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Chapter 1

Introduction

Twistor theory was first proposed by Penrose in 1967 as a novel approach to finding

a unified framework for general relativity and quantum physics, aiming at estab-

lishing a theory of quantum gravity [1]. In twistor theory [2, 3, 4, 5, 6, 7, 11], a

complex space called twistor space is considered to be a primary object for express-

ing physics, while 4-dimensional space-time is treated as a secondary object. One

of the common motivations in early studies on twistor theory is thus to describe

4-dimensional space-time, gravity and even the elementary particles in an equal

footing on the basis of the complex geometry of twistor space. Such an ambitious

attempt in twistor theory has been summarized by Penrose himself as the twistor

programme [6, 7].

Twistor theory is basically appropriate for describing massless systems with

conformal symmetry [2, 3, 4]. Nevertheless, there have been some approaches to

formulating massive particle systems in terms of twistors [6, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22]. For describing a massive particle, it is common to

use two or more independent twistors. In fact, introducing two twistors has been

considered until recently [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], and introducing

more than two twistors was considered in some earlier studies [6, 8, 9, 10, 11]. By

virtue of using two or more independent twistors, an extra symmetry between the

twistors occurs naturally in the system. Penrose, Perjés, and Hughston proposed

the idea of identifying this symmetry with an internal symmetry in particle physics,

such as the symmetry for leptons or that for hadrons, toward explaining internal

symmetries of elementary particles on the basis of twistor theory [6, 8, 9, 10, 11].

Although this idea is quite interesting, it seems that its detailed investigations have

been made from neither a mechanical point of view nor a dynamical point of view.
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Therefore we would have to say that the idea is still poorly understood.

Long after Penrose, Perjés, and Hughston proposed their own idea, Lagrangian

mechanics of a massive spinning particle formulated in terms of two twistors has

been studied in Refs. [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Most of these papers be-

gin with generalization of the Shirafuji action that describes a free massless spinning

particle in four dimensions in terms of a twistor [23]. In fact, various generalizations

of the Shirafuji action have been presented to specify twistorial models of massive

spinning particles. The generalized Shirafuji actions are constructed by incorporat-

ing a mass-shell condition of a particle and certain other conditions for the twistor

variables. The canonical formalism based on each generalized Shirafuji action and

its subsequent quantization were also studied in Refs. [12, 14, 15, 17, 18, 19, 20].

It was shown that the canonical quantization of each twistorial model leads to

generalized Dirac equations or the Dirac-Fierz-Pauli (DFP) equations for massive

spinor fields of arbitrary rank [24, 25, 26].

In the present thesis, we first prove that the n(≥ 3)-twistor expression of a

particle’s four-momentum vector enables us to describe only a massless particle.

Therefore the n-twistor description of a massive particle is not valid for the case

n ≥ 3. Taking into account this fact, we consider a generalization of the Shirafuji

action to define a new twistor model of a free massive spinning particle in four

dimensions by using two twistors. Our formulation is precisely a non-Abelian

extension of the gauged twistor formulation of a free massless spinning particle in

four dimensions [27, 28, 29]. In the gauged twistor formulation, the Shirafuji action

is modified in accordance with the gauge principle so that it can become invariant

under the local U(1) (phase) transformation of twistor variables. Here “local”

means that the transformation parameter depends on a worldline parameter along

the particle’s worldline. This modification is accomplished by gauging the Shirafuji

action with the aid of a U(1) gauge field on the one-dimensional (1D) parameter

space of the worldline and by adding the 1D Chern-Simons term consisting of

the U(1) gauge field. The modified action, named the gauged Shirafuju action,

includes a helicity constraint term due to the modification. Hence it follows that

this action describes a free massless spinning particle with a fixed value of helicity.

The Shirafuji action can furthermore be modified so as to be invariant under the

local scale transformation of twistor variables with the aid of another gauge field

on the 1D parameter space. From the point of view of twistor theory, it is desirable

that the modified action remains invariant under the combination of the local U(1)
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and local scale transformations, which is referred to in Refs. [28, 29, 30] as the

complexified local scale transformation. In actuality, the gauge field for the local

scale transformation can be gauged away by a scaling of the twistor variables.

Therefore it turns out that only the local U(1) transformation is essential and one

does not need to consider the local scale transformation in practice.

As will be seen later, we set up a generalized Shirafuji action that consists of

two twistors and involves a mass-shell condition. Here, for convenience, we exploit

the mass-shell condition with a complexified mass parameter introduced in Refs.

[18, 19]. The generalized Shirafuji action remains invariant under the global U(1)

transformation of twistor variables supplemented with that of auxiliary fields on

the 1D parameter space. In addition, the generalized Shirafuji action remains

invariant under the global SU(2) transformation defined for a doublet of twistors.

In accordance with the gauge principle, we modify the generalized Shirafuji action

in such a way that the modified action remains invariant under the local U(1)

and SU(2) transformations of twistor variables. The modification is performed

by gauging the generalized Shirafuji action with the aid of U(1) and SU(2) gauge

fields on the 1D parameter space and by adding the 1D U(1) and SU(2) Chern-

Simons terms. The 1D SU(2) Chern-Simons term, however, vanishes owing to

the traceless property of the SU(2) gauge field. For this reason, the variation

of the modified action with respect to the SU(2) gauge field yields too strong

constraints that, after quantizing the model, permit us to have only massive spinless

fields in four dimensions. A similar consequence has been found by Fedoruk and

Lukierski in their twistorial model of a massive particle [18]. To overcome such an

undesirable situation, they modified the model by incorporating the Souriau-Wess-

Zumino term, following the successful argument for a twistorial model of a massive

spinning particle in three dimensions [17]. In the present thesis, we consider an

alternative approach based on a nonlinear realization of SU(2) to eventually obtain

massive spinor fields of arbitrary rank. This approach makes it possible to define

the 1D U(1) Chern-Simons term consisting of the third (or diagonal) component of

the SU(2) gauge field in a particular gauge. In addition, this approach can provide

a novel gauge-invariant term consisting of the first and second (or off-diagonal)

components of the same SU(2) gauge field. With the new terms, we furthermore

modify the generalized Shirafuji action by adding these terms to the modified

action mentioned above. The completely modified action is thus the sum of the

gauged twistorial part, the two 1D U(1) Chern-Simons terms, and the novel term.
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This action, hereafter referred to as the gauged generalized Shirafuji (GGS) action,

remains invariant under reparametrization of the worldline parameter and under

the local U(1) and SU(2) transformations. The GGS action yields just sufficient

constraints for the twistor variables in a systematic and consistent manner. All

the constraints except for the mass-shell condition are derived on the basis of the

gauge symmetry. This is an advantage of our gauged twistor model.

Having obtained the GGS action, we study the canonical Hamiltonian for-

malism based on it by completely following the Dirac algorithm for Hamiltonian

systems with constraints [36, 37, 38]. In the present thesis, the canonical Hamil-

tonian formalism is investigated in two different ways. One of these ways treats

the twistor variables as fundamental dynamical variables. Another way adopts the

space-time and spinor variables as fundamental variables, after being decomposed

the twistor variables into the space-time and spinor variables. In this approach,

the mass-shell condition included in the GGS action is slightly modified so as to

have a real mass parameter. We can expect that this approach clarifies relations

between the twistor and ordinary space-time formulations of a massive spinning

particle and makes it possible to consider coupling to external fields. In both the

twistor and spinor formulations, some of the first-class constraints eventually turn

into simultaneous differential equations for a function of half the twistor of spinor

variables. Each solution of the simultaneous differential equations is characterized

by the three quantum numbers that originate from the U(1) and SU(2) symmetries

inherent in the GGS action.

In the twistor formulation, we consider the Penrose transform of the twistor

function to define a four-dimensional spinor field of arbitrary rank. The spinor

field defined in this manner has extra upper and lower SU(2) indices in addition

to dotted and undotted spinor indices. Because of the structure of the Penrose

transform, the number of upper (lower) SU(2) indices is equal to the number of

undotted (dotted) spinor indices. We demonstrate that the present spinor field

satisfies generalized DFP equations with SU(2) indices. In the simplest case, the

generalized DFP equations reduce to the ordinary Dirac equations for particle and

antiparticle spinor fields. Investigating properties of these fields, we clarify the

physical meanings of the U(1) and SU(2) symmetries; ultimately, we see that the

U(1) symmetry is a gauge symmetry concerning the chiralities of the particle and

antiparticle spinor fields, while the SU(2) symmetry is a gauge symmetry realized

in a doublet consisting of the particle and antiparticle spinor fields. Therefore it
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turns out that the idea proposed by Penrose, Perjés, and Hughston, in which the

SU(2) symmetry is identified with the weak isospin symmetry, is not valid in our

gauged twistor formulation.

The present thesis is organized as follows. In Chapter 2, we briefly explain

the twistor description of a massive particle and prove a related no-go theorem.

In Chapter 3, we elaborate the GGS action, after making some preliminary ar-

rangements. In Chapter 4, the canonical formalism based on the GGS action is

considered within the framework of the twistor formulation. Then the subsequent

canonical quantization is performed. We here define a massive spinor field of ar-

bitrary rank by the Penrose transform of a twistor function and demonstrate that

this spinor field satisfies the generalized DFP equations. Furthermore, we partic-

ularly investigate the rank-one spinor fields to clarify the physical meaning of the

U(1) and SU(2) symmetries. In Chapter 5, we rewrite the GGS action in terms

of the space-time and spinor variables. In this process, an alternative form of the

mass-shell condition is adopted instead of the one used in earlier chapters. The

canonical formalism based on the GGS action is considered within the framework

of the spinor formulation, and the subsequent canonical quantization is performed

in the usual manner. From solutions of the simultaneous differential equations ob-

tained in the quantization, we define positive- and negative-frequency spinor fields

of arbitrary rank satisfying the generalized DFP equations. Also, we express the

spinor fields in the form of the Penrose transforms. Furthermore, we define the

exponential generating function for the spinor fields and derive a novel represen-

tation for each of the spinor fields. The physical meaning of the U(1) and SU(2)

symmetries is clarified again. Chapter 6 is devoted to a summary and discussion.

In Appendix A, we give a theorem useful for proving the no-go theorem in Chap-

ter 2. In Appendix B, we treat the Poincaré symmetry and the Pauli-Lubanski

pseudovector written in terms of the twistor variables.
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Chapter 2

A free massive particle in twistor
theory

In this chapter, we first briefly review the twistor description of a free massive

particle and then we prove a related no-go theorem.

2.1 The n-twistor description of a free massive

particle

To describe a massive particle in four dimensions, Penrose, Perjés, and Hughston

introduced two or more [ i.e., n(∈ N + 1)] independent twistors and their dual

twistors

ZA
i = (ωαi , πiα̇) , Z̄i

A = (π̄iα, ω̄
iα̇) (2.1.1)

(A = 0, 1, 2, 3; α = 0, 1; α̇ = 0̇, 1̇) distinguished by the index i (i = 1, 2, . . . n).

Here, π̄iα and ω̄iα̇ denote the complex conjugates of the two-component spinors πiα̇

and ωαi , respectively: π̄
i
α := πiα̇, ω̄

iα̇ := ωαi . The spinors ω
α
i and πiα̇ are related by

ωαi = izαα̇πiα̇ , (2.1.2)

where zαα̇ are coordinates of a point in complexified Minkowski space.

As can be seen in Refs. [6, 8, 9, 10, 11], the N -twistor expression of four-

momentum is given by

pαα̇ =
N∑
i=1

π̄iαπiα̇ ≡ π̄iαπiα̇ . (2.1.3)
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Then the squared mass m2 = pαα̇p
αα̇ can be written as

m2 = π̄iαπiα̇π̄
jαπα̇j , (2.1.4)

where π̄iα := ϵαβπ̄iβ and πα̇i := ϵα̇β̇πiβ̇. In Lagrangian mechanics of a massive

spinning particle, Eq. (2.1.4) with n = 2, or its equivalent expression, is incorpo-

rated into a generalization of the Shirafuji action [23] with the aid of a Lagrange

multiplier.

2.2 A No-Go theorem for the twistor description

In this section, we present the following theorem:

Theorem: In the case n ≥ 3, the four-momentum defined by Eq. (2.1.3) satisfies

the null-vector condition pαα̇p
αα̇ = 0, so that m = 0.

Hence the n(≥ 3)-twistor system turns out to be a massless system. The purpose

of the present thesis is to prove this theorem. The theorem leads to the fact that

in actuality, the n-twistor description of a massive particle is not valid for the

case n ≥ 3. For this reason, the above-mentioned idea for the SU(3) [or ISU(3)]

symmetry cannot be accepted. In this sense, the theorem given here can be said to

be a no-go theorem. Also, the theorem justifies the fact that only the two-twistor

description (i.e., the case n = 2) has been considered in Lagrangian mechanics of

a massive spinning particle formulated in terms of twistors.

To prove the theorem, it is necessary to provide the following lemma.

Lemma: Let A be an arbitrary n × n complex antisymmetric matrix. Then A

can be transformed into its normal form, Ã, according to

Ã = UAUT, (2.2.1)

where U is an n× n unitary matrix. If n is even, then the normal form Ã is given

10



by

Ã =



0
√
a1 0 0 · · · 0 0

−√
a1 0 0 0 · · · 0 0

0 0 0
√
a2 · · · 0 0

0 0 −√
a2 0 · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 0 0

√
an/2

0 0 0 0 0 −√
an/2 0


, (2.2.2)

and if n is odd, then Ã is given by

Ã =



0
√
a1 0 0 · · · 0 0 0

−√
a1 0 0 0 · · · 0 0 0

0 0 0
√
a2 · · · 0 0 0

0 0 −√
a2 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0
√
a(n−1)/2 0

0 0 0 0 0 −√
a(n−1)/2 0 0

0 0 0 0 0 0 0 0


. (2.2.3)

Here, a1, a2, . . . , an/2 [or a(n−1)/2] are eigenvalues of the Hermitian matrix AA†, and

hence it follows that these eigenvalues are non-negative real numbers.

In this thesis, we do not give a proof of this lemma, because it can be seen in Refs.

[53, 54, 55, 56].

Proof of the theorem: Hereafter, we treat the case n ≥ 3. In order to prove

the theorem, let us consider the n× n complex matrix Π consisting of elements

Πij := πiα̇π
α̇
j . (2.2.4)

Because πiα̇π
α̇
j = −πα̇i πjα̇ holds, Π turns out to be antisymmetric. According to

the lemma, the matrix Π can be transformed into its normal form

Π̃ = UΠUT (2.2.5)

by means of an appropriate n × n unitary matrix U = (Ui
j). Expressions corre-
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sponding to Eqs. (3.1.2) and (3.1.3) are concisely given by

Π̃2n−1,j = δ2n,jΠ̃2n−1,2n , (2.2.6a)

Π̃2n,j = δ2n,j+1Π̃2n,2n−1 , (2.2.6b){
n = 1, 2, . . . , n/2 , for n even ,

n = 1, 2, . . . , (n+ 1)/2 , for n odd ,

where Π̃2n−1,2n is the square root of an eigenvalue of ΠΠ†, being a non-negative

real number.

Substituting Eq. (2.4) into Eq. (2.5), we can express the elements of Π̃ as

Π̃ij = π̃iα̇π̃
α̇
j , (2.2.7)

with the two-component spinor

π̃iα̇ := Ui
jπjα̇ . (2.2.8)

From Eqs. (3.1.6a) and (3.2.1), we see π̃1α̇π̃
α̇
k = 0 (k = 3, 4, . . . , n). This implies

that π̃kα̇ is proportional to π̃1α̇ , i.e.,

π̃kα̇ = ρk1π̃1α̇ , ρk1 ∈ C . (2.2.9)

Here, it is assumed that the proportional constants ρk1 do not vanish simultane-

ously, because we now treat the case n ≥ 3. Substituting Eq. (3.2.3) into Eq.

(3.2.1) and noting the property πiα̇π
α̇
i = 0 (no sum with respect to i), we obtain

Π̃kl = π̃kα̇π̃
α̇
l = ρk1ρl1π̃1α̇π̃

α̇
1 = 0 , k, l = 3, 4, . . . , n . (2.2.10)

By using Eq. (3.2.3), Π̃2k = π̃2α̇π̃
α̇
k can be written as

Π̃2k = ρk1π̃2α̇π̃
α̇
1 = ρk1Π̃21 . (2.2.11)

Equations (3.1.6b) and (3.2.5) give ρk1Π̃21 = 0 for any k. Since the constants

ρk1 do not vanish simultaneously, it follows that Π̃21 = 0. Combining this, Eq.

(3.2.4), and the Π̃1k = Π̃2k = 0 included in Eq. (3.1.6) together, we eventually

have Π̃ij = 0. As a result, Π̃ turns out to be the n× n zero matrix. Then the use

of Eq. (3.1.5) immediately leads to Π = 0, or equivalently, Πij = 0, because U is

unitary and hence invertible. With this result, the squared mass m2 = pαα̇p
αα̇ can

be evaluated as follows:

m2 = pαα̇p
αα̇ = π̄iαπ̄

jαπiα̇π
α̇
j = Π̄ ijΠij = 0 . (2.2.12)
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Thus, the null-vector condition pαα̇p
αα̇ = 0 is found, so that the proof of the

theorem is complete. ■

Because Πij = πiα̇π
α̇
j = 0, the spinors πiα̇ are proportional to each other. Then,

using Eq. (2.1.2), it can be shown that the n(≥ 3) twistors ZA
i are proportional

to each other in actuality. This fact implies that all the twistors ZA
i correspond to

a single projective twistor defined as the proportionality class [ZA
1 ] :=

{
ρZA

1

∣∣ ρ ∈
C \ {0}

}
. Therefore it turns out that the present system is essentially described

by [ZA
1 ]. As is well known in twistor theory, a projective twistor precisely specifies

the configuration of a massless particle. From this fact, we see once again that the

n(≥ 3)-twistor system is a massless system.

Since the n(≥ 3)-twistor system is a massless system, the associated SU(n) [or

ISU(n)] symmetry cannot be identified with the internal symmetry of a massive

physical system consisting of e.g. hadorns. For this reason, the idea proposed

by Penrose, Perjés, and Hughston fails in the case n ≥ 3. Of course, there still

remains a possibility that the SU(n) [or ISU(n)] symmetry will be identified with

the internal symmetry of a massless system.
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Chapter 3

Gauged twistor formulation of a
massive spinning particle

In this chapter, we construct a gauged twistor model. We begin with setting up a

generalized Shirafuji action that consists of two twistors and involves a mass-shell

condition. For convenience, we exploit the mass-shell condition with a complexified

mass parameter. The generalized Shirafuji action remains invariant under the

global U(1) and SU(2) transformations of twistor variables. In accordance with the

gauge principle, we modify the generalized Shirafuji action in such a way that the

modified action remains invariant under the local U(1) and SU(2) transformations

of twistor variables. The modification is performed by gauging the generalized

Shirafuji action with the aid of U(1) and SU(2) gauge fields on the 1D parameter

space and by adding the 1D U(1) Chern-Simons terms. However, this modified

action governs only massive spinless fields, owing to a fact that the SU(2) gauge

field yields too strong constraints for the twistor variables. Thus we consider a

further modification of the action based on a nonlinear realization of SU(2) to

eventually obtain massive spinor fields of arbitrary rank. This approach makes it

possible to define new gauge-invariant terms consisting of components of SU(2)

gauge field. With the new terms, we completely modify the generalized Shirafuji

action by adding these terms to the modified action mentioned above. In this

way, we obtain the GGS action, which yields just sufficient constraints for the

twistor variables. The GGS action remains invariant under reparametrization of

the worldline parameter and under the local U(1) and SU(2) transformations.
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3.1 Generalization of the Shirafuji action to a

massive particle

In this section, we construct the GGS action for a free massive spinning particle

in four-dimensional Minkowski space.

In order to describe a massive particle in terms of twistors, we introduce two

twistors ZA
i = (ωαi , πiα̇) (A = 0, 1, 2, 3;α = 0, 1; α̇ = 0̇, 1̇) distinguished by the extra

index i (i = 1, 2) and their dual twistors Z̄i
A = (π̄iα, ω̄

iα̇). Here, π̄iα and ω̄iα̇ denote

the complex conjugates of πiα̇ and ωαi , respectively: π̄
i
α := πiα̇ , ω̄

iα̇ := ωαi . It is

assumed that ZA
1 and ZA

2 are not proportional to each other: ZA
1 ̸= cZA

2 (c ∈ C),
so that Z̄1

A ̸= c̄Z̄2
A. The 2-component spinors ωαi and πiα̇ are related by

ωαi = izαα̇πiα̇ , (3.1.1)

where zαα̇ are coordinates of a point in complexified Minkowski space, CM, with

the metric tensor ηµν = diag(1,−1,−1,−1). As can be seen in the literature on

twistor theory [6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], the four-momentum of

a massive particle is expressed as pαα̇ = π̄1
απ1α̇ + π̄2

απ2α̇ ≡ π̄iαπiα̇. (For this reason,

πiα̇ and π̄iα are named as momentum spinors.) The squared norm of pαα̇ remains

nonvanishing even after using the formula πiα̇π
α̇
i = ϵα̇β̇πiα̇πiβ̇ = 0 (no sum w.r.t.

i) and its complex conjugate,1 because the cross terms provided from different

twistors still survive: pαα̇p
αα̇ = π̄iαπiα̇π̄

jαπα̇j = 2
∣∣π1α̇πα̇2 ∣∣2. Thus the mass-shell

condition pαα̇p
αα̇ = m2 with a mass parameter m can be written as

π̄iαπiα̇π̄
jαπα̇j = m2. (3.1.2)

It is easy to see that this condition is equivalent to

ϵijπiα̇π
α̇
j −

√
2meiφ = 0 , (3.1.3a)

ϵijπ̄
i
απ̄

jα −
√
2me−iφ = 0 , (3.1.3b)

where φ is a real parameter. These equations have been incorporated in twistorial

models of massive spinning particles [18, 19], in which meiφ/
√
2 is called a com-

1The 2-dimensional Levi-Civita symbols ϵαβ , ϵαβ , ϵ
α̇β̇ , ϵα̇β̇ , ϵ

ij , and ϵij are defined as ϵ01 =

ϵ01 = ϵ0̇1̇ = ϵ0̇1̇ = ϵ12 = ϵ12 = 1 and conform to the rules ϵαβ = ϵα̇β̇ , ϵαβ = ϵα̇β̇ , ϵ
ij = ϵij , and

ϵij = ϵij . The contravariant spinors πα̇
i and π̄iα are defined by πα̇

i = ϵα̇β̇πiβ̇ and π̄iα = ϵαβ π̄i
β ,

respectively. These relations can be expressed as πiα̇ = πβ̇
i ϵβ̇α̇ and π̄i

α = π̄iβϵβα.
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plexified mass parameter. In this thesis, we also adopt a pair of Eqs. (3.1.3a) and

(3.1.3b) as the mass-shell condition because of the convenience for our formulation.

The Shirafuji action of a free massless spinning particle2 can be generalized

to describe a free spinning particle of mass m propagating in four-dimensional

Minkowski space M. A generalized Shirafuji action is indeed given by

Sm =

∫ τ1

τ0

dτ

[
i

2

(
Z̄i
AŻ

A
i − ZA

i
˙̄Zi
A

)
+ h
(
ϵijπiα̇π

α̇
j −

√
2meiφ

)
+ h̄
(
ϵijπ̄

i
απ̄

jα −
√
2me−iφ

)]
, (3.1.4)

where ZA
i = ZA

i (τ) and Z̄
i
A = Z̄i

A(τ) are understood as complex scalar fields on the

one-dimensional parameter space T := {τ | τ0 ≤ τ ≤ τ1} of a particle’s world-line,

and h = h(τ) is treated as a complex scalar-density field of weight 1 on T . [That is,

h transforms as h(τ) → h′(τ ′) = (dτ/dτ ′)h(τ) under the proper reparametrization

τ → τ ′ = τ ′(τ) (dτ ′/dτ > 0).] The exponent φ is now considered a real scalar field

on T and hence is treated as a real function φ = φ(τ). This setting is different

from that in Refs. [18, 19], in which the complexified mass parameter is regarded

as a constant. A dot over a variable denotes its derivative w.r.t. τ . The variation

of Sm w.r.t. h and h̄ yields the mass-shell condition (3.1.3).3

The generalized Shirafuji action Sm remains invariant under the reparametriza-

tion τ → τ ′ = τ ′(τ). In addition, Sm remains invariant under the global U(1)

transformation

ZA
i → Z ′A

i = eiθZA
i , Z̄i

A → Z̄ ′i
A = e−iθZ̄i

A , (3.1.5a)

h→ h′ = e−2iθh , h̄→ h̄′ = e2iθh̄ , (3.1.5b)

φ→ φ′ = φ+ 2θ , (3.1.5c)

2With a twistor ZA and its dual twistor Z̄A, the Shirafuji action is defined by [23]

S0 =

∫ τ1

τ0

dτ
i

2

(
Z̄AŻ

A − ZA ˙̄ZA

)
.

