21, where the 

relation between fD and the index n of the Type A beam are shown for various 

values of the speed parameter fv and for a section parameter α = 0.5. 
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One load with L/h=5 One load with L/h=20 

Figure  7.21:  Relations of deflection factor and power law index of Type A beam 
(α = 0.5) 

The effect of the aspect ratio on the dynamic response of the beam can be seen 

from Figs. 7.20 and 7.21, where fD is higher for a beam having a smaller aspect 

ratio. The dynamic deflections in this sub-section have been computed by using 28 

elements. 

7.3.4 Effect of section profile 

The time histories for mid-span deflection of the Type A beam under a single 

moving load are shown in Fig. 7.22 for various values of the section parameter α, 

and for n = 5, fv  = 0.25. 
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One load with L/h=5 One load with L/h=20 

Figure 7.22: Time histories of normalized mid-span deflection of Type A  beam 
under a single moving load (n = 5, fv = 0.25) 

The dynamic response of the beam, as clearly observed from Fig. 7.22, is greatly 

affected by the section parameter, where the maximum dynamic deflection is higher 

for a beam having a larger parameter α, regardless of the aspect ratio. Except for the 

amplitude of the dynamic deflection, the aspect ratio hardly changes the dynamic 

behaviour of the beam. In Fig. 7.23, the relation between the maximum 

deflection parameter, max(fD), and the section parameter α of the beam having 

different aspect ratios is depicted for the two types of section profile and for n = 

5, fv  = 0.25. 
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L/h=5, d=L/10 L/h=20, d=L/10 

Figure 7.23: Effect of section profile on relation between maximum deflection factor 
and non-uniform parameter (n = 5, fv = 0.25) 

As shown in Fig. 7.23, the maximum deflection factor of the beam with the Type A 

section is more sensitive to the non-prismatic section parameter α compared to that 

of the Type B beam, regardless of the number of moving loads. For a given value 

of the parameter α and number of moving loads, the maximum deflection factor of 

the Type A beam is higher than that of the Type B beam and the difference 

becomes larger for a higher value of  α. The aspect ratio affects the amplitude of 

the maximum deflection factor, but it hardly changes the relation between this 

factor and the non-prismatic parameter. This maximum deflection factor of the 

beam associated with a lower aspect ratio is much more sensitive to the change of 

the section parameter compared to the beam having a higher aspect ratio. 

7.3.5 Effect of distance between loads 

The time histories for mid-span deflection of the Type A beam under four 

moving loads are depicted in Fig. 7.24 for various values of the distance 

between the loads and for n=3, fv = 0.25, L/h = 20. 
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Figure 7.24: Time histories for mid-span deflection of Type A beam under 4 loads 
(n = 3, fv  = 0.25, L/h = 20, α = 0.5) 

In Fig. 7.25, the relation between the deflection parameter fD and the moving 

speed fv of the Type A beam is shown for various values of the distance between 

the loads, and for n =3, α=0.5, L/h=20. 

 

Figure 7.25: Deflection of factor-speed parameter of Type A beam under 3 
loads (n = 3, L/h = 20, α = 0.5) 
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The effect of the distance between the moving loads on the dynamic behaviour of 

the beam is clearly depicted in the figures. The dynamic deflection factor is much 

larger when the distance between the loads is smaller, regardless of the moving 

speed. 

7.3.6 Conclusions 

The sub-section studied the dynamic response of non-prismatic axially FGM 

Timoshenko beams subjected to multiple moving point loads. The following 

conclusions can be drawn: 

 

• The section profile and the aspect ratio have a considerable effect on the 

fundamental frequency and the dynamic deflection of the beam. The 

frequency steadily reduces by raising the section parameter and is smaller 

for a beam with a lower aspect ratio, while the dynamic deflection is 

higher for a beam with a larger parameter α and a lower aspect ratio. 

• The dynamic deflection of the beam is also affected by the material 

distribution and the distance between moving loads. This deflection is 

higher for a beam with a higher index n and is much larger when the 

distance between loads is smaller. 
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Chapter 8: Post-buckling analysis of FGM structures 

The post-buckling behaviour of structures is very important information for design 

engineers. Meanwhile, establishing equilibrium paths is the most common way of 

understanding a structure’s behaviour in the post-buckling state. However, a major 

difficulty is the geometric non-linearity when the structure undergoes large 

displacement. Due to this challenge, it is difficult to understand the post-buckling 

problem using analytical methods, and a numerical method, especially the finite 

element method, is often employed instead. In order to analyze the large 

displacements of structures by the finite element method, a non-linear finite 

element which makes it possible to model the non-linear behaviour of the structures 

accurately is required. Many non-linear finite elements in general and beam 

elements in particular are available in the literature, some of which have been 

documented in well-known textbooks [143], [8]. The non-linear beam elements can 

be classified into three types, namely the total Lagrange formulation, the updated 

Lagrange formulation, and the co-rotational formulation. The co-rotational 

approach which is described in sub-section 4.1 will be used for the post-buckling 

analysis in this work. 
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8.1 Axially FGM structures 

8.1.1 Rod 

The effects of support conditions on the post-buckling behaviour of a Williams 

toggle frame consisting of rod structures made of axially FGM are presented in this 

section. 

