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Chapter 1

Introduction

Twistor theory was first proposed by Penrose in 1967 as a novel approach to finding
a unified framework for general relativity and quantum physics, aiming at estab-
lishing a theory of quantum gravity [1]. In twistor theory [2, 3, 4, 5, 6, 7, 11], a
complex space called twistor space is considered to be a primary object for express-
ing physics, while 4-dimensional space-time is treated as a secondary object. One
of the common motivations in early studies on twistor theory is thus to describe
4-dimensional space-time, gravity and even the elementary particles in an equal
footing on the basis of the complex geometry of twistor space. Such an ambitious
attempt in twistor theory has been summarized by Penrose himself as the twistor
programime [6, 7].

Twistor theory is basically appropriate for describing massless systems with
conformal symmetry [2, 3, 4]. Nevertheless, there have been some approaches to
formulating massive particle systems in terms of twistors [6, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22]. For describing a massive particle, it is common to
use two or more independent twistors. In fact, introducing two twistors has been
considered until recently [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22|, and introducing
more than two twistors was considered in some earlier studies [6, 8, 9, 10, 11]. By
virtue of using two or more independent twistors, an extra symmetry between the
twistors occurs naturally in the system. Penrose, Perjés, and Hughston proposed
the idea of identifying this symmetry with an internal symmetry in particle physics,
such as the symmetry for leptons or that for hadrons, toward explaining internal
symmetries of elementary particles on the basis of twistor theory [6, 8, 9, 10, 11].
Although this idea is quite interesting, it seems that its detailed investigations have

been made from neither a mechanical point of view nor a dynamical point of view.



Therefore we would have to say that the idea is still poorly understood.

Long after Penrose, Perjés, and Hughston proposed their own idea, Lagrangian
mechanics of a massive spinning particle formulated in terms of two twistors has
been studied in Refs. [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Most of these papers be-
gin with generalization of the Shirafuji action that describes a free massless spinning
particle in four dimensions in terms of a twistor [23]. In fact, various generalizations
of the Shirafuji action have been presented to specify twistorial models of massive
spinning particles. The generalized Shirafuji actions are constructed by incorporat-
ing a mass-shell condition of a particle and certain other conditions for the twistor
variables. The canonical formalism based on each generalized Shirafuji action and
its subsequent quantization were also studied in Refs. [12, 14, 15, 17, 18, 19, 20].
It was shown that the canonical quantization of each twistorial model leads to
generalized Dirac equations or the Dirac-Fierz-Pauli (DFP) equations for massive
spinor fields of arbitrary rank [24, 25, 26].

In the present thesis, we first prove that the n(> 3)-twistor expression of a
particle’s four-momentum vector enables us to describe only a massless particle.
Therefore the n-twistor description of a massive particle is not valid for the case
n > 3. Taking into account this fact, we consider a generalization of the Shirafuji
action to define a new twistor model of a free massive spinning particle in four
dimensions by using two twistors. Our formulation is precisely a non-Abelian
extension of the gauged twistor formulation of a free massless spinning particle in
four dimensions [27, 28, 29]. In the gauged twistor formulation, the Shirafuji action
is modified in accordance with the gauge principle so that it can become invariant
under the local U(1) (phase) transformation of twistor variables. Here “local”
means that the transformation parameter depends on a worldline parameter along
the particle’s worldline. This modification is accomplished by gauging the Shirafuji
action with the aid of a U(1) gauge field on the one-dimensional (1D) parameter
space of the worldline and by adding the 1D Chern-Simons term consisting of
the U(1) gauge field. The modified action, named the gauged Shirafuju action,
includes a helicity constraint term due to the modification. Hence it follows that
this action describes a free massless spinning particle with a fixed value of helicity.
The Shirafuji action can furthermore be modified so as to be invariant under the
local scale transformation of twistor variables with the aid of another gauge field
on the 1D parameter space. From the point of view of twistor theory, it is desirable
that the modified action remains invariant under the combination of the local U(1)



and local scale transformations, which is referred to in Refs. [28, 29, 30] as the
complexified local scale transformation. In actuality, the gauge field for the local
scale transformation can be gauged away by a scaling of the twistor variables.
Therefore it turns out that only the local U(1) transformation is essential and one
does not need to consider the local scale transformation in practice.

As will be seen later, we set up a generalized Shirafuji action that consists of
two twistors and involves a mass-shell condition. Here, for convenience, we exploit
the mass-shell condition with a complexified mass parameter introduced in Refs.
[18, 19]. The generalized Shirafuji action remains invariant under the global U(1)
transformation of twistor variables supplemented with that of auxiliary fields on
the 1D parameter space. In addition, the generalized Shirafuji action remains
invariant under the global SU(2) transformation defined for a doublet of twistors.
In accordance with the gauge principle, we modify the generalized Shirafuji action
in such a way that the modified action remains invariant under the local U(1)
and SU(2) transformations of twistor variables. The modification is performed
by gauging the generalized Shirafuji action with the aid of U(1) and SU(2) gauge
fields on the 1D parameter space and by adding the 1D U(1) and SU(2) Chern-
Simons terms. The 1D SU(2) Chern-Simons term, however, vanishes owing to
the traceless property of the SU(2) gauge field. For this reason, the variation
of the modified action with respect to the SU(2) gauge field yields too strong
constraints that, after quantizing the model, permit us to have only massive spinless
fields in four dimensions. A similar consequence has been found by Fedoruk and
Lukierski in their twistorial model of a massive particle [18]. To overcome such an
undesirable situation, they modified the model by incorporating the Souriau-Wess-
Zumino term, following the successful argument for a twistorial model of a massive
spinning particle in three dimensions [17]. In the present thesis, we consider an
alternative approach based on a nonlinear realization of SU(2) to eventually obtain
massive spinor fields of arbitrary rank. This approach makes it possible to define
the 1D U(1) Chern-Simons term consisting of the third (or diagonal) component of
the SU(2) gauge field in a particular gauge. In addition, this approach can provide
a novel gauge-invariant term consisting of the first and second (or off-diagonal)
components of the same SU(2) gauge field. With the new terms, we furthermore
modify the generalized Shirafuji action by adding these terms to the modified
action mentioned above. The completely modified action is thus the sum of the
gauged twistorial part, the two 1D U(1) Chern-Simons terms, and the novel term.



This action, hereafter referred to as the gauged generalized Shirafuji (GGS) action,
remains invariant under reparametrization of the worldline parameter and under
the local U(1) and SU(2) transformations. The GGS action yields just sufficient
constraints for the twistor variables in a systematic and consistent manner. All
the constraints except for the mass-shell condition are derived on the basis of the
gauge symmetry. This is an advantage of our gauged twistor model.

Having obtained the GGS action, we study the canonical Hamiltonian for-
malism based on it by completely following the Dirac algorithm for Hamiltonian
systems with constraints [36, 37, 38]. In the present thesis, the canonical Hamil-
tonian formalism is investigated in two different ways. One of these ways treats
the twistor variables as fundamental dynamical variables. Another way adopts the
space-time and spinor variables as fundamental variables, after being decomposed
the twistor variables into the space-time and spinor variables. In this approach,
the mass-shell condition included in the GGS action is slightly modified so as to
have a real mass parameter. We can expect that this approach clarifies relations
between the twistor and ordinary space-time formulations of a massive spinning
particle and makes it possible to consider coupling to external fields. In both the
twistor and spinor formulations, some of the first-class constraints eventually turn
into simultaneous differential equations for a function of half the twistor of spinor
variables. Each solution of the simultaneous differential equations is characterized
by the three quantum numbers that originate from the U(1) and SU(2) symmetries
inherent in the GGS action.

In the twistor formulation, we consider the Penrose transform of the twistor
function to define a four-dimensional spinor field of arbitrary rank. The spinor
field defined in this manner has extra upper and lower SU(2) indices in addition
to dotted and undotted spinor indices. Because of the structure of the Penrose
transform, the number of upper (lower) SU(2) indices is equal to the number of
undotted (dotted) spinor indices. We demonstrate that the present spinor field
satisfies generalized DFP equations with SU(2) indices. In the simplest case, the
generalized DFP equations reduce to the ordinary Dirac equations for particle and
antiparticle spinor fields. Investigating properties of these fields, we clarify the
physical meanings of the U(1) and SU(2) symmetries; ultimately, we see that the
U(1) symmetry is a gauge symmetry concerning the chiralities of the particle and
antiparticle spinor fields, while the SU(2) symmetry is a gauge symmetry realized
in a doublet consisting of the particle and antiparticle spinor fields. Therefore it



turns out that the idea proposed by Penrose, Perjés, and Hughston, in which the
SU(2) symmetry is identified with the weak isospin symmetry, is not valid in our
gauged twistor formulation.

The present thesis is organized as follows. In Chapter 2, we briefly explain
the twistor description of a massive particle and prove a related no-go theorem.
In Chapter 3, we elaborate the GGS action, after making some preliminary ar-
rangements. In Chapter 4, the canonical formalism based on the GGS action is
considered within the framework of the twistor formulation. Then the subsequent
canonical quantization is performed. We here define a massive spinor field of ar-
bitrary rank by the Penrose transform of a twistor function and demonstrate that
this spinor field satisfies the generalized DFP equations. Furthermore, we partic-
ularly investigate the rank-one spinor fields to clarify the physical meaning of the
U(1) and SU(2) symmetries. In Chapter 5, we rewrite the GGS action in terms
of the space-time and spinor variables. In this process, an alternative form of the
mass-shell condition is adopted instead of the one used in earlier chapters. The
canonical formalism based on the GGS action is considered within the framework
of the spinor formulation, and the subsequent canonical quantization is performed
in the usual manner. From solutions of the simultaneous differential equations ob-
tained in the quantization, we define positive- and negative-frequency spinor fields
of arbitrary rank satisfying the generalized DFP equations. Also, we express the
spinor fields in the form of the Penrose transforms. Furthermore, we define the
exponential generating function for the spinor fields and derive a novel represen-
tation for each of the spinor fields. The physical meaning of the U(1) and SU(2)
symmetries is clarified again. Chapter 6 is devoted to a summary and discussion.
In Appendix A, we give a theorem useful for proving the no-go theorem in Chap-
ter 2. In Appendix B, we treat the Poincaré symmetry and the Pauli-Lubanski
pseudovector written in terms of the twistor variables.



Chapter 2

A free massive particle in twistor
theory

In this chapter, we first briefly review the twistor description of a free massive

particle and then we prove a related no-go theorem.

2.1 The n-twistor description of a free massive
particle

To describe a massive particle in four dimensions, Penrose, Perjés, and Hughston
introduced two or more [i.e., n(€ N + 1)] independent twistors and their dual

twistors

Z{ = (W ma), = (7@ (2.1.1)

]

(A=0,1,2,3;a = 0,1;& = 0,1) distinguished by the index i (i = 1,2,...n).
Here, 72 and @@ denote the complex conjugates of the two-component spinors g

and w?, respectively: 7', := g, @' := w®. The spinors w® and ;4 are related by

W = 2%, (2.1.2)

7

where 2 are coordinates of a point in complexified Minkowski space.
As can be seen in Refs. [6, 8, 9, 10, 11], the N-twistor expression of four-

momentum is given by

N
Pod = D T = ToTia - (2.1.3)



Then the squared mass m? = poap™® can be written as

2 =1 —ja,_&
m” = f,mieT s, (2.1.4)

where 7 = eaﬁﬁ}; and ¢ = 6‘5‘37@.5. In Lagrangian mechanics of a massive
spinning particle, Eq. (2.1.4) with n = 2, or its equivalent expression, is incorpo-
rated into a generalization of the Shirafuji action [23] with the aid of a Lagrange

multiplier.

2.2 A No-Go theorem for the twistor description
In this section, we present the following theorem:

Theorem: In the case n > 3, the four-momentum defined by Eq. (2.1.3) satisfies

the null-vector condition pagp®® = 0, so that m = 0.

Hence the n(> 3)-twistor system turns out to be a massless system. The purpose
of the present thesis is to prove this theorem. The theorem leads to the fact that
in actuality, the n-twistor description of a massive particle is not valid for the
case n > 3. For this reason, the above-mentioned idea for the SU(3) [or ISU(3)]
symmetry cannot be accepted. In this sense, the theorem given here can be said to
be a no-go theorem. Also, the theorem justifies the fact that only the two-twistor
description (i.e., the case n = 2) has been considered in Lagrangian mechanics of

a massive spinning particle formulated in terms of twistors.

To prove the theorem, it is necessary to provide the following lemma.

Lemma: Let A be an arbitrary n X n complex antisymmetric matrix. Then A

can be transformed into its normal form, A, according to
A=UAU", (2.2.1)

where U is an n X n unitary matrix. If n is even, then the normal form A is given

10



0 Jaa 0 0 0 0
~vaa 0 0 0 - 0 0
0 0 0 a -~ 0 0
A= 0 0 —va 0 - 0 0 , (2.2.2)
0 0 0 0 0 0 Gz
0 0 0 0 0 —y@pm O

and if n is odd, then A is given by

0 Var 0 0 0 0 0

—var 0 0 o .- 0 0 0

0 0 0 Vag - 0 0 0

- 0 0 —\/a o .- 0 0 0
N | S BCEE

0 0 0 0 0 0 A /a(n_l)/2 0

0 0 0 0 0 —am—1)2 0 0

0 0 0 0 0 0 0 0
Here, a1, az, ..., ay)2 [or a(n_l)/g] are eigenvalues of the Hermitian matrix AAT, and

hence it follows that these eigenvalues are non-negative real numbers.

In this thesis, we do not give a proof of this lemma, because it can be seen in Refs.
[53, 54, 55, 56].

Proof of the theorem: Hereafter, we treat the case n > 3. In order to prove
the theorem, let us consider the n x n complex matrix /I consisting of elements

IT;; = migms. (2.2.4)

Because miam$ = —7{'m;q holds, II turns out to be antisymmetric. According to

the lemma, the matrix I1 can be transformed into its normal form
n=unur (2.2.5)

by means of an appropriate n X n unitary matrix U = (U;/). Expressions corre-

11



sponding to Egs. (3.1.2) and (3.1.3) are concisely given by

ﬁQn—l,j = 62n,jﬁ2n—1,2n7 (2.2.6a)

Ion; = Sanj11 1 Ton2m 1 (2.2.6b)
{n:1,2,...,n/2, for n even,
n=1,2,...,(n+1)/2, for n odd,

where ]~72n_172n is the square root of an eigenvalue of ITIIT, being a non-negative
real number.

Substituting Eq. (2.4) into Eq. (2.5), we can express the elements of I as
Il;; = 77, (2.2.7)
with the two-component spinor
Tia = Ul mjs . (2.2.8)
From Egs. (3.1.6a) and (3.2.1), we see 7147y = 0 (k = 3,4,...,n). This implies
that 74 is proportional to 74, i.e.,
s = pifia,  pr €C. (2.2.9)

Here, it is assumed that the proportional constants px; do not vanish simultane-
ously, because we now treat the case n > 3. Substituting Eq. (3.2.3) into Eq.
(3.2.1) and noting the property msm® = 0 (no sum with respect to i), we obtain

My = Tra® = prapnfai® =0, k1=34,...,n. (2.2.10)
By using Eq. (3.2.3), Iy, = 7247 can be written as
ﬁgk = pklﬁ'gdﬁ'? = pklﬁm . (2211)

Equations (3.1.6b) and (3.2.5) give pp /Iy = 0 for any k. Since the constants
pr1 do not vanish simultaneously, it follows that II,; = 0. Combining this, Eq.
(3.2.4), and the ITy;, = Iy, = 0 included in Eq. (3.1.6) together, we eventually
have ]NYZ-J» = 0. As a result, /T turns out to be the n X n zero matrix. Then the use
of Eq. (3.1.5) immediately leads to II = 0, or equivalently, I1;; = 0, because U is
unitary and hence invertible. With this result, the squared mass m? = p,ap®® can
be evaluated as follows:

m? = paap™® = T, migm = M7 1L; = 0. (2.2.12)

12



Thus, the null-vector condition puap®® = 0 is found, so that the proof of the
theorem is complete. |

Because 11;; = mdwj’?" = 0, the spinors 7, are proportional to each other. Then,
using Eq. (2.1.2), it can be shown that the n(> 3) twistors Z# are proportional
to each other in actuality. This fact implies that all the twistors Z* correspond to
a single projective twistor defined as the proportionality class [Z{] := { pi‘! p E
C\ {O}} Therefore it turns out that the present system is essentially described
by [Z{}]. As is well known in twistor theory, a projective twistor precisely specifies
the configuration of a massless particle. From this fact, we see once again that the
n(> 3)-twistor system is a massless system.

Since the n(> 3)-twistor system is a massless system, the associated SU(n) [or
ISU(n)] symmetry cannot be identified with the internal symmetry of a massive
physical system consisting of e.g. hadorns. For this reason, the idea proposed
by Penrose, Perjés, and Hughston fails in the case n > 3. Of course, there still
remains a possibility that the SU(n) [or ISU(n)] symmetry will be identified with
the internal symmetry of a massless system.

13



Chapter 3

Gauged twistor formulation of a
massive spinning particle

In this chapter, we construct a gauged twistor model. We begin with setting up a
generalized Shirafuji action that consists of two twistors and involves a mass-shell
condition. For convenience, we exploit the mass-shell condition with a complexified
mass parameter. The generalized Shirafuji action remains invariant under the
global U(1) and SU(2) transformations of twistor variables. In accordance with the
gauge principle, we modify the generalized Shirafuji action in such a way that the
modified action remains invariant under the local U(1) and SU(2) transformations
of twistor variables. The modification is performed by gauging the generalized
Shirafuji action with the aid of U(1) and SU(2) gauge fields on the 1D parameter
space and by adding the 1D U(1) Chern-Simons terms. However, this modified
action governs only massive spinless fields, owing to a fact that the SU(2) gauge
field yields too strong constraints for the twistor variables. Thus we consider a
further modification of the action based on a nonlinear realization of SU(2) to
eventually obtain massive spinor fields of arbitrary rank. This approach makes it
possible to define new gauge-invariant terms consisting of components of SU(2)
gauge field. With the new terms, we completely modify the generalized Shirafuji
action by adding these terms to the modified action mentioned above. In this
way, we obtain the GGS action, which yields just sufficient constraints for the
twistor variables. The GGS action remains invariant under reparametrization of
the worldline parameter and under the local U(1) and SU(2) transformations.

14



3.1 (Generalization of the Shirafuji action to a
massive particle

In this section, we construct the GGS action for a free massive spinning particle
in four-dimensional Minkowski space.