3Instead of the action Sm, we can consider an alternative action

S′
m =

∫ τ1

τ0

dτ

[
i

2

(
Z̄i
AŻ

A
i − ZA

i
˙̄Zi
A

)
+

1

2
f
(
π̄i
απiα̇π̄

jαπα̇
j −m2

)]
,

where f = f(τ) is a real scalar-density field of weight 1 on T . The variation of S′
m w.r.t. f yields

the mass-shell condition (3.1.2).
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with a real constant parameter θ and under the global SU(2) transformation

ZA
i → Z ′A

i = Ui
jZA

j , Z̄i
A → Z̄ ′i

A = Z̄j
AU

†
j
i , (3.1.6a)

h→ h′ = h , h̄→ h̄′ = h̄ , (3.1.6b)

φ→ φ′ = φ , (3.1.6c)

with a constant matrix U belonging to SU(2). The SU(2) invariance of Sm can

be verified using ϵijUi
kUj

l = ϵkl and ϵijU
†
k
iU †

l
j = ϵkl together with the unitarity

property of U . We thus see that Sm possesses two global internal symmetries

specified by U(1) and SU(2). We also see that the two terms Z̄i
AŻ

A
i and ZA

i
˙̄Zi
A in

Eq. (3.1.4) are invariant under the global SU(2, 2) transformation (or more simply,

the global conformal transformation) ZA
i → Z ′A

i = UA
BZ

B
i , Z̄

i
A → Z̄ ′i

A = Z̄i
BU †B

A,

with a constant matrix U belonging to SU(2, 2). In contrast, the two terms ϵijπiα̇π
α̇
j

and ϵijπ̄
i
απ̄

jα in Eq. (3.1.4) are invariant only under the global SL(2,C) ⋉ R1,3

transformation (or more simply, the global Poincaré transformation). Hence it

turns out that the symmetry reduction from SU(2, 2) to SL(2,C) ⋉ R1,3 occurs

in Sm as a result of adding the term proportional to h and its complex conjugate

term.

3.2 Gauging the internal symmetries of the gen-

eralized Shirafuji action

Now, we perform a gauging of the global U(1) and SU(2) symmetries in such a

way that the gauged action remains invariant under the local U(1) and SU(2)

transformations that depend on τ . That is, we consider a U(1) × SU(2) gauge

theory on the parameter space T . To this end, in accordance with the gauge

principle, we introduce a U(1) gauge field, a = a(τ), and an SU(2) gauge field,

b = b(τ). The field a is assumed to be a real scalar-density field of weight 1 on

T , while b is assumed to be a 2 × 2 traceless Hermitian matrix that behaves as

a scalar-density field of weight 1 on T . The field b can be represented as (bi
j)

with its matrix elements bi
j and can be expanded in terms of the Pauli matrices

σr (r = 1, 2, 3), satisfying [σr, σs] = 2iϵrstσt, as b = brσr. Here, b
r = br(τ) are real

scalar-density fields of weight 1 on T . The (primitive) gauged action, Smg, can be
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obtained by replacing d/dτ in Sm with a covariant derivative operator as follows:

Smg =

∫ τ1

τ0

dτ

[
i

2

(
Z̄i
ADZ

A
i − ZA

i D̄Z̄
i
A

)
+ h
(
ϵijπiα̇π

α̇
j −

√
2meiφ

)
+ h̄
(
ϵijπ̄

i
απ̄

jα −
√
2me−iφ

)]
, (3.2.1)

where

DZA
i := ŻA

i − iaZA
i − ibi

jZA
j , (3.2.2a)

D̄Z̄i
A := ˙̄Zi

A + iaZ̄i
A + iZ̄j

Abj
i . (3.2.2b)

We see that the action Smg is reparametrization invariant. It can easily be verified

that Smg remains invariant under the local U(1) transformation

ZA
i → Z ′A

i = eiθ(τ)ZA
i , (3.2.3a)

Z̄i
A → Z̄ ′i

A = e−iθ(τ)Z̄i
A , (3.2.3b)

h→ h′ = e−2iθ(τ)h , (3.2.3c)

h̄→ h̄′ = e2iθ(τ)h̄ , (3.2.3d)

φ→ φ′ = φ+ 2θ(τ) , (3.2.3e)

a→ a′ = a+ θ̇ , (3.2.3f)

b→ b′ = b , (3.2.3g)

with a real gauge function θ = θ(τ) and under the local SU(2) transformation

ZA
i → Z ′A

i = Ui
j(τ)ZA

j , (3.2.4a)

Z̄i
A → Z̄ ′i

A = Z̄j
AU

†
j
i(τ) , (3.2.4b)

h→ h′ = h , (3.2.4c)

h̄→ h̄′ = h̄ , (3.2.4d)

φ→ φ′ = φ , (3.2.4e)

a→ a′ = a , (3.2.4f)

b→ b′ = UbU † − iU̇U †, (3.2.4g)

with a gauge function U = U(τ) taking its value in SU(2). Because each of a and

br is a single-component gauge field associated with d/dτ , we cannot define their

field strengths. For this reason, there exists neither the Maxwell action for a nor
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the Yang-Mills action for b. As for a, it is possible to define the (non-vanishing)

1D U(1) Chern-Simons term

Sa = −2s

∫ τ1

τ0

dτa , (3.2.5)

where s is a real constant. The 1D SU(2) Chern-Simons term for b, i.e., Sb =

−2t
∫ τ1
τ0
dτTrb vanishes by the reason of Trb = 0. Since a is a scalar-density field of

weight 1, Sa is reparametrization invariant. Also, Sa remains invariant under the

gauge transformation (3.2.3f), provided that θ satisfies an appropriate boundary

condition such as θ(τ1) = θ(τ0). The SU(2) invariance of Sa is evident from Eq.

(3.2.4f). Therefore we can consider the reparametrization-invariant and gauge-

invariant action S̃mg := Smg + Sa.
4 However, S̃mg eventually turns out to govern

only massive spinless fields in four dimensions owing to the too strong constraints

Z̄i
Aσri

jZA
j = 0 (r = 1, 2, 3) that are derived by varying S̃mg w.r.t. br.5 (Here, σrj

k

denotes the (j, k) entry of the Pauli matrix σr.) To avoid such an undesirable situ-

ation, next we perform a modification of S̃mg with the aid of a nonlinear realization

of SU(2).

3.3 A model with the nonlinearly realized inter-

nal SU(2) gauge symmetry

Let us now consider the coset space SU(2)/U(1)(∼= CP1) and representative ele-

ments, V (ξ, ξ̄ ) (V ∈ SU(2), ξ ∈ C), that are chosen one by one from each left coset

4The action S̃mg is a simple and natural generalization of the gauged Shirafuji action (without
invariance under the local scale transformation of ZA and Z̄A)

S̃0g =

∫ τ1

τ0

dτ

[
i

2

(
Z̄ADZ

A − ZAD̄Z̄A

)
− 2sa

]
,

where D := d/dτ − ia. This action describes a free massless spinning particle of helicity s
[27, 28, 29] and is equivalent to the action for a massless particle with rigidity at least at the
classical mechanical level [30].

5From the action S̃mg, the Pauli-Lubanski spin vector Wαα̇ is found to be

Wαα̇ = Trσri
j π̄iαπα̇

j , Tr :=
1

2
Z̄k

Bσrk
lZB

l

(see Appendix). Using the mass-shell condition (3.1.3), we can show that Wαα̇W
αα̇ = −m2TrTr.

Obviously, Tr = 0 (r = 1, 2, 3) leads toWαα̇W
αα̇ = 0. Hence, it follows that only massive spinless

particles are admissible in the model defined by S̃mg. Accordingly, it turns out that only massive
spinless fields are provided after quantizing the model.
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of U(1) in SU(2). Here, ξ labels the cosets in a way of one-to-one correspondence

and can be regarded as an inhomogeneous coordinate of a point on SU(2)/U(1).

(To completely coordinatize SU(2)/U(1), it is necessary to use ξ−1 in addition to

ξ.) The representative elements V (ξ, ξ̄ ) are assumed to constitute a smooth func-

tion of ξ and ξ̄ so that we can simply treat V (ξ, ξ̄ ) as an SU(2)-valued smooth

function. We consider ξ to be a complex scalar field ξ = ξ(τ) on T . The left action

of U on V (ξ, ξ̄ ) generates a nonlinear transformation ξ → ξ′ = ξ′(ξ) in accordance

with

V (ξ, ξ̄ ) → V (ξ′, ξ̄′) = U(τ)V (ξ, ξ̄ )Θ−1(τ) , (3.3.1)

where Θ(τ) := exp{iϑ(τ)σ3}, and ϑ = ϑ(τ) is a real gauge function [31, 32, 33].

Note here that ϑ is determined depending on (ξ, ξ̄ ) as well as U . Using V = V (ξ, ξ̄ ),

we define the following new fields on T :

ZAi := V †
i
jZA

j , Z̄iA := Z̄j
AVj

i , (3.3.2a)

b := V †bV − iV̇ †V . (3.3.2b)

The field b can be expanded as b = brσr, where br = br(τ) are real fields. Clearly,

br behave as scalar-density fields of weight 1 on T . With the new fields, the local

U(1) transformation (3.2.3) reads

ZAi → Z′A
i = eiθ(τ)ZAi , (3.3.3a)

Z̄iA → Z̄′i
A = e−iθ(τ)Z̄iA , (3.3.3b)

h→ h′ = e−2iθ(τ)h , (3.3.3c)

h̄→ h̄′ = e2iθ(τ)h̄ , (3.3.3d)

φ→ φ′ = φ+ 2θ(τ) , (3.3.3e)

a→ a′ = a+ θ̇ , (3.3.3f)

b → b′ = b . (3.3.3g)
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On the other hand, from Eqs. (3.2.4) and (3.3.1), we have

ZAi → Z′A
i = Θi

j(τ)ZAj , (3.3.4a)

Z̄iA → Z̄′i
A = Z̄jAΘ

†
j
i(τ) , (3.3.4b)

h→ h′ = h , (3.3.4c)

h̄→ h̄′ = h̄ , (3.3.4d)

φ→ φ′ = φ , (3.3.4e)

a→ a′ = a , (3.3.4f)

b → b′ = ΘbΘ† + ϑ̇σ3 . (3.3.4g)

Equation (3.3.4) is precisely a local U(1) transformation. Hereafter, we refer to

the local U(1) transformation specified by Eq. (3.2.3), or Eq. (3.3.3), as the U(1)a

transformation and refer to that specified by Eq. (3.3.4) as the U(1)b transforma-

tion. Their corresponding gauge groups are simply denoted as U(1)a and U(1)b.

The local SU(2) transformation is not manifestly seen in Eq. (3.3.4); instead, it

is realized as a nonlinear transformation of ξ. We may say that the function V

converts the local SU(2) transformation into the U(1)b transformation while ξ un-

dergoes a nonlinear transformation. Equation (3.3.4g) defines the transformation

rules of the fields br:

b1 → b′1 = b1 cos 2ϑ+ b2 sin 2ϑ , (3.3.5a)

b2 → b′2 = −b1 sin 2ϑ+ b2 cos 2ϑ , (3.3.5b)

b3 → b′3 = b3 + ϑ̇ . (3.3.5c)

We see that bı̂ (̂ı = 1, 2) transform homogeneously, obeying together an SO(2)

rotation, while b3 transforms inhomogeneously as a U(1) gauge field.

Now, we can provide the following two terms:

Sb12 = −k
∫ τ1

τ0

dτ
√
bı̂bı̂ , (3.3.6)

with bı̂bı̂ := (b1)2 + (b2)2, and

Sb3 = −2t

∫ τ1

τ0

dτ b3 . (3.3.7)

Here, k is a positive constant and t is a real constant. Since br are scalar-density

fields of weight 1 on T , both Sb12 and Sb3 are reparametrization invariant. It
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is obvious that Sb12 remains invariant under the SO(2) rotation defined by Eqs.

(3.3.5a) and (3.3.5b). Also, Sb3, which is the 1D Chern-Simons term for b3, remains

invariant under the gauge transformation (3.3.5c), provided that ϑ satisfies an

appropriate boundary condition such as ϑ(τ1) = ϑ(τ0). We thus see that both

Sb12 and Sb3 possess the U(1)b symmetry. The U(1)a invariance of Sb12 and Sb3 is

evident from Eq. (3.3.3g). For our investigation, it is convenient to express Sb12 as

Sbe = −
∫ τ1

τ0

dτ

(
1

2e
bı̂bı̂ +

k2

2
e

)
(3.3.8)

with the aid of e = e(τ) being a positive scalar-density field of weight 1 on T . It is

assumed that e does not change under the U(1)a and U(1)b transformations. (At

this stage, we should include the transformation rule e → e′ = e in each of Eqs.

(3.3.3) and (3.3.4).) The action Smg can be rewritten in terms of ZAi , Z̄
i
A, h, h̄, φ,

a, and b. The resulting rewritten expression of Smg is precisely what is obtained

by replacing ZA
i , Z̄

i
A, and b in Eq. (3.2.1) with ZAi , Z̄

i
A, and b, respectively. With

this expression, we modify S̃mg = Smg + Sa by adding Sbe and Sb3 to it. That is,

we consider the modified action S := Smg + Sa + Sbe + Sb3, or more precisely,

S =

∫ τ1

τ0

dτ

[
i

2

(
Z̄iADZ

A
i − ZAi D̄Z̄

i
A

)
− 2sa− 2tb3 − 1

2e
bı̂bı̂ − k2

2
e

+ h
(
ϵijϖiα̇ϖ

α̇
j −

√
2meiφ

)
+ h̄
(
ϵijϖ̄

i
αϖ̄

jα −
√
2me−iφ

)]
, (3.3.9)

with

DZAi := ŻAi − iaZAi − ibi
jZAj , (3.3.10a)

D̄Z̄iA := ˙̄ZiA + iaZ̄iA + iZ̄jAbj
i . (3.3.10b)

Here, ϖiα̇ and ϖ̄
i
α are momentum-spinor components of the twistors ZAi = (ϱαi , ϖiα̇)

and Z̄iA = (ϖ̄i
α, ϱ̄

iα̇), respectively. We refer to S as the gauged generalized Shirafuji

(GGS) action. From Eq. (3.3.2a), it follows that ϖiα̇ = V †
i
jπjα̇ and ϖ̄i

α = π̄jαVj
i.

The other components are given by ϱαi = V †
i
jωαj and ϱ̄iα̇ = ω̄jα̇Vj

i. It is now

obvious that ϖiα̇ = ϖ̄i
α and ϱαi = ϱ̄iα̇. In terms of ZAi , Eq. (3.1.1) can be written

as

ϱαi = izαα̇ϖiα̇ . (3.3.11)
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It is clear from (3.3.9) that the GGS action S remains invariant under the re-

parametrization and the U(1)a and U(1)b transformations. However, in actuality,

S remains invariant under the reparametrization and the U(1)a and local SU(2)

transformations, because the U(1)b transformation is induced by the local SU(2)

transformation in accordance with Eq. (3.3.1). In fact, we can express S in a

manifestly SU(2) invariant form as follows:

S =

∫ τ1

τ0

dτ

[
i

2

(
Z̄i
ADZ

A
i − ZA

i D̄Z̄
i
A

)
− 2sa− 2t

(
brVr3 − ξ̇eξ

3 − ˙̄ξeξ̄
3
)

− 1

e
gξξ̄DξDξ̄ −

k2

2
e+ h

(
ϵijπiα̇π

α̇
j −

√
2meiφ

)
+ h̄
(
ϵijπ̄

i
απ̄

jα −
√
2me−iφ

)]
,

(3.3.12)

with gξξ̄ := eξ
ı̂eξ̄

ı̂, Dξ := ξ̇ − brKr
ξ, and Dξ̄ := ˙̄ξ − brKr

ξ̄. Here, gξξ̄ is a metric

on SU(2)/U(1), (Kr
ξ, Kr

ξ̄ ) (r = 1, 2, 3) are the SU(2) Killing vectors on this

coset space, and eξ
r and eξ̄

r (r = ı̂, 3) are defined by eξ
rσr = −iV †(∂V/∂ξ) and

eξ̄
rσr = −iV †(∂V/∂ξ̄ ), respectively. Also, Vr3 is defined according to V †σrV =

Vrı̂σı̂ + Vr3σ3. Using the transformation rule (3.3.1), we can show that Vrı̂ =

Kr
ξeξ

ı̂ + Kr
ξ̄eξ̄

ı̂. In addition, it can be verified that Kr := Kr
ξ∂/∂ξ + Kr

ξ̄∂/∂ξ̄

satisfy the SU(2) commutation relations. In the expression (3.3.9), we should

understand that the local SU(2) symmetry of S is hidden rather than is broken,

because no symmetry breaking mechanisms are incorporated in the model. The

action (3.3.9) can be regarded as the action (3.3.12) in a particular gauge ξ(τ) = ξ0,

where ξ0 is a constant such that V (ξ0, ξ̄0) = 1. We term this gauge the unitary

gauge, because it corresponds to the so-called unitary gauge in massive Yang-Mills

theory [34, 35]. Then b can be said to be the SU(2) gauge field in the unitary

gauge. The action (3.3.9) can be written as

S =

∫ τ1

τ0

dτ

[
i

2

(
Z̄iAŻ

A
i − ZAi

˙̄ZiA

)
+ a
(
Z̄iAZ

A
i − 2s

)
+ b3

(
Z̄jAσ3j

kZAk − 2t
)

+ bı̂Z̄jAσı̂j
kZAk − 1

2e
bı̂bı̂ − k2

2
e+ h

(
ϵijϖiα̇ϖ

α̇
j −

√
2meiφ

)
+ h̄
(
ϵijϖ̄

i
αϖ̄

jα −
√
2me−iφ

)]
. (3.3.13)
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Chapter 4

Canonical quantization in the
gauged twistor formulation

In this chapter, we study the canonical Hamiltonian formalism based on the GGS

action obtained in previous chapter, by completely following the Dirac algorithm

for Hamiltonian systems with constraints. We see that most of the Dirac brackets

between the twistor variables take on complicated forms. Fortunately, these Dirac

brackets can be reduced to simple Dirac brackets for new twistor variables that

are in one-to-one correspondence with the old ones. Also, all the constraints for

the (old) twistor variables can be written completely in terms of the new twistor

variables. The canonical quantization of the twistor model governed by the GGS

action is performed with the commutation relations between the operators that

correspond to the new twistor variables or the other canonical variables. Some of

the first-class constraints eventually turn into simultaneous differential equations

for a holomorphic function of half the new twistor variables. Each solution of

the simultaneous differential equations, referred to here as a twistor function, is

characterized by the three quantum numbers that originate from the U(1) and

SU(2) symmetries inherent in the GGS action. We also consider the Penrose

transform of the twistor function to define a spinor field of arbitrary rank with

SU(2) indices. Because of the structure of the Penrose transform, the number of

SU(2) indices is equal to the number of spinor indices. We demonstrate that the

present spinor field satisfies generalized DFP equations with SU(2) indices. To

clarify the physical meanings of the U(1) and SU(2) symmetries, we investigate

properties of the rank-one spinor fields and the generalized DFP equations satisfied

by them.
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4.1 Canonical formalism

In this section, we study the canonical Hamiltonian formalism of the model gov-

erned by the GGS action in the unitary gauge.

Let L be the Lagrangian defined in Eq. (3.3.13) as the integrand of the GGS

action S. We treat the variables
(
ZAi , Z̄

i
A, a, b

r, e, h, h̄, φ
)
as canonical coordinates.

Their canonical conjugate momenta are found to be

P i
A :=

∂L

∂ŻAi
=
i

2
Z̄iA , (4.1.1a)

P̄A
i :=

∂L

∂ ˙̄ZiA
= − i

2
ZAi , (4.1.1b)

P (a) :=
∂L

∂ȧ
= 0 , (4.1.1c)

P (b)
r :=

∂L

∂ḃr
= 0 , (4.1.1d)

P (e) :=
∂L

∂ė
= 0 , (4.1.1e)

P (h) :=
∂L

∂ḣ
= 0 , (4.1.1f)

P (h̄) :=
∂L

∂ ˙̄h
= 0 , (4.1.1g)

P (φ) :=
∂L

∂φ̇
= 0 . (4.1.1h)

The canonical Hamiltonian corresponding to L is defined by the Legendre transform

of L:

HC := ŻAi P
i
A + ˙̄ZiAP̄

A
i + ȧP (a) + ḃrP (b)

r + ėP (e) + ḣP (h) + ˙̄hP (h̄) + φ̇P (φ) − L

= −a
(
Z̄iAZ

A
i − 2s

)
− b3

(
Z̄jAσ3j

kZAk − 2t
)
− bı̂Z̄jAσı̂j

kZAk +
1

2e
bı̂bı̂ +

k2

2
e

− h
(
ϵijϖiα̇ϖ

α̇
j −

√
2meiφ

)
− h̄
(
ϵijϖ̄

i
αϖ̄

jα −
√
2me−iφ

)
. (4.1.2)
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The equal-time Poisson brackets between the canonical variables are given by

{
ZAi , P

j
B

}
= δji δ

A
B ,

{
Z̄iA, P̄

B
j

}
= δijδ

B
A ,{

a, P (a)
}
= 1 ,

{
br, P (b)

s

}
= δrs ,{

e, P (e)
}
= 1 ,

{
h, P (h)

}
= 1 ,{

h̄, P (h̄)
}
= 1 ,

{
φ, P (φ)

}
= 1 ,

all others = 0 , (4.1.3)

which can be used for calculating the Poisson bracket between two arbitrary ana-

lytic functions of the canonical variables.

Equations (4.1.1a)–(4.1.1h) are read as the primary constraints

ϕiA := P i
A − i

2
Z̄iA ≈ 0 , (4.1.4a)

ϕ̄Ai := P̄A
i +

i

2
ZAi ≈ 0 , (4.1.4b)

ϕ(a) := P (a) ≈ 0 , (4.1.4c)

ϕ(b)
r := P (b)

r ≈ 0 , (4.1.4d)

ϕ(e) := P (e) ≈ 0 , (4.1.4e)

ϕ(h) := P (h) ≈ 0 , (4.1.4f)

ϕ(h̄) := P (h̄) ≈ 0 , (4.1.4g)

ϕ(φ) := P (φ) ≈ 0 , (4.1.4h)

where the symbol “≈” denotes the weak equality. Now, we follow the Dirac algo-

rithm for constrained Hamiltonian systems [36, 37, 38] to establish the canonical

formalism of the present model. We see that the Poisson brackets between the

primary constraint functions ϕ’s are summarized in

{
ϕiA, ϕ̄

B
j

}
= −iδijδBA , all others = 0 . (4.1.5)

The Poisson brackets between HC and the primary constraint functions are found
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to be

{
ϕiA, HC

}
= aZ̄iA + brσrj

iZ̄jA + 2hϵijIABZ
B
j , (4.1.6a){

ϕ̄Ai , HC

}
= aZAi + brσri

jZAj + 2h̄ϵijI
ABZ̄jB , (4.1.6b){

ϕ(a), HC

}
= Z̄iAZ

A
i − 2s , (4.1.6c){

ϕ
(b)
ı̂ , HC

}
= Z̄jAσı̂j

kZAk − 1

e
bı̂ , (4.1.6d){

ϕ
(b)
3 , HC

}
= Z̄jAσ3j

kZAk − 2t , (4.1.6e){
ϕ(e), HC

}
=

1

2e2
(
bı̂bı̂ − k2e2

)
, (4.1.6f){

ϕ(h), HC

}
= ϵijϖiα̇ϖ

α̇
j −

√
2meiφ, (4.1.6g){

ϕ(h̄), HC

}
= ϵijϖ̄

i
αϖ̄

jα −
√
2me−iφ, (4.1.6h){

ϕ(φ), HC

}
= −i

√
2m
(
heiφ − h̄e−iφ

)
. (4.1.6i)

where IAB and IAB are the so-called infinity twistors [2, 3, 11], defined by

IAB :=

(
0 0

0 ϵα̇β̇

)
, IAB :=

(
ϵαβ 0
0 0

)
.