The shape functions used to interpolate the rod structures are displayed in sub-

section 2.3.3. Fig. 8.1 shows various support conditions of the Willams toggle 

frames for studying the effects on the post-buckling behaviour of axially FGM 

rods. 

Figure 8.1: Various support conditions 

The effects of the various support conditions on the axially FGM material 

distribution in the rods are shown in Figs. 8.2–8.5. 
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Figure 8.2:  Fixed–Fixed support conditions 

 

Figure 8.3:  Pinned–Fixed support conditions 
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Figure 8.4:  Fixed–Pinned support conditions 

 

Figure 8.5:  Pinned–Pinned support conditions 

From these figures, the following conclusions can be drawn: 

• The mixture of two constituents can increase the post-buckling behaviour of 

the axially FGM rod element compared with their pure constituents, 

regardless of the support conditions. 

• The post-buckling behaviour of aluminium–steel axially FGM showed 

greater improvements compared with the steel–aluminium axially FGM 
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improvements. Therefore, the orientation of the material distributions 

combined with the supporting conditions can be used to maximize the 

performance of axially FGM rods in their post- buckling behaviour. 

• It can be observed that the steel–aluminium axially FGM increased the 

performance of the rod element in the post-buckling behaviour, regardless 

of the variety of support conditions. 

The effects of axially FGM material distributions in the rods for various support 

conditions are shown in Figs. 8.6–8.9. 

 

 

Figure 8.6:  Pure aluminium material 



109 
 

 

Figure 8.7:  Pure steel material 

 

 

Figure 8.8: Steel–aluminium axially FGM 
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Figure 8.9: Aluminum–steel axially FGM 

From these figures, the following conclusions can be drawn: 

• In the post-buckling behaviour, the Fixed–Fixed support condition showed 

better performance of the axially FGM rod regardless of the material 

distributions. 

• Similar performances were observed for pure aluminium, pure steel and 

steel–aluminium axially FGMs with Fixed–Pinned and Pinned–Fixed 

support conditions. However, the aluminium–steel axially FGM showed 

slight deviation of the response   curves. 
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8.1.2 Beam and frame 

8.1.2.1 Material verification 

In order to facilitate the presentation of results, the following dimensionless 

parameters are introduced as 

 

2 4
2 0

0

2

2
0

,cr

AL

E I

P L I
P r

E I AL

ω ρμ =

= =
 (8.1) 

Firstly, in Table 8.1, the paper verifies the accuracy of the proposed formulation 

and the  numerical procedure in homogeneous beams under various boundary 

conditions of Clamped–Clamped, Clamped–Fixed and Hinged–Hinged, in which r is 

set to 0.01, shear correction factor κ = 5/6, Poisson’s ratio ν = 0.3, P=1, E0  = 70 

GPa, ρ0 = 2702 kg/m3. 

Table 8.1: Dimensionless critical load of uniform homogeneous Timoshenko beam 

Boundary condition C-C H-H C-F 

Present 17.6901 7.5464 2.2910 
[22] 17.7056 7.5472 2.2911 
[137] 17.6896 7.5460 2.2910 

 

Uniform axially FGM beams with Young’s modulus and mass density of the 

beams vary as follows: 
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 (8.2) 

are also employed for further verification in Table 8.2. 

Table 8.2: Dimensionless critical load of uniform axially FGM Bernoulli beam 

Boundary condition C-C H-H C-F 

Present 57.3942 14.5113 3.1177 
[22] 57.3940 14.5112 3.1177 
[113] 57.3948 14.5113 3.1177 
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Very good agreement between the critical loads obtained in this work and those of 

the comparison reference can be seen in the tables. 

8.1.2.2 Cantilever beam under tip moment 

Consider a cantilever beam with total length L = 6 m, width b = 0.15 m and height 

h = 0.1 m subjected to a tip moment M. 

The problem was investigated analytically by Kang and Li [60] with the 

expressions for the tip displacements as follows: 
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 (8.3) 

Table 8.3 displays the tip displacement of cantilever beams made of steel and 

alumina under tip moments computed by different shape functions. 