In order to describe a massive particle in terms of twistors, we introduce two
twistors Z4 = (w®, Tia) (A =0,1,2,3;a = 0,1;4 = 0, 1) distinguished by the extra
index i (i = 1,2) and their dual twistors Z = (7', 0). Here, 7, and @'® denote
the complex conjugates of ;5 and wy, respectlvely o= T, @Y= wf. Itis
assumed that Z{ and Z3' are not proportional to each other: Z{ # c¢Z3' (c € C),
so that Z4 # ¢Z%. The 2-component spinors w{* and ;4 are related by
Wi = 2%, (3.1.1)

(2

a& are coordinates of a point in complexified Minkowski space, CM, with

where z
the metric tensor ), = diag(l,—1,—1,—1). As can be seen in the literature on
twistor theory [6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], the four-momentum of
a massive particle is expressed as pos = ﬁémd + 7?37@@ = ﬁémd. (For this reason,
Tie and 7! are named as momentum spinors.) The squared norm of p,4 remains
nonvanishing even after using the formula msm® = Edéﬂ'idﬂ'iﬁ = 0 (no sum w.r.t.
i) and its complex conjugate,! because the cross terms provided from different
twistors still survive: pasp®® = T, maT/m§ = 2|7r1d7r‘25‘ |2. Thus the mass-shell
condition p,ap®® = m? with a mass parameter m can be written as

Tomiam s = m?. (3.1.2)

It is easy to see that this condition is equivalent to

€I miam — V2me' = (3.1.3a)
TR — V/2me™ =0, (3.1.3b)

where ¢ is a real parameter. These equations have been incorporated in twistorial
models of massive spinning particles [18, 19], in which me’/+/2 is called a com-

IThe 2-dimensional Levi-Civita symbols €*5, €aB) ed'é, €ap €, and ¢;; are defined as ! =

€01 = €' = €31 = €'2 = €1 = 1 and conform to the rules e*# = €9, .5 = €45, €7 = €ij, and
€; = €. The contravariant spinors 7§* and 7'® are defined by 7f* = eaﬁﬂm and 7' = GQBﬁ'E;,

respectively. These relations can be expressed as m;q = wf €54 and 7l = 7Pegq.

15



plexified mass parameter. In this thesis, we also adopt a pair of Egs. (3.1.3a) and
(3.1.3b) as the mass-shell condition because of the convenience for our formulation.

The Shirafuji action of a free massless spinning particle? can be generalized
to describe a free spinning particle of mass m propagating in four-dimensional
Minkowski space M. A generalized Shirafuji action is indeed given by

S = / dr [% (ZAZIZ-A - ZiAZ;f4> + h<eij7rid7rf - \/§mew>
70
+ E(Gijﬁiﬁja — \/ﬁme_wﬂ s (314)

where Z4 = ZA(7) and Z', = Z',(7) are understood as complex scalar fields on the
one-dimensional parameter space T := {7| 79 < 7 < 71} of a particle’s world-line,
and h = h(7) is treated as a complex scalar-density field of weight 1 on 7. [That is,
h transforms as h(7) — h/(7') = (dr/d7")h(7) under the proper reparametrization
T — 7' =7'(7) (dr’/dT > 0).] The exponent ¢ is now considered a real scalar field
on 7 and hence is treated as a real function ¢ = ¢(7). This setting is different
from that in Refs. [18, 19], in which the complexified mass parameter is regarded
as a constant. A dot over a variable denotes its derivative w.r.t. 7. The variation
of S,, w.r.t. h and h yields the mass-shell condition (3.1.3).3

The generalized Shirafuji action S,,, remains invariant under the reparametriza-
tion 7 — 7/ = 7/(7). In addition, S,, remains invariant under the global U(1)

transformation
ZA s 7 =70 7Y = 2 =07 (3.1.5a)
h— b =e?h, h— h'=e*h, (3.1.5b)
o — ¢ =¢p+20, (3.1.5¢)

2With a twistor Z4 and its dual twistor Z4, the Shirafuji action is defined by [23]
o L5 A A7
S = dT§<ZAZ _z ZA>.
70
3Instead of the action S,,, we can consider an alternative action
1 ) _ .. .. 1 . . .
S, = / dr [; (Zizt - 2 24) + S f (Romian’n) - mQ)} ,
To

where f = f(7) is a real scalar-density field of weight 1 on 7. The variation of S}, w.r.t. f yields
the mass-shell condition (3.1.2).

16



with a real constant parameter ¢ and under the global SU(2) transformation

Zr 7 =077}, 7= 2% =20U"), (3.1.6a)
h—h'=h, h—h =h, (3.1.6b)
o= ¢ =, (3.1.6¢)

with a constant matrix U belonging to SU(2). The SU(2) invariance of S, can
be verified using €U U;! = €® and €,;UT'UTY = ¢, together with the unitarity
property of U. We thus see that S, possesses two global internal symmetries
specified by U(1) and SU(2). We also see that the two terms Zi,Z4 and ZAZ, in
Eq. (3.1.4) are invariant under the global SU (2, 2) transformation (or more simply,
the global conformal transformation) Z# — Z/4 =UARZE, 74, — 7' = ZLUTB 4,
with a constant matrix ¢ belonging to SU(2,2). In contrast, the two terms € m;a ¢
and e,;7,7* in Eq. (3.1.4) are invariant only under the global SL(2,C) x R*?
transformation (or more simply, the global Poincaré transformation). Hence it
turns out that the symmetry reduction from SU(2,2) to SL(2,C) x R occurs
in .5, as a result of adding the term proportional to h and its complex conjugate

term.

3.2 (Gauging the internal symmetries of the gen-
eralized Shirafuji action

Now, we perform a gauging of the global U(1) and SU(2) symmetries in such a
way that the gauged action remains invariant under the local U(1) and SU(2)
transformations that depend on 7. That is, we consider a U(1) x SU(2) gauge
theory on the parameter space 7. To this end, in accordance with the gauge
principle, we introduce a U(1) gauge field, a = a(7), and an SU(2) gauge field,
b = b(7). The field a is assumed to be a real scalar-density field of weight 1 on
T, while b is assumed to be a 2 x 2 traceless Hermitian matrix that behaves as
a scalar-density field of weight 1 on 7. The field b can be represented as (b;’)
with its matrix elements b and can be expanded in terms of the Pauli matrices
o. (r=1,2,3), satistying [0, 05] = 2i€,q0,, as b = b"o,. Here, b" = b"(7) are real
scalar-density fields of weight 1 on 7. The (primitive) gauged action, S,,,, can be

17



obtained by replacing d/dr in S,, with a covariant derivative operator as follows:

g / 1dTB(Zf4DZiA _ ZADZY)
70

+ h(e“mdﬂf - \/imew> + B(eiﬁéﬁjo‘ — ﬂme‘“")] , (3.2.1)

where
DZ{ = Z{ —iaZ —ib/ Z}, (3.2.2a)
D7\, = Zi +iaZ\, +iZ%b;" | (3.2.2b)

We see that the action S, is reparametrization invariant. It can easily be verified

that S,,, remains invariant under the local U(1) transformation

74— 74 = Mz (3.2.3a)
7Y = 2 =e 70 (3.2.3b)
h— b =e 20h, (3.2.3¢)
h— b =e¥Th, (3.2.3d)
o= ¢ =p+20(1), (3.2.3¢)
a—ad=a+0, (3.2.3f)
b— b =0, (3.2.3g)

with a real gauge function 6 = 6(7) and under the local SU(2) transformation

Zt =724 =U/ 1)z, (3.2.4a)
7\ — 7" = 22Ut (1), (3.2.4Db)
h—h=h, (3.2.4c)
h—h=nh, (3.2.4d)
o= =, (3.2.4e)
a—d=a, (3.2.4f)
b— b =UbU" —iUUT, (3.2.4g)

with a gauge function U = U(7) taking its value in SU(2). Because each of a and
b" is a single-component gauge field associated with d/dr, we cannot define their
field strengths. For this reason, there exists neither the Maxwell action for a nor
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the Yang-Mills action for b. As for a, it is possible to define the (non-vanishing)
1D U(1) Chern-Simons term

Sy = —23/ dra, (3.2.5)

0

where s is a real constant. The 1D SU(2) Chern-Simons term for b, i.e., S, =
—2t f;l d7tTrb vanishes by the reason of Trb = 0. Since a is a scalar-density field of
weight 1, S, is reparametrization invariant. Also, S, remains invariant under the
gauge transformation (3.2.3f), provided that 6 satisfies an appropriate boundary
condition such as §(m;) = 0(7p). The SU(2) invariance of S, is evident from Eq.
(3.2.4f). Therefore we can consider the reparametrization-invariant and gauge-
invariant action S’mg = Sy + S..4 However, S’mg eventually turns out to govern
only massive spinless fields in four dimensions owing to the too strong constraints
Zho' Z# =0 (r = 1,2,3) that are derived by varying Smg W.r.t. b5 (Here, 0,;*
denotes the (j, k) entry of the Pauli matrix o,.) To avoid such an undesirable situ-

ation, next we perform a modification of S'mg with the aid of a nonlinear realization

of SU(2).
3.3 A model with the nonlinearly realized inter-

nal SU(2) gauge symmetry

Let us now consider the coset space SU(2)/U(1)(= CP') and representative ele-
ments, V(£,€) (V € SU(2), € € C), that are chosen one by one from each left coset

4The action S'mg is a simple and natural generalization of the gauged Shirafuji action (without
invariance under the local scale transformation of Z4 and Z4)

~ Tl 3 — —
Sog = / dr{;(ZADZA — ZADZ4) - 2sa
7o
where D := d/dr — ia. This action describes a free massless spinning particle of helicity s
[27, 28, 29] and is equivalent to the action for a massless particle with rigidity at least at the
classical mechanical level [30].
5From the action Smg, the Pauli-Lubanski spin vector Weé is found to be

. o . 1-
W =Too, /7%, T, = iz’garklzf
(see Appendix). Using the mass-shell condition (3.1.3), we can show that W, W = —m?2T,T,..
Obviously, T}, = 0 (r = 1,2, 3) leads to W W< = 0. Hence, it follows that only massive spinless
particles are admissible in the model defined by S,,,s. Accordingly, it turns out that only massive
spinless fields are provided after quantizing the model.
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of U(1) in SU(2). Here, £ labels the cosets in a way of one-to-one correspondence
and can be regarded as an inhomogeneous coordinate of a point on SU(2)/U(1).
(To completely coordinatize SU(2)/U(1), it is necessary to use £~! in addition to
¢.) The representative elements V (£, ) are assumed to constitute a smooth func-
tion of ¢ and £ so that we can simply treat V(¢,€) as an SU(2)-valued smooth
function. We consider £ to be a complex scalar field £ = £(7) on T. The left action
of U on V(£,€) generates a nonlinear transformation ¢ — & = £'(€) in accordance
with

V(&) = V(E,€)=UMV(§)O (), (3.3.1)

where O(7) := exp{id(7)os}, and ¥ = J(7) is a real gauge function [31, 32, 33].
Note here that 9 is determined depending on (£, €) as well as U. Using V = V/(€,€),
we define the following new fields on T

74 = VTZ-ijA, Zi =7V}, (3.3.2a)
b:= VW —iViv. (3.3.2b)

The field b can be expanded as b = b"o,., where b” = b"(7) are real fields. Clearly,
b" behave as scalar-density fields of weight 1 on 7. With the new fields, the local
U(1) transformation (3.2.3) reads

Z} - 7} = "7
Zly — 2y =e 07,
h—n =e?h,
o= B = 0,
= = +20(r),
a—d=a+0,
b—b =b.

3.3.3a
3.3.3b
3.3.3¢
3.3.3d
3.3.3e
3.3.3f
3.3.3g

N~ N~

—~
~— ~— ~— ~—S ~—— ~— ~—

—~
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On the other hand, from Egs. (3.2.4) and (3.3.1), we have

Z} -7/ =0/(r)Z}, (3.3.4a)
i\, — 7 =27,061(r), (3.3.4b)
h—h =h, (3.3.4c)
h—h=h, (3.3.4d)
=9 =9, (3.3.4e)
a—d=a, (3.3.4f)
b— b =6bo +do;. (3.3.4g)

Equation (3.3.4) is precisely a local U(1) transformation. Hereafter, we refer to
the local U(1) transformation specified by Eq. (3.2.3), or Eq. (3.3.3), as the U(1),
transformation and refer to that specified by Eq. (3.3.4) as the U(1), transforma-
tion. Their corresponding gauge groups are simply denoted as U(1), and U(1)y.
The local SU(2) transformation is not manifestly seen in Eq. (3.3.4); instead, it
is realized as a nonlinear transformation of £&. We may say that the function V'
converts the local SU(2) transformation into the U(1), transformation while & un-
dergoes a nonlinear transformation. Equation (3.3.4g) defines the transformation
rules of the fields b":

b" — b = b' cos 2 + b?sin 20, (3.3.5a)
b? — b = —b'sin 29 + b cos 207, (3.3.5b)
b® —» b® =b>+ 4. (3.3.5¢)

We see that b' (i = 1,2) transform homogeneously, obeying together an SO(2)
rotation, while b transforms inhomogeneously as a U(1) gauge field.
Now, we can provide the following two terms:

T1
Sh12 = —k/ drVbib (3.3.6)
70

with bibi := (b1)? + (b2)2, and
Shs = —2t/ drb®. (3.3.7)
T0

Here, k is a positive constant and t is a real constant. Since b”" are scalar-density
fields of weight 1 on 7, both Spi» and Sy are reparametrization invariant. It
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is obvious that Sp12 remains invariant under the SO(2) rotation defined by Egs.
(3.3.5a) and (3.3.5b). Also, Sp3, which is the 1D Chern-Simons term for b?, remains
invariant under the gauge transformation (3.3.5¢), provided that ¢ satisfies an
appropriate boundary condition such as J(r) = ¥(79). We thus see that both
Sp12 and Sp3 possess the U(1), symmetry. The U(1), invariance of Spio and Sps is
evident from Eq. (3.3.3g). For our investigation, it is convenient to express Spio as

2

m 1 s k
Sbe = — /7:0 dr (2—eb b" + Ee) (338)

with the aid of e = e(7) being a positive scalar-density field of weight 1 on 7. It is
assumed that e does not change under the U(1), and U(1), transformations. (At
this stage, we should include the transformation rule e — ¢ = e in each of Egs.
(3.3.3) and (3.3.4).) The action S,,, can be rewritten in terms of Z#, Z4, h, h, ¢,
a, and b. The resulting rewritten expression of S,,, is precisely what is obtained
by replacing ZA, 7%, and b in Eq. (3.2.1) with Z#, Z,, and b, respectively. With
this expression, we modify Smg = Spme + 5, by adding Spe and Spz to it. That is,
we consider the modified action S := S,,s + S, + Spe + Sbs, or more precisely,

" ey 71 1 ) k?
S = / dr{é(zADz;‘ — Z/'DZ},) — 2sa — 2tb® — 5D’ — e
+ h(eijwidw? — \/§m€i¢> + B(Eij@é@ja — \/Qmei“”)} , (339)
with
Dz} =7 —iaZ — ib/Z¢, (3.3.10a)
DZ, := 7', + iaZ, + iZ%b;" (3.3.10b)

Here, ;4 and @, are momentum-spinor components of the twistors Z# = (0%, @;q)
and ZY = (@', 0'4), respectively. We refer to S as the gauged generalized Shirafuji
(GGS) action. From Eq. (3.3.2a), it follows that ;s = V1w and & = 71V}
The other components are given by ¢ff = ViJw® and g% = &*V;". It is now
obvious that ;5 = @, and ¢f = ¢'® In terms of Z{, Eq. (3.1.1) can be written

as

05 = 12w . (3.3.11)
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It is clear from (3.3.9) that the GGS action S remains invariant under the re-
parametrization and the U(1), and U(1), transformations. However, in actuality,
S remains invariant under the reparametrization and the U(1), and local SU(2)
transformations, because the U(1), transformation is induced by the local SU(2)
transformation in accordance with Eq. (3.3.1). In fact, we can express S in a
manifestly SU(2) invariant form as follows:

Tl 3 . _ — . . =
S5 — / dr B(Z;DZ;“ ~ ZADZ}) — 250 = 2 (VW — e — éeg’)
70

1 R o o |
LyeeD - L b(mat - Vi) s i{esm - vime)|
(S

(3.3.12)

with geg 1= egiegi, D¢ = £ —V'K,¢, and DE = {“— V' K,¢. Here, geg is a metric
on SU(2)/U(1), (K& K,&) (r = 1,2,3) are the SU(2) Killing vectors on this
coset space, and e” and eg” (r = i,3) are defined by e"0, = —iVT(OV/9¢) and
eg"o, = —iVI(OV/OE), respectively. Also, V% is defined according to Vie,V =
V.io; + V,303. Using the transformation rule (3.3.1), we can show that V! =
K,fed + K, feg'. In addition, it can be verified that K, := K,$9/0¢ + K,£9/09¢
satisfy the SU(2) commutation relations. In the expression (3.3.9), we should
understand that the local SU(2) symmetry of S is hidden rather than is broken,
because no symmetry breaking mechanisms are incorporated in the model. The
action (3.3.9) can be regarded as the action (3.3.12) in a particular gauge £(7) = &,
where & is a constant such that V(£y,&) = 1. We term this gauge the unitary
gauge, because it corresponds to the so-called unitary gauge in massive Yang-Mills
theory [34, 35]. Then b can be said to be the SU(2) gauge field in the unitary
gauge. The action (3.3.9) can be written as

Tl ) — . . = . — . —_ .
S = / dr [% (z;z;‘ - z;“zg) + a(Z4Z] — 2s) + b* (203,72} — 2t)
T0
.y 1 .. k2 y . ,
+ bZZJAJiij? - 2—eblbl — 56 + h(e”widw}l — \/éme“p>
+ B(Eij@é@ja - ﬁmei”ﬂ . (3313)
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Chapter 4

Canonical quantization in the
gauged twistor formulation

In this chapter, we study the canonical Hamiltonian formalism based on the GGS
action obtained in previous chapter, by completely following the Dirac algorithm
for Hamiltonian systems with constraints. We see that most of the Dirac brackets
between the twistor variables take on complicated forms. Fortunately, these Dirac
brackets can be reduced to simple Dirac brackets for new twistor variables that
are in one-to-one correspondence with the old ones. Also, all the constraints for
the (old) twistor variables can be written completely in terms of the new twistor
variables. The canonical quantization of the twistor model governed by the GGS
action is performed with the commutation relations between the operators that
correspond to the new twistor variables or the other canonical variables. Some of
the first-class constraints eventually turn into simultaneous differential equations
for a holomorphic function of half the new twistor variables. Each solution of
the simultaneous differential equations, referred to here as a twistor function, is
characterized by the three quantum numbers that originate from the U(1) and
SU(2) symmetries inherent in the GGS action. We also consider the Penrose
transform of the twistor function to define a spinor field of arbitrary rank with
SU(2) indices. Because of the structure of the Penrose transform, the number of
SU(2) indices is equal to the number of spinor indices. We demonstrate that the
present spinor field satisfies generalized DFP equations with SU(2) indices. To
clarify the physical meanings of the U(1) and SU(2) symmetries, we investigate
properties of the rank-one spinor fields and the generalized DFP equations satisfied
by them.
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4.1 Canonical formalism

In this section, we study the canonical Hamiltonian formalism of the model gov-
erned by the GGS action in the unitary gauge.

Let L be the Lagrangian defined in Eq. (3.3.13) as the integrand of the GGS
action S. We treat the variables (Zf‘, Z',a,b", e h,h, gp) as canonical coordinates.