With HC and the primary constraint functions, we define the total Hamiltonian

HT := HC + uAi ϕ
i
A + ūiAϕ̄

A
i + u(a)ϕ

(a) + ur(b)ϕ
(b)
r

+ u(e)ϕ
(e) + u(h)ϕ

(h) + u(h̄)ϕ
(h̄) + u(φ)ϕ

(φ), (4.1.7)

where uAi , ū
i
A, u(a), u

r
(b), u(e), u(h), u(h̄), and u(φ) are Lagrange multipliers. The time

evolution of a function f of the canonical variables is governed by the canonical

equation

ḟ = {f,HT} . (4.1.8)

Using this equation together with Eqs. (4.1.4)–(4.1.7), we can evaluate the time

evolution of the primary constraint functions. Because the primary constraints

(4.1.4a)–(4.1.4h) are valid at any time, they must be preserved in time. This fact
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leads to the consistency conditions

ϕ̇iA =
{
ϕiA, HT

}
≈ aZ̄iA + brσrj

iZ̄jA + 2hϵijIABZ
B
j − iūiA ≈ 0 , (4.1.9a)

˙̄ϕAi =
{
ϕ̄Ai , HT

}
≈ aZAi + brσri

jZAj + 2h̄ϵijI
ABZ̄jB + iuAi ≈ 0 , (4.1.9b)

ϕ̇(a) =
{
ϕ(a), HT

}
≈ Z̄iAZ

A
i − 2s ≈ 0 , (4.1.9c)

ϕ̇
(b)
ı̂ =

{
ϕ
(b)
ı̂ , HT

}
≈ Z̄jAσı̂j

kZAk − 1

e
bı̂ ≈ 0 , (4.1.9d)

ϕ̇
(b)
3 =

{
ϕ
(b)
3 , HT

}
≈ Z̄jAσ3j

kZAk − 2t ≈ 0 , (4.1.9e)

ϕ̇(e) =
{
ϕ(e), HT

}
≈ 1

2e2
(
bı̂bı̂ − k2e2

)
≈ 0 , (4.1.9f)

ϕ̇(h) =
{
ϕ(h), HT

}
≈ ϵijϖiα̇ϖ

α̇
j −

√
2meiφ ≈ 0 , (4.1.9g)

ϕ̇(h̄) =
{
ϕ(h̄), HT

}
≈ ϵijϖ̄

i
αϖ̄

jα −
√
2me−iφ ≈ 0 , (4.1.9h)

ϕ̇(φ) =
{
ϕ(φ), HT

}
≈ −i

√
2m
(
heiφ − h̄e−iφ

)
≈ 0 . (4.1.9i)

Equations (4.1.9a) and (4.1.9b) determine ūiA and uAi , respectively, as follows:

ūiA = −iaZ̄iA − ibrσrj
iZ̄jA − 2ihϵijIABZ

B
j , (4.1.10a)

uAi = iaZAi + ibrσri
jZAj + 2ih̄ϵijI

ABZ̄jB . (4.1.10b)

In contrast, Eqs. (4.1.9c)–(4.1.9i) give rise to the secondary constraints

χ(a) := Z̄iAZ
A
i − 2s ≈ 0 , (4.1.11a)

χ
(b)
ı̂ := Z̄jAσı̂j

kZAk − 1

e
bı̂ ≈ 0 , (4.1.11b)

χ
(b)
3 := Z̄jAσ3j

kZAk − 2t ≈ 0 , (4.1.11c)

χ(e) :=
1

2

(
bı̂bı̂ − k2e2

)
≈ 0 , (4.1.11d)

χ(h) := ϵijϖiα̇ϖ
α̇
j −

√
2meiφ ≈ 0 , (4.1.11e)

χ(h̄) := ϵijϖ̄
i
αϖ̄

jα −
√
2me−iφ ≈ 0 , (4.1.11f)

χ(φ) := i
(
heiφ − h̄e−iφ

)
≈ 0 . (4.1.11g)

All the Poisson brackets between HC and the secondary constraint functions χ’s

vanish. The Poisson brackets between the primary and secondary constraint func-
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tions are found to be{
χ(a), ϕiA

}
= Z̄iA ,

{
χ(a), ϕ̄Ai

}
= ZAi ,{

χ(b)
r , ϕiA

}
= σrj

iZ̄jA ,
{
χ(b)
r , ϕ̄Ai

}
= σri

jZAj ,{
χ
(b)
ı̂ , ϕ

(b)
ȷ̂

}
= −1

e
δı̂ȷ̂ ,

{
χ
(b)
ı̂ , ϕ(e)

}
=

1

e2
bı̂ ,{

χ(e), ϕ
(b)
ȷ̂

}
= bȷ̂ ,

{
χ(e), ϕ(e)

}
= −k2e ,{

χ(h), ϕiα̇
}
= 2ϵijϖα̇

j ,
{
χ(h), ϕ(φ)

}
= −i

√
2meiφ,{

χ(h̄), ϕ̄αi

}
= 2ϵijϖ̄

jα,
{
χ(h̄), ϕ(φ)

}
= i

√
2me−iφ,{

χ(φ), ϕ(h)
}
= ieiφ,

{
χ(φ), ϕ(h̄)

}
= −ie−iφ,{

χ(φ), ϕ(φ)
}
= −

(
heiφ + h̄e−iφ

)
,

all others = 0 , (4.1.12)

All the Poisson brackets between the secondary constraint functions vanish.

Next we investigate the time evolution of the secondary constraint functions

using Eqs. (4.1.8) and (4.1.12). The time evolution of χ(a) is evaluated as

χ̇(a) =
{
χ(a), HT

}
≈ uAi Z̄

i
A + ūiAZ

A
i . (4.1.13)

The condition χ̇(a) ≈ 0 is identically fulfilled with the aid of Eqs. (4.1.10a),

(4.1.10b), (4.1.11e), (4.1.11f), and (4.1.11g), and hence no new constraints are

obtained from χ̇(a) ≈ 0. The time evolution of χ
(b)
r is evaluated as

χ̇(b)
r =

{
χ(b)
r , HT

}
≈ uAi σrj

iZ̄jA + ūiAσri
jZAj + us(b)

{
χ(b)
r , ϕ(b)

s

}
+ u(e)

{
χ(b)
r , ϕ(e)

}
= −2ϵrstb

sZ̄jAσtj
kZAk + us(b)

{
χ(b)
r , ϕ(b)

s

}
+ u(e)

{
χ(b)
r , ϕ(e)

}
≈ −2

e
ϵrsȷ̂b

sbȷ̂ − 4tϵrs3b
s + us(b)

{
χ(b)
r , ϕ(b)

s

}
+ u(e)

{
χ(b)
r , ϕ(e)

}
(4.1.14)

by using Eqs. (3.10a), (3.10b), (3.11b), and (3.11c), together with the formulas

σrk
iϵkj = σrk

jϵki and σri
kϵkj = σrj

kϵki. Then we see that the condition χ̇
(b)
ı̂ ≈ 0

determines uı̂(b) as follows:

uı̂(b) = 2ϵı̂ȷ̂bȷ̂
(
b3 − 2te

)
+

1

e
bı̂u(e) , (4.1.15)

29



while χ̇
(b)
3 ≈ 0 is identically satisfied. The time evolution of χ(e) is calculated as

χ̇(e) =
{
χ(e), HT

}
≈ bı̂u

ı̂
(b) − k2eu(e) =

2

e
χ(e)u(e) ≈ 0 (4.1.16)

by using Eqs. (4.1.15) and (4.1.11d). Hence χ̇(e) ≈ 0 is identically satisfied. The

time evolution of χ(h) is evaluated as

χ̇(h) =
{
χ(h), HT

}
≈ 2ϵijuiα̇ϖ

α̇
j − i

√
2meiφu(φ)

= 2iaϵijϖiα̇ϖ
α̇
j − i

√
2meiφu(φ)

≈ i
√
2meiφ(2a− u(φ)) (4.1.17)

by using Eqs. (4.1.10b), (4.1.11e) and the formula σrk
iϵkj = σrk

jϵki. (Its associated

formula σri
kϵkj = σrj

kϵki is also valid.) From the condition χ̇(h) ≈ 0, the Lagrange

multiplier u(φ) is determined to be u(φ) = 2a. Similarly, χ̇(h̄) ≈ −i
√
2me−iφ(2a −

u(φ)) ≈ 0 leads to u(φ) = 2a. The time evolution of χ(φ) is found to be

χ̇(φ) =
{
χ(φ), HT

}
≈ i
(
u(h) − u(h̄)

)
− 2a

(
heiφ + h̄e−iφ

)
, (4.1.18)

so that the condition χ̇(φ) ≈ 0 gives u(h) − u(h̄) = −2ia
(
heiφ + h̄e−iφ

)
. From the

above analysis, we see that no further constraints are derived anymore; thus, the

procedure for deriving constraints is now completed. We also see that uAi , ū
i
A,

uı̂(b), u(h) − u(h̄), and u(φ) are determined to be what are written in terms of other

variables such as the canonical coordinates, while u(a), u
3
(b), u(e), and u(h) + u(h̄)

still remain as arbitrary functions of τ .

We have obtained all the Poisson brackets between the constraint functions, as

in Eqs. (4.1.5) and (4.1.12). However, it is difficult to classify the constraints in

Eqs. (4.1.4) and (4.1.11) into first and second classes on the basis of Eqs. (4.1.5)

and (4.1.12) together with the vanishing Poisson brackets between the secondary

constraint functions. To find simpler forms of the relevant Poisson brackets, we
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first define

ϕ̃(e) := ϕ(e) +
1

e
bı̂ϕ

(b)
ı̂ , (4.1.19a)

ϕ̃(φ) := ϕ(φ) − ihϕ(h) + ih̄ϕ(h̄), (4.1.19b)

χ̃(a) := χ(a) + iZ̄jAϕ̄
A
j − iϕjAZ

A
j , (4.1.19c)

χ̃
(b)
ı̂ := χ

(b)
ı̂ + iZ̄jAσı̂j

kϕ̄Ak − iϕjAσı̂j
kZAk − 2teϵı̂ȷ̂ϕ

(b)
ȷ̂ , (4.1.19d)

χ̃
(b)
3 := χ

(b)
3 + iZ̄jAσ3j

kϕ̄Ak − iϕjAσ3j
kZAk + 2ϵı̂ȷ̂b

ı̂ϕ
(b)
ȷ̂ , (4.1.19e)

χ̃(e) := χ(e) + ebı̂
(
χ̃
(b)
ı̂ − 2teϵı̂ȷ̂ϕ

(b)
ȷ̂

)
, (4.1.19f)

χ̃(h) := χ(h) + 2iϵjkϕ̄jα̇ϖ
α̇
k , (4.1.19g)

χ̃(h̄) := χ(h̄) − 2iϵjkϕ
j
αϖ̄

kα, (4.1.19h)

where ϕ̄iα̇ and ϕiα are spinor components of ϕ̄Ai =
(
ϕ̄αi , ϕ̄iα̇

)
and ϕiA =

(
ϕiα, ϕ

iα̇
)
,

respectively. Furthermore, it is convenient to define

υ(±) :=
1

2
√
2m

(
ϕ̃(φ) ± 1

2
χ̃(a)

)
, (4.1.20a)

ϕ(+) :=
1

2

(
e−iφϕ(h) + eiφϕ(h̄)

)
, (4.1.20b)

ϕ(−) :=
1

2i

(
e−iφϕ(h) − eiφϕ(h̄)

)
, (4.1.20c)

χ̃(+) :=
1

2

(
e−iφχ̃(h) + eiφχ̃(h̄)

)
, (4.1.20d)

χ̃(−) :=
1

2i

(
e−iφχ̃(h) − eiφχ̃(h̄)

)
. (4.1.20e)

It can readily be seen that the set of all the constraints given in Eqs. (4.1.4) and

(4.1.11), i.e.,(
ϕiA, ϕ̄

A
i , ϕ

(a), ϕ(b)
r , ϕ(e), ϕ(h), ϕ(h̄), ϕ(φ), χ(a), χ

(b)
ı̂ , χ

(b)
3 , χ(e), χ(h), χ(h̄), χ(φ)

)
≈ 0 ,

(4.1.21)

is equivalent to the new set of constraints(
ϕiA, ϕ̄

A
i , ϕ

(a), ϕ(b)
r , ϕ̃(e), ϕ(+), ϕ(−), υ(+), υ(−), χ̃

(b)
ı̂ , χ̃

(b)
3 , χ̃(e), χ̃(+), χ̃(−), χ(φ)

)
≈ 0 .

(4.1.22)

We can show that except for{
ϕiA, ϕ̄

B
j

}
= −iδijδBA ,

{
ϕ
(b)
ı̂ , χ̃

(b)
ȷ̂

}
=

1

e
δı̂ȷ̂ ,{

υ(+), χ̃(−)
}
= 1 ,

{
χ(φ), ϕ(−)

}
= 1 , (4.1.23)
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allotherPoissonbracketsbetweentheconstraintfunctionsinEq.(4.1.22)vanish.
Inthisway,therelevantPoissonbracketsaresimplifiedwiththeaidofthenew
constraintfunctions. ThePoissonbracketsbetweentheconstraintfunctionsare
summarizedinamatrixformas





















































ϕ
j
B

ϕ̄Bj ϕ(a) ϕ
(b)
ȷ̂

ϕ
(b)
3 ϕ̃(e) ϕ(+) ϕ( ) υ(+) υ( ) χ̃

(b)
ȷ̂

χ̃
(b)
3 χ̃(e) χ̃(+) χ̃( ) χ(φ)

ϕiA 0 −iδijδ
B
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕ̄Ai iδ
j
iδ
A
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕ(a) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕ
(b)
ı̂

0 0 0 0 0 0 0 0 0 0 e 1δ̂ı̂ȷ 0 0 0 0 0

ϕ
(b)
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕ̃(e) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕ(+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕ( ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

υ(+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

υ( ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ̃
(b)
ı̂

0 0 0 −e 1δ̂ı̂ȷ 0 0 0 0 0 0 0 0 0 0 0 0

χ̃
(b)
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ̃(e) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ̃(+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ̃( ) 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

χ(φ) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0





















































.

(4.1.24)

Wecanimmediatelyseefromthismatrixthat ϕ(a)≈0,ϕ
(b)
3 ≈0,ϕ̃

(e)≈0,

ϕ(+)≈0,υ(−)≈0,χ̃
(b)
3 ≈0,χ̃

(e)≈0,andχ̃(+)≈0arefirst-classconstraints,

whileϕiA ≈0,ϕ̄
A
i ≈0,ϕ

(b)
ı̂ ≈0,ϕ

(−)≈0,υ(+)≈0,χ̃
(b)
ı̂ ≈0,χ̃

(−)≈0,and

χ(φ)≈0aresecond-classconstraints.FollowingDirac’sapproachtosecond-class

constraints,wedefinetheDiracbracketbyusingthelargestinvertiblesubmatrix

ofthematrix(4.1.24).Forarbitrarysmoothfunctionsfandgofthecanonical

variables,theDiracbracketisdefinedby

{f,g}D:={f,g}+i
{
f,ϕiA

}{
ϕ̄Ai,g

}
−i
{
f,̄ϕAi

}{
ϕiA,g

}

−e
{
f,̃χ

(b)
ı̂

}{
ϕ
(b)
ı̂,g
}
+e
{
f,ϕ

(b)
ı̂

}{
χ̃
(b)
ı̂,g
}

+
{
f,χ(φ)

}{
ϕ(−),g

}
−
{
f,ϕ(−)

}{
χ(φ),g

}

+
{
f,υ(+)

}{
χ̃(−),g

}
−
{
f,̃χ(−)

}{
υ(+),g

}
. (4.1.25)

TheDiracbracketbetweenfandeachoftheconstraintfunctionsϕiA,̄ϕ
A
i,ϕ

(b)
ı̂,

ϕ(−),υ(+),χ̃
(b)
ı̂,χ̃

(−),andχ(φ)vanishesidentically. Forthisreason,thesecond-

classconstraintscanbesetstronglyequaltozeroandmaybeexpressedasϕiA=0,

ϕ̄Ai=0,ϕ
(b)
ı̂ =0,ϕ

(−)=0,υ(+)=0,χ̃
(b)
ı̂ =0,χ̃

(−)=0,andχ(φ)=0,aslong

astheDiracbracket{f,g}Disadopted. Weseethatthesecond-classconstraints
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lead to

P i
A =

i

2
Z̄iA , P̄A

i = − i

2
ZAi , (4.1.26a)

bı̂ = eZ̄jAσı̂j
kZAk , P

(b)
ı̂ = 0 (4.1.26b)

h = he−iφ , P (h) = eiφP (h) , (4.1.26c)

h̄ = heiφ , P (h̄) = e−iφP (h) , (4.1.26d)

φ = − i

2
ln

(
ϵijϖiα̇ϖ

α̇
j

ϵijϖ̄i
αϖ̄

jα

)
, P (φ) = −1

2
χ(a) , (4.1.26e)

where h = h(τ) is a real scalar-density field of weight 1 on T , and P (h) its associated

momentum variable. At this stage, P i
A, P̄

A
i , b

ı̂, P
(b)
ı̂ , h, P (h), h̄, P (h̄), φ, and P (φ) are

treated as dependent variables specified by Eq. (4.1.26), while the other canonical

variables ZAi , Z̄
i
A, a, P

(a), b3, P
(b)
3 , e, P (e), h, and P (h) are treated as independent

variables. By virtue of the strong equalities of the second-class constraints, the set

of all the first-class constraints, i.e,(
ϕ(a), ϕ

(b)
3 , ϕ̃(e), ϕ(+), υ(−), χ̃

(b)
3 , χ̃(e), χ̃(+)

)
≈ 0 , (4.1.27)

turns out to be equivalent to the set consisting of

ϕ(a) ≈ 0 , (4.1.28a)

ϕ
(b)
3 ≈ 0 , (4.1.28b)

ϕ(e) ≈ 0 , (4.1.28c)

ϕ(h) := P (h) ≈ 0 , (4.1.28d)

χ(a) ≈ 0 , (4.1.28e)

χ
(b)
3 ≈ 0 , (4.1.28f)

χ(e) ≈ 0 , (4.1.28g)

χ(h) ≈ 0 , (4.1.28h)

χ(h̄) ≈ 0 . (4.1.28i)

Here we have taken into account both of Eqs. (4.1.28h) and (4.1.28i) for later

convenience, although it is sufficient to consider one of them in actuality.

The Dirac brackets between the spinor components of ZAi and Z̄iA are found
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from Eq. (4.1.25) to be{
ϱαi , ϱ

β
j

}
D
=

i

4
√
2m

eiφ
(
ϱαi ϵjkϖ̄

kβ − ϱβj ϵikϖ̄
kα
)
,{

ϱαi , ϖjβ̇

}
D
= − i

4
√
2m

eiφϵikϖ̄
kαϖjβ̇ ,{

ϖiα̇, ϖjβ̇

}
D
= 0 ,{

ϱαi , ϱ̄
jβ̇
}

D
=

i

4
√
2m

(
eiφϵikϖ̄

kαϱ̄jβ̇ + e−iφϱαi ϵ
jkϖβ̇

k

)
,{

ϱαi , ϖ̄
j
β

}
D
= −iδji δαβ +

i

4
√
2m

eiφϵikϖ̄
kαϖ̄j

β ,{
ϖiα̇, ϱ̄

jβ̇
}

D
= −iδji δ

β̇
α̇ +

i

4
√
2m

e−iφϖiα̇ϵ
jkϖβ̇

k ,{
ϖiα̇, ϖ̄

j
β

}
D
= 0 ,{

ϱ̄iα̇, ϱ̄jβ̇
}

D
= − i

4
√
2m

e−iφ
(
ϱ̄iα̇ϵjkϖβ̇

k − ϱ̄jβ̇ϵikϖα̇
k

)
,{

ϱ̄iα̇, ϖ̄j
β

}
D
=

i

4
√
2m

e−iφϵikϖα̇
k ϖ̄

j
β ,{

ϖ̄i
α, ϖ̄

j
β

}
D
= 0 . (4.1.29)

Using Eq. (4.1.29) and taking into account Eqs. (4.1.28h) and (4.1.28i), we can

show that {
χ(a), ϱαi

}
D
=
i

2
ϱαi ,

{
χ(a), ϖiα̇

}
D
=
i

2
ϖiα̇ ,{

χ(a), ϖ̄i
α

}
D
= − i

2
ϖ̄i
α ,

{
χ(a), ϱ̄iα̇

}
D
= − i

2
ϱ̄iα̇ . (4.1.30)

Many of the Dirac brackets in Eq. (4.1.29) are rather complicated. Fortunately,

however, Eq. (4.1.29) can be expressed in the form of simple canonical brackets as{
ραi , ϖ̄

j
β

}
D
= −iδji δαβ ,

{
ϖiα̇, ρ̄

jβ̇
}

D
= −iδji δ

β̇
α̇ ,

all others = 0 , (4.1.31)

in terms of ϖiα̇, ϖ̄
i
α, and

ραi := ϱαi +
1

2
√
2m

eiφϵijϖ̄
jαχ(a), (4.1.32a)

ρ̄iα̇ := ϱ̄iα̇ +
1

2
√
2m

e−iφϵijϖα̇
j χ

(a). (4.1.32b)
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In showing this fact, it is convenient to use Eqs. (4.1.28e) and (4.1.30). Note here

that the weak equalities ραi ≈ ϱαi , ρ̄
iα̇ ≈ ϱ̄iα̇ hold owing to Eq. (4.1.28e). Now

we define the new twistors WA
i := (ραi , ϖiα̇) and W̄i

A := (ϖ̄i
α, ρ̄

iα̇), with which Eq.

(4.1.31) can concisely be written as{
WA
i , W̄

j
B

}
D
= −iδji δAB ,{

WA
i ,W

B
j

}
D
= 0 ,

{
W̄i
A, W̄

j
B

}
D
= 0 . (4.1.33)

Using Eqs. (4.1.28h), (4.1.28i), and the formulas given under Eq. (4.1.17), we

can show for

χ̆(a) := W̄i
AW

A
i − 2s , (4.1.34a)

χ̆
(b)
3 := W̄j

Aσ3j
kWA

k − 2t (4.1.34b)

that

χ̆(a) = 2χ(a), (4.1.35a)

χ̆
(b)
3 = χ

(b)
3 . (4.1.35b)

Accordingly, the first-class constraints (4.1.28e) and (4.1.28f) read

χ̆(a) ≈ 0 , (4.1.36a)

χ̆
(b)
3 ≈ 0 . (4.1.36b)

With Eq. (4.1.35a), Eqs. (4.1.32a) and (4.1.32b) can be solved inversely as

ϱαi = ραi −
1

4
√
2m

eiφϵijϖ̄
jαχ̆(a), (4.1.37a)

ϱ̄iα̇ = ρ̄iα̇ − 1

4
√
2m

e−iφϵijϖα̇
j χ̆

(a). (4.1.37b)

Hence it follows that there is a one-to-one correspondence between (ZAi , Z̄
i
A) and

(WA
i , W̄

i
A). Taking into account this fact, we hereafter adopt WA

i and W̄i
A as canon-

ical variables instead of ZAi and Z̄iA. The first equation in Eq. (4.1.26b) can be

written as bı̂ = eW̄j
Aσı̂j

kWA
k . Substituting this into Eq. (4.1.11d), we see that the

first-class constraint χ(e) ≈ 0 can be expressed as

χ̆(e) := Tı̂Tı̂ −
1

4
k2 ≈ 0 , (4.1.38)
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where Tı̂ (̂ı = 1, 2) are defined in

T0 :=
1

2
W̄i
AW

A
i , Tr :=

1

2
W̄j
Aσrj

kWA
k . (4.1.39)

Using Eq. (4.1.33), we can readily verify that T0 and Tr constitute a bases of the

U(1)a × SU(2) Lie algebra in the following sense:

{T0,Tr}D = 0 , {Tr,Ts}D = ϵrstTt . (4.1.40)

The canonical variables that we need to consider at the present stage are WA
i ,

W̄i
A, a, P

(a), b3, P
(b)
3 , e, P (e), h, and P (h). All the Dirac brackets between these

variables are given in Eq. (4.1.33) and

{
a, P (a)

}
D
= 1 ,

{
b3, P

(b)
3

}
D
= 1 ,{

e, P (e)
}
D
= 1 ,

{
h, P (h)

}
D
=

1

2
,

all others = 0 . (4.1.41)

We also need to consider the first class constraints (4.1.28a)–(4.1.28d), (4.1.36a),

(4.1.36b), (4.1.38), (4.1.28h), and (4.1.28i).