Table 8.3: Tip displacement of cantilever beam under tip moment 

ML/E0I nELE Kosmatka functions New shape functions 

  |u/L| w/L |u/L| w/L 
3 1 0.3919 0.6561 0.3816 0.6466 
 2 0.3900 0.6521 0.3816 0.6466 
 4 0.3876 0.6506 0.3816 0.6466 
 6 0.3872 0.6488 0.3816 0.6466 
 8 0.3865 0.6472 0.3816 0.6466 
 10 0.3858 0.6470 0.3816 0.6466 
 12 0.3842 0.6468 0.3816 0.6466 
 14 0.3835 0.6467 0.3816 0.6466 
 16 0.3820 0.6466 0.3816 0.6466 
 20 0.3817 0.6466 0.3816 0.6466 
6 1 1.1324 0.6306 1.0278 0.6179 
 2 1.1289 0.6293 1.0276 0.6178 
 4 1.1251 0.6289 1.0276 0.6178 
 6 1.1203 0.6272 1.0276 0.6178 
 8 1.1187 0.6267 1.0276 0.6178 
 10 1.1151 0.6253 1.0276 0.6178 
 12 1.0781 0.6241 1.0276 0.6178 
 14 1.0512 0.6212 1.0276 0.6178 
 16 1.0318 0.6190 1.0276 0.6178 
 20 1.0278 0.6178 1.0276 0.6178 
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As can be seen from the table, quicker convergence can be reached by using the 

new shape functions compared to the linear and Kosmatka functions. 

8.1.2.3 Cantilever beam subjected to eccentric axial load 

Consider a cantilever beam subjected to an eccentric axial load, shown in Fig. 8.10. 

 

 

Figure 8.10: Load–displacement relation for cantilever beam under eccentric axial 
load 

The beam data are: L=100 m, b=1 m, h =1 m and G= E/2. 

The load–displacement curves are obtained by using a mesh of three elements. 

Good agreement between the curves computed in this work with those obtained by 

the references can be seen in the figure. The critical loads of the simply-supported 

beams made of steel and alumina with different numbers of elements are listed in 

Table 8.4. 

Table 8.4:  Dimensionless critical load of uniform steel–alumina beam 

nELE Kosmatka functionsNew shape functions 

1 16.5059 13.8780 
2 14.0246 13.8763 
3 13.9041 13.8752 
4 13.8838 13.8745 
5 13.8782 13.8745 
6 13.8762 13.8745 
7 13.8754 13.8745 
8 13.8749 13.8745 
9 13.8747 13.8745 

10 13.8746 13.8745 
11 13.8745 13.8745 
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The first row includes the number of elements, the second row shows the critical 

loads of the beam using the linear and Kosmatka functions for interpolation, and 

the last row displays the critical loads of the beam using the new derived shape 

functions. As can be seen from the table, the beam element based on the derived 

shape functions converges faster than the one based on the linear and 

Kosmatka functions. 

8.1.2.4 Williams toggle frame 

The Williams toggle frame (Fig. 8.11), which has been employed by many authors 

to test their non-linear beam elements is considered. 

Figure 8.11: Load–displacement curves for Williams toggle frame 

The data for computation are as follows: L=12.943 in (0.329 m), H=0.386 in (0.01 

m), b= 0.753 in (0.019 m), h = 0.243 in (0.006 m), E0 = 10.3×106 lb (7.1×104 MP 

a). In Fig. 8.11, the load–displacement curves for the frame are obtained by using 

only two beam elements. The blue curve corresponding to the homogeneous 

material shows a good agreement with the results obtained by Nguyen [89] which is 

shown in round blue circles. The effect of the material distribution on the limit load 

of the FGM frame is clearly seen from the figure. The pure steel material has the 

lowest limit load compared with the graded steel–alumina material. Putting the 

graded distribution of alumina at the fixed ends and the steel at the peak of the 

frame will give the highest limit load of the frame subjected to a vertical loading P. 

P

w
H

L
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8.1.2.5 Asymmetric frame 

An asymmetric frame under a concentrated load is shown in Fig. 8.12. The frame is 

also known in the literature as Lee’s frame, is investigated. 

 
 

Figure 8.12: Load–displacement curves for asymmetric frame 

The frame shows highly non-linear curves with snap-through and snap-back 

behaviour, and thus this problem is a good example to test the behaviour of the 

beam element and the proposed numerical algorithm. The frame is assumed to be 

composed of steel and alumina, where the geometric data are: L =120 cm, b = 3 cm 

and h = 2 cm. 

Fig. 8.12 displays the load–displacement curves for the frame in two cases: blue for 

the pure steel frame and red for the steel–alumina frame. 