Their canonical conjugate momenta are found to be

. 0L i,
PA = @ = EZA, (411&)
pr 9L _ _iga (4.1.1b)
ozi, 2
oL
pla._ 22 41.1
da (4.1.1c)
P® .= SBL =0, (4.1.1d)
P® = g—[é’ =0, (4.1.1e)
p — 9L _ (4.1.1f)
oh
pi = 9L _ 0, (4.1.1g)
oh
P® .= % =0. (4.1.1h)
@

The canonical Hamiltonian corresponding to L is defined by the Legendre transform
of L:

He = 74P\ + 7L, P* + aP@ + ' P® 4 eP© 4 pp® 4 p,p" 4 op&) _ [
i T A

_. _ .y ;{;2

= —a(Z4Z} — 25) —b*(Zy03,"Z}} — 2t) — 0’2037 7} + bel e

— h(€Tmmd — V2me" ) — h( ey @@ — V2me ). 412
j .7
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The equal-time Poisson brackets between the canonical variables are given by

{zt Py} =aish, {Zi. PP} =aiof,

{a,P"} =1, {b", P®} =7,
{e,P9} =1, {h,PM} =1,
{ﬁ’p(fl)} — 1, [, PP} =1,
all others =0, (4.1.3)

which can be used for calculating the Poisson bracket between two arbitrary ana-

lytic functions of the canonical variables.

Equations (4.1.1a)—(4.1.1h) are read as the primary constraints

¢%:PZ—§Zi“ ) (4.1.4a)
o =P+ 22l ~ 0, (4.1.4b)
6@ = P ~ (. (4.1.4c)
) = PP ~ 0, (4.1.4d)
6 = PO ~ 0 (4.1.4¢)
oM .= PM ~ (4.1.4f)
o™ = PM ~ 0 (4.1.4g)
o) = P¥ ~0, (4.1.4h)

where the symbol “~” denotes the weak equality. Now, we follow the Dirac algo-
rithm for constrained Hamiltonian systems [36, 37, 38] to establish the canonical
formalism of the present model. We see that the Poisson brackets between the

primary constraint functions ¢’s are summarized in
{¢'), qgf} = —iéjéf, all others = 0. (4.1.5)
The Poisson brackets between Hg and the primary constraint functions are found
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to be

(¢ Ho} = aZiy + 670,27, + 2he 14527, (4.1.6a)
{¢ He} = aZ + 670,77 + 2he;; 1*P 7%, (4.1.6b)
{¢(a)7 Heb = 74,74 — 2s, (4.1.6¢)
_ 1
{cbgb), Hc} = 2,0y 2} — Jbis (4.1.6d)
{ﬁb:(ab), HC} = Zl03," 7} — 2t (4.1.6¢)
e 1 i
{¢”,Hb}::5§(bb — k%), (4.1.6)
{o" Hc} = eI wm) — V2me'®”, (4.1.6g)
{69 Ho} = —iv2m(he' — he ™) . (4.1.61)

where I45 and % are the so-called infinity twistors [2, 3, 11], defined by

L 0 0 AB . Eaﬁ 0
e (0 0) (0

With H¢ and the primary constraint functions, we define the total Hamiltonian

Hy = He + ul' ¢y + 0407 + (o + ufy ¢l
+ U(e)gb(e) + u(h)¢(h) + U(E)¢(h) + uw)gb(“"), (4.1.7)

where v, @Y, U(a) u’("b), U(e), U(h)s U(ry, and u(,) are Lagrange multipliers. The time

evolution of a function f of the canonical variables is governed by the canonical

equation
f={f Hr}. (4.1.8)

Using this equation together with Eqgs. (4.1.4)—(4.1.7), we can evaluate the time
evolution of the primary constraint functions. Because the primary constraints
(4.1.4a)—(4.1.4h) are valid at any time, they must be preserved in time. This fact

27



leads to the consistency conditions

QS;‘ = {Qsih HT} ~ azi} + bro-rjizg + 2h€ijIABZjB — Zﬂi‘ =~ O,
b8 = {30 Hy) ~ aZd + 170,70 + 2heys NP2, + il ~ 0,

¢(a) {¢(a)a HT} ~ ZfAZ? — 25~ 0,
49— {0 i} = 20,20 B 0,
= {0 Ha} ~ Bhoy 7t 2 ~0,
1 L.

(e)_ (e) ~ Wt .22\ ~
3 = {69, Hr p ~ o (b'b' — k%) ~ 0
oM = {¢(h), HT} ~ eijwmw?‘ —V2me¥ ~ 0,
oM = {925(5)7 HT} N €@ — V2me Y &

(4.1.9a)
(4.1.9b)
(4.1.9¢)

Equations (4.1.9a) and (4.1.9b) determine %, and u:!, respectively, as follows:

'y = —iaZly — b0, 2% — 2ihe" I4pZ7
A

ul =iaZ +ib"o, /73 + 2ihe; 1P 7%, .

1

In contrast, Eqgs. (4.1.9¢)—(4.1.91) give rise to the secondary constraints

XY =774 - 25~ 0,

X5 = Zho*Zi — 2t ~ 0,
NC %(bibi _k2e?) ~ 0,
M= lmiamy — V2ame ~ 0,
v = €T @Y — V2me % = 0,

) = i(hei“" — Be’i“") ~0.

(4.1.10a)
(4.1.10b)

All the Poisson brackets between Hc and the secondary constraint functions y’s

vanish. The Poisson brackets between the primary and secondary constraint func-
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tions are found to be

.6} =2, (x50} =22,
(P, ¢4} = 0,2, {Xrb),ch} 0 22,
(o) =-Lay (@09} = Lo
(09,69}~ b, (6,69 = e,
{X(h),qﬁid} = 26”@?‘, {X L) } —i\/ﬁmew,
{x@, (5?} = 26,077, {x(h), ¢(<P)} — iV2me %,
[, M) = i, {x(“”), ¢<B>} — i,
{X(w)7 ¢(90)} — _(heicp + i_ze_“") ’
all others =0, (4.1.12)

All the Poisson brackets between the secondary constraint functions vanish.
Next we investigate the time evolution of the secondary constraint functions

using Eqs. (4.1.8) and (4.1.12). The time evolution of (% is evaluated as
= (X, Hy} ~u*Z') + @, Z}. (4.1.13)

The condition ¥® ~ 0 is identically fulfilled with the aid of Eqs. (4.1.10a),
(4.1.10b), (4.1.11e), (4.1.11f), and (4.1.11g), and hence no new constraints are
obtained from x(® ~ 0. The time evolution of ng) is evaluated as

X = {x\", Hr}
rouloy 'z + uho 71+ uf, ){ng), gbgb)} + u(e){x,(nb), ¢(e)}
= —26,4b° 201" 7} + uf, >{x9’), ¢>§b)} + U<e>{x£b), cb(e)}

2 A
—Zepgb®b — Atergsb® + uf ){xﬁb), ¢gb>} + u(e){ ), ¢<6>} (4.1.14)
e

Q

by using Egs. (3 10a), (3 10b), (3.11b), and (3.11c), together with the formulas
oni'e" = 047" and o,%¢x; = 0, €. Then we see that the condition ng) ~ 0

determines u(b) as follows:

. I 1 .
uzb) = 26”bj(b3 — 2te) + Ebzu(e) , (4.1.15)
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while )‘(gb) ~ 0 is identically satisfied. The time evolution of x(® is calculated as

X(E) — {X(E), HT}
2

~ byufy,) — keu(e) = gx(e)u(e) ~ 0 (4.1.16)

by using Eqs. (4.1.15) and (4.1.11d). Hence x(® ~ 0 is identically satisfied. The
time evolution of Y is evaluated as

K = {1, H)
R 26ijuidw?‘ — i\/§m6wu(¢)
= 2iaeijwidw?‘ — i\/§m6wu(¢)

= iV2me'? (2a — uy)) (4.1.17)

by using Eqs. (4.1.10b), (4.1.11e) and the formula o,,'¢" = g,47¢*. (Its associated
formula o,;*¢;; = 0,;%¢x; is also valid.) From the condition x™ a0, the Lagrange
multiplier u,) is determined to be w(, = 2a. Similarly, X(E) ~ —iv2me ¥ (2a —
U(y)) ~ 0 leads to u(,) = 2a. The time evolution of x(¥) is found to be

X(@) _ {X(@)a HT}
~ i(u(h) — U(E)) — 2a(hew + l_ze_i‘p) , (4.1.18)

so that the condition y¥) ~ 0 gives Uy — URy = —Qia(he"“’ + ﬁe’w). From the
above analysis, we see that no further constraints are derived anymore; thus, the
procedure for deriving constraints is now completed. We also see that u?, u’,
ui(b), U(ny — Uy, and vy are determined to be what are written in terms of other
variables such as the canonical coordinates, while wu,), u?b), Ue), and uep) +
still remain as arbitrary functions of 7.

We have obtained all the Poisson brackets between the constraint functions, as
in Egs. (4.1.5) and (4.1.12). However, it is difficult to classify the constraints in
Egs. (4.1.4) and (4.1.11) into first and second classes on the basis of Egs. (4.1.5)
and (4.1.12) together with the vanishing Poisson brackets between the secondary
constraint functions. To find simpler forms of the relevant Poisson brackets, we
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first define

~ 1 .
o = ¢ + Eblqjgb)? (4.1.19a)
@) = (b(@) — ih¢™ + ihe® (4.1.19b)
RO = x@ 423,34 — i, 72 (4.1.19¢)
W= X§ )+ iZo o — wﬁAa”’fzf — 2tee;p”, (4.1.19d)
Xéb) = X3 ‘|‘ ZZAU:%J ¢k - Z¢A03ijA + QEijb%gb)’ (4.1.19)
SCINCIN eb’( — 2teeyo ) (4.1.19f)
)Z(h) = X( ) + QiEijbjdwk , (4 119g)
T = P 2jey ) ot (4.1.19h)
where ¢;5 and ¢!, are spinor components of ¢! = (7?, &m) and ¢’y = ( . ¢id‘),
respectively. Furthermore, it is convenient to define
1 ~ 1
() . () o(a)
v = + - ) 4.1.20a
N (cb 5X ) ( )
1 . ) =
B = . (e—z%(h) n e%m)) 7 (4.1.20b)
1, . -
5 = N (e,%(h) _ e%(h)) , (4.1.20¢)
7
1 . . -
= = (e—w;(w) + ety ™) (4.1.20d)
1 . o
X = o (e*wx(’” . ewyéh)) . (4.1.20e)
i

It can readily be seen that the set of all the constraints given in Eqs. (4.1.4) and
(4.1.11), i.e

i T4 (a ; b ;
(¢A,¢f,¢( ), o®) ¢ M) g 4@) (@) (B) ) (e )7X(h),x(h),x(‘”)> ~ 0,
(4.1.21)

is equivalent to the new set of constraints

( 247 71‘247 ¢(a)7 ¢7("b)7 é(e)7 ¢(+)7 ¢(7)’ U(+)7 U(7)7 )’Zgb)7 )Zi(’,b)a )2(6)7 )’Z(+)’ X(7)7 X(QD)> ~ O *

(4.1.22)
We can show that except for
o - . 1
{ohofy =—inof,  {ol W7} = 0y,
{o) ¥ =1, (¥, ¢} =1, (4.1.23)
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all other Poisson brackets between the constraint functions in Eq. (4.1.22) vanish.
In this way, the relevant Poisson brackets are simplified with the aid of the new

constraint functions. The Poisson brackets between the constraint functions are
summarized in a matrix form as

-

quB ‘;_13 Hla) ¢,Eb3 Ql,‘gb) ) G 40 ) L) 0D )Zh} )Z;(;h) @ ) 20 il
A 0 —isief
a4 il 0
d’(ﬂ)

(=T =T = I

m
-
o

o0
o
&(e)
)
sl )
o)
ol )
P

o
[
o o o o o o o

1
0
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e
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o o0 o0 90 2o 9o 00 0 9o 0 0 9 o 9 9
o 0 2 O 2 0 o= o o 2 9 @ o 9o o9

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o o o o o o oo o o o o o o 9O O
o o0 o0 90 2o 9o 00 0 9o 0 0 9 o 9 9
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0 0
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0 0
0 0
0 0
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0 0
0 0
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0
0
0
0
0
0
0
0

[=J = = R = R = |

=

(4.1.24)

We can immediately see from this matrix that ¢ =~ 0, qﬁogb) ~ 0, 9@ ~ 0,
) ~ 0, v7) ~ 0, )Eg_b) ~ 0, Y® ~ 0, and Y'*) ~ 0 are first-class constraints,
while ¢} ~ 0, ¢ ~ 0, qﬁéb) ~ 0, o) ~ 0, v =~ 0, )"éb) ~ 0, ¥ ~ 0, and
x¥) &~ 0 are second-class constraints. Following Dirac’s approach to second-class
constraints, we define the Dirac bracket by using the largest invertible submatrix
of the matrix (4.1.24). For arbitrary smooth functions f and g of the canonical
variables, the Dirac bracket is defined by

{f.9}p ={f 9y +i{f.6u}{&]' g} —i {f. ¢/} {4 g}

e {00} e {0 i)
+ {f: X(w)}{qs(_):g} - {f: ¢5(_)}{X(m;9}
+ {f: U(—H}{j&(_):g} - {f: )E(_)}{U(-’_):g} . (4125)

The Dirac bracket between f and each of the constraint functions ¢, ¢4, qﬁéb)?
¢, ) )Ei(b), X7, and x¥) vanishes identically. For this reason, the second-
class constraints can be set strongly equal to zero and may be expressed as ¢, = 0,
o2 =0, ¢ =0, ¢ =0, v =0, ¢ =0, ¥ =0, and x® = 0, as long
as the Dirac bracket {f, g}, is adopted. We see that the second-class constraints
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lead to

Pi = Ezi" PA = _52;‘, (4.1.26a)
b; = 2’047, PP = (4.1.26b)
h = he ™ P = gte ph) (4.1.26¢)
h = he' ph = ¢=ieph) (4.1.26d)

7 €9 10,40% 1
— _p e P — () 4.1.26
¥ 2 H(Eij@a@]a> ’ 2X ’ ( e)

where h = h(7) is a real scalar-density field of weight 1 on 7", and P its associated
momentum variable. At this stage, Py, P/, b, Pi(b), h, PM p, M), ¢, and P¥) are
treated as dependent variables specified by Eq. (4.1.26), while the other canonical
variables Z#, 7%, a, P, b3, Péb), e, P h, and P" are treated as independent
variables. By virtue of the strong equalities of the second-class constraints, the set
of all the first-class constraints, i.e,

<¢<a)’¢§b>, 3O 6 v 7P ) ~(+)) ~0, (4.1.27)

turns out to be equivalent to the set consisting of

oW =0, (4.1.28a)

P ~0, (4.1.28b)
¢® =0 (4.1.28¢)
o = PM ~ 0, (4.1.28d)
X9 =0, (4.1.28¢)
Y ~0, (4.1.28f)
x© ~0 (4.1.28g)
XM~ 0 (4.1.28h)
X"~ 0 (4.1.28)

Here we have taken into account both of Eqs. (4.1.28h) and (4.1.28i) for later
convenience, although it is sufficient to consider one of them in actuality.

The Dirac brackets between the spinor components of Z# and Z, are found
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from Eq. (4.1.25) to be

P — Qf@kﬁka> ;

i — ko
= eYeto @i s

{of, @,
{wm,w]g

n o}, =
i =
}
{Q?,éﬁ} - (ewe wk“@”+€’“”@?€”ﬁf>,
}
j
}
}

{of, @b}, = —i6]05 + 4\/%mewei@kaﬁg,
{wid’ o0 = Y \/'_m e et
{@i & p=0
{éz’c’v o’ = _4\/;771 <Qza6]k B Qjﬁeikwg) 7
{@g,@g}D =0. (4.1.29)

Using Eq. (4.1.29) and taking into account Eqs. (4.1.28h) and (4.1.28i), we can
show that
@ g1 — Lo @ oV =t
{ ) 04 }D_2 ] {X >wla}D_2wzo¢7
R I TR N N (4.1.30)

Many of the Dirac brackets in Eq. (4.1.29) are rather complicated. Fortunately,
however, Eq. (4.1.29) can be expressed in the form of simple canonical brackets as

{oe. o}, = =0l {wia s} = -idld],
D
all others =0, (4.1.31)

in terms of w;y, @', and

(e 2]

p? = gia + meitpeij@jax(a)’ (4132a)

P = 0"+ —e‘“pe”w;*x(“). (4.1.32b)

2v/2m
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In showing this fact, it is convenient to use Eqgs. (4.1.28¢) and (4.1.30). Note here
that the weak equalities p¢ ~ o, p'* ~ p'* hold owing to Eq. (4.1.28¢). Now
we define the new twistors W2 := (p® ,wm) and WY, := (&, p'“), with which Eq.
(4.1.31) can concisely be written as

{Wg“,Wf}D —0, {Wi, W} =o0. (4.1.33)

Using Eqs. (4.1.28h), (4.1.281), and the formulas given under Eq. (4.1.17), we

can show for

@ = WL,WA — 25, (4.1.34a)
W= Wa o Wi — 2t (4.1.34b)
that
Y@ = 2y@, (4.1.35a)
o (b b
W =, (4.1.35b)

Accordingly, the first-class constraints (4.1.28¢) and (4.1.28f) read

Y9 ~0, (4.1.36a)
W0, (4.1.36Db)

With Eq. (4.1.35a), Egs. (4.1.32a) and (4.1.32b) can be solved inversely as

1 ) )

o7 =p — 4\/§mel¢€ijﬁ]a>v<(a)7 (4.1.37a)
1

o =" - 4\/§m wewwyax(a) (4.1.37b)

Hence it follows that there is a one-to-one correspondence between (Z#,Z%) and
(WA Wi,). Taking into account this fact, we hereafter adopt W and WY, as canon-
ical variables instead of Z# and Z,. The first equation in Eq. (4.1.26b) can be
written as b; = eW]AJUkWA Substituting this into Eq. (4.1.11d), we see that the
first-class constraint x(®) =~ 0 can be expressed as

1
X =TT = 2k = 0, (4.1.38)
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where T; (2 = 1,2) are defined in
Liri A Lni A
Tp = §VVAVV¢ ;o T= §WAUW- Wi . (4.1.39)

Using Eq. (4.1.33), we can readily verify that Ty and T, constitute a bases of the
U(1), x SU(2) Lie algebra in the following sense:

{T()? TT}D =0, {Tm TS}D = €rot I 1. (4140)

The canonical variables that we need to consider at the present stage are W4,
Wi, a, P b3 P3(b), e, P® h, and P™. All the Dirac brackets between these
variables are given in Eq. (4.1.33) and

{a, P9}, =1, {o"P"} =1

R 1
{e’P()}D:17 {h7p(h)}D:§’
all others = 0. (4.1.41)

We also need to consider the first class constraints (4.1.28a)—(4.1.28d), (4.1.36a),
(4.1.36b), (4.1.38), (4.1.28h), and (4.1.284).

4.2 Canonical quantization
In this section, we perform the canonical quantization of the Hamiltonian system
studied in Sec. III. To this end, in accordance with Dirac’s method of quantization,

we introduce the operators f and ¢ corresponding, respectively, to the functions f

and g, and set the commutation relation
f.a]=ilr gk (4:2.1)

in units such that A = 1. Here, @D denotes the operator corresponding to
the Dirac bracket {f, ¢g}p. From Eqgs. (4.1.33), (4.1.41), and (4.2.1), we have the
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canonical commutation relations

[W;‘,Wﬂé: = 5159, (4.2.2a)
[VAVZ‘,VAV}B_ =0, [ Vi, W[ =0, (4.2.2b)
[a, p@] = [63,}59' s (4.2.2¢)
[é,ﬁ@: — i, [H,ﬂh): _ % (4.2.2d)
all others = 0. (4.2.2¢)

The commutation relations (4.2.2a) and (4.2.2b) govern together so-called twistor
quantization [2, 3].