4.2 Canonical quantization

In this section, we perform the canonical quantization of the Hamiltonian system

studied in Sec. III. To this end, in accordance with Dirac’s method of quantization,

we introduce the operators f̂ and ĝ corresponding, respectively, to the functions f

and g, and set the commutation relation

[
f̂ , ĝ

]
= i {̂f, g}D (4.2.1)

in units such that ℏ = 1. Here, {̂f, g}D denotes the operator corresponding to

the Dirac bracket {f, g}D. From Eqs. (4.1.33), (4.1.41), and (4.2.1), we have the
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canonical commutation relations

[
ŴA
i ,

ˆ̄Wj
B

]
= δji δ

A
B , (4.2.2a)[

ŴA
i , Ŵ

B
j

]
= 0 ,

[
ˆ̄Wi
A,

ˆ̄Wj
B

]
= 0 , (4.2.2b)[

â, P̂ (a)
]
= i ,

[
b̂3, P̂

(b)
3

]
= i , (4.2.2c)[

ê, P̂ (e)
]
= i ,

[
ĥ, P̂ (h)

]
=
i

2
, (4.2.2d)

all others = 0 . (4.2.2e)

The commutation relations (4.2.2a) and (4.2.2b) govern together so-called twistor

quantization [2, 3].

In the procedure of canonical quantization, the first-class constraints are treated

as conditions imposed on the physical states, after the replacement of the first-

class constraint functions by the corresponding operators. In the present model,

the physical state conditions are found from Eqs. (4.1.28a)–(4.1.28d), (4.1.36a),

(4.1.36b), (4.1.38), (4.1.28h), and (4.1.28i) to be

ϕ̂(a)|F ⟩ = P̂ (a)|F ⟩ = 0 , (4.2.3a)

ϕ̂
(b)
3 |F ⟩ = P̂

(b)
3 |F ⟩ = 0 , (4.2.3b)

ϕ̂(e)|F ⟩ = P̂ (e)|F ⟩ = 0 , (4.2.3c)

ϕ̂(h)|F ⟩ = P̂ (h)|F ⟩ = 0 , (4.2.3d)

ˆ̆χ(a)|F ⟩ =
[
1

2

(
ˆ̄Wi
AŴ

A
i + ŴA

i
ˆ̄Wi
A

)
− 2s

]
|F ⟩

= 2
(
T̂0 − s− 2

)
|F ⟩ = 0 , (4.2.3e)

ˆ̆χ
(b)
3 |F ⟩ =

[
1

2

(
ˆ̄Wj
Aσ3j

kŴA
k + ŴA

k σ3j
k ˆ̄Wj

A

)
− 2t

]
|F ⟩

= 2
(
T̂3 − t

)
|F ⟩ = 0 , (4.2.3f)

ˆ̆χ(e)|F ⟩ =
(
T̂ı̂T̂ı̂ −

1

4
k2
)
|F ⟩ = 0 , (4.2.3g)

χ̂(h)|F ⟩ =
(
ϵijϖ̂iα̇ϖ̂

α̇
j −

√
2meiφ̂

)
|F ⟩ = 0 , (4.2.3h)

χ̂(h̄)|F ⟩ =
(
ϵij ˆ̄ϖ

i
α
ˆ̄ϖjα −

√
2me−iφ̂

)
|F ⟩ = 0 . (4.2.3i)
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Here, |F ⟩ denotes a physical state, T̂0 and T̂r (r = ı̂, 3) are defined by

T̂0 :=
1

2
ŴA

i
ˆ̄Wi
A , T̂r :=

1

2
σrj

kŴA
k
ˆ̄Wj
A , (4.2.4)

and φ̂ is defined according to the first equation in Eq. (4.1.26e) as

φ̂ := − i

2

[
ln
(
ϵijϖ̂iα̇ϖ̂

α̇
j

)
− ln

(
ϵij ˆ̄ϖ

i
α
ˆ̄ϖjα
)]
. (4.2.5)

In defining the operators ˆ̆χ(a), ˆ̆χ
(b)
3 , and ˆ̆χ(e), we have obeyed the Weyl ordering

rule and have used the commutation relation (4.2.2a) to simplify the Weyl ordered

operators. Using Eqs. (4.2.2a) and (4.2.2b), we can easily show that[
T̂0, T̂r

]
= 0 ,

[
T̂r, T̂s

]
= iϵrstT̂t , (4.2.6)

which is precisely the quantum mechanical counterpart of Eq. (4.1.40). It is evident

that T̂0 is the generator of U(1)a and T̂r (r = 1, 2, 3) are the generators of SU(2).

In particular, T̂3 is the generator of U(1)b.

Now we introduce the bra-vector

⟨W, a, b3, e, h |

:= ⟨0| exp
(
−WA

i
ˆ̄Wi
A + iaP̂ (a) + ib3P̂

(b)
3 + ieP̂ (e) + 2ihP̂ (h)

)
(4.2.7)

with a reference bra-vector ⟨0| satisfying

⟨0|ŴA
i = ⟨0|â = ⟨0|b̂3 = ⟨0|ê = ⟨0|ĥ = 0 . (4.2.8)

Using the commutation relations (4.2.2a)–(4.2.2e), we can show that

⟨W, a, b3, e, h |ŴA
i = WA

i ⟨W, a, b3, e, h | , (4.2.9a)

⟨W, a, b3, e, h |â = a⟨W, a, b3, e, h | , (4.2.9b)

⟨W, a, b3, e, h |b̂3 = b3⟨W, a, b3, e, h | , (4.2.9c)

⟨W, a, b3, e, h |ê = e⟨W, a, b3, e, h | , (4.2.9d)

⟨W, a, b3, e, h |ĥ = h⟨W, a, b3, e, h | . (4.2.9e)

Equation (4.2.9a) can be decomposed into two parts:

⟨W, a, b3, e, h |ρ̂αi = ραi ⟨W, a, b3, e, h | , (4.2.10a)

⟨W, a, b3, e, h |ϖ̂iα̇ = ϖiα̇⟨W, a, b3, e, h | . (4.2.10b)
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Also, it is easy to see that

⟨W, a, b3, e, h | ˆ̄Wi
A = − ∂

∂WA
i

⟨W, a, b3, e, h | , (4.2.11a)

⟨W, a, b3, e, h |P̂ (a) = −i ∂
∂a

⟨W, a, b3, e, h | , (4.2.11b)

⟨W, a, b3, e, h |P̂ (b)
3 = −i ∂

∂b3
⟨W, a, b3, e, h | , (4.2.11c)

⟨W, a, b3, e, h |P̂ (e) = −i ∂
∂e

⟨W, a, b3, e, h | , (4.2.11d)

⟨W, a, b3, e, h |P̂ (h) = − i

2

∂

∂h
⟨W, a, b3, e, h | . (4.2.11e)

Equation (4.2.11a) can be decomposed into two parts:

⟨W, a, b3, e, h | ˆ̄ϖi
α = − ∂

∂ραi
⟨W, a, b3, e, h | , (4.2.12a)

⟨W, a, b3, e, h | ˆ̄ρiα̇ = − ∂

∂ϖiα̇

⟨W, a, b3, e, h | . (4.2.12b)

Multiplying each of Eqs. (4.2.3a)–(4.2.3i) by ⟨W, a, b3, e, h | on the left and using

Eqs. (4.2.9)–(4.2.12), we obtain a set of simultaneous differential equations for

F (W, a, b3, e, h) := ⟨W, a, b3, e, h |F ⟩ as follows:
∂

∂a
F = 0 , (4.2.13a)

∂

∂b3
F = 0 , (4.2.13b)

∂

∂e
F = 0 , (4.2.13c)

∂

∂h
F = 0 , (4.2.13d)

Ť0F = (s+ 2)F , (4.2.13e)

Ť3F = tF , (4.2.13f)

Ťı̂Ťı̂F =
1

4
k2F , (4.2.13g)

ϵijϖiα̇ϖ
α̇
j F =

√
2meiφ̌F , (4.2.13h)

ϵijϵ
αβ ∂

∂ραi

∂

∂ρβj
F =

√
2me−iφ̌F . (4.2.13i)

Here, Ť0 and Ťr (r = ı̂, 3) are defined by

Ť0 := −1

2
WA
i

∂

∂WA
i

, Ťr := −1

2
σrj

kWA
k

∂

∂WA
j

, (4.2.14)
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and φ̌ is defined by

φ̌ := − i

2

[
ln
(
ϵijϖiα̇ϖ

α̇
j

)
− ln

(
ϵijϵ

αβ ∂

∂ραi

∂

∂ρβj

)]
. (4.2.15)

Equations (4.2.13a)–(4.2.13d) imply that F is actually independent of a, b3, e, and

h. Hence it follows that F is a function of the twistors WA
i only. The holomorphic

functions of WA
i , such as F , are often referred to as the twistor functions. As can

be seen immediately, Eqs. (4.2.13h) and (4.2.13i) are respectively equivalent to

ϖiα̇ϖ
α̇
j F =

m√
2
ϵije

iφ̌F , (4.2.16a)

ϵαβ
∂

∂ραi

∂

∂ρβj
F =

m√
2
ϵije−iφ̌F . (4.2.16b)

Combining Eqs. (4.2.13e) and (4.2.13f), we have

WA
1

∂

∂WA
1

F = −2(s1 + 1)F , (4.2.17a)

WA
2

∂

∂WA
2

F = −2(s2 + 1)F , (4.2.17b)

where

s1 :=
1

2
(s+ t) , s2 :=

1

2
(s− t) . (4.2.18)

The pair of Eqs. (4.2.13e) and (4.2.13f) is equivalent to the pair of Eqs. (4.2.17a)

and (4.2.17b). Obviously, Eqs. (4.2.17a) and (4.2.17b) are simultaneously satisfied

by a homogeneous twistor function of degree −2s1 − 2 w.r.t. WA
1 and degree

−2s2 − 2 w.r.t. WA
2 . These degrees must be integers so that F can be a single-

valued function of WA
i . In this way, the allowed values of s1 and s2 are restricted to

arbitrary integer or half-integer values, and accordingly s and t are also restricted

to arbitrary integer or half-integer values. We thus see that the Chern-Simons

coefficients 2s and 2t, which are coefficients of the 1-dimensional Chern-Simons

terms Sa and Sb3, respectively, are quantized to be arbitrary integer values.

The operators Ťr fulfill the SU(2) commutation relation[
Ťr, Ťs

]
= iϵrstŤt . (4.2.19)
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Following the general method for solving the eigenvalue problem in the SU(2) Lie

algebra [39], we can simultaneously solve the eigenvalue equation for the Casimir

operator ŤrŤr = Ťı̂Ťı̂ + Ť3Ť3, i.e.,

ŤrŤrF = ΛF , (4.2.20)

and Eq. (4.2.13f) to obtain

Λ = I(I + 1) , I = 0,
1

2
, 1,

3

2
, . . . , (4.2.21a)

t = −I,−I + 1, . . . , I − 1, I . (4.2.21b)

In deriving Eqs. (4.2.21a) and (4.2.21b), we assume the existence of a positive-

definite inner product in the function space consisting of twistor functions. (As

for the twistor formulation of a massless system, a twistor-function space with a

positive-definite inner product has been established [40].) Since t takes integer or

half-integer values as explained above, I also takes integer or half-integer values

accordingly. From Eqs. (4.2.13f), (4.2.13g), (4.2.20), and (4.2.21a), the allowed

values of the positive constant k are determined to be

k = 2
√
I(I + 1)− t2 . (4.2.22)

In this way, the coefficient of Sb12 is also quantized in addition to the Chern-Simons

coefficients. It is now clear that the twistor function F is characterized by the set

of three quantum numbers (s, I, t), or equivalently, by (I, s1, s2); for this reason, it

is convenient to label F as Fs,I,t or FI,s1,s2 .

4.3 Penrose transform and the generalized DFP

equation

In this section, we define a spinor field of arbitrary rank by the Penrose transform

of FI,s1,s2 . We also demonstrate that this spinor field satisfies generalized DFP

equations with SU(2) indices.

Let us consider the Penrose transform of FI,s1,s2 specified by

Ψ
i1...ip
α1...αp;j1...jq ,α̇1...α̇q

(z)

=
1

(2πi)4

∮
Σ

eipφ̌ϖj1α̇1 · · ·ϖjqα̇q

∂

∂ρα1
i1

· · · ∂

∂ρ
αp

ip

FI,s1,s2(W)d4ϖ (4.3.1)
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with

d4ϖ := dϖ10̇ ∧ dϖ11̇ ∧ dϖ20̇ ∧ dϖ21̇ (4.3.2)

to define the rank-(p + q) spinor field Ψ
i1...ip
α1...αp;j1...jq ,α̇1...α̇q

(occasionally abbreviated

as Ψ) on complexified Minkowski space CM. Here, Σ denotes a suitable four-

dimensional contour. Equation (4.3.1) is identified as a non-projective form of

the Penrose transform in the massive case [3].1 It should be noted that Ψ has

the upper and lower SU(2) indices in addition to the dotted and undotted spinor

indices. Because of the structure of Eq. (4.3.1), the number of upper (lower) SU(2)

indices is equal to the number of undotted (dotted) spinor indices. It is obvious

that Ψ has the symmetric properties

Ψ
i1...im...in...ip
α1...αm...αn...αp;j1...jq ,α̇1...α̇q

= Ψ
i1...in...im...ip
α1...αn...αm...αp;j1...jq ,α̇1...α̇q

, (4.3.3a)

Ψ
i1...ip
α1...αp;j1...ja...jb...jq ,α̇1...α̇a...α̇b...α̇q

= Ψ
i1...ip
α1...αp;j1...jb...ja...jq ,α̇1...α̇b...α̇a...α̇q

. (4.3.3b)

Suppose that among i1, . . . , ip, the number of 1’s is p1 and the number of 2’s is

p2(= p − p1). Similarly, suppose that among j1, . . . , jq, the number of 1’s is q1

and the number of 2’s is q2(= q − q1). The integral in Eq. (4.3.1) can remain

non-vanishing if

s1 =
1

2
(q1 − p1) , s2 =

1

2
(q2 − p2) . (4.3.4)

Combining Eqs. (4.2.18) and (4.3.4), we have

s =
1

2
(q1 − p1 + q2 − p2) , (4.3.5a)

t =
1

2
(q1 − p1 − q2 + p2) . (4.3.5b)

1The two-dimensional projective form of the Penrose transform (4.3.1) is given by

Ψ
i1...ip
α1...αp;j1...jq,α̇1...α̇q

(z)

=
1

(2πi)2

∮
Γ

eipφ̌ϖj1α̇1
· · ·ϖjqα̇q

× ∂

∂ρα1
i1

· · · ∂

∂ρ
αp

ip

FI,s1,s2(W)ϖ1β̇dϖ
β̇
1 ∧ϖ2γ̇dϖ

γ̇
2 ,

where Γ denotes a suitable two-dimensional contour [4]. We can also find the three-dimensional
projective form of the Penrose transform (4.3.1) [11].
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Now we can show that

∂

∂zββ̇
F (W) =

∂ργk
∂zββ̇

∂

∂ργk
F (W) =

∂ϱγk
∂zββ̇

∂

∂ργk
F (W)

=
∂
(
izγγ̇ϖkγ̇

)
∂zββ̇

∂

∂ργk
F (W) = iϖβ̇

k ϵ
βγ ∂

∂ργk
F (W) . (4.3.6)

Here the weak equality ργj ≈ ϱγj , Eq. (3.3.11), and the formula ∂/∂zββ̇ = ϵβαϵβ̇α̇∂/∂zαα̇

have been used. The derivative of Ψ w.r.t. zββ̇ can be calculated by using Eq.

(4.3.6) as follows:

∂

∂zββ̇
Ψ
i1...ip
α1...αp;j1...jq ,α̇1...α̇q

(z)

=
1

(2πi)4

∮
Σ

eipφ̌ϖj1α̇1 · · ·ϖjqα̇q

∂

∂ρα1
i1

· · · ∂

∂ρ
αp

ip

∂

∂zββ̇
FI,s1,s2(W)d4ϖ

=
i

(2πi)4

∮
Σ

eipφ̌ϖj1α̇1ϖ
β̇
kϖj2α̇2 · · ·ϖjqα̇q

∂

∂ρα2
i2

· · · ∂

∂ρ
αp

ip

ϵβγ
∂

∂ρα1
i1

∂

∂ργk
FI,s1,s2(W)d4ϖ .

(4.3.7)

Contracting over the indices β̇ and α̇1 in Eq. (4.3.7) and using Eq. (4.2.16a), we

obtain

∂

∂zββ̇
Ψ
i1...ip

α1...αp;j1...jq ,β̇α̇2...α̇q
(z)

=
m√
2
ϵβγϵj1k

i

(2πi)4

∮
Σ

ei(p+1)φ̌ϖj2α̇2 · · ·ϖjqα̇q

∂

∂ργk

∂

∂ρα1
i1

· · · ∂

∂ρ
αp

ip

FI,s1,s2(W)d4ϖ

=
im√
2
ϵβγϵj1kΨ

ki1...ip
γα1...αp;j2...jq ,α̇2...α̇q

(z) . (4.3.8)

Similarly, contracting over the indices β and α1 in Eq. (4.3.7) and using Eq.

(4.2.16b), we obtain

∂

∂zββ̇
Ψ
i1...ip
βα2...αp;j1...jq ,α̇1...α̇q

(z)

=
m√
2
ϵβ̇γ̇ϵi1k

i

(2πi)4

∮
Σ

ei(p−1)φ̌ϖkγ̇ϖj1α̇1 · · ·ϖjqα̇q

∂

∂ρα2
i2

· · · ∂

∂ρ
αp

ip

FI,s1,s2(W)d4ϖ

=
im√
2
ϵβ̇γ̇ϵi1kΨ

i2...ip
α2...αp;kj1...jq ,γ̇α̇1...α̇q

(z) . (4.3.9)
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In this way, it has been shown that the spinor field Ψ satisfies the generalized DFP

equations with SU(2) indices

i
√
2

∂

∂zββ̇
Ψ
i1...ip

α1...αp;j1...jq , β̇α̇2...α̇q
+mϵβγϵj1kΨ

ki1...ip
γα1...αp;j2...jq , α̇2...α̇q

= 0 , (4.3.10a)

i
√
2

∂

∂zββ̇
Ψ
i1...ip
βα2...αp;j1...jq ,α̇1...α̇q

+mϵβ̇γ̇ϵi1kΨ
i2...ip
α2...αp;kj1...jq ,γ̇α̇1...α̇q

= 0 . (4.3.10b)

Using Eqs. (4.3.10a) and (4.3.10b) and noting

∂

∂zαβ̇
∂

∂zββ̇
=

1

2
δβα

∂

∂zγγ̇
∂

∂zγγ̇
, (4.3.11)

we can derive the Klein-Gordon equation(
∂

∂zββ̇
∂

∂zββ̇
+m2

)
Ψ
i1...ip
α1...αp;j1...jq ,α̇1...α̇q

= 0 . (4.3.12)

This makes it clear that Ψ is a field of mass m. Thus, we obtain a spinor field of

arbitrary rank with mass m by means of the Penrose transform (4.3.1).

4.4 Rank-one spinor fields and physical mean-

ings of the gauge symmetries

In this section, we investigate the rank-one spinor fields in detail to clarify the

physical meanings of the U(1)a, U(1)b, and SU(2) symmetries as well as those of

the constants s and t.

Now we particularly consider Eq. (4.3.10a) in the case (p, q) = (0, 1) and Eq.

(4.3.10b) in the case (p, q) = (1, 0), which respectively read

i
√
2

∂

∂zαβ̇
Ψ β̇
i (z)−mϵijΨ

j
α(z) = 0 , (4.4.1a)

i
√
2

∂

∂zβα̇
Ψ i
β(z) +mϵijΨ α̇

j (z) = 0 , (4.4.1b)

with Ψ β̇
i := ϵβ̇γ̇Ψiγ̇. Equation (4.4.1a) with i = 1 and Eq. (4.4.1b) with i = 2 can

be combined in the form of the ordinary Dirac equation

Dψ1(z) = 0 , ψ1(z) :=

(
Ψ 2
β(z)

Ψ β̇
1 (z)

)
, (4.4.2)
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while Eq. (4.4.1a) with i = 2 and Eq. (4.4.1b) with i = 1 can be combined, after

replacing zαα̇ by −zαα̇, as

Dψ2(z) = 0 , ψ2(z) :=

(
Ψ 1
β(−z)

Ψ β̇
2 (−z)

)
. (4.4.3)

In Eqs. (4.4.2) and (4.4.3), D denotes the Dirac operator

D :=

 −mδβα i
√
2

∂

∂zαβ̇

i
√
2

∂

∂zβα̇
−mδα̇

β̇

 . (4.4.4)

The charge conjugate of ψ1(z) is found to be

ψc
1(z) :=

(
0 −ϵβγ
ϵβ̇γ̇ 0

)
ψ1(z̄)

=

(
0 −ϵβγ
ϵβ̇γ̇ 0

)(
Ψ̄2γ̇(z)
Ψ̄ 1γ(z)

)
=

(
Ψ̄ 1
β(z)

Ψ̄ β̇
2 (z)

)
, (4.4.5)

where the arguments of ψ1, namely zαα̇, have been replaced by their complex con-

jugates z̄αα̇ := zαα̇ so that ψc
1 can be a holomorphic function of zαα̇. Using the

complex conjugates of Eqs. (4.4.1a) and (4.4.1b), we can show that Dψc
1(z) = 0.

Since ψ2 and ψc
1 satisfy the same Dirac equation and have the same spinor and

SU(2) indices, they can be identified with each other up to an overall constant.2

(This identification may be confirmed by the CPT symmetry.) If ψ1(z) is a spinor

field of a particle with four-momentum (E,p), then ψc
1(z)

(
≃ ψ2(z)

)
is regarded as

2The plane wave solution of Eq. (4.4.1) given by

Ψ i
α(z) = −Ceiφ/2ϖ̄i

α exp
(
−izγγ̇ϖ̄k

γϖkγ̇

)
,

Ψ α̇
i (z) = Ce−iφ/2ϖα̇

i exp
(
−izγγ̇ϖ̄k

γϖkγ̇

)
fulfills the conditions Ψ i

α(−z) = −
(
C/C̄

)
Ψ̄ i
α(z) and Ψ α̇

i (−z) = −
(
C/C̄

)
Ψ̄ α̇
i (z). Here, C is a

complex constant and φ is given in Eq. (4.1.26e). These conditions lead to ψ2(z) = −
(
C/C̄

)
ψc
1(z),

and hence, in this case, ψ2 and ψc
1 can indeed be identified with each other. For verifying that

the plane wave solution satisfies Eq. (4.4.1), it is convenient to use the classical counterparts of
Eqs. (4.2.16a) and (4.2.16b):

ϖiα̇ϖ
α̇
j =

m√
2
ϵije

iφ, ϖ̄i
αϖ̄

jα =
m√
2
ϵije−iφ.
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particle antiparticle

left-handed Ψ 2
α Ψ 1

α

right-handed Ψ α̇
1 Ψ α̇

2

Table 4.1: A classification of the rank-one spinor fields.

s t s t

Ψ 2
α −1

2

1

2
Ψ 1
α −1

2
−1

2

Ψ α̇
1

1

2

1

2
Ψ α̇
1

1

2
−1

2

Table 4.2: The values of s and t of the rank-one spinor fields.

a spinor field of a corresponding antiparticle with four-momentum (−E,−p). Ac-

cordingly, ψ2(−z) =
(
Ψ 1
α(z), Ψ

α̇
2 (z)

)
T is considered a spinor field of the antiparticle

with four-momentum (E,p). In the light of this fact, it is clear that Ψ 2
α(z) and

Ψ 1
α(z) represent a left-handed particle and a corresponding left-handed antiparti-

cle, respectively, while Ψ α̇
1 (z) and Ψ α̇

2 (z) represent a right-handed particle and a

corresponding right-handed antiparticle, respectively, as summarized in Table 4.1.