The curves for the homogeneous frame are also depicted in the figure for 

comparison. Similarly to the previous example, placing the graded distribution 

with alumina at both hinged ends and steel at the joint of the frame will give 

the highest limit load of the frame subjected to a vertical loading P . 
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8.1.2.6 Conclusions 

The following conclusions can be drawn: 

• Consistency in using accurate shape functions which incorporate material 

in-homogeneity results in high efficiency in the finite element context, since 

the number of element divisions required can be significantly suppressed. 

• FGM beams subjected to axial loading show improvements in limit of 

loading and non-linear behaviour in the post-buckling region. 

• Gradation between two or more materials, i.e. FGM, is expected to give 

prospects of material optimization in structural designs. 
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Chapter 9: Elastic-plastic analysis of FGM structures 

The elastic-plastic behaviour of FGM structures is very important phenomena for 

researchers. To establish the equilibrium paths after the material yield is a major 

difficulty because the structure undergoes large displacement. In order to analyze 

the large displacements of structures the co-rotational approach which is described 

in sub-section 4.1 will be used for the elastic-plastic analysis of FGM structures. 

9.1 Elastic–plastic FGM beam subjected to eccentric axial load 

9.1.1 Introduction 

The analysis of elastic–plastic FGM structures has attracted some attention from 

researchers in recent years. In 2011, Gunes [42] employed the finite element code 

LS-DYNA to study the elastic–plastic response of FGM circular plates under low-

velocity impact loads. A year later, Jahromi [55] adopted a bilinear stress–strain 

model in studying the elastic–plastic behaviour of an FGM rotating disk. The stress 

field of the disk is computed with the aid of the finite element package ABAQUS. 

In 2014, Huang [51], [52] used a multi-linear hardening elastic–plastic material to 

study the elastic–plastic buckling of FGM cylindrical shells under the axial and 

torsion loads, respectively. Also using the multi-linear hardening elastic–plastic 

material model, in 2015, Zhang [139] studied the buckling behaviour of elastic–

plastic FGM cylindrical shells under a combination of the axial compressive load 

and external pressure. A detailed examination of the effects of dimensional 

parameters and elastic–plastic material properties on the stability region and 

elastic–plastic interface of the shells is given in [139] with the aid of the Galerkin 

method. 

9.1.2 Numerical examples 

The derived finite element formulation in sub-section 2.2.4 and the described 

numerical algorithm in sub-section 3.4 were implemented into a computer code for 

investigating the post-buckling behaviour of the FG beams. 

The numerical result reported in this section has been performed for an FGM 
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beam with length L = 5 m, height h = 0.1 m and width b = 0.2 m. 

The properties of the constituent materials are adopted from [61] as follows: Ec = 

80 GPa for ceramic, Em = 56 GPa, ϬYm= 106 MPa, Etm =12 GPa for metal, and 

q=17.2 GPa. 

Figs. 9.1–9.2 show the variation of the Young’s modulus and the yield stress in the 

thickness direction of the FG beam, respectively. 

 

Figure  9.1:  Variation  of  Young’s  modulus  in  thickness  of  FGM  beam 

 

Figure 9.2:  Variation of yield stress in thickness of FGM beam 

Two kinds of boundary condition, namely clamped–free (CF) and simply-supported 

(SS), are considered herein. Ten elements have been used to discretize the beam. 
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Fig. 9.3 shows the load–displacement curves of the CF beam for various values of 

the volume fraction exponent n and an eccentric ratio ec/r2 = 0.005. 

 

Figure 9.3: Load–displacement curves for CF beam with various values of 
exponent n (ec/ r2 = 0.005) 

In the figure, the deflection w is computed at the free end, and the applied load was 

normalized by the Euler buckling load of the homogeneous metal cantilever beam, 

that is, P0= π2EmI/4L2. The eccentric ratio, ec/r2 (where r is the radius of 

gyration) is defined according to [41], but c is now measured from the top surface 

to the neutral surface, and thus c = h/2−h0. As seen from the figure, similar to the 

homogeneous beam [88], the post-buckling of the beam is greatly affected by the 

plastic deformation, and post-buckling of the beam becomes unstable when the 

effect of plastic deformation is taken into consideration. The volume fraction 

exponent n alters the limit load of the beam, but it hardly affects the post-buckling 

behaviour of the beam. It should be noted that the elastic curve in the figure was 

obtained by setting the yield stress σY in the computer code to a large value so that 

yielding will not occur. The effect of the eccentric ratio on the post-buckling 

behaviour of the CF beam is depicted in Fig. 9.4 for a value of a volume fraction 

exponent n=3. 
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Figure 9.4:  Effect of eccentric ratio on the post-buckling behaviour of  CF 
beam (n = 3) 

As seen from the figure, the post-buckling behaviour of the beam is very sensitive 

to the eccentric ratio, and the limit load gradually reduces when increasing the 

eccentric ratio. This phenomenon is similar to the post-buckling behaviour of the 

homogeneous elastic–plastic beams subjected to an axial load [88]. In Fig. 9.5, the 

load–displacement curves of the SS beam are illustrated for various values of the 

volume fraction exponent n and an eccentric ratio ec/r2= 0.005. 