In the procedure of canonical quantization, the first-class constraints are treated
as conditions imposed on the physical states, after the replacement of the first-
class constraint functions by the corresponding operators. In the present model,
the physical state conditions are found from Eqgs. (4.1.28a)-(4.1.28d), (4.1.36a),
(4.1.36b), (4.1.38), (4.1.28h), and (4.1.28i) to be

QDN F)y = PDIF) =0, (4.2.3a)
o\ Fy = PP|F) =0, (4.2.3b)
PO|F) = POIF) =0, (4.2.3¢)
oM|F)y = PM|F) =0, (4.2.3d)
1

Y| F) = {§(WAWA + WAWZ ) — 23} |F')

:2<T0—5— >|F>_0 (4.2.3¢)
5(b) Lrsi  mia
OIFY = E(WA% WA+ Wiay W )—275 IF)

- 2(}, - t>|F) ~0, (4.2.3f)
. U
X©|F) = (TZT — —k;2) |F) =0, (4.2.3g)
W) = (g‘j@m@@ _ ﬂmeiﬁ) IF) =0, (4.2.3h)
(PR <eijz%;7% — V2me “">|F> ~0. (4.2.31)
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Here, |F') denotes a physical state, To and T, (r =i, 3) are defined by

. 1 a o, R 1 . a
Ty = §W;“Wf4, T, = §aTj’fwg‘W§4, (4.2.4)

and ¢ is defined according to the first equation in Eq. (4.1.26e) as

P = —% [ln(eijzﬁidz“v?) — ln(Ein%

@] . (4.2.5)

In defining the operators )G((“), )O(éb), and )C((e), we have obeyed the Weyl ordering
rule and have used the commutation relation (4.2.2a) to simplify the Weyl ordered
operators. Using Eqgs. (4.2.2a) and (4.2.2b), we can easily show that

|:-i—07 —i_T:| =0 ) |:—T—r; —i—s:| = Z-Erst-i_t 5 (426)

which is precisely the quantum mechanical counterpart of Eq. (4.1.40). It is evident
that T, is the generator of U(1), and T, (r = 1,2,3) are the generators of SU(2).
In particular, T is the generator of U(1)s.

Now we introduce the bra-vector

(W, a,b® e hl
:= (0] exp(— Wl-AVQVfA + iaP@ + z’b3}5§b) +ieP® 4 Qihp(h)> (4.2.7)

with a reference bra-vector (0| satisfying
(0]W4 = (0]a = (0]b* = (0]é = (0|lh = 0. (4.2.8)

Using the commutation relations (4.2.2a)—(4.2.2¢), we can show that

(W, a,b% e,h|WA = WA W, a,b% e h, (4.2.9a)
(W, a,b® e hja=a(W, a,b? e hl, (4.2.9b)
(W, a,b® e h|b>=b*(W,a,b’ e hl, (4.2.9¢)
(W, a,b’ e hlée =e(W,a,b eh|, (4.2.9d)
(W, a,b e h|h=h(W,a,b*eh]|. (4.2.9¢)

Equation (4.2.9a) can be decomposed into two parts:

(W, a,b% e h|p® = p(W, a,b®ehl, (4.2.10a)
(W,a, b3,e,h|’®id :wi(i(W,a, b3,e,h|. (421013)
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Also, it is easy to see that

0

(W, a,b® e, h|W = 8WA<W a,b® e hl, (4.2.11a)

(W, a,b® e h|P@ = —z’aﬁ(W,a, b% e, h|, (4.2.11D)
3 H(b) 9 3

(W,a,b’ e, h|Py’ = (‘9b3<W a,b’ e h|, (4.2.11c)

(W, a,b® e h|P® = —iag(W,a, b% e hl, (4.2.11d)

(W, a,b® e, h|PM = ;§h<w a,b® e hl. (4.2.11e)

Equation (4.2.11a) can be decomposed into two parts:

. o)

(W, a,b’ e h|z!, = -3 —(W,a,b’ e hl, (4.2.12a)
Pi
o)

(W, a,b® e h|p* = _awm<w,a, b3, e h|. (4.2.12b)

Multiplying each of Eqs. (4.2.3a)-(4.2.3i) by (W, a,b? e, h| on the left and using
Egs. (4.2.9)-(4.2.12), we obtain a set of simultaneous differential equations for
F(W,a,b% e h) :=(W,a,b3 e h|F) as follows:

0

—F = 4.2.1
%0 0, ( 3a)
0]
Sl =0, (4.2.13b)
0
—F = 4.2.1
9 0, ( 3c)
0
—F = 4.2.13d
h 0, (4.2.13d)
ToF = (s +2)F, (4.2.13¢)
TsF =tF, (4.2.13f)
< 1
TTF = K°F, (4.2.13g)
€ wmwo‘F V2me? F (4.2.13h)
€€ s 0 9 —F = fme*WF. (4.2.131)
ape & a
Here, T and T, (r = i,3) are defined by
- 1 . 1
To:=— WA 0 T, = ——0," Wi — 0 (4.2.14)

LoOWA’ 2 ’“awA’
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and ¢ is defined by

. i ij & ag 0 0

Y = —5 lln(ejwmwj)—ln (Eijﬁ ﬁa—p?a—pf)] . (4215)
Equations (4.2.13a)—(4.2.13d) imply that F is actually independent of a, b3, e, and
h. Hence it follows that F is a function of the twistors W# only. The holomorphic
functions of W#, such as F, are often referred to as the twistor functions. As can
be seen immediately, Eqgs. (4.2.13h) and (4.2.13i) are respectively equivalent to

wmw?F = %eijei“bF, (4.2.16a)

o 0 moo.. .
B2 T F= iR, 4.2.16b
9p3 op!] V2 ( )

Combining Egs. (4.2.13e) and (4.2.13f), we have

€

0
0
wa' 8W§4F =25y +1)F, (4.2.17D)
where
1 1
S1 = 5(5 + t) N Sg = 5(8 — t) . (4218)

The pair of Egs. (4.2.13e) and (4.2.13f) is equivalent to the pair of Eqgs. (4.2.17a)
and (4.2.17b). Obviously, Eqgs. (4.2.17a) and (4.2.17b) are simultaneously satisfied
by a homogeneous twistor function of degree —2s; — 2 w.r.t. W and degree
—28y — 2 w.r.t. Wil These degrees must be integers so that F' can be a single-
valued function of Wf‘. In this way, the allowed values of s; and sy are restricted to
arbitrary integer or half-integer values, and accordingly s and ¢ are also restricted
to arbitrary integer or half-integer values. We thus see that the Chern-Simons
coefficients 2s and 2t¢, which are coefficients of the 1-dimensional Chern-Simons
terms S, and Sps, respectively, are quantized to be arbitrary integer values.
The operators T, fulfill the SU(2) commutation relation

[T, Ts] =i T, (4.2.19)
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Following the general method for solving the eigenvalue problem in the SU(2) Lie
algebra [39], we can simultaneously solve the eigenvalue equation for the Casimir
operator TTTT = T@T@ + Tng, ie.,

T,T.F = AF, (4.2.20)
and Eq. (4.2.13f) to obtain
1.3
A:I(I+1), I:0,§,1,§,, (4221&)
t=—-1,—-1+1,...,1—-1,1. (4.2.21b)

In deriving Egs. (4.2.21a) and (4.2.21b), we assume the existence of a positive-
definite inner product in the function space consisting of twistor functions. (As
for the twistor formulation of a massless system, a twistor-function space with a
positive-definite inner product has been established [40].) Since ¢ takes integer or
half-integer values as explained above, I also takes integer or half-integer values
accordingly. From Eqgs. (4.2.13f), (4.2.13g), (4.2.20), and (4.2.21a), the allowed
values of the positive constant k are determined to be

k=211 +1)—12. (4.2.22)

In this way, the coefficient of Sp15 is also quantized in addition to the Chern-Simons
coefficients. It is now clear that the twistor function F'is characterized by the set
of three quantum numbers (s, I,t), or equivalently, by (I, s1, so); for this reason, it

is convenient to label I as F; or Fig, ,-

4.3 Penrose transform and the generalized DFP
equation

In this section, we define a spinor field of arbitrary rank by the Penrose transform
of Frs, s,- We also demonstrate that this spinor field satisfies generalized DFP
equations with SU(2) indices.

Let us consider the Penrose transform of Fj g, s, specified by

)
Q1...Qp; J1..-Jg, ...

1 ipg 0 0
— (271-@)4%;‘61790'@]1&1 oo .. _...WFI,Sl,SQ(W)lew (431)
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with

d*e = dwg A doyi A doogy A doy; (4.3.2)
to define the rank-(p + ¢) spinor field w;lli;’p Jrodordady (OCcasionally abbreviated

as ¥) on complexified Minkowski space CM. Here, X' denotes a suitable four-
dimensional contour. Equation (4.3.1) is identified as a non-projective form of
the Penrose transform in the massive case [3].! Tt should be noted that ¥ has
the upper and lower SU(2) indices in addition to the dotted and undotted spinor
indices. Because of the structure of Eq. (4.3.1), the number of upper (lower) SU(2)
indices is equal to the number of undotted (dotted) spinor indices. It is obvious

that ¥ has the symmetric properties

eeimin i L iedneimeip
WalA..am.“an...ap;jl...jq,dl...dq - wal..Aan...am...ap;jl...jq,dl...dq ) (433&)
i1.ip i
v 1o as Gt Gipensttg — D el J1vefireare-Gas Gl oenia i * (4.3.3b)
Suppose that among 41, ...,17,, the number of 1’s is p; and the number of 2’s is

p2(= p — p1). Similarly, suppose that among ji,...,J,, the number of 1’s is ¢
and the number of 2’s is ¢2(= ¢ — ¢1). The integral in Eq. (4.3.1) can remain
non-vanishing if

1

1
51 = §(Q1 —p1), Sy= 5@2 —p2). (4.3.4)

Combining Eqgs. (4.2.18) and (4.3.4), we have

s==(q—p1+q—p2), (4.3.5a)

[Ny =

= 5(611 —p1— G2+ D2). (4.3.5b)

!The two-dimensional projective form of the Penrose transform (4.3.1) is given by

i1.ip (2)
al...ap;jl...jq,dl...dq

1 -
_ -
= o) Fe Whrin " Wigcrg

3] 0 ; .
P e WFL%S2 (W)wmdwlﬁ N waydwy

p

X

where I" denotes a suitable two-dimensional contour [4]. We can also find the three-dimensional
projective form of the Penrose transform (4.3.1) [11].
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Now we can show that

9 Y
O powy = 22 iWF(W _ 9% 9 powy

D255 0p]
a(izwwm) 0
Oz55  Opy

F(W) = iwfeﬁ'y%F(W) . (4.3.6)
k

Here the weak equality p) ~ o7, Eq. (3.3.11), and the formula 9/9z,; = ¢*e#49 /2%
J J BB

have been used. The derivative of ¥ w.r.t. zg4 can be calculated by using Eq
(4.3.6) as follows:

a il...ip.' o ) (Z)

8253 aq...Qp;J1.--Jq,1...Qq
1 . 0 o 0
WP T g e Fr g s (W)

(2rmi) f{ze Wiiay * Wi, qapf‘f apipp 5’%5 Lsis2(W)d'@w
_ ! o b OOy OO g W)d*

(27]_2,)47{26 Wiy Wi, Wiaérg w]qaqapia; ap?;pe ap;ﬁ? apz 1,51,32( ) w.

(4.3.7)

Contracting over the indices 3 and ¢ in Eq. (4.3.7) and using Eq. (4.2.16a), we
obtain

a i1...0p ) (Z)
azﬂ,@ a1...0p;J1...Jq,B02...0q

=M By : 7{ i(p+1)@ 0 9 0 4

= e p— P e Winern *** Wi oo — Fr s 5, (W)d
V2t I em)t I s Pty ! s (W)

= _eﬁ’yejlk 'yocll...tip;jg...jq,o'cg...dq(Z) : (438)

Similarly, contracting over the indices 5 and oy in Eq. (4.3.7) and using Eq.
(4.2.16b), we obtain

a i1...0p

3%[3 Baz...0p; §1.-GgsGe1 - Crg (Z)

2 Pk =D g g o Dy e — F W) d*
NCARNCZI 742‘“’ i Tt g e (WO
. BY i1k, 020
= e koA g (F) - (4.3.9)
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In this way, it has been shown that the spinor field ¥ satisfies the generalized DFP
equations with SU(2) indices

8 91...1 91...0
V2 o meNe =0,  (4.3.10a)

azﬁ/s’ Oty g, ... VoL Op; 2., 62O

Z\/— Pl + meP itk =0. (4.3.10b)

32 85 ﬁaz .Qp;J1..-Jq;Q1...Oq ag...ap;kji...jg, ¥a...aq

Using Egs. (4.3.10a) and (4.3.10b) and noting
g 0 155 Jg 0

. = _ 4.3.11
0208 0255 2 0277 0z ( )
we can derive the Klein-Gordon equation
a a 2 ’il...ip
<8z55 92 +m )l‘pal...ap;jl...jq,dl...dq =0. (4.3.12)

This makes it clear that ¥ is a field of mass m. Thus, we obtain a spinor field of

arbitrary rank with mass m by means of the Penrose transform (4.3.1).

4.4 Rank-one spinor fields and physical mean-
ings of the gauge symmetries

In this section, we investigate the rank-one spinor fields in detail to clarify the
physical meanings of the U(1),, U(1)p, and SU(2) symmetries as well as those of
the constants s and t.

Now we particularly consider Eq. (4.3.10a) in the case (p,q) = (0,1) and Eq.
(4.3.10b) in the case (p,q) = (1, 0), which respectively read

iva-?
e’

( ) — me ;Wi (2) =0, (4.4.1a)

zaﬁ vi

UPe(y) =
Do P ( ) +me?¥i(2) =0, (4.4.1b)

with !PZ-B = GBWM. Equation (4.4.1a) with ¢ = 1 and Eq. (4.4.1b) with ¢ = 2 can
be combined in the form of the ordinary Dirac equation

Din() =0, i(z) = ( EZ%E )) ) , (1.42)
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while Eq. (4.4.1a) with ¢ = 2 and Eq. (4.4.1b) with ¢ = 1 can be combined, after
replacing z°“ by —2z%¢, as

Diho(2) =0,  ha(2) ::< g:;((:?) ) : (4.4.3)

In Egs. (4.4.2) and (4.4.3), D denotes the Dirac operator

—mdé? V2 86

D= 9 gz | (4.4.4)
50
Z\/_ﬁzgd méﬁ

The charge conjugate of 1;(2) is found to be

s = 5 7 )EE

(2 E)-() v

where the arguments of ¢;, namely 2%, have been replaced by their complex con-
jugates 2% := 204 go that ¥$ can be a holomorphic function of z2*. Using the
complex conjugates of Egs. (4.4.1a) and (4.4.1b), we can show that Dyf(z) = 0.
Since 1y and f satisfy the same Dirac equation and have the same spinor and
SU(2) indices, they can be identified with each other up to an overall constant.?
(This identification may be confirmed by the CPT symmetry.) If ¢ (z) is a spinor
field of a particle with four-momentum (E, p), then ¢5(2) ( 2 12(2)) is regarded as

2The plane wave solution of Eq. (4.4.1) given by

Ti(z) = —Ce?&!, exp(—izwfﬂ:wkﬁ) ,

e (z) = Ce 2 exp(—izwﬁﬁwkﬁ)

fulfills the conditions ¥i(—z) = —(C/C)¥i(z) and V3 (—z) = —(C/C)¥(z). Here, C is a
complex constant and ¢ is given in Eq. (4.1.26e). These conditions lead to 12(z) = —(C/C)v5(z),
and hence, in this case, ¥2 and ¢§ can indeed be identified with each other. For verifying that

the plane wave solution satisfies Eq. (4.4.1), it is convenient to use the classical counterparts of
Egs. (4.2.16a) and (4.2.16b):

. m . e mo .o
WiaW; = —=€;€'%, wow® = —=eve .

= =5
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particle antiparticle

left-handed w2 w!
right-handed vl V23

Table 4.1: A classification of the rank-one spinor fields.

S t S t

1/ _1 1 Yl _l _l
@ 2 2 @ 2 2

. 1 1 . 1 1
2% — — 2% — ——
2 2 2 2

Table 4.2: The values of s and ¢ of the rank-one spinor fields.

a spinor field of a corresponding antiparticle with four-momentum (—E, —p). Ac-
cordingly, 1o(—2) = (¥21(2),¥s(2))" is considered a spinor field of the antiparticle
with four-momentum (E,p). In the light of this fact, it is clear that ¥2(z) and
W!(z) represent a left-handed particle and a corresponding left-handed antiparti-
cle, respectively, while ¥ (z) and W' (z) represent a right-handed particle and a
corresponding right-handed antiparticle, respectively, as summarized in Table 4.1.
We thus see that the index i of ¥i(z) and ¥2(z) distinguishes between a particle
and its antiparticle.

Using Eq. (4.3.5), we can obtain the possible values of s and ¢ for each of
the rank-one spinor fields as in Table 4.2. We observe that the left-handed spinor
fields W' (z) (i = 1,2) have s = —1/2, while the right-handed spinor fields ¥(z)
(1 = 1,2) have s = 1/2. Hence, s turns out to be a quantum number specifying
the chirality of a spinor field. Since s is an eigenvalue of Ty up to the additive
constant 2, as can be seen from (4.2.13e), To can be interpreted as the operator
of chirality. Accordingly, U(1), can be identified as the gauge group of chirality,
and the U(1), symmetry is physically understood as a gauge symmetry leading
to chirality conservation. We also observe that the particle spinor fields ¥2(z)
and ¥{¥(z) have t = 1/2, while the antiparticle spinor fields ¥!(z) and ¥s*(z) have
t = —1/2. Hence, t turns out to be a quantum number distinguishing between a
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particle and its antiparticle. Then it follows that ¢ is proportional to the electric
charge of the particle/antiparticle. Since ¢ is an eigenvalue of T3 as can be seen
from (4.2.13f), Ts can be interpreted as the operator of electric charge up to a
constant of proportionality. Accordingly, U(1), can be identified with the gauge
group of electric charge, and the U(1), symmetry is physically understood as a
gauge symmetry leading to electric charge conservation.

Now we recall that our study has been performed in the unitary gauge in which
the GGS action takes the form of Eq. (3.3.9) or Eq. (3.3.13). In the unitary gauge,
the local SU(2) symmetry is hidden and the U(1), symmetry is linearly realized
in accordance with Eq. (2.12). The manifestly SU(2) covariant formulation can
be developed on the basis of the action (3.3.12). The rank-one spinor fields found
in this formulation, denoted by 28 and 2!, are related to ¥& and ¥! by?