We thus see that the index i of Ψ i
α(z) and Ψ

α̇
i (z) distinguishes between a particle

and its antiparticle.

Using Eq. (4.3.5), we can obtain the possible values of s and t for each of

the rank-one spinor fields as in Table 4.2. We observe that the left-handed spinor

fields Ψ i
α(z) (i = 1, 2) have s = −1/2, while the right-handed spinor fields Ψ α̇

i (z)

(i = 1, 2) have s = 1/2. Hence, s turns out to be a quantum number specifying

the chirality of a spinor field. Since s is an eigenvalue of Ť0 up to the additive

constant 2, as can be seen from (4.2.13e), Ť0 can be interpreted as the operator

of chirality. Accordingly, U(1)a can be identified as the gauge group of chirality,

and the U(1)a symmetry is physically understood as a gauge symmetry leading

to chirality conservation. We also observe that the particle spinor fields Ψ 2
α(z)

and Ψ α̇
1 (z) have t = 1/2, while the antiparticle spinor fields Ψ 1

α(z) and Ψ
α̇
2 (z) have

t = −1/2. Hence, t turns out to be a quantum number distinguishing between a
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particle and its antiparticle. Then it follows that t is proportional to the electric

charge of the particle/antiparticle. Since t is an eigenvalue of Ť3 as can be seen

from (4.2.13f), Ť3 can be interpreted as the operator of electric charge up to a

constant of proportionality. Accordingly, U(1)b can be identified with the gauge

group of electric charge, and the U(1)b symmetry is physically understood as a

gauge symmetry leading to electric charge conservation.

Now we recall that our study has been performed in the unitary gauge in which

the GGS action takes the form of Eq. (3.3.9) or Eq. (3.3.13). In the unitary gauge,

the local SU(2) symmetry is hidden and the U(1)b symmetry is linearly realized

in accordance with Eq. (2.12). The manifestly SU(2) covariant formulation can

be developed on the basis of the action (3.3.12). The rank-one spinor fields found

in this formulation, denoted by Ω α̇
i and Ω i

α, are related to Ψ α̇
i and Ψ i

α by3

Ω α̇
i (z) = Vi

jΨ α̇
j (z) , Ω i

α(z) = Ψ j
α(z)V

†
j
i . (4.4.6)

Because V is independent of zαα̇, we can readily verify by using Eqs. (4.4.1a) and

(4.4.1b) that

i
√
2

∂

∂zαβ̇
Ω β̇
i (z)−mϵijΩ

j
α(z) = 0 , (4.4.7a)

i
√
2

∂

∂zβα̇
Ω i
β(z) +mϵijΩ α̇

j (z) = 0 . (4.4.7b)

Following the above consideration for Ψ α̇
i (z) and Ψ i

α(z), we see that Ω2
α(z) and

Ω1
α(z) constitute a doublet of left-handed particle and antiparticle spinor fields,

while Ω α̇
1 (z) and Ω

α̇
2 (z) constitute a doublet of right-handed particle and antipar-

ticle spinor fields. Under the SU(2) transformation, Ω α̇
i and Ω i

α transform linearly

as

Ω α̇
i → Ω′α̇

i = Ui
jΩ α̇

j , Ω i
α → Ω′i

α = Ω j
αU

†
j
i , (4.4.8)

3The rank-(p+ q) spinor field in the manifestly SU(2) covariant formulation is given by

Ω
i1...ip
α1...αp;j1...jq,α̇1...α̇q

(z)

=
1

(2πi)4

∮
Σ

eipφ̌πj1α̇1
· · ·πjqα̇q

× ∂

∂µα1
i1

· · · ∂

∂µ
αp

ip

FI,s1,s2(µ, π)d
4π ,

where µα
i is a spinor related to ωα

i by the weak equality µα
i ≈ ωα

i .
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whereas Ψ α̇
i and Ψ i

α transform according to the U(1)b transformation

Ψ α̇
i → Ψ ′α̇

i = Θi
jΨ α̇

j , Ψ i
α → Ψ ′i

α = Ψ j
αΘ

†
j
i . (4.4.9)

As seen from Eq. (4.4.8), the SU(2) transformation causes a continuous trans-

formation between the particle spinor field Ω2
α

(
Ω α̇

1

)
and the antiparticle spinor

field Ω1
α

(
Ω α̇

2

)
. The SU(2) symmetry therefore turns out to be a gauge symme-

try realized in the particle-antiparticle doublets (Ω2
α, Ω

1
α) and

(
Ω α̇

1 , Ω
α̇
2

)
. Such a

symmetry, however, is not observed in nature; hence, it should be considered that

the SU(2) symmetry is hidden or broken. The formulation in the unitary gauge is

appropriate for this situation, because, in the unitary gauge, the SU(2) symmetry

is hidden and the U(1)b symmetry is manifestly exhibited instead.
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Chapter 5

Spinor formulation and canonical
quantization of a massive spinning
particle

In this chapter, we consider a spinor formulation of a massive spinning particle and

the subsequent canonical quantization. In this formulation, we adopt the space-

time and spinor variables as fundamental dynamical variables, after decomposing

the twistor variables in the GGS action. Here, the mass-shell condition with a

real mass parameter is incorporated into the action, instead of the mass-shell con-

dition with the complexified mass parameter. We can expect that this approach

clarifies relations between the twistor and ordinary space-time formulations of a

massive spinning particle and makes it possible to consider coupling to external

fields. We study the canonical Hamiltonian formalism based on the GGS action in

accordance with Dirac’s recipe for constrained Hamiltonian systems. Subsequently,

we perform the canonical quantization of this system. As a result, simultaneous

differential equations for a wave function of the space-time and momentum-spinor

variables are derived. These equations are solved, yielding plane-wave solutions.

We define positive and negative frequency spinor wave functions as linear combi-

nations of the plane wave solutions. It is shown that the spinor wave functions

satisfy the generalized DFP equations with SU(2) indices. It is also demonstrated

that the spinor wave functions can be expressed in the form of Penrose trans-

forms. In addition, we construct the exponential generating function for the spinor

wave functions. Finally, physical meanings of the U(1) and SU(2) symmetries are

clarified.
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5.1 The GGS action in spinor formulation

In this section, we express the GGS action in terms of space-time variable and

spinor variables.

The mass-shell condition incorporated in the GGS action (3.3.13) is a pair of

Eqs. (3.1.3a) and (3.1.3b) in the unitary gauge, while Eq. (3.1.3) equivalent to

them is now rather convenient for spinor formulation. Therefore we consider the

GGS action in which Eq. (3.1.3) is adopted instead of the pair of Eqs. (3.1.3a)

and (3.1.3b) as the mass-shell condition:

S =

∫ τ1

τ0

dτ

[
i

2

(
Z̄iAŻ

A
i − ZAi

˙̄ZiA

)
+ a
(
Z̄iAZ

A
i − 2s

)
+ b3

(
Z̄jAσ3j

kZAk − 2t
)

+ bı̂Z̄jAσı̂j
kZAk − 1

2e
bı̂bı̂ − k2

2
e+

f

2
(ϖ̄iαϖα̇

i ϖ̄
k
αϖkα̇ −m2)

]
, (5.1.1)

where f = f(τ) is treated as a real scalar-density field of weight 1 on T . It is

assumed that f does not change under the U(1)a and U(1)b transformations,

f → f ′ = f. (5.1.2)

It is obvious that the variation with respect to f yields the mass-shell condition

ϖ̄iαϖα̇
i ϖ̄

k
αϖkα̇ = m2 . (5.1.3)

Eq. (5.1.1) can be written in terms of spinor components ϱαi , ϖiα̇ and their complex

conjugates of the twistors in unitary gauge (see right below Eq. (3.3.10)) as

S =

∫ τ1

τ0

dτ

[
i

2

(
ϖ̄i
αϱ̇

α
i + ϱ̄iα̇ϖ̇iα̇ − ϱαi ˙̄ϖi

α −ϖiα̇ ˙̄ϱ
iα̇
)
+ a
(
ϖ̄i
αϱ

α
i + ϱ̄iα̇ϖiα̇ − 2s

)
+ b3

(
ϖ̄j
ασ3j

kϱαk + ϱ̄jα̇σ3j
kϖkα̇ − 2t

)
+ bı̂

(
ϖ̄j
ασı̂j

kϱαk + ϱ̄jα̇σı̂j
kϖkα̇

)
− 1

2e
bı̂bı̂ − k2

2
e+

f

2
(ϖ̄iαϖα̇

i ϖ̄
k
αϖkα̇ −m2)

]
. (5.1.4)

As seen in Eq. (3.3.11), the spinor variable ϱαi is related with another spinor

variable ϖiα̇ by ϱαi = izαα̇ϖiα̇. The coordinates zαα̇ can be decomposed as zαα̇ =

xαα̇ − iyαα̇, where xαα̇ and yαα̇ are elements of Hermitian matrices, satisfying the

Hermitian conditions xβα̇ = xαβ̇ and yβα̇ = yαβ̇. The matrix elements of xαα̇

are identified with coordinates of a point in Minkowski space M. Because the

coordinates zαα̇ are treated as scalar fields on T , xαα̇ and yαα̇ behave as scalar
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fields on T . From Eq. (3.3.11) with the decomposition of zαα̇ and spinor variables

defined as

ψαi := yαα̇ϖiα̇ , ψ̄iα̇ := yαα̇ϖ̄i
α , (5.1.5)

the spinor variables ϱαi and its complex conjugate ϱ̄iα̇ can be written as

ϱαi = ixαα̇ϖiα̇ + ψαi , ϱ̄iα̇ = −ixαα̇ϖ̄i
α + ψ̄iα̇ . (5.1.6)

Clearly, the spinor variables ψαi and ψ̄iα̇ behave as scalar fields on T . Substituting

Eq. (5.1.6) into Eq. (5.1.4) , we obtain

Ss =

∫
dτ

[
− ẋαα̇ϖ̄i

αϖiα̇ − i(ψαi ˙̄ϖi
α − ψ̄iα̇ϖ̇iα̇) + a(ϖ̄i

αψ
α
i + ψ̄iα̇ϖiα̇ − 2s)

+ bı̂
(
ϖ̄k
ασı̂k

iψαi + ψ̄kα̇σı̂k
iϖiα̇

)
+ b3

(
ϖ̄k
ασ3k

iψαi + ψ̄kα̇σ3k
iϖiα̇ − 2t

)
− 1

2e
bı̂bı̂ − k2

2
e+

f

2
(ϖ̄iαϖα̇

i ϖ̄
k
αϖkα̇ −m2)

]
. (5.1.7)

This is the GGS action written in terms of space-time and spinor variables. We see

that Ss is reparametrization invariant. With Eq. (5.1.6), we find that xαα̇, ϖiα̇, ϖ̄
i
α, ψ

α
i

and ψ̄iα̇ transform under the U(1)a transformation (3.3.3) as

xαα̇ → x′αα̇ = xαα̇ , (5.1.8a)

ϖiα̇ → ϖ′
iα̇ = eiθ(τ)ϖiα̇ , (5.1.8b)

ϖ̄i
α → ϖ̄′i

α = e−iθ(τ))ϖ̄i
α , (5.1.8c)

ψαi → ψ′α
i = eiθ(τ)ψαi , (5.1.8d)

ψ̄iα̇ → ψ̄′iα̇ = e−iθ(τ)ψ̄iα̇ . (5.1.8e)

On the other hand, we find that xαα̇, ϖiα̇, ϖ̄
i
α, ψ

α
i and ψ̄iα̇ transform under the

U(1)b transformation (3.3.4) as

xαα̇ → x′αα̇ = xαα̇ , (5.1.9a)

ϖiα̇ → ϖ′
iα̇ = Θi

j(τ)ϖjα̇ , (5.1.9b)

ϖ̄i
α → ϖ̄′i

α = ϖ̄j
αΘ

†
j
i(τ) , (5.1.9c)

ψαi → ψ′α
i = Θi

j(τ)ψαj , (5.1.9d)

ψ̄iα̇ → ψ̄′iα̇ = ψ̄jα̇Θ†
j
i(τ) . (5.1.9e)
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It can easily be verified that Ss remains invariant under U(1)a transformation given

by Eqs. (3.3.3f), (3.3.3g), (5.1.2) and (5.1.8) and under U(1)b transformation

given by Eqs. (3.3.4f), (3.3.4g), (5.1.2) and (5.1.9). By applying the Noether’s

theorem, the conserved quantity corresponding to the translation xαα̇ → xαα̇+kαα̇

is obtained as pαα̇ := ϖ̄i
αϖiα̇, where kαα̇ are elements of a constant Hermitian

matrix, satisfying the Hermitian condition kβα̇ = kαβ̇. Due to the mass-shell

condition, it follows that pαα̇p
αα̇ = m2. This shows that the action Ss describes a

massive particle.

5.2 Canonical formalism

In this section, we study the canonical Hamiltonian formalism of the model gov-

erned by the action Ss.

Let Ls the Lagrangian defined in Eq. (5.1.7) as the integrand of Ss. We treat

the variables (xαα̇, ϖ̄i
α, ϖiα̇, ψ

α
i , ψ̄

iα̇, a, bı̂, b3, e, f) contained in the Lagrangian L

as canonical coordinates. Their corresponding conjugate momenta are defined by

P
(x)
αα̇ :=

∂L

∂ẋαα̇
= −ϖ̄i

αϖiα̇ , (5.2.1a)

P(ϖ̄)
α
i
:=

∂L

∂ ˙̄ϖi
α

= −iψαi , (5.2.1b)

P iα̇
(ϖ) :=

∂L

∂ϖ̇iα̇

= iψ̄iα̇ , (5.2.1c)

P(ψ)
i
α :=

∂L

∂ψ̇αi
= 0 , (5.2.1d)

P(ψ̄)iα̇ :=
∂L

∂ ˙̄ψiα̇
= 0 , (5.2.1e)

P (a) :=
∂L

∂ȧ
= 0 , (5.2.1f)

P (b)
r :=

∂L

∂ḃr
= 0, (5.2.1g)

P (e) :=
∂L

∂ė
= 0 , (5.2.1h)

P (f) :=
∂L

∂ḟ
= 0 . (5.2.1i)
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The canonical Hamiltonian is found from Eqs. (5.1.7) and (5.2.1) to be

HC :=− a(ϖ̄i
αψ

α
i + ψ̄iα̇ϖiα̇ − 2s)− bı̂

(
ϖ̄k
ασı̂k

iψαi + ψ̄kα̇σı̂k
iϖiα̇

)
− b3

(
ϖ̄k
ασ3k

iψαi + ψ̄kα̇σ3k
iϖiα̇ − 2t

)
+

1

2e
bı̂bı̂ +

k2

2
e

− f

2
(ϖ̄iαϖα̇

i ϖ̄
k
αϖkα̇ −m2) (5.2.2)

The non-vanishing Poisson brackets between the canonical variables are given by{
xαα̇, P

(x)

ββ̇

}
= δαβ δ

α̇
β̇
,

{
ϖ̄i
α, P(ϖ̄)

β
j

}
= δijδ

β
α ,

{
ϖiα̇, P

jβ̇
(ϖ)

}
= δji δ

β̇
α̇ ,{

ψαi , P(ψ)
j
β

}
= δji δ

α
β ,

{
ψ̄iα̇, P(ψ̄)jβ̇

}
= δijδ

α̇
β̇
,

{
a, P(a)

}
= 1{

br, P
(b)
t

}
= δrt ,

{
e, P(e)

}
= 1 ,

{
f, P(f)

}
= 1. (5.2.3)

The Poisson bracket between two arbitrary analytic functions of the canonical

variables can be calculated using the fundamental Poisson brackets in Eq. (5.2.3).

Equations (5.2.1a)–(5.2.1i) are read, respectively, as the primary constraints

ϕ
(x)
αα̇ := P

(x)
αα̇ + ϖ̄i

αϖiα̇ ≈ 0 , (5.2.4a)

ϕ(ϖ̄)
α
i
:= P(ϖ̄)

α
i + iψαi ≈ 0 , (5.2.4b)

ϕ(ϖ)
iα̇ := P(ϖ)

iα̇ − iψ̄iα̇ ≈ 0 , (5.2.4c)

ϕ(ψ)
i
α := P(ψ)

i
α ≈ 0 , (5.2.4d)

ϕ(ψ̄)iα̇ := P(ψ̄)iα̇ ≈ 0 , (5.2.4e)

ϕ(a) := P (a) ≈ 0 , (5.2.4f)

ϕ(b)
r := P (b)

r ≈ 0 , (5.2.4g)

ϕ(e) := P (e) ≈ 0 , (5.2.4h)

ϕ(f) := P (f) ≈ 0 . (5.2.4i)

where the symbol “≈ ” denotes the weak equality. Now, we apply the Dirac for-

mulation for constrained Hamiltonian systems [36]-[38] to the present model. To

this end, we first calculate the Poisson brackets between the constraint functions

ϕ
(x)
αα̇, ϕ(ϖ̄)

α
i , ϕ

iα̇
(ϖ), ϕ(ψ)

i
α, ϕ(ψ̄)iα̇, ϕ

(a), ϕ
(b)
r , ϕ(e) and ϕ(f) obtaining the following non-

vanishing Poisson brackets:{
ϕ
(x)
αα̇, ϕ(ϖ̄)

β
i

}
= δβαϖiα̇ ,

{
ϕ
(x)
αα̇, ϕ

iβ̇
(ϖ)

}
= ϖ̄i

αδ
β̇
α̇ ,{

ϕ(ϖ̄)
α
i , ϕ(ψ)

j
β

}
= iδji δ

α
β ,

{
ϕiα̇(ϖ), ϕ(ψ̄)jβ̇

}
= −iδijδα̇β̇ . (5.2.5)
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We can also obtain

{ϕ(x)
αα̇, HC} = 0 , (5.2.6a)

{ϕ(ϖ̄)
α
i
, HC} = aψαi + b3σ3i

jψαj + bı̂σı̂i
jψαj + fϖ̄jαϖβ̇

jϖiβ̇ , (5.2.6b)

{ϕ(ϖ)
iα̇, HC} = aψ̄iα̇ + b3σ3j

iψ̄jα̇ + bı̂σı̂j
iψ̄jα̇ + fϖα̇

j ϖ̄
jβϖ̄i

β , (5.2.6c)

{ϕ(ψ)
i
α, HC} = aϖ̄i

α + b3ϖ̄j
ασ3j

i + bı̂ϖ̄j
ασı̂j

i, (5.2.6d)

{ϕ(ψ̄)iα̇, HC} = aϖiα̇ + b3σ3i
jϖjα̇ + bı̂σı̂i

jϖjα̇ , (5.2.6e)

{ϕ(a), HC} = ψαi ϖ̄
i
α + ψ̄iα̇ϖiα̇ − 2s , (5.2.6f){

ϕ
(b)
ı̂ , HC

}
=
(
ϖ̄k
ασı̂k

iψαi + ψ̄kα̇σı̂k
iϖiα̇

)
− bı̂

e
, (5.2.6g)

{ϕ(b)
3 , HC} = ϖ̄k

ασ3k
iψαi + ψ̄kα̇σ3k

iϖiα̇ − 2t , (5.2.6h){
ϕ(e), HC

}
=

1

2e2
(
bı̂bı̂ − k2e2

)
, (5.2.6i)

{ϕ(f), HC} =
1

2
(ϖ̄iαϖα̇

i ϖ̄
k
αϖkα̇ −m2) . (5.2.6j)

Introducing the Lagrange multipliers uαα̇(x), u(ϖ̄)
i
α, u(ϖ)iα̇, u(ψ)

α
i , u

iα̇
(ψ̄)
, u(a), u

r
(b), u(e)

and u(f), we define the total Hamiltonian

HT := HC + uαα̇(x)ϕ
(x)
αα̇ + u(ϖ̄)

i
αϕ(ϖ̄)

α
i + u(ϖ)iα̇ϕ

iα̇
(ϖ) + u(ψ)

α
i ϕ(ψ)

i
α + uiα̇(ψ̄)ϕ(ψ̄)iα̇

+ u(a)ϕ
(a) + ur(b)ϕ

(b)
r + u(e)ϕ

(e) + u(f)ϕ
(f) (5.2.7)

With this Hamiltonian, the canonical equation for a function F of the canonical

variables is given by

Ḟ = {F,HT} . (5.2.8)

The primary constraints (5.2.4a)–(5.2.4i) must be preserved in time, because they

are valid at any time. The time evolutions of the constraints functions can be

evaluated using Eqs. (5.2.6a)–(5.2.6i), and as a result, we have the consistency
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conditions

ϕ̇
(x)
αα̇ =

{
ϕ
(x)
αα̇, HT

}
≈ u(ϖ̄)

i
αϖiα̇ + u(ϖ)iα̇ϖ̄

i
α ≈ 0 , (5.2.9a)

ϕ̇(ϖ̄)
α
i =

{
ϕ(ϖ̄)

α
i , HT

}
≈ aψαi + b3σ3i

jψαj + bı̂σı̂i
jψαj + fϖ̄jαϖβ̇

jϖiβ̇ − uαα̇(x)ϖiα̇ + iu(ψ)
α
i

≈ 0 , (5.2.9b)

ϕ̇iα̇(ϖ) =
{
ϕiα̇(ϖ), HT

}
≈ aψ̄iα̇ + b3σ3j

iψ̄jα̇ + bı̂σı̂j
iψ̄jα̇ + fϖα̇

j ϖ̄
jβϖ̄i

β − uαα̇(x)ϖ̄
i
α − iuiα̇(ψ̄)

≈ 0 , (5.2.9c)

ϕ̇(ψ)
i
α =

{
ϕ(ψ)

i
α, HT

}
≈ aϖ̄i

α + b3ϖ̄j
ασ3j

i + bı̂ϖ̄j
ασı̂j

i − iu(ϖ̄)
i
α ≈ 0 , (5.2.9d)

ϕ̇(ψ̄)iα̇ =
{
ϕ(ψ̄)iα̇, HT

}
≈ aϖiα̇ + b3σ3i

jϖjα̇ + bı̂σı̂i
jϖjα̇ + iu(ϖ)iα̇ ≈ 0 , (5.2.9e)

ϕ̇(a) =
{
ϕ(a), HT

}
≈ ϖ̄i

αψ
α
i + ψ̄iα̇ϖiα̇ − 2s ≈ 0 , (5.2.9f)

ϕ̇
(b)
ı̂ =

{
ϕ
(b)
ı̂ , HT

}
=
(
ϖ̄k
ασı̂k

iψαi + ψ̄kα̇σı̂k
iϖiα̇

)
− bı̂
e
≈ 0 , (5.2.9g)

ϕ̇
(b)
3 =

{
ϕ
(b)
3 , HT

}
≈ ϖ̄k

ασ3k
iψαi + ψ̄kα̇σ3k

iϖiα̇ − 2t ≈ 0 , (5.2.9h)

ϕ̇(e) =
{
ϕ(e), HT

}
=

1

2e2
(
bı̂bı̂ − k2e2

)
≈ 0 , (5.2.9i)