 

Figure 9.5: Load–displacement curves for SS beam with various values of exponent 
n (ec/r2 = 0.005) 

In the figure, P0 is the buckling load of the simply supported metal beam, i.e., P0  = 

π2EmI/L2. As in the case of the CF beam, the volume fraction exponent changes the 
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limit load of the beam, and the limit load reduces when the volume fraction 

exponent n increases. In addition, the post-buckling strength of the beam in the 

post-buckling region, measured in terms of the ratio of applied load to the critical 

load P0 of the metal beam, reduces, regardless of the exponent n. This means that 

the post-buckling of the beam is unstable. 

The effect of the eccentric ratio to the post-buckling behaviour of the SS beam as 

depicted in Fig. 9.6 is similar to the CF beam, and the limit load considerably 

reduces with increase of the eccentric ratio. 

 

Figure 9.6:  Effect of eccentric ratio on the post-buckling behaviour of  SS 
beam (n = 3) 
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9.1.3 Conclusions 

The following conclusions can be obtained from the sub-section: 

• Numerical examples were demonstrated for beams with clamped–free and 

simply-supported end conditions during the investigation of the post-

buckling behaviour of elastic–plastic FGM beams subjected to eccentric 

axial load. 

• The results show that the plastic deformation greatly affects the post-

buckling behaviour of the FGM beams, in which the post-buckling of the 

beam is unstable when the effect of plastic deformation is taken into 

consideration. 

• The post-buckling behaviour is also considerably affected by the volume 

fraction distribution as well as the eccentric ratio. The volume fraction 

exponent n alters the limit load of the beam but hardly affects the post-

buckling behavior, while the post-buckling behaviour is very sensitive to 

the eccentric ratio. The limit load gradually reduces as the eccentric ratio 

increases. 
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9.2 Elastic–plastic FGM beam on non-linear elastic foundation 

9.2.1 Introduction 

Analysis of beams resting on an elastic foundation is an important topic in the field 

of structural mechanics, and it has attracted much attention from many researchers 

for a long time.  

A large number of studies of beams on elastic foundations are referred to in the 

excellent monograph by [46]. Nearly four decades later, Zhaohua and Cook [141] 

studied the bending problem of beams on a two-parameter elastic foundation by 

using the exact interpolation in the derivation of the stiffness matrix. In 1991, 

Razaqpur and Shah [104] derived the exact stiffness matrix and nodal force vector 

for assessing the deflection and internal forces of beams resting on a two-parameter 

elastic foundation. Later, Budkowska and Szymczak [14] used a simple finite 

element model in studying the post-buckling behaviour of beams partially 

embedded in a Winkler foundation. In 2006, Kounadis [70] have shown that the 

post-buckling behaviour of elastic beams resting on a Winkler foundation is stable. 

The equilibrium paths, computed by Patel [98] and Nguyen [85] by using the finite 

element method, have also confirmed the stable behaviour in the post-buckling 

region of axially loaded beams resting on a two-parameter elastic foundation. 

However, due to the increase of the critical load by the elastic foundation support, 

the stress in beams on an elastic foundation may exceed the yield stress when the 

deflection is still very small, even before buckling. Thus, the effect of plastic 

deformation is an important factor for the buckling behaviour of beams resting on 

an elastic foundation. In this line of work, based on Hill’s variational principle, 

Cheb and Neal [18] developed a finite element procedure for investigating the 

buckling and post-buckling behaviour of elastic-plastic beams resting on a non-

linear elastic foundation. They then showed that the post-buckling behaviour of the 

elastic–plastic beams on the foundation is unstable, and the maximum load that the 

beams can withstand is sensitive to the imperfection and the foundation stiffness. 

Also using a finite element procedure, recently, Nguyen and his co-workers [93] 

confirmed that the post-buckling behaviour of beams on an elastic foundation 

subjected to an eccentric axial load is unstable, and the post-buckling strength, 
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measured in terms of the ratio between the axial load and the critical load, increases 

with an increment in the foundation stiffness. 

9.2.2 Formulation 

The elastic–plastic FGM beam shown in Fig. 9.7 which is described in sub-section 

2.2.4 is again adopted in this section. 

 

 

Figure 9.7: Cantilever FGM beam on non-linear elastic foundation under eccentric 
axial load 

To this end, we have to determine the value of q in Eq. (2.43). Various values of q 

for FGMs formed from different ceramics and metals are given in the papers by 

Gunes [42] and Huang [52]. In this section, SiC and aluminum (Al) are employed 

as the ceramic and metal phases of the FGM beam. The Young’s moduli of the SiC 

and Al are 302 GPa and 67 GPa respectively; and the yield stress of Al is 24 MPa. 