)

QMz) =VIUM(z),  020(z) =Wi(:)VT}. (4.4.6)

Because V is independent of 2%%, we can readily verify by using Eqgs. (4.4.1a) and
(4.4.1b) that

iv2 0 Qﬂ(z) —me22(2) =0, (4.4.7a)
Dzl

- 9 ij 6

iv?2 oo Q24(2) + me“ 2} (z) = 0. (4.4.7b)

Following the above consideration for ¥¢(z) and ¥i(z), we see that 22(z) and
21 (z) constitute a doublet of left-handed particle and antiparticle spinor fields,
while 2{(2) and £2$(z) constitute a doublet of right-handed particle and antipar-
ticle spinor fields. Under the SU(2) transformation, 2% and 2! transform linearly
as

Q= Q8 =U28, QL — Q2= U (4.4.8)

3The rank-(p + ¢) spinor field in the manifestly SU(2) covariant formulation is given by

(2)
al...ap;jl...jq,dl...dq

1 -
~ (@2mi)t 7{2 e Mjran *+* Miady
0 1o}
: 7F1,51782 (/1'7 W)d47r 5

X ..
opg? 8@1’”

where 4§ is a spinor related to wf* by the weak equality p ~ w.
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whereas ¥ and ¥} transform according to the U(1), transformation
U =W =0/, W= =weT (4.4.9)

As seen from Eq. (4.4.8), the SU(2) transformation causes a continuous trans-
formation between the particle spinor field 22 (Qf) and the antiparticle spinor
field 2} ((22‘“) The SU(2) symmetry therefore turns out to be a gauge symme-
try realized in the particle-antiparticle doublets (22, 2!) and ((210‘, !22‘1) Such a
symmetry, however, is not observed in nature; hence, it should be considered that
the SU(2) symmetry is hidden or broken. The formulation in the unitary gauge is
appropriate for this situation, because, in the unitary gauge, the SU(2) symmetry
is hidden and the U(1), symmetry is manifestly exhibited instead.
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Chapter 5

Spinor formulation and canonical
quantization of a massive spinning
particle

In this chapter, we consider a spinor formulation of a massive spinning particle and
the subsequent canonical quantization. In this formulation, we adopt the space-
time and spinor variables as fundamental dynamical variables, after decomposing
the twistor variables in the GGS action. Here, the mass-shell condition with a
real mass parameter is incorporated into the action, instead of the mass-shell con-
dition with the complexified mass parameter. We can expect that this approach
clarifies relations between the twistor and ordinary space-time formulations of a
massive spinning particle and makes it possible to consider coupling to external
fields. We study the canonical Hamiltonian formalism based on the GGS action in
accordance with Dirac’s recipe for constrained Hamiltonian systems. Subsequently,
we perform the canonical quantization of this system. As a result, simultaneous
differential equations for a wave function of the space-time and momentum-spinor
variables are derived. These equations are solved, yielding plane-wave solutions.
We define positive and negative frequency spinor wave functions as linear combi-
nations of the plane wave solutions. It is shown that the spinor wave functions
satisfy the generalized DFP equations with SU(2) indices. It is also demonstrated
that the spinor wave functions can be expressed in the form of Penrose trans-
forms. In addition, we construct the exponential generating function for the spinor
wave functions. Finally, physical meanings of the U(1) and SU(2) symmetries are
clarified.
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5.1 The GGS action in spinor formulation

In this section, we express the GGS action in terms of space-time variable and
spinor variables.

The mass-shell condition incorporated in the GGS action (3.3.13) is a pair of
Egs. (3.1.3a) and (3.1.3b) in the unitary gauge, while Eq. (3.1.3) equivalent to
them is now rather convenient for spinor formulation. Therefore we consider the
GGS action in which Eq. (3.1.3) is adopted instead of the pair of Eqgs. (3.1.3a)
and (3.1.3b) as the mass-shell condition:

S = / dT[ (zz 74—~ 707 ) +a(Z4Z) — 25) + b3 (205,72 — 2t)

P k2 )
+b'Z, 0 275 — Ly - A + f(@mw%gwk -m?)|, (5.1.1)
2e 2 2
where f = f(7) is treated as a real scalar-density field of weight 1 on 7. Tt is

assumed that f does not change under the U(1), and U(1), transformations,
f—=fr=r (5.1.2)
It is obvious that the variation with respect to f yields the mass-shell condition
T, = m?. (5.1.3)

Eq. (5.1.1) can be written in terms of spinor components of, w;s and their complex
conjugates of the twistors in unitary gauge (see right below Eq. (3.3.10)) as

O » » o
S = / dr {5 (@6 + 0 toia — 07w, — @iad™) + a(@h 0 + 0" @ia — 25)
70

+ b3 (@iUgijg + @de'gjkwkd — 2t) + bi<@£0'§jkgg + [)magjkwkd)
1 .. K
— —b'b — —e+ = /

k - m?| . 14
%e 7€ 3 o Tk = 1) (5.1.4)

(—zawa@

As seen in Eq. (3.3.11), the spinor variable o¢f is related with another spinor

% can be decomposed as z¢* =

variable w;s by of = izo“j‘wm The coordinates z
— iy*®, where 2% and y°® are elements of Hermltlan matrices, satisfying the

Hermitian condltlons 5% = 79 and yPé = y*P The matrix elements of 2

are identified with coordinates of a point in Minkowski space M. Because the

coordinates z®* are treated as scalar fields on 7, %% and y®® behave as scalar
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fields on 7. From Eq. (3.3.11) with the decomposition of 2** and spinor variables
defined as

U=y wie, =y, (5.1.5)
the spinor variables ¢ and its complex conjugate g'* can be written as
0f = ix*wis + U, 0 = —ix®Yel + . (5.1.6)
Clearly, the spinor variables ¢)® and ¥'® behave as scalar fields on 7. Substituting
Eq. (5.1.6) into Eq. (5.1.4) , we obtain
Sy = / dr [ — 2% g — 1(VOED, — Y ia) + a(@AY + 0w — 25)
+ b’ (@igiki¢? + @Ekdaikiwz‘a) + b’ (@§U3ki@/}? + P oy wie — 2t)
k? f

1 .. . .
— gbzbl — ?e —+ 5(@10(@?@5[@[4;@ — m2) . (517)

This is the GGS action written in terms of space-time and spinor variables. We see
that S, is reparametrization invariant. With Eq. (5.1.6), we find that 2%, w4, @°,, ¥
and '@ transform under the U(1), transformation (3.3.3) as

206 _y gt — gad (5.1.8a)
N . (5.1.8b)
& el = e g (5.1.8¢)
Y — ) = Py (5.1.8d)
Py qffid = gm0 ice (5.1.8¢e)

On the other hand, we find that %%, w4, @, ¥® and ¥ transform under the
U(1)p transformation (3.3.4) as

204 _y glad — gad (5.1.9a)
i = W = 07 (T) w54, (5.1.9b)
& e =alelir), (5.1.9¢)
UE = = 07 (1) (5.1.9d)
G s i = &jc’v@;{i@-) ' (5.1.9¢)
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It can easily be verified that S remains invariant under U (1), transformation given
by Egs. (3.3.3f), (3.3.3g), (5.1.2) and (5.1.8) and under U(1), transformation
given by Egs. (3.3.4f), (3.3.4g), (5.1.2) and (5.1.9). By applying the Noether’s
theorem, the conserved quantity corresponding to the translation x%% — x% 4 k¢
is obtained as pag = @' w4, where k%% are elements of a constant Hermitian
matrix, satisfying the Hermitian condition k8¢ = k%, Due to the mass-shell
condition, it follows that paap®® = m?. This shows that the action Sy describes a

massive particle.

5.2 Canonical formalism

In this section, we study the canonical Hamiltonian formalism of the model gov-

erned by the action S.

Let L the Lagrangian defined in Eq. (5.1.7) as the integrand of S;. We treat
the variables (%%, &, @, V&, 9™, a, b}, b3, e, f) contained in the Lagrangian L
as canonical coordinates. Their corresponding conjugate momenta are defined by

L .
Pziz) = ai’ad = —@;wm y (521&)
[e 3‘[’ W NeY
Pz); = 5ol —py (5.2.1b)
i oL - Tic
Py = S i, (5.2.1c)
oL
Py = — =0, (5.2.1d)
oJUF
oL
Pupyio = ——=0, (5.2.1e)
awza
oL
P@ .= = = 5.2.1f
oL
p® .= = —, 5.2.1
R (5.2.1g)
oL
P == — 2.1h
n.-9L _y. (5.2.1i)
of
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The canonical Hamiltonian is found from Eqs. (5.1.7) and (5.2.1) to be

He = — a(@,yf! + " wis — 25) — b’ (@hou' ¢ + P on'wia)
, R 1 k2
- b3 (@203k1¢? + wkaafikzwiéy - 2t) + Q—bzbz + ?e
e

K ke — m?) (5.2.2)
The non-vanishing Poisson brackets between the canonical variables are given by

{wed, PO = d308 . @, P} =000, {wu PE)} = o001

B8 B Jj o ( s Ya
{08, Puyhy = 0105 . {9 Pyt = 0505 {a, P} =1
{b’”, Pt(b)} =0y , {e, Po} =1, {f.Pp} =1 (5.2.3)

The Poisson bracket between two arbitrary analytic functions of the canonical
variables can be calculated using the fundamental Poisson brackets in Eq. (5.2.3).
Equations (5.2.1a)—(5.2.1i) are read, respectively, as the primary constraints

¢¢(>2 = Pé? + @Wywie =0, (5.2.4a)
P(@); = Play; +iy =0, (5.2.4b)
P)'" = Pleny® =i = 0, (5.2.4c)
Sw)a = Puya # 0, (5.2.4d)
Ppyic = Prpyia = 0, (5.2.4e)
¢ =P ~0, (5.2.4f)
¢ = PP =0, (5.2.4g)
¢l =P~ 0, (5.2.4h)
V) =PV =0, (5.2.40)

where the symbol “~” denotes the weak equality. Now, we apply the Dirac for-
mulation for constrained Hamiltonian systems [36]-[38] to the present model. To
this end, we first calculate the Poisson brackets between the constraint functions
05, b 1), Dt Puayias 8@, o, ¢© and ¢V obtaining the following non-
vanishing Poisson brackets:

{65, 0! } = i {0, 62, } = =%,
{07 dw)s} = 0105 , {0(%), 05);0} = —i0;05 . (5.2.5)
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We can also obtain

{5 He} =0, (5.2.6a)
(S, Ho} = ath* + o393 + blowdp¢ + ol wim,; (5.2.6b)
()", Ho} = ag'® + by + bloy " + fafa’ el (5.2.6¢)
{dwyh, Ho} = ay, + bP@loy;" + b'@lay)’, (5.2.6d)
{Dwyia, He} = amig + b o3/ @js + blowdwjs (5.2.6¢)

{6, Ho} = el + 0 mia — 25, (5.2.6f)

{ngb)a HC} = (@hou' U + Vo wia) — % ; (5.2.6g)

{¢§ Ho} = @kgskiq/fa Pogimie — 2t (5.2.6h)

{6 Hol = (b’bl k2e?) | (5.2.6i)

{oV), Ho} = %(wmw"w(’iwk —m?). (5.2.6])

Introducing the Lagrange multipliers u( ), u(w)a, Uw)ids U()§ ué%), U(q) u(b), Ue)
and u (), we define the total Hamiltonian

+ “(a)ﬁb(a} + U(b)# ) + U(e)cb( © + U(f)cb(f) (5.2.7)

With this Hamiltonian, the canonical equation for a function F' of the canonical

variables is given by
F={F Hry}. (5.2.8)

The primary constraints (5.2.4a)—(5.2.41) must be preserved in time, because they
are valid at any time. The time evolutions of the constraints functions can be
evaluated using Eqgs. (5.2.6a)-(5.2.61), and as a result, we have the consistency
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conditions

sbﬁffi = {%m HT} R U)o Tia + Um)ia @y = 0 (5.2.9a)
o8 = {b@?, Hr}
~ a4 bPos S + blo v + f@jawfwm - uf‘fﬁwm + Tu
~0, (5.2.9b)
O = {9, Hr}
~ ' + boy Y + bloy Y + fal e el — uiel — i,
~0, (5.2.9¢
Sy = {dw)h, Hr} = a@, + b*@ o3 + b'el oy’ — ium)l, = 0 (5.2.9d
Spyia = {Dyia: Hr} = awi + bPo3?w@je + b'ord @i + iumyia ~ 0, (5.2.9e
O = {9, Hr} = @i + ¢ mwiq =25 =0, (

¢(b {¢ Y, Hr } = (@how'vf + P on'mia) — % ~0, (5.2.9¢
) = {¢;(>,b), HT} ~ @kdgkiw + Yoy s — 2t = 0 (5.2.9h

={¢), Hr} = (beZ k*e*) ~ 0, (5.2.91)
o) = {w), Hr} = 5@”@%’5% —m?) ~ 0. (5.2.9§)

Equations (5.2.9d) and (5.2.9¢) determine u(z)’, and u(z)ia, respectively, as follows:

U(@); = —1 (a@fx + b?’@éagji + bi@éai/) , (5.2.10a)
U(w)ic = ? (awid + b30’3ijwjd + bi(faijw]'d) . (5.2.10b)

Substituting these into Eq.(5.2.9a), we see that ¢(§2 ~ 0 is identically satisfied;
hence, Eq. (5.2.9a) gives no new constraints. If uf‘;; is fixed to a specific function

of the canonical variables, u,)® and u!%, are determined from Egs. (5.2.9b) and

)
(5.2.9¢), respectively, as follows:

Ui =1 <a¢z‘a + bPo5 7 + bl Y + f@jo‘wfwm —ulSwia ) (5.2.11a)
ugyy = —i (e + 6% 0y, + b0y + fwie el —ulf@r) . (5.2.11b)
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In contrast, equations (5.2.9f)—(5.2.9j) give rise to secondary constraints

X(a) = ot + " wie — 25 = 0, (5.2.12a)
W = ol + P iwe — % ~0, (5.2.12b)
X = @honif + Doyl — 2t~ 0. (5.2.12¢)
X(e) i= % (b'b’ — k%e*) ~ 0, (5.2.12d)
X(p) = %(@mwi@ﬁiwm —m?) ~0. (5.2.12€)

The non-vanishing Poisson brackets between x(,), X;g,b)7 X;b)a X(f)s X(e) and the pri-

mary constraint functions are found to be

{X@, o=t =5 (X0 0=} = 0",
{X(a)> D)o} = &% X)), b@yiat = @ia
0 0@ = oavy 06 0@} = ¥y’
{5, b} = Thoss’ 067, dayia} = oai'min
0. 0@} = oy 00”0} = 0o
04", bupnt = @i’ 6" dgyia) = o @ia
(00 - -2 (P} =2,
{x<e>,¢§b)} = b, {X@ ¢} = —H%,
@i} =mims . e =miEVe). (G213)

Next, we investigate the time evolution of the secondary constraint functions using
Egs. (5.2.5) and (5.2.13). The time evolution of x® is evaluated as

X(a) — u(ﬁ)gd}ia + U(L/J)?@(Zx + U(w)iad_}id -+ u’(%)wm . (5214)

The condition x(* = 0 is identically fulfilled with the aid of Eqs. (5.2.10) and
(5.2.11), and hence no new constraints are obtained from x(® a 0. The time
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evolution of ng) and Xi())b) are evaluated as

@ = [ HT}

(0% = 3 i 1 A bl
= (U(ﬁ)§¢l + w —|— 1/1 U(w )ic + U( )k wid) O3k — E <u(b) — u( e) e)

= QEij {b3 (@iO’jjiwia + &kd(fjkjw]‘a) — bj (@iOBjiw? + '@deUSkjwjd)}

1/, b*
o (b) (e) e
(b3 1/ . b
~ 269 [ — —2t ) — = (ulyy — ue— |, 5.2.15
€ (e > e(u(b) U()e> ( )
X(b) {X3 )7 HT}

. 2 s s
= U)o 03 V] + D035 U(y); o+ %5t (@)ia T U O3 Do A —ge”b’bj =0

(5.2.16)

by using Egs. (5.2.10), (5.2.11), (5.2.12¢) and (5.2.12b). Then we see that the

condition )'(Eb)

) ~ 0 determines ufb) as follows:

i

. b SO
Uy = Ue)— + 2€7b7 (b? — 2te) | (5.2.17)
€

while )'(gb) is identically satisfied. The time evolution of x® is calculated as

= {x"¥, Hr} =

by using Eqgs. (5.2.17) and (5.2.12d). Hence the condition y ~ 0 is identically

satisfied. The time evolution of x/) is evaluated as

(bibf — k*®) ~ 0 (5.2.18)

X(f) = (u(@)fxwm + @éu(w)id)@jaw? ~ 0 (5.2.19)

by using Eq. (5.2.10). Hence the condition x) ~ 0 is identically fulfilled. From
the above analysis, we see that no further constraints can be derived; thus, the
procedure for deriving constraints is now completed. We also see that u(w)fl, U(z)ids
Uy)s u’(%) and ui(b) are determined to be what are written in terms of other variables
such as the canonical coordinates, while u‘é‘;, U(a), ui()’b) ey and u(y) still remain as
arbitrary functions of 7.

We have obtained all the non-vanishing Poisson brackets between the constraint
functions, as in Egs. (5.2.5) and (5.2.13). However, it is difficult to classify the
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constraints into first and second classes on the basis of Eqgs. (5.2.4) and (5.2.12)
together with the vanishing Poisson brackets between the constraint functions. To
find simpler forms of the relevant Poisson brackets, now we define

6552 = ¢L(52 - i¢<w)3wia + i@écﬁ(q{,)m ) (5.2.20a)
o =g (5.2.20D)
o = bielg (5.2.20¢)
® = ¢(e> +o,," (@gwg + 9 a,) o (5.2.20d)
)Z(a) = X — ’L¢ l/J-a + ZQ/_Jza(b qﬂ)id -+ Z@;(b(@)f‘ — Z¢E°;,)wm s (52206)
= + Mg+ 26T (5.2.20f)
= b ( n A) (5.2.20g)
P .= pidi (ij) n Aj> + atebip® (5.2.201)
K = XD iy i w)s — 108 d gy @ (5.2.20)
@ = ) 4+ ebiy (5.2.205)
where A, (r = i,3) are defined as
Ar ZO'M (w qb(w - ¢ég)w]‘d + @Eidgb(lz})jd - Qb(w)gd);l) . (5221)

It is immediately seen that the set of all constraints (gzﬁaa, Pz, O ) D) D@)ia

’ (w

@ p® gb), o, o) (@) X,g ), Xg) X, X(f)> ~ (0 is equivalent to the new set

) Y

3 7 200 a b b a
of constraints <¢((xo¢7 b=, (bw), Dwyns Plyics @ ¢Sr)7 P ¢( o©, o) @,

XSE), )Z(_), X( ) X, )Z(f)> ~ (0. We can show that except for

{9@) bwyh} =075 {6): @)} = —19;05
~ bibi ~ bzbz
{ (f),x(f)} -, {¢<_b>7x<_b>} ==, (5.2.22)

all the other Poisson brackets between the constraint functions in the new set
vanish. In this way, the relevant Poisson brackets are simplified in terms of

q%fjfj, gb@, ¢@, o©, Y@, Xé ), X(f) X(b) YY) and ¥®, and the matrix consisting
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of those Poisson brackets has a maximal invertible submatrix as

b O bl bwm P o0 P
dd [ 0 0 isjég 0 0 0 0 0
i) 0 0 0 —igis 0 0 0 0
by | —i6i62 0 0 0 0 0 0 0
bwyia| 0 idl6S 0 0 0 0 0 0
PP 0 0 0 0 0 0  bbije 0
o 0 0 0 0 0 0 0  bibi/e
P 0 0 0 0  —bbife 0 0 0
i 0 0 0 0 0  —bbi/e 0 0
(5.2.23)

We can see from this matrix that gbm, P by (o) gzﬁ(e o), X( ) X(b) )2(6 and Y
are first-class constraints, while ¢, (w) Pwyas Pyias gzﬁ N qb_ , )Z ¥ Jand X_b
are second-class constraints.