ϕ̇(f) =
{
ϕ(f), HT

}
≈ 1

2
(ϖ̄iαϖα̇

i ϖ̄
k
αϖkα̇ −m2) ≈ 0 . (5.2.9j)

Equations (5.2.9d) and (5.2.9e) determine u(ϖ̄)
i
α and u(ϖ)iα̇, respectively, as follows:

u(ϖ̄)
i
α = −i

(
aϖ̄i

α + b3ϖ̄j
ασ3j

i + bı̂ϖ̄j
ασı̂j

i
)
, (5.2.10a)

u(ϖ)iα̇ = i
(
aϖiα̇ + b3σ3i

jϖjα̇ + bı̂σı̂i
jϖjα̇

)
. (5.2.10b)

Substituting these into Eq.(5.2.9a), we see that ϕ̇
(x)
αα̇ ≈ 0 is identically satisfied;

hence, Eq. (5.2.9a) gives no new constraints. If uαα̇(x) is fixed to a specific function

of the canonical variables, u(ψ)
α
i and uiα̇

(ψ̄)
are determined from Eqs. (5.2.9b) and

(5.2.9c), respectively, as follows:

u(ψ)
α
i = i

(
aψαi + b3σ3i

jψαj + bı̂σı̂i
jψαj + fϖ̄jαϖβ̇

jϖiβ̇ − uαα̇(x)ϖiα̇

)
, (5.2.11a)

uiα̇(ψ̄) = −i
(
aψ̄iα̇ + b3ψ̄jα̇σ3j

i + bı̂ψ̄jα̇σı̂j
i + fϖα̇

j ϖ̄
jβϖ̄i

β − uαα̇(x)ϖ̄
i
α

)
. (5.2.11b)
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In contrast, equations (5.2.9f)–(5.2.9j) give rise to secondary constraints

χ(a) := ϖ̄i
αψ

α
i + ψ̄iα̇ϖiα̇ − 2s ≈ 0 , (5.2.12a)

χ
(b)
ı̂ := ϖ̄k

ασı̂k
iψαi + ψ̄kα̇σı̂k

iϖiα̇ −
bı̂
e
≈ 0 , (5.2.12b)

χ
(b)
3 := ϖ̄k

ασ3k
iψαi + ψ̄kα̇σ3k

iϖiα̇ − 2t ≈ 0 . (5.2.12c)

χ(e) :=
1

2

(
bı̂bı̂ − k2e2

)
≈ 0 , (5.2.12d)

χ(f) :=
1

2
(ϖ̄iαϖα̇

i ϖ̄
k
αϖkα̇ −m2) ≈ 0 . (5.2.12e)

The non-vanishing Poisson brackets between χ(a), χ
(b)
3 , χ

(b)
ı̂ , χ(f), χ(e) and the pri-

mary constraint functions are found to be

{χ(a), ϕ(ϖ̄)
α
i } = ψαi , {χ(a), ϕ(ϖ)

iα̇} = ψ̄iα̇ ,

{χ(a), ϕ(ψ)
i
α} = ϖ̄i

α , {χ(a), ϕ(ψ̄)iα̇} = ϖiα̇ ,

{χ(b)
3 , ϕ(ϖ̄)

α
i } = σ3i

jψαj , {χ(b)
3 , ϕ(ϖ)

iα̇} = ψ̄jα̇σ3j
i ,

{χ(b)
3 , ϕ(ψ)

i
α} = ϖ̄j

ασ3j
i , {χ(b)

3 , ϕ(ψ̄)iα̇} = σ3i
jϖjȧ ,

{χ(b)
ı̂ , ϕ(ϖ̄)

α
i } = σı̂i

jψαj , {χ(b)
ı̂ , ϕ(ϖ)

iα̇} = ψ̄jα̇σı̂j
i ,

{χ(b)
ı̂ , ϕ(ψ)

i
α} = ϖ̄j

ασı̂j
i , {χ(b)

ı̂ , ϕ(ψ̄)iα̇} = σı̂i
jϖjȧ ,{

χ
(b)
ı̂ , ϕ

(b)
ȷ̂

}
= −δı̂ȷ̂

e

{
χ
(b)
ı̂ , ϕ(e)

}
=

bı̂
e2
,{

χ(e), ϕ
(b)
ı̂

}
= bı̂ ,

{
χ(e), ϕ(e)

}
= −k2e,

{χ(f), ϕ(ϖ̄)
α
i } = ϖ̄kαϖβ̇

kϖiβ̇ , {χ(f), ϕ(ϖ)
iα̇} = ϖα̇

k ϖ̄
kβϖ̄i

β . (5.2.13)

Next, we investigate the time evolution of the secondary constraint functions using

Eqs. (5.2.5) and (5.2.13). The time evolution of χ(a) is evaluated as

χ̇(a) = u(ϖ̄)
i
αψ

α
i + u(ψ)

α
i ϖ̄

i
α + u(ϖ)iα̇ψ̄

iα̇ + uiα̇(ψ̄)ϖiα̇ . (5.2.14)

The condition χ̇(a) ≈ 0 is identically fulfilled with the aid of Eqs. (5.2.10) and

(5.2.11), and hence no new constraints are obtained from χ̇(a) ≈ 0. The time
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evolution of χ
(b)
ı̂ and χ

(b)
3 are evaluated as

χ̇
(b)
ı̂ =

{
χ
(b)
ı̂ , HT

}
=
(
u(ϖ̄)

k
αψ

α
i + ϖ̄k

αu(ψ)
α
i + ψ̄kα̇u(ϖ)iα̇ + u(ψ̄)

kα̇ϖiα̇

)
σı̂k

i − 1

e

(
uı̂(b) − u(e)

bı̂

e

)
= 2ϵı̂ȷ̂

{
b3
(
ϖ̄j
ασȷ̂j

iψi
α + ψ̄kα̇σȷ̂k

jϖjα̇

)
− bȷ̂

(
ϖ̄j
ασ3j

iψαi + ψ̄kα̇σ3k
jϖjα̇

)}
− 1

e

(
uı̂(b) − u(e)

bı̂

e

)
≈ 2ϵı̂ȷ̂bȷ̂

(
b3

e
− 2t

)
− 1

e

(
uı̂(b) − u(e)

bı̂

e

)
, (5.2.15)

χ̇
(b)
3 =

{
χ
(b)
3 , HT

}
= u(ϖ̄)

i
ασ3i

jψαj + ϖ̄j
ασ3j

iu(ψ)
β
i + ψ̄jα̇σ3j

iu(ϖ)iα̇ + u(ψ̄)
iα̇σ3i

jϖjα̇ ≈ −2

e
ϵı̂ȷ̂bı̂bȷ̂ = 0

(5.2.16)

by using Eqs. (5.2.10), (5.2.11), (5.2.12c) and (5.2.12b). Then we see that the

condition χ̇
(b)
ı̂ ≈ 0 determines uı̂(b) as follows:

uı̂(b) = u(e)
bı̂

e
+ 2ϵı̂ȷ̂bȷ̂

(
b3 − 2te

)
, (5.2.17)

while χ̇
(b)
3 is identically satisfied. The time evolution of χ(e) is calculated as

χ̇(e) =
{
χ(e), HT

}
=
u(e)

e

(
bı̂bı̂ − k2e2

)
≈ 0 (5.2.18)

by using Eqs. (5.2.17) and (5.2.12d). Hence the condition χ̇ ≈ 0 is identically

satisfied. The time evolution of χ(f) is evaluated as

χ̇(f) = (u(ϖ̄)
i
αϖiα̇ + ϖ̄i

αu(ϖ)iα̇)ϖ̄
jαϖα̇

j ≈ 0 (5.2.19)

by using Eq. (5.2.10). Hence the condition χ̇(f) ≈ 0 is identically fulfilled. From

the above analysis, we see that no further constraints can be derived; thus, the

procedure for deriving constraints is now completed. We also see that u(ϖ)
i
α, u(ϖ̄)iα̇,

u(ψ)
α
i , u

iα̇
(ψ̄)

and uı̂(b) are determined to be what are written in terms of other variables

such as the canonical coordinates, while uαα̇(x), u(a), u
3
(b), u(e) and u(f) still remain as

arbitrary functions of τ .

We have obtained all the non-vanishing Poisson brackets between the constraint

functions, as in Eqs. (5.2.5) and (5.2.13). However, it is difficult to classify the
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constraints into first and second classes on the basis of Eqs. (5.2.4) and (5.2.12)

together with the vanishing Poisson brackets between the constraint functions. To

find simpler forms of the relevant Poisson brackets, now we define

ϕ̃
(x)
αα̇ := ϕ

(x)
αα̇ − iϕ(ψ)

i
αϖiα̇ + iϖ̄i

αϕ(ψ̄)iα̇ , (5.2.20a)

ϕ
(b)
+ := bı̂ϕ

(b)
ı̂ , (5.2.20b)

ϕ
(b)
− := bı̂ϵı̂ȷ̂ϕ

(b)
ȷ̂ , (5.2.20c)

ϕ̃(e) := ϕ(e) + σı̂j
k
(
ϖ̄j
αψ

α
k + ψ̄jα̇ϖkα̇

)
ϕ
(b)
ı̂ , (5.2.20d)

χ̃(a) := χ(a) − iϕ(ψ)
i
αψ

α
i + iψ̄iα̇ϕ(ψ̄)iα̇ + iϖ̄i

αϕ(ϖ̄)
α
i − iϕiα̇(ϖ)ϖiα̇ , (5.2.20e)

χ̃
(b)
3 := χ

(b)
3 + Λ3 + 2bı̂ϵı̂ȷ̂ϕ

(b)
ȷ̂ , (5.2.20f)

χ̃
(b)
+ := bı̂

(
χ
(b)
ı̂ + Λı̂

)
, (5.2.20g)

χ̃
(b)
− := bı̂ϵı̂ȷ̂

(
χ
(b)
ȷ̂ + Λȷ̂

)
+ 4tebı̂ϕ

(b)
ı̂ , (5.2.20h)

χ̃(f) := χ(f) + iϖ̄jαϕ(ψ)
i
αϖ

α̇
i ϖjα̇ − iϖα̇

j ϕ(ψ̄)iα̇ϖ̄
iαϖ̄j

α , (5.2.20i)

χ̃(e) := χ(e) + ebı̂χ
(b)
ı̂ , (5.2.20j)

where Λr (r = ı̂, 3) are defined as

Λr := iσri
j
(
ϖ̄i
αϕ(ϖ̄)

α
j − ϕiα̇(ϖ)ϖjα̇ + ψ̄iα̇ϕ(ψ̄)jα̇ − ϕ(ψ)

i
αψ

α
j

)
. (5.2.21)

It is immediately seen that the set of all constraints
(
ϕ
(x)
αα̇, ϕ(ϖ̄)

α
i , ϕ

iα̇
(ϖ), ϕ(ψ)

i
α, ϕ(ψ̄)iα̇,

ϕ(a), ϕ
(b)
ı̂ , ϕ

(b)
3 , ϕ(e), ϕ(f), χ(a), χ

(b)
ı̂ , χ

(b)
3 , χ(e), χ(f)

)
≈ 0 is equivalent to the new set

of constraints
(
ϕ̃
(x)
αα̇, ϕ(ϖ̄)

α
i , ϕ

iα̇
(ϖ), ϕ(ψ)

i
α, ϕ(ψ̄)iα̇, ϕ

(a), ϕ
(b)
+ , ϕ

(b)
− , ϕ

(b)
3 , ϕ̃(e), ϕ(f), χ̃(a),

χ̃
(b)
+ , χ̃

(b)
− , χ

(b)
3 , χ̃(e), χ̃(f)

)
≈ 0. We can show that except for

{
ϕ(ϖ̄)

α
i , ϕ(ψ)

j
β

}
= iδji δ

α
β ,

{
ϕiα̇(ϖ), ϕ(ψ̄)jβ̇

}
= −iδijδα̇β̇ ,{

ϕ
(b)
+ , χ̃

(b)
+

}
=

bı̂bı̂

e
,

{
ϕ
(b)
− , χ̃

(b)
−

}
=

bı̂bı̂

e
, (5.2.22)

all the other Poisson brackets between the constraint functions in the new set

vanish. In this way, the relevant Poisson brackets are simplified in terms of

ϕ̃
(x)
αα̇, ϕ

(b)
+ , ϕ

(b)
− , ϕ̃(e), χ̃(a), χ̃

(b)
3 , χ̃

(b)
+ , χ̃

(b)
− , χ̃(f) and χ̃(e), and the matrix consisting
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of those Poisson brackets has a maximal invertible submatrix as



ϕ(ϖ̄)
β
j ϕjβ̇(ϖ) ϕ(ψ)

j
β ϕ(ψ̄)jβ̇ ϕ

(b)
+ ϕ

(b)
− χ̃

(b)
+ χ̃

(b)
−

ϕ(ϖ̄)
α
i 0 0 iδji δ

α
β 0 0 0 0 0

ϕiα̇(ϖ) 0 0 0 −iδijδα̇β̇ 0 0 0 0

ϕ(ψ)
i
α −iδijδβα 0 0 0 0 0 0 0

ϕ(ψ̄)iα̇ 0 iδji δ
β̇
α̇ 0 0 0 0 0 0

ϕ
(b)
+ 0 0 0 0 0 0 bı̂bı̂/e 0

ϕ
(b)
− 0 0 0 0 0 0 0 bı̂bı̂/e

χ̃
(b)
+ 0 0 0 0 −bı̂bı̂/e 0 0 0

χ̃
(b)
− 0 0 0 0 0 −bı̂bı̂/e 0 0


.

(5.2.23)

We can see from this matrix that ϕ̃
(x)
αα̇, ϕ

(a), ϕ
(b)
3 , ϕ̃(e), ϕ(f), χ̃(a), χ̃

(b)
3 , χ̃(e) and χ̃(f)

are first-class constraints, while ϕ(ϖ̄)
α
i , ϕ

iα̇
(ϖ) ϕ(ψ)

i
α, ϕ(ψ̄)iα̇, ϕ

(b)
+ , ϕ

(b)
− , χ̃

(b)
+ and χ̃

(b)
−

are second-class constraints.

Following Dirac’s approach to second-class constraints, we define the Dirac

bracket with the aid of the largest invertible submatrix of the matrix (5.2.23). For

arbitrary functions f and g of the canonical variables, the Dirac bracket is defined

by

{f, g}D
:= {f, g} − i{f, ϕ(ϖ̄)

α
i }{ϕ(ψ)

i
α, g}+ i {f, ϕiα̇(ϖ)}{ϕ(ψ̄)iα̇, g}+ i {f, ϕ(ψ)

i
α}{ϕ(ϖ̄)

α
i , g}

− i {f, ϕ(ψ̄)iα̇}{ϕiα̇(ϖ), g}+
e

bı̂bı̂

({
f, ϕ

(b)
+ }{χ̃(b)

+ , g
}
−
{
f, χ̃

(b)
+

}{
ϕ
(b)
+ , g

}
+
{
f, ϕ

(b)
−

}{
χ̃
(b)
− , g

}
−
{
f, χ̃

(b)
−

}{
ϕ
(b)
− , g

})
. (5.2.24)

Because the Dirac bracket between f and each of the functions ϕ(ϖ̄)
α
i , ϕ

iα̇
(ϖ), ϕ(ψ)

i
α,

ϕ(ψ̄)iα̇, ϕ
(b)
+ , ϕ

(b)
− , χ̃

(b)
+ and χ̃

(b)
− vanishes identically, the second-class constraint can

be set strongly equal to zero and may be expressed as ϕ(ϖ̄)
α
i = 0, ϕiα̇(ϖ) = 0, ϕ(ψ)

i
α =

0, ϕ(ψ̄)iα̇ = 0, ϕ
(b)
+ = 0, ϕ̃

(b)
− = 0, χ̃

(b)
+ = 0 and χ̃

(b)
− = 0, as long as the Dirac bracket

{f, g}D is adopted. We see that the second-class constraints lead to

P(ϖ̄)
α
i = −iψαi , P iα̇

(ϖ) = iψ̄iα̇, (5.2.25a)

P(ψ)
i
α = 0, P iα̇

(ψ̄) = 0, (5.2.25b)

bı̂ = eσı̂j
k
(
ϖ̄j
αψ

α
k + ψ̄jα̇ϖkα̇

)
, P

(b)
ı̂ = 0. (5.2.25c)
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Accordingly, ψαi and ψ̄iα̇ can be identified with the conjugate momenta of ϖ̄i
α

and ϖiα̇, respectively (up to multiplicative constants), and bı̂ become functions

of ϖ̄i
α, ϖiα̇, ψ

α
i , ψ̄

iα̇ and e. Hereafter, with the Dirac bracket {f, g}D, we treat(
xαα̇, ϖ̄i

α, ϖiα̇, a, b
3, e, f

)
as canonical coordinates and treat

(
P

(x)
αα̇ , ψ

α
i , ψ̄

iα̇, P (a),

P
(b)
3 , P (e), P (f)

)
as their corresponding conjugate momenta. The nonvanishing

Dirac brackets between these canonical variables are found from Eqs. (5.2.24) and

(5.2.3) to be{
xαα̇, P

(x)

ββ̇

}
D
= δαβ δ

α̇
β̇
,

{
f, P(f)

}
D
= 1 , (5.2.26a){

ϖ̄i
α, ψ

β
j

}
D
= iδijδ

β
α ,

{
ϖiα̇, ψ̄

jβ̇
}

D
= −iδji δ

β̇
α̇ , (5.2.26b){

a, P(a)

}
D
= 1 ,

{
b3, P

(b)
3

}
D
= 1 , (5.2.26c){

e, P(e)

}
D
= 1 . (5.2.26d)

Because the second-class constraints are now strong equations, Eqs. (5.2.20a),

(5.2.20d), (5.2.20e), (5.2.20f), (5.2.20i) and (5.2.20j) reduce to ϕ̃
(x)
αα̇ = ϕ

(x)
αα̇, ϕ̃

(e) =

ϕ(e), χ̃(a) = χ(a), χ̃
(b)
3 = χ

(b)
3 , χ̃(e) = χ(e) and χ̃(f) = χ(f). Substituting the first

equation in Eq. (5.2.25c) into Eq. (5.2.12d), we see that the first-class constraint

χ(e) ≈ 0 can be expressed as

χ̆(e) := 4Tı̂Tı̂ − k2 ≈ 0 , (5.2.27)

where Tı̂ are defined in

T0 :=
1

2

(
ϖ̄i
αψ

α
i + ψ̄iα̇ϖiα̇

)
, Tr :=

1

2
σrj

k
(
ϖ̄j
αψ

α
k + ψ̄jα̇ϖkα̇

)
. (5.2.28)

Using Eq. (5.2.26), we see that T0 and Tr constitute a bases of the U(1)a × SU(2)

Lie algebra in the following sense:

{T0, Tr}D = 0 , {Tr, Ts}D = ϵrstTt . (5.2.29)

From the above analysis of the constrained Hamiltonian system, it follows that the

set of all the first-class constraints that we should take into account is eventually(
ϕ
(x)
αα̇, ϕ

(a), ϕ
(b)
3 , ϕ(e), ϕ(f), χ(a), χ

(b)
3 , χ̆(e), χ(f)

)
≈ 0 . (5.2.30)
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5.3 Canonical quantization

In this section, we carry out canonical quantization of the Hamiltonian system

analyzed in Sec. 5.2. To this end, in accordance with Dirac’s procedure of quanti-

zation, we introduce the operators f̂ and ĝ corresponding to the functions f and

g, respectively, and set the commutation relation[
f̂ , ĝ

]
= i {̂f, g}D (5.3.1)

in units such that ℏ = 1. Here, {̂f, g}D denotes the operator corresponding to

the Dirac bracket {f, g}D. From Eqs. (5.2.26) and (5.3.1), we have the canonical

commutation relations[
x̂αα̇, P̂

(x)

ββ̇

]
= iδαβ δ

α̇
β̇
,

[
f̂ , P̂(f)

}
= i , (5.3.2a)[

ˆ̄ϖi
α, ψ̂

β
j

]
= −δijδβα ,

[
ϖ̂iα̇,

ˆ̄ψ jβ̇
]
= δji δ

β̇
α̇ , (5.3.2b)[

â, P̂ (a)
]
= i ,

[
b̂3, P̂

(b)
3

]
= i , (5.3.2c)[

ê, P̂ (e)
]
= i . (5.3.2d)

The other canonical commutation relations vanish.

In the quantization procedure, the first-class constraints in Eq. (5.2.30) lead to

the physical state conditions

ϕ̂
(x)
αα̇|Φ⟩ =

(
P̂

(x)
αα̇ + ˆ̄ϖi

αϖ̂iα̇

)
|Φ⟩ = 0, (5.3.3a)

ϕ̂(a)|Φ⟩ = P̂ (a)|Φ⟩ = 0, (5.3.3b)

ϕ̂
(b)
3 |Φ⟩ = P̂

(b)
3 |Φ⟩ = 0, (5.3.3c)

ϕ̂(e)|Φ⟩ = P̂ (e)|Φ⟩ = 0, (5.3.3d)

ϕ̂(f)|Φ⟩ = P̂ (f)|Φ⟩ = 0, (5.3.3e)

χ̂(a)|Φ⟩ =
(
ˆ̄ϖi
αψ̂

α
i + ˆ̄ψiα̇ϖ̂iα̇ − 2s

)
|Φ⟩ = 2

(
T̂0 − s

)
|Φ⟩ = 0, (5.3.3f)

χ̂
(b)
3 |Φ⟩ =

[
σ3j

k
(
ˆ̄ϖj
αψ̂

α
k + ˆ̄ψjα̇ϖ̂kα̇

)
− 2t

]
|Φ⟩ = 2

(
T̂3 − t

)
|Φ⟩ = 0, (5.3.3g)

ˆ̆χ(e)|Φ⟩ =
(
T̂ı̂T̂ı̂ −

k2

4

)
|Φ⟩ = 0, (5.3.3h)

χ̂(f)|Φ⟩ = 1

2

(
ˆ̄ϖiαϖ̂α̇

i
ˆ̄ϖj
αϖ̂jα̇ −m2

)
|Φ⟩ = 0, (5.3.3i)
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where |Φ⟩ denotes a physical state, T̂0 and T̂r (r = ı̂, 3) are defined by

T̂0 :=
1

2

(
ˆ̄ϖi
αψ̂

α
i + ϖ̂iα̇

ˆ̄ψiα̇
)
, T̂r :=

1

2
σrj

k
(
ˆ̄ϖj
αψ̂

α
k + ϖ̂kα̇

ˆ̄ψjα̇
)
. (5.3.4)

In defining the operators ϕ̂
(x)
αα̇, χ̂

(a), χ̂
(b)
3 and ˆ̆χ(e), we have obeyed the Weyl ordering

rule. Then we have used the relevant canonical commutation relations to simplify

the Weyl ordered operators. Using Eq. (5.3.2b), we can easily show that

[
T̂0, T̂r

]
= 0 ,

[
T̂r, T̂s

]
= iϵrstT̂t , (5.3.5)

which is precisely the quantum mechanical counterpart of Eq. (5.2.29). It is evident

that T̂0 is the generator of U(1)a and T̂r (r = 1, 2, 3) are the generators of SU(2).

In particular, T̂3 is the generator of U(1)b.