This Al/SiC FGM has q = 91.6 GPa, which has been experimentally determined by 

Bhattacharyya [9]. Figs. 9.9 and 9.10 show the variation of the Young’s modulus 

and the yield stress in the beam thickness direction of the Al/SiC FGM beam 

according to Eq. (2.44). 

The elastic foundation is assumed to be a non-linear model with its reaction force 

as given by Rajasekhara and Venkateswara [103]: 

 3( ) L NLr x k w k w= +  (9.1) 

where w is the transverse displacement of the beam; kL and kNL are the linear and 

non-linear foundation stiffness, respectively. The element formulation, namely the 

internal nodal force vector fin and the tangent stiffness matrix kt, can be derived 
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from the expression of the internal virtual work. 

For a beam element with length l, the internal virtual work is a contribution from 

the beam bending and the foundation deformation as 

 
0

( )
l

in

V

W dV r x w dxν νδ σδε δ= +   (9.2) 

where the subscript v stands for virtual; V is the element volume; δExv is the small 

virtual axial strain, and δwv  is the virtual transverse displacement. 

Linear and cubic polynomials can be adopted to interpolate the axial and transverse 

displacements as 
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where ξ = 2x/l − 1 is the dimensionless parameter, and with 0 ≤ x ≤ l then −1 ≤ ξ 

≤ 1. 

9.2.3 Numerical results 

An FGM beam composed of SiC and Al with L = 5 m; b = 0.2 m; and h = 0.1 m 

is employed in the numerical investigation in this computation. 

Different values of tangent modulus for Al are available in the literature, and the 

computations reported below are carried out with E0 = 0.2 Em. 

Gauss quadrature with nine points in the beam thickness and five points along the 

element length is employed in computing the element nodal force vector and 

tangent stiffness matrix. The beam is discretized by ten uniform elements. Two 

kinds of boundary conditions, namely clamped–free (CF) and simply-supported 

(SS) are considered. 
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In order to facilitate the numerical discussion, the following dimensionless 

parameters, which will be called the linear and non-linear foundation parameters 

below respectively, are introduced 
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(9.5) 

The eccentric ratio rC = ec/r2 where c = h/2−h0 and r is the radius of gyration 

was introduced by Gere and Timoshenko [41] and is adopted herein. 

9.2.3.1 Formulation verification 

In the case of homogeneous beams resting on a linear elastic foundation, the finite 

element formulation applied in this section can be deduced exactly to the one 

previously derived by Nguyen and his co-workers [88]. 

Since there is no data on the elastic–plastic response of FGM beams, the validation 

of the formulations is confirmed by comparing the response of an elastic FGM 

beam to an eccentric axial load. 

Fig. 9.8 shows the load–displacement curves for the Al/SiC cantilever beam under 

an eccentric tip load with e=h/2-h0 obtained by the present element, where for the 

sake of comparison, the result obtained by using the co-rotational element derived 

in [92], [93] is also shown by the dashed lines. 
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Figure 9.8: Load–displacement curves for elastic FGM cantilever beam under an 
axial load 

In the figure, the tip axial and transverse displacements, u and w, respectively are 

normalized by the beam length L, and the applied load is normalized by the Euler 

load of the cantilever full metal beam, i.e. Pcr = π2EmI/4L2. For the elastic analysis 

herein, the yield stress of the metal phase is set to a large value, and thus the 

yielding will not occur. Regardless of the exponent n, a good agreement is noted 

from the figure. 

It should be noted that the effective Young’s modulus in this work by Nguyen [93] 

was evaluated by using the Voigt model, which is slightly different from the one 

computed by Eq.  (2.44). 
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Figure 9.9: Variation of Young’s modulus in thickness of FGM beam 

 

Figure 9.10:  Variation of yield stress in thickness of FGM beam 

9.2.3.2 Cantilever beam 

In Fig. 9.11, the load–displacement curves representing the equilibrium paths of the 

CF beam without the foundation support obtained by the elastic and elastic–plastic 

analyses are depicted for rC = 0.01, and for two values of the fraction exponent n = 

0.5 and n =5. 
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Figure 9.11: Load–displacement curves of CF beam obtained by elastic and 
elastic–plastic analyses 

In the figure, Pcr is the Euler buckling load of the Al beam. 

The effect of plastic deformation is clearly seen from the figure, where the post-

buckling of the FGM beam changes from stable to unstable when the effect of 

plastic deformation is taken into account. 

The effect of the material distribution is also clearly seen from the figure, where the 

post-buckling strength of the beam, measured in terms of the ratio between the 

applied load P and the critical load Pcr, is higher for the beam associated with the 

lower exponent n. 