Following Dirac’s approach to second-class constraints, we define the Dirac
bracket with the aid of the largest invertible submatrix of the matrix (5.2.23). For
arbitrary functions f and g of the canonical variables, the Dirac bracket is defined
by

{fag}D
= {f g} - Z{f ¢ (@)4 }{éb(w a?g} +1 {f ¢m }{¢(¢ zaag} + Z{f ¢(¢ a}{¢(w )i 79}
— i/, ¢(w ia {9 w)>9}+ bibi ({ ) + }{X+ 79} - {f>X+ }{¢+ 79}

R (0} (120} o) s

Because the Dirac bracket between f and each of the functions ¢, qbl(";), Dr)hs

O (pyics SE), (bg) ), )ZSE’ ) and )Z(_b) vanishes identically, the second-class constraint can
be set strongly equal to %ero and may be expressed as ¢(z); = 0, gbéf;) =0, P
0, ¢pyia =0, ¢$’) =0, ¢(_b) =0, )ZSE) =0 and )Z(_b) = 0, as long as the Dirac bracket

{f,g}p is adopted. We see that the second-class constraints lead to

Py = =i, Pg) = ip™, (5.2.25a)
Pyt =0, P =0, (5.2.25b)
b’ = eoy,* (@I + P 0ws) PP =0 (5.2.25¢)
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Accordingly, ¥¢ and ¥ can be identified with the conjugate momenta of @*
and w4, respectively (up to multiplicative constants), and b’ become functions
of @, @i, ¥F, ¥ and e. Hereafter, with the Dirac bracket {f,g}p, we treat
(z°%, @, @ia, a, b%, e, f) as canonical coordinates and treat (P;z), e, i, pla),
P?fb), pe pU )> as their corresponding conjugate momenta. The nonvanishing
Dirac brackets between these canonical variables are found from Egs. (5.2.24) and

(5.2.3) to be

{ao0, P = d50%. {f, Pp}y =1, (5.2.26a)
{ﬁé, z/Jf}D = i6}0) | {wim @W}D = —idls? (5.2.26D)
{CL, P(a)}]) =1 ) {bga P?Sb)}D =1 s (5.2.26C)
{e Potp=1. (5.2.26d)

Because the second-class constraints are now strong equations, Eqs. (5.2.20a),
(5.2.20d), (5.2.20e), (5.2.20f), (5.2.20i) and (5.2.20j) reduce to ¢\ = ¢\, ¢ =

P, ¢ = y(@) )Z;(),b) = Xéb), $® = x© and ) = y(). Substituting the first
equation in Eq. (5.2.25¢) into Eq. (5.2.12d), we see that the first-class constraint

x® =~ 0 can be expressed as
X =4TT — K =0, (5.2.27)
where T; are defined in

(@Zzwza + @idwid&) ) Tr = 10-7'jk (@(J)ﬂ/}]{: + '(EjO.ZWkO'[) . (5228)

TO = 2

N |

Using Eq. (5.2.26), we see that Tj and 7, constitute a bases of the U(1), x SU(2)
Lie algebra in the following sense:

{To, T,}p =0, AT, Ti}p = €T3 - (5.2.29)

From the above analysis of the constrained Hamiltonian system, it follows that the

set of all the first-class constraints that we should take into account is eventually

x a b e a b V(e
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5.3 Canonical quantization

In this section, we carry out canonical quantization of the Hamiltonian system

analyzed in Sec. 5.2. To this end, in accordance with Dirac’s procedure of quanti-

zation, we introduce the operators f and ¢ corresponding to the functions f and

g, respectively, and set the commutation relation

5] =1 o0

(5.3.1)

in units such that A = 1. Here, {/f,?}D denotes the operator corresponding to
the Dirac bracket {f, g}p. From Egs. (5.2.26) and (5.3.1), we have the canonical

commutation relations

i) (i)
RS e, 7] = 0107,
3, Po] —i, 6, ] =i,
[é, PO =y

The other canonical commutation relations vanish.

In the quantization procedure, the first-class constraints in Eq. (5.2.30) lead to

the physical state conditions

0
= %&1&? + J)id@id - 28) |@> =2 (TO - S) |@> = O,
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~—~

5.3.3b
5.3.3¢
5.3.3d
5.3.3e

5.3.3f

Y~ N~
~— S S s

—~

5.3.3g

(5.3.3h)

(5.3.31)



where |@) denotes a physical state, Ty and T, ( = 7, 3) are defined by

1 . .
(w b+ wmw> Ty = 5ot (@gw,ﬁ + zbkd@bJ“) L (5.34)

A

Tp =

l\')l»—t

In defining the operators (b e X, )23 and X , we have obeyed the Weyl ordering
rule. Then we have used the relevant canonical commutation relations to simplify

the Weyl ordered operators. Using Eq. (5.3.2b), we can easily show that
[TO, T] —0, [T T} — ie,oT} (5.3.5)

which is precisely the quantum mechanical counterpart of Eq. (5.2.29). It is evident
that Ty is the generator of U(1), and T, (r = 1,2,3) are the generators of SU(2).
In particular, 7% is the generator of U (1)p.

Now, we introduce the bra-vector

(z, f,@,w,a, b? €|

= (0] exp (lmaaP +ifPY + @/}a — wm@/ﬂo‘ + iaP@ + zb3P () | zeP(e)>

(5.3.6)
with the reference bra-vector (0| specified by
(0]2°% = (0| f = (0|&", = (0]@q = (0]a = (06> = (0|6 = 0. (5.3.7)
Using the commutation relations in Eq. (5.3.2), we can show that
<‘,L" f7 @7 w) a? b37 el'f%aa = an‘("E’ f? @7 w? a/7 b37 e| Y
<x7f’@7w’a7b37e|f:f<'r’f7@’w7a7b37e|7
<I’ f7 @’ w’ a? b37 e|z%‘zy - @;<x7 f’ @7 w’ a’? b37 e| Y
<'Ta f7 @a w,a, b37 ekbid = wid('xv f’ @7 w,a, b37 e| )
<x7 f7 @7 w? a? b3’ e|d = a<$7 f7 @7 w? a’ b37 e| 7
<w7 f7 @7 w? a? b37 e|B3 = b3<x7 f7 @7 w? a? b37 e| 9
(z, f, @, @, a,b% ele =elz, f, @ w ab’el. (5.3.8)
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Also, it is easy to see that

:r,f,@,w,a,b,ep@:—i (z, f, @, w,a,b’ e,
R 0
<$7 f7 @7 w? a? b37e|P(f) = _Za_f<$’ f? @’ w? a? b37 e| )
N 0
<'T’ f?ﬁ’ w? a7 b37 el/ll):/l - _ <x7 f7 @7w7 a? b37e|7
ow?,
. )
<$7 f7 @7 w? a’ b37 e|wla = - <x7 f? @7 w? a? b37e’ )
0wig,
<I7 f?ﬁa w, a, b37e|ﬁ)(a) = _Za_<x7 fa ’@7@7 a, b37 e| )
a
A .0
T, ,@,w,a,b?’,eP(b) z, f, @, w,a,b’ e,
3 8b3
. 0
(z, f, @, w,a, b3,e|P<e) = —i%@,f,@,w,a, b3, e|. (5.3.9)

Multiplying each of Eqs. (5.3.3a)—(5.3.3i) by (z, f,@,w,a,b,e| on the left and
using Egs. (5.3.8) and (5.3.9), we have

(—iaa _ 4 wgmm) d(z, f, @, @, a,b> e) =0, (5.3.10a)
xaa
—i%@(w, f,@, @, a,bde) =0, (5.3.10b)
0 B 5
—Z%QE(.I, fy@,w,a,b’ e) =0, (5.3.10c¢)
—i%@(m f,@, @, a,b’e) =0, (5.3.10d)
gb(x f,@, @, a,b’e) =0, (5.3.10e)
(0—3)@(xfwwab3 e) =0, (5.3.10f)
(T3 — t) D(x, f, @, @, a,b% e) =0, (5.3.10g)
2
<7; : b )@(x f, @, @, a,b*e) =0, (5.3.10h)
(w @il @i, —m ) &(z, f, @, @, a,b> e) =0, (5.3.101)

with &(x, f, @, @, a,b® e) == (z, f, @, @, a,b® e|®). Here, Ty and 7, (r = 7,3) are
defined by

1/, 0 0 L ol _; 0 0
76 o 2 (waﬁwg wmf)wid> ’ 7; T QO-T] (wo‘(?wf; Wkaaw]‘d) )

(5.3.11)
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Equations (5.3.10b)—(5.3.10e) imply that @ is independent of a, b®, e and f. Hence
it follows that & is a function of 2%, @’ and w;,. Equations (5.3.10a), (5.3.10f)
and (5.3.10g) can be simultaneously solved for any arbitrary real constants s and
t. However, if the solution is required to be a Lorentz spinor consisting only of

@', @i, and % it is restricted to

Fi1-ip = — = = s - — it o
@aln-ap; J1-Jq, Q1---Oyq ($, w, w) - wal wof}pwjlal w]qaq €xp ( (24 wawza) )
(5.3.12)
and accordingly s and ¢ are determined to be

S:p1+P2—Q1—QQ t_pl—p2—Q1+CI2
2 o 2 ’

b1, P2, 41, q2:0,1,2,... .
(5.3.13)

Here, p; is the number of @} in Eq. (5.3.12) and pa(= p — p;) is the number of

@?2. Similarly, ¢; is the number of @y in Eq. (5.3.12) and ¢o(= q — q1) is the

number of wy,. In this way, the allowed values of constants s and ¢ turn out to be
either integer or half-integer values. It is obvious from Eq. (5.3.12) that @ has the

symmetric properties:

Fil.bm...In...0p _ Fil.bn..im...0p ( )
¢a1...am...ozn‘..ap;jl..,jq,dl‘..dq - ¢a1..,an...am...ap;jl...jq,o}l,,,aq ) 5.3.14a
Fi1...0p Ry ( )
¢a1...ap;j1...ja...jb...jq,dl.,.O‘za.‘.o‘zb‘..dq - ¢a1..‘ap;jl...jb.‘.ja...jq,dl...db...da...dq . 5314b

The operators 7, fulfill the SU(2) commutation relation
(T, Ts] = i€, Tr . (5.3.15)

Following the general method for solving the eigenvalue problem in the SU(2)
Lie algebra, we can simultaneously solve the eigenvalue equation for the Casimir

operator 7,7, = T; T, + T37T3 , i.e.,
TTd = Ad (5.3.16)
and Eq. (5.3.10g) to obtain

1
A=1(I+1), 1=0,5,1, (5.3.17)

t=—1,—I+1,...,1—1, (5.3.18)
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For convenience, we introduce

Wdplptieiptg . ipyikl | ipyqkq gl e
Cal"'ap;dl"-dq =€ € ngCVl ap; k1kg, d1ecg (5319)

Using this, we can find that the eigenfunction @, being the solution of (5.3.10a),

(5.3.10f), (5.3.10g) and (5.3.10h), is given by symmetrizing the indices i1, . .., ip4q
in Eq. (5.3.19) as

11 Iptg =
@al apdl dq<x7w7w)

= (liint) (x,0,w) = “ it (x, 0, ) (5.3.20)
TTodat.ap; GG N T al .ap; Q...0y ) ) 9.

perm.

where >

I is determined to be

perm, denotes the sum over all permutations of {iy, -« ,iy14}. In addition,

ptqg_pitptatae
2 2 '
It is follows from Egs. (5.3.14a), (5.3.14b) and (5.3.20) that @ has the symmetric

properties

I = (5.3.21)

i1.-Iptq — piinta

gp...aa...ab...;dl...dq - dj...ab...aa...;dl..‘dq ) (5322&)
11...0p4q _ Fil.dptg

gpal“.ap;.‘.da.‘.db... - djal...ap;..lda..‘db.‘. . (5322b)

From Egs. (5.3.10g), (5.3.10h), (5.3.16) and (5.3.17), the allowed values of the
positive constant £ are determined to be

k=211 +1)— 2. (5.3.23)

It is now clear that @ is characterized by the set of three quantum numbers (s, I, t)
or, equivalently, by (p, ¢, t). In addition, @ is also characterized by an another set
(s1, S2, I), where sy :=s+1t, s9:=5—1.

Since the coordinate time is given by 20 = (2% + z'1)/1/2, we see that Eq.
(5.3.20) describes a plane wave of the positive-frequency (|wq|% + |wqp)® + |11 ]* +
|5i]?)/V/2. A negative-frequency plane-wave function can be obtained by taking
the complex conjugate of Eq. (5.3.20).

5.4 Positive and negative frequency fields and
the generalized DFP equations

In this section, we construct well-defined positive-frequency and negative-frequency

spinor wave functions from the plane-wave solutions, considering a regularization
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method to have well-defined spinor wave functions. We also find Penrose transforms

via appropriate Fourier-Laplace transforms.

5.4.1 Positive-frequency wave function

We consider the positive-frequency spinor wave function defined by

WJFE{:ZZ?@L..% (x)
_ (@, w)pl v (r,@, @)d*@' A d*&* A Py A dPw
= (27r2)8 (C4 bl a1 ap;al aq Y ) 1 2
_ (—1)17 Z o .. _@ip €ip+1jl X Eip-‘—qjqw‘ ) DT f—i-(@ w)
(27TZ)8 i %1 ap Jioa Jq®q )
perm.
X exp (—ixw@gwkﬁ) &' A P A d*wy A dPoy (5.4.1)
where d*@' = d@ A d@) ,d*w; := dw,; A dw,;; (i = 1,2). This function is
just a linear combination of @211(’;;"&1 &, With the coefficient function f*. When

the absolute value of the integrand increase or sufficiently slowly decreases in the
asymptotic region specified by (|@4|* + |e74|? + |11 > + |@4i]?) — oo, the integral
in Eq. (5.4.1) is not well-defined. To make this integral well-defined, we replace
2% by 2% = % — jy®® 50 that the integrand can include the multiplicative

exponential factor exp <—y567ﬁéwj6) . The exponent yﬁﬁﬁéwj 5 can be written as

—k
yﬂﬁwﬁww

= % (6" + lol) (Mol + o) + % ((6° = lyl) (Mil? + Poil?)  (5.4.2)

in terms of the real variables y* (1 = 0,1,2,3) and the spinor \;; := Udg(y)wm.
Here, [y| := v/(y")? + (y2)? + (¥*)* and

1 v+ lyl oyt +ay? )
U = —_— j . 54.3
W) = Syl + T (yl B B Y (5.43)

This matrix is both unitary and Hermitian. From Eq. (5.4.2), we see that

yﬁfé?ﬁ’gww is positive definite if and only if y,y* = (y°)? — |y|* > 0 and 3° > 0.
These two conditions for y* together define a region called the forward (or future)
tube:

CM" := {(2) € CM* | 2" = 2 — iy", yu* > 0, 3 > 0} . (5.4.4)
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Here, CM* denotes the conformal compactification of complexified Minkowski
space CM. Since yﬁﬁzﬁgwkﬂ- > 0 is valid in CM™, the integral in

+i1.8ptq
v Q.. ocp,al .Cg (Z)
*11 et dpll L fptdda s L e T (&
Wa, € €PN 6y Wigig S (@, @)
c perm.
X exp <—izﬂﬁﬁgwk5> &t AN dP@? A Pooy A dPooy (5.4.5)

is well-defined for 2# € CM™. Therefore, the positive-frequency spinor wave func-
tions is suitably defined on CM™. In this function, exp <—yﬁﬁﬁgwk5> plays the
role of a damping factor. The corresponding spinor wave function on M is given
by

i () = g () (5.4.6)

Q1...ap;0 ...0q 4010 Q1...0p;0 ...0q

We can find that Eq.(5.3.10i) is equivalent to formulas
&l i = (i 1L gi , Wig@o T e (5.4.7)

. :ei-— -
* V2 V2

where ¢ is an arbitrary real constant. Hereafter, we choose ¢, in such a way

that ¢’ = 1. By using these formulas, it is easily seen that ¢2{::?g:?a1...aq (2, @, @)
satisfies
0 Q1.4 m L
-+iptq M By inipig
azﬁﬁ.@m...ap;ﬁdz...dq = Z\/ie Qs*ym.“ap;a'g“.o}q ) (5483)
O i o
T = T e (43

From Egs. (5.4.5) and (5.4.8), we can prove that W=+ (2} satisfies the

Q1...0p; (1.0

Dirac-Fierz-Pauli equations with SU(2) indices

: 0 i1eiptg i

Z\/ﬁaz 5 W+a1,,.a:;6d2,“dq (Z) ﬁ’yw+’yal ;p,ag Oéq< ) = 0 9 (549&)
88

- 0 i1iptg ininta

Zﬂ@gﬁ.Lp+f6}°‘2"'zp?é‘1""j‘q( ) + mgﬁvgp-i-ag a:ﬂal aq( ) =0. (5.4.9b)

Therefore the function Q5all gqum by (z,%,w) is a particular solution of these equa-

tions. Using Egs. (5.4.9a) and (5.4.9b) and noting
g 9 156 Jd 0

DzB 0245 270277 0z

(5.4.10)
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we can derive the Klein-Gordon equation

0 0 2 421 lpt
(&zw T +m ) v almgpfdlmdq(z) =0. (5.4.11)
This makes it clear that ¥ is a field of mass m. Thus we obtain a spinor field of
rank p + ¢ with mass m.
Now, let us consider the Fourier-Laplace transform of f*(@, w) with respect
to @,
1

(2mi)* S+

fHo,w) =

(@, @) exp (—&, ) &' A d*&* (5.4.12)

Here, ¢f is defined by Eq. (3.3.11), and the integral is taken over a suitable four-
dimensional contour, IT*, chosen in such a manner that f* becomes a holomorphic
function of o and w;s. (The Fourier-Laplace transform (5.4.12) is consistent with
the representation @’ = —9/dp%.) Since the pair of ¢ and w, is precisely the
twistor Z& = (0%, @q), the function f is regarded as a holomorphic function on
(nonprojective) twistor space T x T, the direct product of two four-dimensional
complex spaces coordinatized by (of, @ia) and (0%, @as) respectively, and can be
expressed as f1(Z;). From the first equality of
BB=i__ . _ i ooy _ L i o ia

y @@,y = Re(@,0) = 5 (@adl + 0°wia) (5.4.13)
it is clear that f* is well-defined on the condition yﬁgzﬁgwiﬁ- > (. In other words,
[T is actually well-defined on a region

(T xT)" = {(of, wia) € T x T |@,0f + 0"%wis >0} . (5.4.14)

Noting that 0/00% exp (—@égf) = —@! exp (—@égf), we can write Eq. (5.4.5)
in terms of f(p,w) as

U o gt g (2)
1 o o 0 0
— : 61p+1]1,,,61p+q3qw.d Wby e ol + , W
(27TZ)4 fzyr p;. Jion JqCq agi11 aQi: f (Q )
X d2w1 VAN d2WQ , (5415)

where (z#) € CM™, and X' is another four-dimensional contour. Equation (5.4.15)

is identified as a nonprojective form of the Penrose transform in the massive case.
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The exterior derivative of the integrand including d*w; A d?w, vanishes with z#
held constant

..w. . — .
anqagzl agio;p

d (wjldl : 0 .9 o, @)d*w; A d2w2> =0. (5.4.16)
Therefore, it can be proven by using Poincaré’s lemma and Stokes’ theorem that
the integral itself remains invariant under the deformations of X* that are car-
ried out continuously in the domain of the integrand. Suppose now that f* is
homogeneous of degree s; with respect to wis and S, with respect to wsg, that
is, f*(co1,cw, o, ctmy) = 152 f (o, w) (c € C). Then under the replacement
of wis by ¢;wis( no sum with respect to i), the integral changes into the multi-
plied by @t ta2=—pP1=p2H4+51+8 By virtue of the deformation invariance of the integral.
However, this replacement cannot change the integral actually, because the w;g
are merely variables of integration. Hence, it follows that the integral vanishes if

P14+ P2 — q1 — g2 — 4 # 51 + So; only in the case of
prtpr—g—g@—4=35+5 (5.4.17)

the integral may remain nonvanishing. In this case, the integrand including d*co; A
d?w;y can be expressed as the exterior product of dw, /@, and a 3-form consisting
of € 1= w,j /@,y and & := waa/wyy (& = 0,1). (Here, w,g, ¢ and & are treated as
independent variables.) After carrying out the contour integration over w,; along
a topological circle surrounds w3 = 0, Eq. (5.4.15) reduces to

it (2)

ay...0q; (1.0

1 o o o o
= — L N N R N L s S +
(27Ti)3 ﬁ:+ Z € € Wirén Wiiqirg agfé; aQZ)p f (Qa ”(IJ)

perm.