Now, we introduce the bra-vector

⟨x, f, ϖ̄,ϖ, a, b3, e|

:= ⟨0| exp
(
ixαα̇P̂

(x)
αα̇ + ifP̂ (f) + ϖ̄i

αψ̂
α
i −ϖiα̇

ˆ̄ψiα̇ + iaP̂ (a) + ib3P̂
(b)
3 + ieP̂ (e)

)
(5.3.6)

with the reference bra-vector ⟨0| specified by

⟨0|x̂αα̇ = ⟨0|f̂ = ⟨0| ˆ̄ϖi
α = ⟨0|ϖ̂iα̇ = ⟨0|â = ⟨0|b̂3 = ⟨0|ê = 0 . (5.3.7)

Using the commutation relations in Eq. (5.3.2), we can show that

⟨x, f, ϖ̄,ϖ, a, b3, e|x̂αα̇ = xαα̇⟨x, f, ϖ̄,ϖ, a, b3, e| ,
⟨x, f, ϖ̄,ϖ, a, b3, e|f̂ = f⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e| ˆ̄ϖi
α = ϖ̄i

α⟨x, f, ϖ̄,ϖ, a, b3, e| ,
⟨x, f, ϖ̄,ϖ, a, b3, e|ϖ̂iα̇ = ϖiα̇⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e|â = a⟨x, f, ϖ̄,ϖ, a, b3, e| ,
⟨x, f, ϖ̄,ϖ, a, b3, e|b̂3 = b3⟨x, f, ϖ̄,ϖ, a, b3, e| ,
⟨x, f, ϖ̄,ϖ, a, b3, e|ê = e⟨x, f, ϖ̄,ϖ, a, b3, e| . (5.3.8)
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Also, it is easy to see that

⟨x, f, ϖ̄,ϖ, a, b, e|P̂ (x)
αα̇ = −i ∂

∂xαα̇
⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e|P̂ (f) = −i ∂
∂f

⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e|ψ̂αi =
∂

∂ϖ̄i
α

⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e| ˆ̄ψiα̇ = − ∂

∂ϖiα̇

⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e|P̂ (a) = −i ∂
∂a

⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e|P̂ (b)
3 = −i ∂

∂b3
⟨x, f, ϖ̄,ϖ, a, b3, e| ,

⟨x, f, ϖ̄,ϖ, a, b3, e|P̂ (e) = −i ∂
∂e

⟨x, f, ϖ̄,ϖ, a, b3, e| . (5.3.9)

Multiplying each of Eqs. (5.3.3a)–(5.3.3i) by ⟨x, f, ϖ̄,ϖ, a, b, e| on the left and

using Eqs. (5.3.8) and (5.3.9), we have(
−i ∂

∂xαα̇
+ ϖ̄i

αϖiα̇

)
Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10a)

−i ∂
∂a
Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10b)

−i ∂
∂b3

Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10c)

−i ∂
∂e
Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10d)

−i ∂
∂f
Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10e)

(T0 − s)Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10f)

(T3 − t)Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10g)(
Tı̂Tı̂ −

k2

4

)
Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0, (5.3.10h)(

ϖ̄iαϖα̇
i ϖ̄

j
αϖjα̇ −m2

)
Φ(x, f, ϖ̄,ϖ, a, b3, e) = 0 , (5.3.10i)

with Φ(x, f, ϖ̄,ϖ, a, b3, e) := ⟨x, f, ϖ̄,ϖ, a, b3, e |Φ⟩. Here, T0 and Tr (r = ı̂, 3) are

defined by

T0 :=
1

2

(
ϖ̄i
α

∂

∂ϖ̄i
α

−ϖiα̇
∂

∂ϖiα̇

)
, Tr :=

1

2
σrj

k

(
ϖ̄j
α

∂

∂ϖ̄k
α

−ϖkα̇
∂

∂ϖjα̇

)
.

(5.3.11)
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Equations (5.3.10b)–(5.3.10e) imply that Φ is independent of a, b3, e and f . Hence

it follows that Φ is a function of xαα̇, ϖ̄i
α, and ϖiα̇. Equations (5.3.10a), (5.3.10f)

and (5.3.10g) can be simultaneously solved for any arbitrary real constants s and

t. However, if the solution is required to be a Lorentz spinor consisting only of

ϖ̄i
α, ϖiα̇ and xαα̇, it is restricted to

Φ̃
i1···ip
α1···αp; j1···jq , α̇1···α̇q

(x, ϖ̄,ϖ) = ϖ̄i1
α1

· · · ϖ̄ip
αp
ϖj1α̇1 · · ·ϖjqα̇q exp

(
−ixαα̇ϖ̄i

αϖiα̇

)
,

(5.3.12)

and accordingly s and t are determined to be

s =
p1 + p2 − q1 − q2

2
, t =

p1 − p2 − q1 + q2
2

, p1, p2, q1, q2 = 0, 1, 2, . . . .

(5.3.13)

Here, p1 is the number of ϖ̄1
α in Eq. (5.3.12) and p2(= p − p1) is the number of

ϖ̄2
α. Similarly, q1 is the number of ϖ1α̇ in Eq. (5.3.12) and q2(= q − q1) is the

number of ϖ2α̇. In this way, the allowed values of constants s and t turn out to be

either integer or half-integer values. It is obvious from Eq. (5.3.12) that Φ̃ has the

symmetric properties:

Φ̃
i1...im...in...ip
α1...αm...αn...αp;j1...jq ,α̇1...α̇q

= Φ̃
i1...in...im...ip
α1...αn...αm...αp;j1...jq ,α̇1...α̇q

, (5.3.14a)

Φ̃
i1...ip
α1...αp;j1...ja...jb...jq ,α̇1...α̇a...α̇b...α̇q

= Φ̃
i1...ip
α1...αp;j1...jb...ja...jq ,α̇1...α̇b...α̇a...α̇q

. (5.3.14b)

The operators Tr fulfill the SU(2) commutation relation

[Tr, Ts] = iϵrstTt . (5.3.15)

Following the general method for solving the eigenvalue problem in the SU(2)

Lie algebra, we can simultaneously solve the eigenvalue equation for the Casimir

operator TrTr = Tı̂Tı̂ + T3T3 , i.e.,

TrTrΦ = ΛΦ (5.3.16)

and Eq. (5.3.10g) to obtain

Λ = I(I + 1), I = 0,
1

2
, 1,

3

2
, . . . , (5.3.17)

t = −I, −I + 1, . . . , I − 1, I. (5.3.18)
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For convenience, we introduce

ζ
i1...ipip+1...ip+q

α1...αp; α̇1...α̇q
:= ϵip+1k1 · · · ϵip+qkq Φ̃

i1···ip
α1···αp; k1···kq , α̇1···α̇q

. (5.3.19)

Using this, we can find that the eigenfunction Φ, being the solution of (5.3.10a),

(5.3.10f), (5.3.10g) and (5.3.10h), is given by symmetrizing the indices i1, . . . , ip+q

in Eq. (5.3.19) as

Φ
i1...ip+q

α1...αp;α̇1...α̇q
(x, ϖ̄,ϖ)

:= ζ
(i1...ip+q)
α1...αp; α̇1...α̇q

(x, ϖ̄,ϖ) ≡
∑
perm.

ζ
i1...ip+q

α1...αp; α̇1...α̇q
(x, ϖ̄,ϖ) , (5.3.20)

where
∑

perm. denotes the sum over all permutations of {i1, · · · , ip+q}. In addition,

I is determined to be

I =
p+ q

2
=
p1 + p2 + q1 + q2

2
. (5.3.21)

It is follows from Eqs. (5.3.14a), (5.3.14b) and (5.3.20) that Φ has the symmetric

properties

Φ
i1...ip+q

...αa...αb...;α̇1...α̇q
= Φ

i1...ip+q

...αb...αa...;α̇1...α̇q
, (5.3.22a)

Φ
i1...ip+q

α1...αp;...α̇a...α̇b...
= Φ

i1...ip+q

α1...αp;...α̇a...α̇b...
. (5.3.22b)

From Eqs. (5.3.10g), (5.3.10h), (5.3.16) and (5.3.17), the allowed values of the

positive constant k are determined to be

k = 2
√
I(I + 1)− t2 . (5.3.23)

It is now clear that Φ is characterized by the set of three quantum numbers (s, I, t)

or, equivalently, by (p, q, t). In addition, Φ is also characterized by an another set

(s1, s2, I), where s1 := s+ t , s2 := s− t .

Since the coordinate time is given by x0 = (x00̇ + x11̇)/
√
2, we see that Eq.

(5.3.20) describes a plane wave of the positive-frequency (|ϖ10̇|2+ |ϖ20̇|2+ |ϖ11̇|2+
|ϖ21̇|2)/

√
2. A negative-frequency plane-wave function can be obtained by taking

the complex conjugate of Eq. (5.3.20).

5.4 Positive and negative frequency fields and

the generalized DFP equations

In this section, we construct well-defined positive-frequency and negative-frequency

spinor wave functions from the plane-wave solutions, considering a regularization
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method to have well-defined spinor wave functions. We also find Penrose transforms

via appropriate Fourier-Laplace transforms.

5.4.1 Positive-frequency wave function

We consider the positive-frequency spinor wave function defined by

Ψ+i1...ip+q

α1...αp;α̇1...α̇q
(x)

:=
(−1)p

(2πi)8

∫
C4

f̃+(ϖ̄,ϖ)Φ
i1...ip+q

α1...αp;α̇1...α̇q
(x, ϖ̄,ϖ)d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2

=
(−1)p

(2πi)8

∫
C4

∑
perm.

ϖ̄i1
α1

· · · ϖ̄ip
αp
ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q f̃

+(ϖ̄,ϖ)

× exp
(
−ixββ̇ϖ̄k

βϖkβ̇

)
d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 , (5.4.1)

where d2ϖ̄i := dϖ̄i
0 ∧ dϖ̄i

1 , d2ϖi := dϖi0̇ ∧ dϖi1̇ (i = 1, 2). This function is

just a linear combination of Φ
i1...ip+q

α1...αp;α̇1...α̇q
with the coefficient function f̃+. When

the absolute value of the integrand increase or sufficiently slowly decreases in the

asymptotic region specified by (|ϖ10̇|2+ |ϖ20̇|2+ |ϖ11̇|2+ |ϖ21̇|2) → ∞, the integral

in Eq. (5.4.1) is not well-defined. To make this integral well-defined, we replace

xαα̇ by zαα̇ = xαα̇ − iyαα̇ so that the integrand can include the multiplicative

exponential factor exp
(
−yββ̇ϖ̄j

βϖjβ̇

)
. The exponent yββ̇ϖ̄j

βϖjβ̇ can be written as

yββ̇ϖ̄k
βϖkβ̇

=
1√
2

(
y0 + |y|

) (
|λ10̇|2 + |λ20̇|2

)
+

1√
2

(
(y0 − |y|

) (
|λ11̇|2 + |λ21̇|2

)
(5.4.2)

in terms of the real variables yµ (µ = 0, 1, 2, 3) and the spinor λiα̇ := Uα̇
β̇(y)ϖiβ̇.

Here, |y| :=
√
(y1)2 + (y2)2 + (y3)2 and

U(y) :=
1

2|y|(y3 + |y|)

(
y3 + |y| y1 + iy2

y1 − iy2 −y3 − |y|

)
. (5.4.3)

This matrix is both unitary and Hermitian. From Eq. (5.4.2), we see that

yββ̇ϖ̄k
βϖkβ̇ is positive definite if and only if yµy

µ ≡ (y0)2 − |y|2 > 0 and y0 > 0.

These two conditions for yµ together define a region called the forward (or future)

tube:

CM+ := {(zµ) ∈ CM♯ | zµ = xµ − iyµ, yµy
µ > 0, y0 > 0} . (5.4.4)
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Here, CM♯ denotes the conformal compactification of complexified Minkowski

space CM. Since yββ̇ϖ̄k
βϖkβ̇ > 0 is valid in CM+, the integral in

Ψ+i1...ip+q

α1...αp;α̇1...α̇q
(z)

=
(−1)p

(2πi)8

∫
C4

∑
perm.

ϖ̄i1
α1

· · · ϖ̄ip
αp
ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q f̃

+(ϖ̄,ϖ)

× exp
(
−izββ̇ϖ̄k

βϖkβ̇

)
d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 , (5.4.5)

is well-defined for zµ ∈ CM+. Therefore, the positive-frequency spinor wave func-

tions is suitably defined on CM+. In this function, exp
(
−yββ̇ϖ̄k

βϖkβ̇

)
plays the

role of a damping factor. The corresponding spinor wave function on M is given

by

Ψ+i1...ip+q

α1...αp;α̇1...α̇q
(x) := lim

y0↓ 0
Ψ+i1...ip+q

α1...αp;α̇1...α̇q
(z) . (5.4.6)

We can find that Eq.(5.3.10i) is equivalent to formulas

ϖ̄i
αϖ̄

jα = ϵij
m√
2
eiφ̃ , ϖiα̇ϖ

α̇
j = ϵij

m√
2
e−iφ̃ (5.4.7)

where φ̃ is an arbitrary real constant. Hereafter, we choose φ̃, in such a way

that eiφ̃ = 1. By using these formulas, it is easily seen that Φ
i1...ip+q

α1...αp; α̇1...α̇q
(z, ϖ̄,ϖ)

satisfies

∂

∂zββ̇
Φ
i1...ip+q

α1...αp; β̇α̇2...α̇q
= i

m√
2
ϵβγΦ

i1...ip+q

γα1...αp; α̇2...α̇q
, (5.4.8a)

∂

∂zββ̇
Φ
i1...ip+q

βα2...αp; α̇1...α̇q
= −i m√

2
ϵβγΦ

i1...ip+q

γα1...αp; α̇2...α̇q
. (5.4.8b)

From Eqs. (5.4.5) and (5.4.8), we can prove that Ψ+i1...ip+q

α1...αp; α̇1...α̇q
(z) satisfies the

Dirac-Fierz-Pauli equations with SU(2) indices

i
√
2
∂

∂zββ̇
Ψ+i1...ip+q

α1...αp;β̇α̇2...α̇q
(z)−mϵβγΨ+i1...ip+q

γα1...αp; α̇2...α̇q
(z) = 0 , (5.4.9a)

i
√
2
∂

∂zββ̇
Ψ+i1...ip+q

βα2...αp; α̇1...α̇q
(z) +mϵβ̇γ̇Ψ+i1...ip+q

α2...αp; γ̇α̇1...α̇q
(z) = 0 . (5.4.9b)

Therefore the function Φ
i1...ip+q

α1...αp; α̇1...α̇q
(z, ϖ̄,ϖ) is a particular solution of these equa-

tions. Using Eqs. (5.4.9a) and (5.4.9b) and noting

∂

∂zαβ̇
∂

∂zββ̇
=

1

2
δβα

∂

∂zγγ̇
∂

∂zγγ̇
, (5.4.10)
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we can derive the Klein-Gordon equation(
∂

∂zγγ̇
∂

∂zγγ̇
+m2

)
Ψ+i1...ip+q

α1...αp; α̇1...α̇q
(z) = 0 . (5.4.11)

This makes it clear that Ψ+ is a field of mass m. Thus we obtain a spinor field of

rank p+ q with mass m.

Now, let us consider the Fourier-Laplace transform of f̃+(ϖ̄,ϖ) with respect

to ϖ̄i
α

f+(ϱ,ϖ) :=
1

(2πi)4

∮
Π+

f̃+(ϖ̄,ϖ) exp
(
−ϖ̄i

αϱ
α
i

)
d2ϖ̄1 ∧ d2ϖ̄2 (5.4.12)

Here, ϱαi is defined by Eq. (3.3.11), and the integral is taken over a suitable four-

dimensional contour, Π+, chosen in such a manner that f+ becomes a holomorphic

function of ϱαi and ϖiα̇. (The Fourier-Laplace transform (5.4.12) is consistent with

the representation ˆ̄ϖi
α = −∂/∂ϱαi .) Since the pair of ϱαi and ϖiα̇ is precisely the

twistor ZAi = (ϱαi , ϖiα̇), the function f+ is regarded as a holomorphic function on

(nonprojective) twistor space T × T, the direct product of two four-dimensional

complex spaces coordinatized by (ϱα1 , ϖ1α̇) and (ϱα2 , ϖ2α̇) respectively, and can be

expressed as f+(Zi). From the first equality of

yββ̇ϖ̄i
βϖiβ̇ = Re(ϖ̄i

αϱ
α
i ) =

1

2

(
ϖ̄i
αϱ

α
i + ϱ̄iα̇ϖiα̇

)
, (5.4.13)

it is clear that f+ is well-defined on the condition yββ̇ϖ̄i
βϖiβ̇ > 0. In other words,

f+ is actually well-defined on a region

(T×T)+ :=
{
(ϱαi , ϖiα̇) ∈ T×T |ϖ̄i

αϱ
α
i + ϱ̄iα̇ϖiα̇ > 0

}
. (5.4.14)

Noting that ∂/∂ϱαi exp (−ϖ̄
j
βϱ

β
j ) = −ϖ̄i

α exp (−ϖ̄
j
βϱ

β
j ), we can write Eq. (5.4.5)

in terms of f+(ϱ,ϖ) as

Ψ+i1...ip+q

α1...αp; α̇1...α̇q
(z)

=
1

(2πi)4

∮
Σ+

∑
perm.

ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q

∂

∂ϱα1
i1

· · · ∂

∂ϱ
αp

ip

f+(ϱ,ϖ)

× d2ϖ1 ∧ d2ϖ2 , (5.4.15)

where (zµ) ∈ CM+, andΣ+ is another four-dimensional contour. Equation (5.4.15)

is identified as a nonprojective form of the Penrose transform in the massive case.
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The exterior derivative of the integrand including d2ϖ1 ∧ d2ϖ2 vanishes with zµ

held constant

d

(
ϖj1α̇1 · · ·ϖjqα̇q

∂

∂ϱα1
i1

· · · ∂

∂ϱ
αp

ip

f+(ϱ,ϖ)d2ϖ1 ∧ d2ϖ2

)
= 0 . (5.4.16)

Therefore, it can be proven by using Poincaré’s lemma and Stokes’ theorem that

the integral itself remains invariant under the deformations of Σ+ that are car-

ried out continuously in the domain of the integrand. Suppose now that f+ is

homogeneous of degree s̃1 with respect to ϖ1α̇ and s̃2 with respect to ϖ2α̇, that

is, f+(cϱ1, cϖ1, cϱ2, cϖ2) = cs̃1+s̃2f+(ϱ,ϖ) (c ∈ C). Then under the replacement

of ϖiα̇ by ciϖiα̇( no sum with respect to i), the integral changes into the multi-

plied by cq1+q2−p1−p2+4+s̃1+s̃2 by virtue of the deformation invariance of the integral.

However, this replacement cannot change the integral actually, because the ϖiα̇

are merely variables of integration. Hence, it follows that the integral vanishes if

p1 + p2 − q1 − q2 − 4 ̸= s̃1 + s̃2; only in the case of

p1 + p2 − q1 − q2 − 4 = s̃1 + s̃2 (5.4.17)

the integral may remain nonvanishing. In this case, the integrand including d2ϖ1∧
d2ϖ2 can be expressed as the exterior product of dϖ10̇/ϖ10̇ and a 3-form consisting

of ζ := ϖ11̇/ϖ10̇ and ξα̇ := ϖ2α̇/ϖ10̇ (α̇ = 0̇, 1̇). (Here, ϖ10̇, ζ and ξα̇ are treated as

independent variables.) After carrying out the contour integration over ϖ10̇ along

a topological circle surrounds ϖ10̇ = 0, Eq. (5.4.15) reduces to

Ψ+i1...ip+q

α1...αq ; α̇1...α̇q
(z)

=
1

(2πi)3

∮
Γ+

∑
perm.

ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q

∂

∂ϱα1
i1

· · · ∂

∂ϱ
αp

ip

f+(ϱ,ϖ)

× 1

3
ϵijϵklπiα̇dϖ

α̇
k ∧ dϖjβ̇ ∧ dϖ

β̇
l , (5.4.18)

where Γ+ denotes a three-dimensional closed contour on the CP3 coordinatized by

(ζ, ξ0̇, ξ1̇). Equation (5.4.18) is identified as a three-dimensional projective form

of the Penrose transform [11]. It is easy to show that f+ satisfies(
−ϱαi

∂

∂ϱαi
−ϖiα̇

∂

∂ϖiα̇

+ 2s− 4

)
f+(ϱ,ϖ) = 0 . (5.4.19)

This looks like the eigenvalue equation (4.2.13e) for the generator Ť0 of the U(1)a

transformation, which the twistor function F (WA
i ) obey in twistor formulation, but

the sign of s is opposite.
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5.4.2 Negative-frequency wave function

A (well-defined) negative-frequency spinor wave function can be obtained imme-

diately by taking the complex conjugate of Ψ+i1...ip+q

α1...αp; α̇1...α̇q
(z). The wave function

obtained in this manner is, however, a function of zµ and hence is anti-holomorphic.

In the following, we construct a holomorphic negative-frequency spinor wave func-

tion.

Let f̃−(ϖ̄,ϖ) be a complex function similar to f̃+(ϖ̄,ϖ). The negative-frequency

counterpart of Ψ+i1...ip+q

α1...αp; α̇1...α̇q
(x) in Eq. (5.4.1) is defined by

Ψ−i1...ip+q

α1...αp; α̇1...α̇q
(x)

:=
1

(2πi)8

∫
C4

f̃−(ϖ̄,ϖ)Φ
i1...ip+q

α1...αp; α̇1...α̇q
(−x, ϖ̄,ϖ)d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2

=
1

(2πi)8

∫
C4

∑
perm.

ϖ̄i1
α1

· · · ϖ̄ip
αp
ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q f̃

−(ϖ̄,ϖ)

× exp
(
ixββ̇ϖ̄k

βϖkβ̇

)
d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 , (5.4.20)

where Φ
i1...ip+q

α1...αp; α̇1...α̇q
(−x, ϖ̄,ϖ) obeys the complex conjugates of Eqs. (5.3.10a),

(5.3.10f)–(5.3.10h), and its corresponding values of s, t, and I are determined to

be

s = −p1 + p2 − q1 − q2
2

, t = −p1 − p2 − q1 + q2
2

,

I =
p1 + p2 + q1 + q2

2
=
p+ q

2
, p1, p2, q1, q2 = 0, 1, 2, . . . . (5.4.21)

Note that, s and t are different from Eq. (5.3.13) only in the sign. The integral

in Eq. (5.4.20) itself is not well-defined in general, and we therefore replace xαα̇

with zαα̇ = xαα̇ − iyαα̇ by following the case of the positive-frequency spinor wave

function. Owing the replacement, the integrand is modified so as to include the

damping factor exp
(
yββ̇ϖ̄i

αϖiα̇

)
valid on the simultaneous conditions yµy

µ > 0

and y0 < 0. These conditions together defined a region called the backward ( or

past ) tube:

CM− :=
{
(zµ) ∈ CM♯ | zµ = xµ − iyµ, yµy

µ > 0, y0 < 0
}
. (5.4.22)
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Since yββ̇ϖi
αϖiα̇ is fulfilled in CM−, the integral in

Ψ−i1...ip+q

α1...αp; α̇1...α̇q
(z)

=
1

(2πi)8

∫
C4

∑
perm.

ϖ̄i1
α1

· · · ϖ̄ip
αp
ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q f̃

−(ϖ̄,ϖ)

× exp
(
izββ̇ϖ̄k

βϖkβ̇

)
d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 (5.4.23)

is well-defined for zµ ∈ CM−. It thus follows that the holomorphic negative-

frequency spinor wave function is properly defined on CM−. The corresponding

spinor wave function on M is given by

Ψ−i1...ip+q

α1...αp; α̇1...α̇q
(x) := lim

y0↑0
Ψ−i1...ip+q

α1...αp; α̇1...α̇q
(z) . (5.4.24)

Using the formula (5.4.7), we can easily prove that Ψ−i1...ip+q

α1...αp; α̇1...α̇q
(z) satisfies the

Dirac-Fierz-Pauli equations with SU(2) indices (5.4.9a) and (5.4.9b).

Next, we consider the Fourier-Laplace transform of f̃−(ϖ̄,ϖ) with respect to

ϖ̄i
α:

f−(ϱαi , ϖiα̇) :=
1

(2πi)4

∮
Π−

f̃−(ϖ̄,ϖ) exp
(
ϖ̄i
αϱ

α
i

)
d2ϖ̄1 ∧ d2ϖ̄2 . (5.4.25)

Here, the integral is taken over a suitable four-dimensional contour, Π−, chosen

in such a manner that f− becomes a holomorphic function of ϱαi and ϖiα̇. (The

Fourier-Laplace transform (5.4.25) is consistent with the conjugate representation

ˆ̄ϖi
α = ∂/∂ϱαi ) It is clear from Eq. (5.4.13) that f− is well-defined on a region of

two-twistor space

(T×T)− :=
{
(ϱαi , ϖiα̇) ∈ T×T | ϖ̄i

αϱ
α
i + ϱ̄iα̇ϖiα̇ < 0

}
. (5.4.26)

This is the region of T × T corresponding to CM−; a correspondence similar to

that between (T×T)+ and CM+ is established between (T×T)− and CM−.