In other words, the post-buckling strength of the elastic–plastic FGM beam is 

higher for the beam associated with a higher ceramic content. 

The effect of the linear and non-linear foundation parameters is illustrated in Figs. 

9.12 and 9.13 for an eccentric ratio rC = 0.01 and an exponent n = 5, respectively. 
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Figure 9.12: Effect of linear foundation parameter on elastic–plastic response of CF 

beam 

 

Figure 9.13: Effect of non-linear foundation parameter on elastic–plastic response 

of CF beam 
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The limit yield point of the beam, as seen from Fig. 9.12, increases considerably by 

increasing the linear foundation stiffness, but the post-buckling strength of the 

beam is hardly recognized. On the other hand, the non-linear foundation parameter 

as seen in Fig. 9.13 , contributed to an increase in the post-buckling strength, but it 

hardly alters the limit load of the beam. 

As seen in Fig. 9.11, the post-buckling strength of the beam on the elastic 

foundation is higher for the beam associated with a lower exponent n. 

The post-buckling strength of the beam is, however, slightly improved by the 

foundation support. 

To investigate the effect of plastic deformation on the behaviour of the beam in 

more detail, the stresses and strains at lower and upper Gauss points near the 

clamped end at various values of the applied load are given in Table 9.1. 

Table 9.1: Axial stress, strain at lower, upper Gauss points corresponding to 
points Pi,P'i (i = 1..3) in Fig. 9.14 

 n 
Loading 

stages 
P/Pcr 

7(10 )

Mσ
 

7(10 )

Cσ
 

4(10 )

Mε
−

 
4(10 )

Cε
−

 

1

3

20

10

k

k

=
=

 

0.5 

૚ᇱࡼ   4.3340 2.7125   ૛ᇱࡼ 2.0036- 1.1045 5.8667- 0.9244 2.4674  ૜ᇱࡼ 4.3466- 4.0498 12.607- 2.8862 2.9887   2.9877 2.9428 -13.080 4.3135 -4.5111 

5 

૚ࡼ   4.1220 2.4000   ૛ࡼ 3.3631- 1.4574 7.4189- 0.9764 2.1460  ૜ࡼ 3.4677- 1.5670 7.6266- 1.0499 2.1480   2.1467 1.1144 -7.8056 1.6632 -3.5580 
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Figure 9.14: Load–displacement curves for CF beam resting on non-linear elastic 
foundation obtained by elastic and elastic–plastic analyses 

The z co-ordinates of the lower and upper points are respectively -0.0484 m and 

0.0484 m for the Gauss quadrature used herein (five points along the element 

length and nine points through the thickness). The x co-ordinate is 0.0235 m for 

both points. Since these points are near the metal and ceramic surfaces, for the sake 

of convenience, the subscripts M and C are used to denote the stress and strain at 

the points. 

These stresses highlighted in red correspond to the applied loading stages where 

yielding at the points has already occurred. 

As seen in Table 9.1, the yielding that occurs in the FGM beam is very different 

from that of the homogeneous beams where the top and bottom fibres yield 

symmetrically about the neutral axis at the mid-height of the cross-section. 

In the FGM beam, at a given value of the applied load, the stress amplitude near the 

ceramic surface is considerably higher than that near the metal surface, while the 

strain is on the opposite side. 

The stresses at the applied loading stages ଵܲᇱ , P1, P2  and P3  in Table 9.1 show that 

yielding has occurred in the layer near the ceramic surface, but it has not occurred 

in a layer near the metal surface. 
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This result is totally different from the homogeneous beam, where the yielding occurs 

in the lower and upper surfaces at the same time. 

The effect of the eccentric ratio on the elastic–plastic response of the CF beam is 

illustrated in Fig. 9.15 for an exponent value n=3 and for  k1 =20, k3 =10. 

 

Figure 9.15: Effect of eccentric ratio on elastic–plastic response of CF beam on 
non-linear elastic foundation 

The effect of the eccentric ratio on the elastic–plastic behaviour in the post-

buckling region of the CF beam is similar to that of the homogeneous beams 

reported by Nguyen in [88], in which the limit load of the beam steadily reduced by 

increasing the eccentric ratio. 

9.2.3.3 Simply-supported beam 

In Fig. 9.16, the load–displacement curves of an unsupported SS beam obtained 

by elastic and elastic–plastic analyses are depicted for rC = 0.01 and two values of 

the exponents n = 0.5 and n = 5. 
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Figure 9.16: Load–displacement curves of SS beam obtained by elastic and elastic–
plastic analyses 

The effect of the foundation parameters and the eccentric ratio for the SS beam is 

shown in Figs. 9.17–9.20. 