X geweklmadwg Ndoog A dw! | (5.4.18)

where I'" denotes a three-dimensional closed contour on the CP? coordinatized by
(¢, &, &i). Equation (5.4.18) is identified as a three-dimensional projective form
of the Penrose transform [11]. Tt is easy to show that f* satisfies
o 0 0 N

<—gi 3~ T T2 4) o, @) =0. (5.4.19)
This looks like the eigenvalue equation (4.2.13¢) for the generator Ty of the U(1),
transformation, which the twistor function F'(W#) obey in twistor formulation, but
the sign of s is opposite.
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5.4.2 Negative-frequency wave function

A (well-defined) negative-frequency spinor wave function can be obtained imme-

+21---tptg
Qa1...0p; Q1.0

diately by taking the complex conjugate of ¥ (z). The wave function
obtained in this manner is, however, a function of z#* and hence is anti-holomorphic.
In the following, we construct a holomorphic negative-frequency spinor wave func-
tion.

Let f~ (@, w) be a complex function similar to f* (&, w). The negative-frequency
counterpart of W' ta (x) in Eq. (5.4.1) is defined by

ay...0p;Q...0q

W_il.”ip+q (I)

Qi...0p;Q...0q

1 r 91...2 _ _ _
= , / f(@,w) @l . (—x, @ w)d*@ AT A dPwoy A dPos
C

(27TZ)8 4 Q1...0p; G ...0g
1 o o
= (27”)8 /(;4 Z w;ll .. .wZ’pelpﬂjl e Elp-s-qjqwjldl .. 'qudqf (w, w)
perm
X@m<MW%£ww>f@1Af@2Afm¢Afwg, (5.4.20)

where (1521':'_7_;2;“0-61_._%(—%@,72) obeys the complex conjugates of Egs. (5.3.10a),

(5.3.10f)—(5.3.10h), and its corresponding values of s, ¢, and I are determined to
be

P1+Dp2—aq1— Q2
S = — 2 s t:
_htptate ptg

2 2

D —a Tt
2 )
P, P2, @1, ¢2=0,1,2,.... (5.4.21)

1

Note that, s and ¢ are different from Eq. (5.3.13) only in the sign. The integral
in Eq. (5.4.20) itself is not well-defined in general, and we therefore replace z®¢
with 29 = 2% — jy*% by following the case of the positive-frequency spinor wave
function. Owing the replacement, the integrand is modified so as to include the
damping factor exp (yﬁf}@éwm> valid on the simultaneous conditions y,y* > 0
and y° < 0. These conditions together defined a region called the backward ( or
past ) tube:

CM™ := {(2") € CM* | 2 = 2" — iy", yy" > 0,y <0} . (5.4.22)
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Since yﬁgwgwid is fulfilled in CM ™, the integral in

@it (2)

ayp...0p; Q1 ...04q

1 I o
- W /((34 Z wgl T wzof)pelp+1]l U Elp+qjqwj1d1 e qudqf (YD, w)

perm.

X exp (izﬂgﬁgww) &t NPT A Py A dPoy (5.4.23)

is well-defined for 2# € CM™. It thus follows that the holomorphic negative-
frequency spinor wave function is properly defined on CM™. The corresponding

spinor wave function on M is given by

—i1.dptg
ay...0p; Q1 ...04q

(z) = Hmw—"irre () (5.4.24)

4010 Qap...0p;Q...0q

Using the formula (5.4.7), we can easily prove that W*;llzgzqalaq(z) satisfies the
Dirac-Fierz-Pauli equations with SU(2) indices (5.4.9a) and (5.4.9b).
Next, we consider the Fourier-Laplace transform of f ~ (@, w) with respect to
@g:
1 < .
(0, wig) = @y j{ i (@, @) exp (@)0f) i@ A& . (5.4.25)
Here, the integral is taken over a suitable four-dimensional contour, I7~, chosen
in such a manner that f~ becomes a holomorphic function of ¢ and w;4. (The
Fourier-Laplace transform (5.4.25) is consistent with the conjugate representation
@' = 0/00%) Tt is clear from Eq. (5.4.13) that f~ is well-defined on a region of

two-twistor space
(T x T)~ = {(¢of, wia) € T x T |@0f + 0" wig < 0} . (5.4.26)

This is the region of T x T corresponding to CM™; a correspondence similar to
that between (T x T)* and CM™ is established between (T x T)~ and CM ™.

We can write Eq. (5.4.23) in terms of f~ (o, w) as

—i1.lptg _ tp+1J1 ., p+qlq e ..
v Q1...0p; 1.0 (Z) - (27_”)4 o § : € € Wiién Wiigirg

perm.
X 0 9 (0, @)d*w A d*w (5.4.27)
agzall agzp o, 1 25 <
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where (2#) € CM™ and points (of, w;s) in two-twistor space are located in the
region specified by Eq. (5.4.26). The contour X~ of integration is another four-
dimensional contour. Suppose now that f~ is homogeneous of degree §| with
respect to wis and &, with respect to wys. Then | if 3] + 3, # p1 +p2 — 1 — g2 — 4,
the integral vanishes; if §] + 5, = p; + p2 — ¢1 — ¢2 — 4, the integral may remain

nonvanishing and can be written as

g (2)

Q1...Qp; J1..-Jg Q1...Gq

0 o
27m$7{ Z ipt1J1 | | “’*‘”qwﬁal"‘qudq@"'wf (g,w)

perm. ip
1 ij kil & 8
X g€'e wigdwy A dw,s A dwoy (5.4.28)

where I'~ denotes a three-dimensional closed contour on CP3. In this way, we

/o i1 iptq

ar ot én ..y (#) Written in the form

obtain the negative-frequency wave function
of a Penrose transform. We can show that f~ satisfies

B B
o 442s) = 4.2
(gz 308 + iy —— e + 4+ s) f(o,m) =0, (5.4.29)

where s is given in Eq. (5.4.21).

5.5 Exponential generating function for spinor
wave functions

In this section, we treat the spinor wave functions including in the positive and
!I/:i: i1--Iptq

a1 oin.q- THEN we define the exponential

negative frequency wave functions
generating function for spinor wave functions. From the exponential generating
function, we derive a novel representation of spinor wave functions.

We denote each term in the sum in Eq. (5.4.5) as

+11 K
W o1 Z‘p,Jl Jq &1 aq( )
: + l K _
’ 27T/L / f 0411 Zp7j1'~~jq dl...dq('z?w?w)

X dgw A d*@?% A dPooy A dPooy

(-1

- = o, (& BBk
B (27Ti)8 /C4 wz‘ll o wZ)pwjl% o 'qudqf (w7 w) exp (—ZZ wﬁwkﬁ>

x d*@' A d*@? A Py A dPooy (5.5.1)
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ij . Fi1...9p — . . .
where €’s have been omitted and @77 . . ., (2, @, @) is given by replacing

2% with 220 ;= zo% — jy°% in Eq. (5.3.12). Note that ¢~ (2, @, @)

Q1...0p; J1.--Jg Q1...0q

is a solution of Egs. (5.3.10f) and (5.3.10g); however, it is not a solution of Eq.
(5.3.10h). From Eq. (5.4.18), o™ (2) can be expressed in the form

Qi1...0p; j1...Jq 1.0
of the Penrose transform as

+91...4
W ai.. gq,jl Jp Q1. aq(z)
0 0 1 . :
- e 7 T o ij Kl o . B
(27‘(‘2)3 ﬁ+ W1 én w]qaqagqll agapf (Q’ )36 € W,adwk /\dwjﬁ/\dﬂ'l .
i ip

(5.5.2)

Here we have omitted €¥’s. Similarly, we denote each term in the sum in Eq.
(5.4.23) as

¥ 1.1
Q1. Zp,Jl Jq @i aq( )
'L 1 _

= 27T7, / f w w Ojl Zpvjl---jq Q1...0y <Z7 w, w)

X d2w A 2@ A ooy A dPooy

1 W - o s

- (271'2)8 /((:‘4 w;ll o ngpwjldl U qudqf <w7 W) €Xp (Zzﬁﬁwﬁwkﬂ)

x d*@' A d*@* A dPwy A dPooy (5.5.3)

where 52:521':?2?;].1_“]}1 ér...a, (7 T, @) s given by replacing 0% with 209 = g% — jyo¢
after taking the complex conjugate of Eq. (5.3.12). From Eq. (5.4.28), we find

that ¥~ 21 ’gp, 1o Gy (2) can be written in the form of the Penrose transform as

wigi‘.fgp;jl...jq al...aq(z)
1 0 o . 1
_ Wﬁ wjldl"'qudq@”'@f (0, )36 e wmdwk N dw /\dwl .
(5.5.4)
From Egs. (5.5.1) and (5.5.3), it is easily seen that
L0 i (z) = gtk . (2) (5.5.5)
Bai...ap; k ji...jgBdu ...aq ’ o

8256 aq.. ap:]l anl Oéq

Now we define the exponential generating function, ¥, for the spinor wave function
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T41...0p ( ):

Q1...0p; j1...JqC1...0q

. j:ll Zp
(2,0,k) : szw Ql...ap; jl...jnal...aq(z)

m=0 n=0

o L. ..
X L?l ce ey, P K[]lal oo ﬁ]qaq , (556)
1 tp

where (& and x'® are arbitrary undotted and dotted spinors, respectively. The func-
tions Wizall ng J1ojada.iq () can be treated as expansign coefficients in the Maclau-
rin series expansion of \Ili with respect to (& and «'*. Using Eq. (5.5.5), we can

show that W* satisfies the fundamental equation

(—z’ 0 _ a2..>‘1’i(z,b,/€):0. (5.5.7)

0z  OufK™™

This is precisely the complexification of the so-called unfolded equations

) 2\ . .
(-Zaxad - 8@0?@5“) B(x,1,0) =0 . (5.5.8)

which can be obtained in the present formulation by taking the inner product
between Eq. (5.3.3a) and the bra-vector

<x7 f? w? QZ’ a? b37 e|
= (0] exp <ix°‘d150(éz) +if PY) — o 4 )", 4 ia P + zb?’P + zeP(e))
(5.5.9)
Here, (0] is a reference bra-vector specified by (0|#°% = (0|f = (04", = (0]¢p'd =
(O]a = (0|b* = (0]é¢ = 0. The function & is defined by &(z, f, 1,1, a, b e) =
(z, f,v,10,a,b® e|®) and is described as &(z, 1, 1)) after taking into account Egs.
(5.3.3b)—(5.3.3¢). Substituting Egs. (5.5.1) and (5.5.3) into (5.5.6), we have

1 ~ : , .
Ut (2,1,k) = @i /<c4 (@, @) exp <:Fiz66@§wk5 Fal + widﬂm)
x d*@' A d*@® A Py A dPooy (5.5.10)

With this expression, it is clear that ¥+ and ¥~ are well-defined on CM™ and
CM, respectively, owing to the fact that the integrals converge in their corre-
sponding tube domains. Substitution of Egs. (5.5.2) and (5.5.4) into Eq. (5.5.6)
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yields

V(2,1 k)

1 0 1. : .
= —j{ exp | @wigk™ + 18 =— | (o, w)—ejkelmwﬁsdwf A dwogy, N dwy),
I+ 8 3 J

(2mi)3
(5.5.11)

which can be recognized as a collective form of the Penrose transforms (5.5.2) and
(5.5.4).
We now note that

fi (o, w) exp (q: @+ wid/{id)

= J 0 , g
_ r* - =i« e
=f (:FE)L’ 8/@) exp (Fa,tf + @wiak'™) , (5.5.12)
where fi(:F@/aL 0/0k) may include the integration operators (9/du)~* := [ duif!
and (9/0k™)~' := [dk', and their higher-order analogs. Applying Eq. (5.5.12)

to Eq. (5.5.10), we obtain

T (2,0, 5) =

o 0 | . )
(2m ) ( T on >/ exp (Fiz" Bhe, F @il + wian™)
(C4

x d*@t A d?@? A APy A dPoos

0 0 y

r+ -1, a, i

(2m) < ( ¥, on > exp (12503 K") /<c4 exp <:Fzz wﬁw 5)

x d*@' N @ A Py A dPoos (5.5.13)

Here, z,. denote the matrix elements such that 27z, g = 0% and zg z”ﬁ = 45,
Carrymg out the integration in Eq. (5.5.13) leads to

+ _ 1 N\ (L0 9 —1 i
U (2,1, k) = Wdet (Z,Bﬂ)f F5, 55 ) P (izgatd ") . (5.5.14)

We can directly verify that ¥+ in Eq. (5.5.14) fulfills Eq. (5.5.7). The spinor wave
functions can be derived from Eq. (5.5.14) as the coefficients of the Maclaurin
series expansion of W* with respect to (& and k%

wi“ i B 1 d oprta
ey g (2) = (2m)t et( )aﬂl---aﬂpamm---quq
ip

s 0 0 .
+ o~ o id
x f (:F_QL’ _EM) exp (zzaa LK )

(5.5.15)

[ JE Yo
L¥=r"*=0
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In this way, we have obtained a novel representation for each of the spinor wave
functions. We now write the contravariant vector corresponding 2, as (271)~.
Then it can be shown that (z7')* = 22#/(z,2"). The discrete transformation
z# — 2(z71)* is known as the conformal inversion transformation. Therefore, it
turns out that Lﬁi;ll”.ffyp;jl.‘.jqal‘..aq (z) in Eq. (5.5.15) is a function of the conformally

invereted space-time variables (z71)~.

5.6 Physical meanings of the internal symme-
tries

In this section, we investigate the rank-one spinor fields of I = 1/2 in detail to
clarify physical meanings of the U(1),, U(1), and SU(2) symmetries as well as
those of the constants s, t and I. In addition, we demonstrate the rank-two spinor
fields of I = 1 constitute massive fields obeying the Proca equations.

5.6.1 Case [ =1/2

We consider the DFP equations that rank-one spinor fields of I = 1/2, namely
U+ and ¥F%, obey, which are given by Eq. (5.4.9a) in the case (p, q) = (0,1) and
Eq. (5.4.9b) in the case (p,q) = (1,0) as

. d +3 +i8 _
z\/éazﬁgkp 5(Z) my="(z) =0, (5.6.1a)
; 9 +if +i _
z\/iazﬁﬁ.y‘/ (2) = m¥*i(z) = 0 (5.6.1b)

with W*% .= "1W*!  Equations (5.6.1a) and (5.6.1b) with i = 1 can be combined
in the form of the ordinary Dirac equation

wﬂﬁ(z)) |

DYi(2) =0,  ¥i(z):= (&Dié(z) (5.6.2)

while Egs. (5.6.1a) and (5.6.1b) with 4 = 2 can be combined, after replacing z*¢
by —2%¢, as

wiw(_z)) . (5.6.3)

DUz =0 v (e
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particle antiparticle

left-handed gtla Pt2a
right-handed gt gt

Table 5.1: A classification of the rank-one spinor fields.

In Egs. (5.6.2) and (5.6.3), D denotes the Dirac operator

—még iv/2-2
D= ( %%) . (5.6.4)

iVl —md}

The charge conjugate of ¢ (z) is found to be
e (0 N [0 PN [(UFE(2)\  [(IF ()
wire= (g, 0 )Ee= (0, ) (50) = ()

where the arguments of v, namely 2%, have been replaced by their complex con-
jugates %4 := 9% 5o that (1)F)° can be a holomorphic function of z*%. Using the
complex conjugates of Eqs. (5.6.1a) and (5.6.1b), we can see that D(yF)°(z) = 0.
Since 15 and (¢i)° satisfy the same Dirac equation and have the same spinor
and SU(2) indices, they can be identified with each other up to an overall con-
stant. If 1) represents a spinor field of a particle with four-momentum (£, p),
then 15 (2) is regarded as a spinor field of a corresponding antiparticle with four-
momentum (—FE, —p) owing to ¥5 (2) ~ (¢7)°(z). This means that 5 (—z) =
(Wt22(2),W*2(2))T is considered a spinor field of the antiparticle with four-momentum
(E,p). In view of this fact, it is clear that ¥™'%(z) and ¥2(z) represent a left-
handed particle and a corresponding left-handed antiparticle, respectively, while
U+l (2) and ¥*2(2) represent a right-handed particle and a corresponding right-
handed antiparticle, respectively, as summarized in Table 5.1. We thus find that
the index 7 of ¥ and ¥ distinguishes between a particle and its antiparticle.
Using Eq. (5.3.13), we can obtain the possible values of s and ¢ for each of the
rank-one spinor fields as in Table 5.2. We observe that the left-handed spinor fields
wtie(2) (i = 1,2) have s = 1/2, while the right-handed spinor fields 1% (i = 1,2)
have s = —1/2. Hence, s turns out to be a quantum number specifying the chiral-
ity of a spinor fields . Since s is an eigenvalues of 7, as can be seen from (5.3.10f),
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w-ﬁ-la LZ7+2O‘ 1 _ =

N | —

N~ DN —

gl _1 g2, _1 -
“ 2 “ 2

Table 5.2: The values of s and ¢ of the rank-one spinor fields.

To can be interpreted as the operator of chirality. Accordingly, U(1), is can be
identified as the gauge group of chirality, and the U(1), symmetry is physically
understood as a gauge symmetry leading to chirality conservation. We also per-
ceive that the particle spinor fields ¥*1%(2) and ¥} (z) have ¢ = 1/2, while the
antiparticle spinor fields 29(z) and ¥*2(z) have t = —1/2. Hence, ¢ turns out to
be a quantum number distinguishing between a particle and its antiparticle. Then
it follows that t is proportional to the electric charge of the particle or antiparticle.
Since t is an eigenvalue of T3 as can be seen from (5.3.10g), T3 can be interpreted
as the operator of electric charge up to a constant of proportionality. Accordingly,
U(1), can be identified with the gauge group of electric charge, and the U(1),
symmetry is physically understood as a gauge symmetry leading to electric charge

conservation.

5.6.2 Case [ =1

We consider the DFP equations satisfied by the rank-two spinor fields of I = 1,

that is, W=7, W+ _, and wigﬁ..
The DFP equations satisfied by Wigﬂ and U+ s are given by Eq. (5.4.9a) in
the case (p,q) = (1,1) and Eq. (5.4.9b) in the case (p,q) = (2,0) as

Nﬁww T myi =0, (5.6.6a)
B g o
V2 4 ml* P =0, (5.6.6b)

Similarly, the DFP equations for #*% _; and Wigﬁ are given by Eq. (5.4.9a) in the
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(0,2) and Eq. (5.4.9b) in the case (p,q) = (1,1) as
Z\/_
2 a

82/35

case (p,q) =

w:l:z]ocﬁ + mw:l:zg & _ 0 ’

W:I:ijﬂd + mwﬂ:zyaﬂ — 0 )

(5.6.7a)

(5.6.7b)

Using Egs. (5.6.6a), (5.6.6b), (5.6.7a), and (5.6.7b), we can derive the Klein-
Gordon equation for &Dig , Wigﬁ-, and Wigg as
9 0 , g
. T =0 5.6.8
0288 3255 m af ’ ( a)
9 , 3
, rEY =0 5.6.8b
9298 02y ) b T (5.6.8b)
o 0 9 y
: gEY =0, 5.6.8
929 02,5 | e (5.6.80)
From Eq. (5.6.6a) and Eq. (5.6.7b), we find the symmetric properties
0 0
—pFil — gpigﬂ (5.6.92)
0P8 DB
0 i 0 i
e — _— gFIs (5.6.9b)
which lead to
0 . 0
/L - gpiw =0 5.6.10
azad ad 82# ( )
with Lpiif = aﬁBWigB. Multiplying Eq. (5.6.6a) by ¢ and multiplying Eq.

(5.6.7b) by €8, we obtain

2\/_ wiijﬁﬁgo}ﬂ' _ mq—/iz’jaﬁedﬁ :
zm
2\/_ —mwtiiaseas

yEii B B _
024 7

By adding Eq. (5.6.11b) to Eq. (5.6.11a), we derive
0 0

w:l:zy B B — F:l:ijadﬁ/j”
0204 024

9 s b
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where

pijeasf . %(wiijaﬂedﬁ _ wiijdﬁeaﬂ> _ (5.6.13)
]

Furthermore, by utilizing the formula *

Uua’ygzﬁ'gpﬁﬁo‘g;y = 5(9“’/9/)77 + gl"IgVP _ g“pgm? _ iENVﬂn> ’ (5614)

it follows from Eq. (5.6.12) that
QMY — GrrEn — R (5.6.15)

with FEim .= gt gv pEiiesds Using Eq. (5.6.8b), (5.6.10), and (5.6.15), we can

find
MFEI,, = m*wF (5.6.16)

Equations (5.6.15) and (5.6.16) are precisely the Proca equation for the SU(2)
triplets ¥ and F/J. On the other hand, subtracting Eq. (5.6.11b) from Eq.
(5.6.11a), we obtain

i(@i@iijﬁﬁedﬁ _ iwﬂjvﬁ'gaﬁ) — frigaasp (5.6.17)
Zay Zryé
where

fijacsh _ %(@ﬂjaﬁgdﬁ i ¢iijdﬁeaﬁ> (5.6.18)

corresponds to the dual tensor F£Um .= Lemwm il - With the formula (5.6.14),
Eq. (5.6.17) reads

1 .. .. ~
5e,ulfpn <8pgpiz7] _ anwilp]> — FEiim (5619)

It is evident that this equation, or Eq. (5.6.17), is the dual of Eq. (5.6.15).

0123 _

!The four-dimensional Levi-Civita symbol e#**? is defined as € —€p103 = 1.

80



Chapter 6

Summary and discussion

In this thesis, we have presented a gauged twistor model of a free massive spinning
particle in four dimensions. This model was formulated in terms of two independent
twistors as a non-Abelian extension of the gauged twistor model of a free massless
spinning particle in four dimensions, presented in Refs. [27, 28, 29]. The extended
model is governed by the GGS action that was elaborated by adding the 1D Chen-
Simons terms S, and Sp3 and the novel term Spe to the gauged twistorial action Sy,g
[see Eq. (2.20)]. The GGS action remains invariant under the reparametrization,
the local U(1), and local SU(2) transformations, although the SU(2) symmetry
is nonlinearly realized in the action. In the unitary gauge, the U(1), symmetry is
manifestly exhibited, while the SU(2) symmetry is hidden.

In Chapter 4, we studied the canonical Hamiltonian formalism of the gauged
twistor model and performed its subsequent canonical quantization. The canon-
ical Hamiltonian formalism based on the GGS action was studied in the unitary
gauge by following Dirac’s recipe for constrained Hamiltonian systems. The clas-
sification of the constraints into first and second classes was carried out strictly,
and the Dirac brackets between the canonical variables were obtained concretely.
It was demonstrated that just sufficient constraints for the twistor variables are
consistently derived as the secondary first-class constraints [see Eqs. (4.1.28¢)-
(4.1.281)]. The subsequent canonical quantization of the system was performed
in terms of the new twistor variables W# and WY, because they satisfy the sim-
ple Dirac brackets given in Eq. (4.1.33). We have shown that the Chern-Simons
coefficients 2s and 2t are quantized to be arbitrary integer values as a result of
the canonical quantization based on the commutation relations (4.2.2a)—(4.2.2e).
In general, the quantization of Chern-Simons coefficient is a common consequence
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in certain theories in which the Chern-Simons terms play crucial roles (see e.g.
Refs. [41, 42, 43, 44]). Our gauged twistor model can be regarded as a specific
example of such theories. Intriguingly, the coefficient & of Spio is also quantized
via solving the eigenvalue problem of the SU(2) Lie algebra. We found that the
twistor functions in our model are eigenfunctions of the relevant differential opera-
tors governed by the U(1),x SU(2) Lie algebra [see Eqgs. (4.2.13e)-(4.2.13g)]. Each
twistor function F' is then labeled by a set of three quantum numbers associated
with the U(1), x SU(2) Lie algebra. We have carried out the Penrose transform
of the twistor function F' to obtain a massive spinor field of arbitrary rank defined
on complexified Minkowski space [see Eq. (4.3.1)]. As emphasized earlier, this
spinor field has the upper and lower SU(2) indices in addition to the dotted and
undotted spinor indices. In fact, we observed that the number of upper (lower)
SU(2) indices is equal to the number of undotted (dotted) spinor indices. We also
demonstrated that the spinor field satisfies the generalized DFP equations with
SU(2) indices, given in Eq. (4.3.10). We have investigated the rank-one spinor
fields in detail to clarify the physical meanings of the gauge symmetries as well as
those of the constants s and . It turned out that s is a quantum number specifying
the chirality of a spinor field and that the U(1), symmetry is a gauge symmetry
leading to chirality conservation. It also turned out that t is a quantum number
proportional to the electric charge of a spinor field and that the U(1), symmetry
is a gauge symmetry leading to electric charge conservation. The SU(2) symmetry
was shown to be a gauge symmetry realized in the particle-antiparticle doublets.
Such a symmetry, however, is not observed in nature, so that it should be consid-
ered to be hidden or broken. Fortunately our twistor formulation in the unitary
gauge is appropriate for describing this situation. Since the SU(2) symmetry is a
symmetry realized in the particle-antiparticle doublets, it cannot be identified with
the weak isospin symmetry. We thus conclude that the idea proposed by Penrose,
Perjés, and Hughston [6, 8, 9, 10, 11] is not valid in our gauged twistor model.

In Chapter 5, we treated the gauged twistor model formulated using the spinor
and space-time variables. The GGS action in this spinor formulation is written in
terms of the space-time and spinor variables and yields the mass-shell condition
in Eq. (5.1.3). The canonical Hamiltonian formalism based on the GGS action
(5.1.1) was also studied by taking the space-time and spinor variables as canoni-
cal coordinates. The classification of the constraints into first and second classes
was accomplished, and the Dirac brackets between the canonical variables were
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obtained. After the subsequent canonical quantization of the system based on
the relevant commutation relations, the physical state conditions defined from the
first-class constraints were read as the simultaneous differential equations (5.3.3a)—
(5.3.31). By solving them, we found a plane-wave solution ¢ and saw that each
of the constants (s,t¢,k) is quantized as with the result obtained in the gauged
twistor formulation. We defined the positive-frequency wave function ¥+ as a lin-
car combination of the plane wave solutions with a coefficient function f* and
defined the negative-frequency wave function ¥~ as a linear combination of the
plane wave solution with a coefficient function f~. It was shown that ¥+ and ¥~
are well-defined on the forward tube CM™ and on the backward tube CM™, re-
spectively, and satisfy the DFP equations with SU(2) indices (5.4.9a) and (5.4.9b).
Also, it was demonstrated that the spinor wave functions with SU(2) indices can
be expressed as the Penrose transforms of the holomorphic functions f* and f~
that are defined as the Fourier-Laplace transforms of f+ and f~, respectively. In
this way, we have obtained the Penrose transforms in the case of massive fields via
appropriate Fourier-Laplace transforms. Furthermore, we constructed the expo-
nential generating function ¥+ for the spinor wave functions and derived from it a
novel representation, Eq. (5.5.15), for each of the spinor wave functions. Then this
representation turned out to be a function of the conformally inverted space-time
variables 3(z ). We have also investigated the physical meaning of the U(1) and
SU(2) symmetries as well as those of the constants s and ¢. The results turned
out to be identical with those obtained in Chapter 4.

The observation that s is a quantum number specifying the chirality of a spinor
field is supported for the following reason: The gauged Shirafuji action for a mass-
less spinning particle enjoys the U(1), symmetry and contains its associated con-
stant s [27, 28, 29]. This constant is indeed shown to be the helicity of a massless
spinning particle. As is well known, the chirality is an analog of the helicity, while
the chirality is a Lorentz invariant quantity valid for massive particles as well as
massless particles. (For massless particles, chirality is the same as helicity.) For
this reason, in the present twistor model, it is quite natural to identify the Lorentz
invariant quantity s as the chirality quantum number.

We have seen that each eigenstate of T3 corresponds (via the Penrose transform)
to a particle or antiparticle state represented by its own spinor field. Remarkably,
we encounter a similar situation in studying the rigid body model [45, 46]. In this
model, the rigid body rotation leads to an intrinsic SU(2) symmetry in addition
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to the spin SU(2) symmetry. Hara et al. showed that the eigenstates of the third
generator of the intrinsic SU(2) group are assigned to particle and antiparticle
spinor fields. They also pointed out that this generator cannot be identified with
the third component of the isospin generators. (Accordingly, it turns out that the
intrinsic SU(2) symmetry cannot be regarded as the isospin symmetry. This result
contradicts the earlier idea concerning isospin proposed in Refs. [47, 48].) We
thus see that the gauged twistor model and the rigid body model share common
aspects.

Now we recall that the secondary first-class constraints (4.1.28¢)—(4.1.28g), or
equivalently, Eqs. (4.1.36a), (4.1.36b), and (4.1.38), have been derived systemat-
ically on the basis of the U(1),, U(1)p, and reparametrization symmetries of the
GGS action. By contrast, the remaining secondary first-class constraints (4.1.28h)
and (4.1.281) have been derived as a result of incorporating the mass-shell con-
dition (3.1.3) into the GGS action by hand. Considering this fact, we can never
say that the present approach for constructing the GGS action is satisfactory from
the gauge-theoretical point of view. To make our gauged twistor formulation com-
plete, we need to establish an approach in which the mass-shell condition (3.1.3)
is supplied as an inevitable outcome of an extra gauge symmetry.

In this thesis, we have not presented precise definitions of the chirality and
charge conjugation for a massive spinor field of arbitrary rank. The chirality may
be defined on the basis of the type of spinor indices of the field. For clarifying the
definition of charge conjugation and its associated concept of particle-antiparticle,
it is necessary to examine coupling of a massive spinor field of arbitrary rank to
the electromagnetic field. The precise definitions of chirality and charge conjuga-
tion should confirm our observation on the physical meanings of the constants s
and t. It is also interesting to incorporate interactions other gauge fields lying in
space-time and consider interactions between particles. We hope to address the

aforementioned issues in the near future.
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Appendix A

Poincaré symmetry and
Pauli-Lubanski pseudovector

In this appendix, we consider the Poincaré symmetry and the Pauli-Lubanski pseu-
dovector within the framework of the gauged twistor formulation.

We can easily show that the GGS action (3.3.9) remains invariant under the in-
finitesimal Poincaré transformation (or more accurately, the infinitesimal SL(2, C)x

RY3 transformation)

o = o = o — 0] — ey, (Al a)
Ry L S—aﬁéiﬁ +2-€,3a@%’ (A.1b)
Wie = Wig = Wia + 5016731-/3 ) (A.lc)
@ o W=+ e @ (A.14d)

Here, £ and édB( = szﬁ) are parameters of the infinitesimal Lorentz transfor-
mation (or more accurately, the infinitesimal SL(2,C) transformation), satisfying
the symmetric properties e = £#* and g8 = éBd, while €2 is a parameter of the
infinitesimal translation, satisfying the Hermiticity coB — A The fields h, h, a,
and b" are assumed to be Poincaré invariant. Since the GGS action is Poincaré
invariant, we can derive conserved quantities by applying Noether’s theorem. The

conserved quantities corresponding to ¢, £4% and £*% are found to be

1 _4 N
Hap == §(Qiawﬁ +0is@n) (A2 a)
] i y
Hap = _i(gdwi/ﬁ’ + Qﬁ'wid) ; (A2 b)
Pog = Wo Ty - (A.2 ¢)

86



Substituting Eqs. (4.1.37a) and (4.1.37b) into Eqgs. (A.2 a) and (A.2 b), respec-
tively, we can rewrite a5 and fi,; as
?

Hap = E(pza@/lﬁ + Pzﬁﬁg) ) (A3 a)

_ (= i
The angular momentum tensor is given by

M, app = Hap€ap + PapCas (A.4)

while the four-momentum vector is given by Eq. (A.2 ¢).
The Pauli-Lubanski pseudovector is defined by [3, 49]

Wad = lﬁadﬁﬁ.'y"y&i M

> PasMoss (A.5)
which can be written as
Wes = —ip’ps® +in’p® (A.6)
by using the formula
€ aBPYI0E i(eweﬁ‘sed‘sem - eadeﬁ"’edwe['.}é) . (A7)
Using the identity
ePpl +Mpf + p] =0 (A8)

and its complex conjugate, we can express Eq. (A.6 ) with Egs. (A.2 ¢) and (A.3

) as
o —J g —ia_a L —i ~if\ =ja,d
wee = (pfwjﬁ +wiﬁ-pjﬁ>w @ — §<pfw,8 + @50 5>w3 @y, (A.9)
or concisely,
. . 1 .. - ) .
e = (555; — 5535,&) WEW &' w . (A.10)

Here, WP and W4 are the twistors defined by WP = (g}, @, ;) and W =
(@g, p*?) (see right above Eq. (4.1.33)). Applying the formula

1 Y
50@’@# = 8l6] — 551?52 (A.11)
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valid for the Pauli matrices o, to Eq. (A.10 ), we obtain
Wt =T,0,/ @@, (A.12)
with
T, = %V_VkBUTlelB (A.13)

(see Eq. (4.1.39)). Equation (A.12 ) can be written in terms of the (original)
twistors ZP and Z% as

Wwee = TTO'Mjﬁ'mﬂ'? , (A.14)
with
1-
T, := §ZgarklZlB. (A.15)

Using the mass-shell constraints

w,-dwj ~ %Gijei@, (A16 a)
W, ~ ——ele ¥ (A.16 b)

equivalent, respectively, to Egs. (4.1.11e) and (4.1.11f), and utilizing the formula
020,09 = —0o}, we can show for Eq. (A.12 ) that

Woa W =~ —m?T,T,. (A.17)

In our model, twistor quantization is performed with the commutation relations
(4.2.2a) and (4.2.3), or equivalently,

[ﬁia,%%} = —eas, [Pk, fv]ﬂ-} = 5;'60;/3’ all others = 0. (A.18)

The operators corresponding to pap and fi,4 are defined by replacing the twistor
variables in Eq. (A.3 ) with their corresponding operators and by obeying the Weyl
ordering rule. After using the commutation relations in Eq. (A.18 ), we have
N { A~ 2y N
flap = §<piawﬁ + ,Oilgwa> , (A.19 a)
l

fap = 5 </32ﬂ%15 + ﬁ;@za> : (A.19 b)
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The operator corresponding to p,,; is found immediately from Eq. (A.2 c) to be

A~

Pag = Wb - (A.20)

Using Eq. (A.18 ), we can calculate the commutation relations between fing, /7@5’
and p,s to obtain

[ﬂam fiys | = %(%MB& + €asflpy + €pyflas + 656/@) (A.21 a)
[ﬁaﬁ'a ﬁy(s = %<€awﬂﬁa + Gmslim + €4has + 5/35%!7) (A.21 b)
[ﬂaﬁa Dyi| = %(‘5&71955 + Eﬁvpoas) (A.21 ¢)
[ﬁag, 1575_ = %( €46Dp T e,esﬁwa) ; (A.21d)
all others = 0. (A2l e)

These commutation relations specify together a spinor representation of the Poincaré
algebra. The operators fing, il 5. and p, 5 are thus established as the generators of
SL(2,C)xR"®. We can verify that fiag, [isg, and p,; commute with the generators
Ty and T, defined in Eq. (4.2.4). This implies that the Poincaré symmetry and the
U(1), x SU(2) internal symmetry are not combined, so that the result is consistent
with the Coleman-Mandula theorem [51, 52].

The Weyl ordered operator corresponding to the Pauli-Lubanski pseudovector

W% can be simplified as
Wes = T,0,/ "5 (A.22)
by using the commutation relation
[‘T’r, Jsij%mfﬂ?] = ierstatijﬁi“@? ) (A.23)

Then, using the physical state conditions

w@@ﬁ;}z'F) = %QJBMWF% (A24 a)

Ag oA moo.. s

&l Gio|Fy = L eiiei?| ) (A.24 b)
ol \/5

equivalent, respectively, to Eqgs. (4.2.3h) and (4.2.31), we can show that

W W FY = —m?T,T,|F). (A.25)
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This is precisely a quantum mechanical counterpart of Eq. (A.17 ). The Casimir
invariants of the Poincaré algebra are given by ﬁaBﬁaﬁ and Wos W, From Eq.
(A.24), it follows that

Bogh’|F) = m?|F). (A.26)
Then it can be shown that [49, 50]
WoaaWeS|FY = —m?J(J + 1)|F), (A.27)
with J being the spin quantum number taking the values

717_7"'- <A28)

Here, |F') is assumed to be a simultaneous eigenvector of Wao W and the other
relevant operators To, Ts, T;T; and ﬁaﬁﬁaﬁ (see Egs. (4.2.3e), (4.2.3f), and
(4.2.3g)). This assumption holds true, because the generators of SL(2,C) x R!3
commute with those of U(1), x SU(2). The vector |F') turns out to be character-
ized by the set of quantum numbers (s, I,t;m,J). In terms of |F'), Eq. (4.2.20)
reads

T1,0F) = 1T+ DIF). (A.29)
Applying Egs. (A.27 ) and (A.29 ) to Eq. (A.25 ), we eventually have
I=1J. (A.30)

This result is consistent with the fact that the number of SU(2) indices of the
spinor field ¥, given in Eq. (4.3.1), is equal to the number of its spinor indices.
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