 

Figure 9.17: Effect of linear foundation parameter on elastic–plastic response of SS 
beam 
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Figure 9.18: Effect of non-linear foundation parameter on elastic–plastic response 
of SS beam 

 

Figure 9.18: Load–displacement curves for SS beam resting on non-linear elastic 
foundation obtained by elastic and elastic–plastic analyses 
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Figure 9.20: Effect of eccentric ratio on elastic–plastic response of SS beam on 
non-linear elastic foundation 

The effects of the plastic deformation, material distribution, linear foundation 

parameter, non-linear foundation parameter, and eccentric ratio on the elastic–

plastic response of the SS beam are similar to those of the CF beam. However, 

compared to the CF beam, the SS beam is less sensitive to the change in the 

foundation stiffness and the eccentric ratio. 
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9.2.4 Conclusions 

The following conclusions can be drawn: 

• For different fraction exponents, the elastic–plastic analyses curves show a 

steady reduction of responses beyond the limit load compared to the elastic 

analyses results. 

• The limit point of a beam increases considerably when raising the linear 

foundation stiffness, but the post-buckling strength of the beam is hardly 

recognized in the non-linear elastic foundation. 

• The post-buckling strength of the beam is, however, slightly improved by the 

type of foundation support (non-linear elastic foundation). 

• The effect of the eccentric ratio on the elastic–plastic behaviour in the post-

buckling region of the beams is similar to that of the homogeneous beams. 

• The yielding that occurred in the FGM beam is very different from the 

homogeneous beam. 

• The plastic deformation, material distribution, foundation parameters and 

eccentric ratio have great influences on the elastic–plastic response of the FGM 

beams. 
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Chapter 10: Concluding remarks and future directions 

10.1 Concluding remarks 

• This work shows a new way to build consistent shape functions and exact shape 

functions. The accuracy of these derived functions is verified through a series of 

numerical examples of static and free vibration analyses. Significant accuracies 

with least element division were observed. 

• The Newmark method was applied in dynamic analysis while a co-rotational 

approach and arc-length control method were used in buckling problems. 

• The dynamic response of the multi-span FGM beam under a moving harmonic 

load has been proved to be under the influence of the material heterogeneity, the 

number of spans, and loading parameters. 

• The material non-homogeneity, section profiles, aspect ratio, number of loads, 

and distance between loads have been proved to greatly affect the dynamic 

characteristics of a non-prismatic FGM beam subjected to multiple moving 

loads. 

• The effect of the material distribution on the post-buckling response of the 

axially FGM structures was highlighted through this work. 

• The dynamic behaviour of FGM beams in a thermal environment due to a 

moving harmonic load was investigated. 

• The influences of material distribution, foundation support, and eccentric ratio 

on the elastic–plastic response of FGM beams on a non-linear foundation were 

also investigated carefully in this work. 
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10.2 Future directions 

Research into the behaviour of functionally graded concrete (FGC) has been conducted 

and was inspired by the study of the actual compression strength gradation of deep 

beams. It was concluded that whereas the members were designed to have 

homogeneous characteristics throughout their entire depth, in reality a member 

exhibited a gradation in the compression ultimate strength and stiffness. The 

phenomenon of natural gradation in concrete members was earlier detected by 

researchers. Recently, a study of the behaviour of the stress distribution within a 

cantilever FGC beam was conducted numerically. It was shown that the shear-stress 

distribution followed a parabolic path along the depth of the member. It was also 

demonstrated that the layer displacement increased linearly, approaching the bottom 

layers of the beam. The FGC thus has potential to be utilized for optimization purposes. 

An experimental study to produce a concrete strength gradation in a laboratory 

environment was developed. The procedure was conducted by mechanical compacting 

of fresh concrete layers with differentiations designed in the cylindrical compression 

strength. The strength and stiffness of the graded specimens were compared to the 

homogeneous specimens, and the parameters measured were the 28 days compression 

strength, the Young’s modulus E, the Poisson’s ratio ν, and the stress–strain behaviour 

of the specimens as a function of incremental loading. These controlling specimens 

showed a uniform behaviour throughout their entire depth. All specimens were tested in 

uniaxial compression. 

Further, a numerical model to study the behaviour of these FGC cylinders was 

developed. The finite element model (FEM) was based on the layer-wise homogenized 

approach, and the load–displacement responses as predicted by the FEM were 

confirmed by the laboratory data. The FEM model was used to analyze the response of 

FGC members in bending. This dissertation looked into the potential advantages of 

producing an FGC member as part of a structure, and explores the impact of such a 

member on the overall performance of a two-storey building subjected to vertical and 

horizontal loads. The prospects of material optimization are looked into, and the 

capacities of the graded members are compared to the uniform concrete structure. 
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