We can write Eq. (5.4.23) in terms of f−(ϱ,ϖ) as

Ψ−i1...ip+q

α1...αp; α̇1...α̇q
(z) =

1

(2πi)4

∮
Σ−

∑
perm.

ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q

× ∂

∂ϱα1
i1

· · · ∂

∂ϱ
αp

ip

f−(ϱ,ϖ)d2ϖ1 ∧ d2ϖ2 , (5.4.27)
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where (zµ) ∈ CM− and points (ϱαi , ϖiα̇) in two-twistor space are located in the

region specified by Eq. (5.4.26). The contour Σ− of integration is another four-

dimensional contour. Suppose now that f− is homogeneous of degree s̃′1 with

respect to ϖ1α̇ and s̃′2 with respect to ϖ2α̇. Then , if s̃′1+ s̃
′
2 ̸= p1+ p2− q1− q2− 4,

the integral vanishes; if s̃′1 + s̃′2 = p1 + p2 − q1 − q2 − 4, the integral may remain

nonvanishing and can be written as

Ψ−i1...ip
α1...αp; j1...jq α̇1...α̇q

(z)

=
1

(2πi)3

∮
Γ−

∑
perm.

ϵip+1j1 · · · ϵip+qjqϖj1α̇1 · · ·ϖjqα̇q

∂

∂ϱα1
i1

· · · ∂

∂ϱ
αp

ip

f−(ϱ,ϖ)

× 1

3
ϵijϵklϖiα̇dϖ

α̇
k ∧ dϖjβ̇ ∧ dϖ

β̇
l . (5.4.28)

where Γ− denotes a three-dimensional closed contour on CP3. In this way, we

obtain the negative-frequency wave function Ψ−i1...ip+q

α1...αp; α̇1...α̇q
(z) written in the form

of a Penrose transform. We can show that f− satisfies(
ϱαi

∂

∂ϱαi
+ϖiα̇

∂

∂ϖiα̇

+ 4 + 2s

)
f−(ϱ, π) = 0 , (5.4.29)

where s is given in Eq. (5.4.21).

5.5 Exponential generating function for spinor

wave functions

In this section, we treat the spinor wave functions including in the positive and

negative frequency wave functions Ψ±i1...ip+q

α1...αp; α̇1...α̇q
. Then we define the exponential

generating function for spinor wave functions. From the exponential generating

function, we derive a novel representation of spinor wave functions.

We denote each term in the sum in Eq. (5.4.5) as

Ψ̃+i1...ip
α1...αp; j1...jq α̇1...α̇q

(z)

:=
(−1)p

(2πi)8

∫
C4

f̃+(ϖ̄,ϖ)Φ̃
i1...ip
α1...αp; j1...jq α̇1...α̇q

(z, ϖ̄,ϖ)

× d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2

=
(−1)p

(2πi)8

∫
C4

ϖ̄i1
α1

· · · ϖ̄ip
αp
ϖj1α̇1 · · ·ϖjqα̇q f̃

+(ϖ̄,ϖ) exp
(
−izββ̇ϖ̄k

βϖkβ̇

)
× d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 , (5.5.1)
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where ϵij’s have been omitted and Φ̃
i1...ip
α1...αp; j1...jq α̇1...α̇q

(z, ϖ̄,ϖ) is given by replacing

xαα̇ with zαα̇ := xαα̇ − iyαα̇ in Eq. (5.3.12). Note that Φ̃
i1...ip
α1...αp; j1...jq α̇1...α̇q

(z, ϖ̄,ϖ)

is a solution of Eqs. (5.3.10f) and (5.3.10g); however, it is not a solution of Eq.

(5.3.10h). From Eq. (5.4.18), Ψ̃+i1...ip
α1...αp; j1...jq α̇1...α̇q

(z) can be expressed in the form

of the Penrose transform as

Ψ̃+i1...ip
α1...αq ; j1...jp α̇1...α̇q

(z)

=
1

(2πi)3

∮
Γ+

ϖj1α̇1 · · ·ϖjqα̇q

∂

∂ϱα1
i1

· · · ∂

∂ϱ
αp

ip

f+(ϱ,ϖ)
1

3
ϵijϵklπiα̇dϖ

α̇
k ∧ dϖjβ̇ ∧ dπ

β̇
l .

(5.5.2)

Here we have omitted ϵij’s. Similarly, we denote each term in the sum in Eq.

(5.4.23) as

Ψ̃−i1...ip
α1...αp; j1...jq α̇1...α̇q

(x)

:=
1

(2πi)8

∫
C4

f̃−(ϖ̄,ϖ) ¯̃Φ
i1...ip
α1...αp; j1...jq α̇1...α̇q

(z, ϖ̄,ϖ)

× d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2

=
1

(2πi)8

∫
C4

ϖ̄i1
α1

· · · ϖ̄ip
αp
ϖj1α̇1 · · ·ϖjqα̇q f̃

−(ϖ̄,ϖ) exp
(
izββ̇ϖ̄k

βϖkβ̇

)
× d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 , (5.5.3)

where ¯̃Φ
i1...ip
α1...αp; j1...jq α̇1...α̇q

(z, ϖ̄,ϖ) is given by replacing xαα̇ with zαα̇ := xαα̇ − iyαα̇

after taking the complex conjugate of Eq. (5.3.12). From Eq. (5.4.28), we find

that Ψ̃−i1...ip
α1...αp; j1...jq α̇1...α̇q

(z) can be written in the form of the Penrose transform as

Ψ̃−i1...ip
α1...αp; j1...jq α̇1...α̇q

(z)

=
1

(2πi)3

∮
Γ−
ϖj1α̇1 · · ·ϖjqα̇q

∂

∂ϱα1
i1

· · · ∂

∂ϱ
αp

ip

f−(ϱ,ϖ)
1

3
ϵijϵklϖiα̇dϖ

α̇
k ∧ dϖjβ̇ ∧ dϖ

β̇
l .

(5.5.4)

From Eqs. (5.5.1) and (5.5.3), it is easily seen that

−i ∂

∂zββ̇
Ψ̃±i1...ip

α1...αp; j1...jqα̇1...α̇q
(z) = Ψ̃± k i1...ip

βα1...αp; k j1...jqβ̇α̇1...α̇q
(z) . (5.5.5)

Now we define the exponential generating function, Ψ, for the spinor wave function
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Ψ̃±i1...ip
α1...αp; j1...jqα̇1...α̇q

(z):

Ψ±(z, ι, κ) :=
∞∑
m=0

∞∑
n=0

1

m!n!
Ψ̃±i1...ip

α1...αp; j1...jnα̇1...α̇q
(z)

× ια1
i1

· · · ιαp

ip
κj1α̇1 · · ·κjqα̇q , (5.5.6)

where ιαi and κiα̇ are arbitrary undotted and dotted spinors, respectively. The func-

tions Ψ̃±i1...ip
α1...αp; j1...jqα̇1...α̇q

(z) can be treated as expansion coefficients in the Maclau-

rin series expansion of Ψ± with respect to ιαi and κiα̇. Using Eq. (5.5.5), we can

show that Ψ± satisfies the fundamental equation(
−i ∂

∂zαα̇
− ∂2

∂ιαi κ
iα̇

)
Ψ±(z, ι, κ) = 0 . (5.5.7)

This is precisely the complexification of the so-called unfolded equations(
−i ∂

∂xαα̇
− ∂2

∂ψαi ψ̄
iα̇

)
Φ̌(x, ψ, ψ̄) = 0 . (5.5.8)

which can be obtained in the present formulation by taking the inner product

between Eq. (5.3.3a) and the bra-vector

⟨x, f, ψ, ψ̄, a, b3, e|

:= ⟨0| exp
(
ixαα̇P̂

(x)
αα̇ + ifP̂ (f) − ψαi ˆ̄ϖ

i
α + ψ̄iα̇ϖ̂iα̇ + iaP̂ (a) + ib3P̂

(b)
3 + ieP̂ (e)

)
.

(5.5.9)

Here, ⟨0̃| is a reference bra-vector specified by ⟨0̃|x̂αα̇ = ⟨0̃|f̂ = ⟨0̃|ψ̂iα = ⟨0̃|ψ̄iα̇ =

⟨0̃|â = ⟨0̃|b̂3 = ⟨0̃|ê = 0. The function Φ̌ is defined by Φ̌(x, f, ψ, ψ̄, a, b3, e) :=

⟨x, f, ψ, ψ̄, a, b3, e|Φ⟩ and is described as Φ̌(x, ψ, ψ̄) after taking into account Eqs.

(5.3.3b)–(5.3.3e). Substituting Eqs. (5.5.1) and (5.5.3) into (5.5.6), we have

Ψ±(z, ι, κ) =
1

(2πi)8

∫
C4

f̃±(ϖ̄,ϖ) exp
(
∓izββ̇ϖ̄k

βϖkβ̇ ∓ ϖ̄i
αι
α
i +ϖiα̇κ

iα̇
)

× d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 (5.5.10)

With this expression, it is clear that Ψ+ and Ψ− are well-defined on CM+ and

CM−, respectively, owing to the fact that the integrals converge in their corre-

sponding tube domains. Substitution of Eqs. (5.5.2) and (5.5.4) into Eq. (5.5.6)
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yields

Ψ±(z, ι, κ)

=
1

(2πi)3

∮
Γ±

exp

(
ϖiα̇κ

iα̇ + ιαi
∂

∂ϱαi

)
f±(ϱ,ϖ)

1

3
ϵjkϵlmϖjβ̇dϖ

β̇
l ∧ dϖkγ̇ ∧ dϖγ̇

m ,

(5.5.11)

which can be recognized as a collective form of the Penrose transforms (5.5.2) and

(5.5.4).

We now note that

f̃± (ϖ̄,ϖ) exp
(
∓ ϖ̄i

αι
α
i +ϖiα̇κ

iα̇
)

= f̃±
(
∓ ∂

∂ι
,
∂

∂κ

)
exp

(
∓ ϖ̄i

αι
α
i +ϖiα̇κ

iα̇
)
, (5.5.12)

where f̃±(∓∂/∂ι, ∂/∂κ) may include the integration operators (∂/∂ιαi )
−1 :=

∫
dιαi

and (∂/∂κiα̇)−1 :=
∫
dκiα̇, and their higher-order analogs. Applying Eq. (5.5.12)

to Eq. (5.5.10), we obtain

Ψ±(z, ι, κ) =
1

(2πi)8
f̃±
(
∓ ∂

∂ι
,
∂

∂κ

)∫
C4

exp
(
∓izββ̇ϖ̄k

βϖβ̇ ∓ ϖ̄i
αι
α
i +ϖiα̇κ

iα̇
)

× d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2

=
1

(2πi)8
f̃±
(
∓ ∂

∂ι
,
∂

∂κ

)
exp

(
iz−1
α̇αι

α
i κ

iα̇
) ∫

C4

exp
(
∓izββ̇ϖ̄j

βϖjβ̇

)
× d2ϖ̄1 ∧ d2ϖ̄2 ∧ d2ϖ1 ∧ d2ϖ2 . (5.5.13)

Here, z−1
αα̇ denote the matrix elements such that zαγ̇z−1

γ̇β = δαβ and z−1
α̇γ z

γβ̇ = δα̇
β̇.

Carrying out the integration in Eq. (5.5.13) leads to

Ψ±(z, ι, κ) =
1

(2π)4
det
(
z−1

β̇β

)
f̃±
(
∓ ∂

∂ι
,
∂

∂κ

)
exp

(
iz−1
α̇αι

α
i κ

iα̇
)
. (5.5.14)

We can directly verify that Ψ± in Eq. (5.5.14) fulfills Eq. (5.5.7). The spinor wave

functions can be derived from Eq. (5.5.14) as the coefficients of the Maclaurin

series expansion of Ψ± with respect to ιαi and κiα̇

Ψ̃±i1...ip
α1...αp; j1...jqα̇1...α̇q

(z) =
1

(2π)4
det
(
z−1

β̇β

) ∂p+q

∂ια1
i1

· · · ∂ιαp

ip
∂κj1α̇ · · ·κjqα̇q

× f̃±
(
∓ ∂

∂ι
,
∂

∂κ

)
exp

(
iz−1
α̇αι

α
i κ

iα̇
)∣∣∣∣
ιαi =κ

iα̇=0

. (5.5.15)
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In this way, we have obtained a novel representation for each of the spinor wave

functions. We now write the contravariant vector corresponding z−1
αα̇ as (z−1)µ.

Then it can be shown that (z−1)µ = 2zµ/(zνz
ν). The discrete transformation

zµ → 1
2
(z−1)µ is known as the conformal inversion transformation. Therefore, it

turns out that Ψ̃±i1...ip
α1...αp; j1...jqα̇1...α̇q

(z) in Eq. (5.5.15) is a function of the conformally

invereted space-time variables 1
2
(z−1)µ.

5.6 Physical meanings of the internal symme-

tries

In this section, we investigate the rank-one spinor fields of I = 1/2 in detail to

clarify physical meanings of the U(1)a, U(1)b and SU(2) symmetries as well as

those of the constants s, t and I. In addition, we demonstrate the rank-two spinor

fields of I = 1 constitute massive fields obeying the Proca equations.

5.6.1 Case I = 1/2

We consider the DFP equations that rank-one spinor fields of I = 1/2, namely

Ψ±i
α and Ψ±i

α̇, obey, which are given by Eq. (5.4.9a) in the case (p, q) = (0, 1) and

Eq. (5.4.9b) in the case (p, q) = (1, 0) as

i
√
2
∂

∂zββ̇
Ψ±i

β̇
(z)−mΨ±iβ(z) = 0 , (5.6.1a)

i
√
2

∂

∂zββ̇
Ψ±iβ(z)−mΨ±i

β̇
(z) = 0 (5.6.1b)

with Ψ±iβ := ϵβγΨ±i
γ. Equations (5.6.1a) and (5.6.1b) with i = 1 can be combined

in the form of the ordinary Dirac equation

Dψ±
1 (z) = 0, ψ±

1 (z) :=

(
Ψ±1β(z)
Ψ±1

β̇
(z)

)
, (5.6.2)

while Eqs. (5.6.1a) and (5.6.1b) with i = 2 can be combined, after replacing zαα̇

by −zαα̇, as

Dψ±
2 (z) = 0, ψ±

2 (z) :=

(
Ψ±2β(−z)
Ψ±2

β̇
(−z)

)
. (5.6.3)
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particle antiparticle

left-handed Ψ+1α Ψ+2α

right-handed Ψ+1
α̇ Ψ+2

α̇

Table 5.1: A classification of the rank-one spinor fields.

In Eqs. (5.6.2) and (5.6.3), D denotes the Dirac operator

D :=

(
−mδβα i

√
2 ∂
∂zαβ̇

i
√
2 ∂
∂zβα̇

−mδα̇
β̇

)
. (5.6.4)

The charge conjugate of ψ±
1 (z) is found to be

(ψ±
1 )

c(z) :=

(
0 ϵβγ

−ϵβ̇γ̇ 0

)
ψ±
1 (z̄) =

(
0 ϵβγ

−ϵβ̇γ̇ 0

)(
Ψ̄±γ̇

1(z)
Ψ̄±

1γ(z)

)
=

(
Ψ̄±β

1 (z)
Ψ̄±

1β̇(z)

)
,

(5.6.5)

where the arguments of ψ1, namely zαα̇, have been replaced by their complex con-

jugates z̄αα̇ := zαα̇ so that (ψ±
1 )

c can be a holomorphic function of zαα̇. Using the

complex conjugates of Eqs. (5.6.1a) and (5.6.1b), we can see that D(ψ±
1 )

c(z) = 0.

Since ψ±
2 and (ψ±

1 )
c satisfy the same Dirac equation and have the same spinor

and SU(2) indices, they can be identified with each other up to an overall con-

stant. If ψ+
1 represents a spinor field of a particle with four-momentum (E,p),

then ψ+
2 (z) is regarded as a spinor field of a corresponding antiparticle with four-

momentum (−E,−p) owing to ψ+
2 (z) ≃ (ψ+

1 )
c(z). This means that ψ+

2 (−z) =

(Ψ+2α(z), Ψ+2
α̇(z))

T is considered a spinor field of the antiparticle with four-momentum

(E,p). In view of this fact, it is clear that Ψ+1α(z) and Ψ+2α(z) represent a left-

handed particle and a corresponding left-handed antiparticle, respectively, while

Ψ+1
α̇(z) and Ψ+2

α̇(z) represent a right-handed particle and a corresponding right-

handed antiparticle, respectively, as summarized in Table 5.1. We thus find that

the index i of Ψ+iα and Ψ+i
α̇ distinguishes between a particle and its antiparticle.

Using Eq. (5.3.13), we can obtain the possible values of s and t for each of the

rank-one spinor fields as in Table 5.2. We observe that the left-handed spinor fields

Ψ+iα(z) (i = 1, 2) have s = 1/2, while the right-handed spinor fields Ψ+i
α̇ (i = 1, 2)

have s = −1/2. Hence, s turns out to be a quantum number specifying the chiral-

ity of a spinor fields . Since s is an eigenvalues of T0, as can be seen from (5.3.10f),
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s t s t

Ψ+1α 1

2

1

2
Ψ+2α 1

2
−1

2

Ψ+1
α̇ −1

2

1

2
Ψ+2

α̇ −1

2
−1

2

Table 5.2: The values of s and t of the rank-one spinor fields.

T0 can be interpreted as the operator of chirality. Accordingly, U(1)a is can be

identified as the gauge group of chirality, and the U(1)a symmetry is physically

understood as a gauge symmetry leading to chirality conservation. We also per-

ceive that the particle spinor fields Ψ+1α(z) and Ψ+1
α̇(z) have t = 1/2, while the

antiparticle spinor fields Ψ+2α(z) and Ψ+2
α̇(z) have t = −1/2. Hence, t turns out to

be a quantum number distinguishing between a particle and its antiparticle. Then

it follows that t is proportional to the electric charge of the particle or antiparticle.

Since t is an eigenvalue of T3 as can be seen from (5.3.10g), T3 can be interpreted

as the operator of electric charge up to a constant of proportionality. Accordingly,

U(1)b can be identified with the gauge group of electric charge, and the U(1)b

symmetry is physically understood as a gauge symmetry leading to electric charge

conservation.

5.6.2 Case I = 1

We consider the DFP equations satisfied by the rank-two spinor fields of I = 1,

that is, Ψ±ij
αβ, Ψ

±ij
αβ̇, and Ψ

±ij
α̇β̇
.

The DFP equations satisfied by Ψ±ij
αβ and Ψ±ij

αβ̇ are given by Eq. (5.4.9a) in

the case (p, q) = (1, 1) and Eq. (5.4.9b) in the case (p, q) = (2, 0) as

i
√
2

∂

∂zββ̇
Ψ±ij

α
β̇ +mΨ±ij

αβ = 0 , (5.6.6a)

i
√
2
∂

∂zββ̇
Ψ±ij

αβ +mΨ±ij
α
β̇ = 0 . (5.6.6b)

Similarly, the DFP equations for Ψ±ij
αβ̇ and Ψ±ij

α̇β̇
are given by Eq. (5.4.9a) in the
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case (p, q) = (0, 2) and Eq. (5.4.9b) in the case (p, q) = (1, 1) as

i
√
2

∂

∂zββ̇
Ψ±ijα̇β̇ +mΨ±ij

β
α̇ = 0 , (5.6.7a)

i
√
2
∂

∂zββ̇
Ψ±ij

β
α̇ +mΨ±ij α̇β̇ = 0 . (5.6.7b)

Using Eqs. (5.6.6a), (5.6.6b), (5.6.7a), and (5.6.7b), we can derive the Klein-

Gordon equation for Ψ±ij
αβ, Ψ

±ij
αβ̇
, and Ψ±ij

α̇β̇
as(

∂

∂zββ̇
∂

∂zββ̇
+m2

)
Ψ±ij

αβ = 0, (5.6.8a)(
∂

∂zββ̇
∂

∂zββ̇
+m2

)
Ψ±ij

αβ̇
= 0, (5.6.8b)(

∂

∂zββ̇
∂

∂zββ̇
+m2

)
Ψ±ij

α̇β̇
= 0, (5.6.8c)

From Eq. (5.6.6a) and Eq. (5.6.7b), we find the symmetric properties

∂

∂zββ̇
Ψ±ij

α
β̇ =

∂

∂zαβ̇
Ψ±ij

β
β̇ , (5.6.9a)

∂

∂zββ̇
Ψ±ij

β
α̇ =

∂

∂zβα̇
Ψ±ij

β
β̇ , (5.6.9b)

which lead to

∂

∂zαα̇
Ψ±ij

αα̇ =
∂

∂zµ
Ψ±ij

µ = 0 (5.6.10)

with Ψ±ij
µ := σαβ̇µ Ψ±ij

αβ̇
. Multiplying Eq. (5.6.6a) by ϵα̇β̇ and multiplying Eq.

(5.6.7b) by ϵαβ, we obtain

i
√
2
∂

∂zαγ̇
Ψ±ijβ

γ̇ϵ
α̇β̇ = mΨ±ijαβϵα̇β̇ , (5.6.11a)

i
√
2
∂

∂zγα̇
Ψ±ij

γ
β̇ϵαβ = −mΨ±ij α̇β̇ϵαβ . (5.6.11b)

By adding Eq. (5.6.11b) to Eq. (5.6.11a), we derive

∂

∂zαγ̇
Ψ±ijβ

γ̇ϵ
α̇β̇ +

∂

∂zγα̇
Ψ±ij

γ
β̇ϵαβ = F±ijαα̇ββ̇ , (5.6.12)
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where

F±ijαα̇ββ̇ :=
m

i
√
2

(
Ψ±ijαβϵα̇β̇ − Ψ±ij α̇β̇ϵαβ

)
. (5.6.13)

Furthermore, by utilizing the formula 1

σµαγ̇σν
αβ̇
σρββ̇σηβγ̇ =

1

2

(
gµνgρη + gµηgνρ − gµρgνη − iϵµνρη

)
, (5.6.14)

it follows from Eq. (5.6.12) that

∂µΨ±ijν − ∂νΨ±ijµ = F±ijµν (5.6.15)

with F±ijµν := σµαα̇σ
ν
αα̇F

±ijαα̇ββ̇. Using Eq. (5.6.8b), (5.6.10), and (5.6.15), we can

find

∂µF±ij
µν = m2Ψ±ij

ν . (5.6.16)

Equations (5.6.15) and (5.6.16) are precisely the Proca equation for the SU(2)

triplets Ψ ijµ and F ij
µν . On the other hand, subtracting Eq. (5.6.11b) from Eq.

(5.6.11a), we obtain

i

(
∂

∂zαγ̇
Ψ±ijβ

γ̇ϵ
α̇β̇ − ∂

∂zγα̇
Ψ±ij

γ
β̇ϵαβ

)
= F̃±ijαα̇ββ̇ , (5.6.17)

where

F̃±ijαα̇ββ̇ :=
m√
2

(
Ψ±ijαβϵα̇β̇ + Ψ±ij α̇β̇ϵαβ

)
(5.6.18)

corresponds to the dual tensor F̃±ijµν := 1
2
ϵµνρηF±ij

ρη. With the formula (5.6.14),

Eq. (5.6.17) reads

1

2
ϵµνρη

(
∂ρΨ

±ij
η − ∂ηΨ

±ij
ρ

)
= F̃±ijµν . (5.6.19)

It is evident that this equation, or Eq. (5.6.17), is the dual of Eq. (5.6.15).

1The four-dimensional Levi-Civita symbol ϵµνρσ is defined as ϵ0123 = −ϵ0123 = 1.
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Chapter 6

Summary and discussion

In this thesis, we have presented a gauged twistor model of a free massive spinning

particle in four dimensions. This model was formulated in terms of two independent

twistors as a non-Abelian extension of the gauged twistor model of a free massless

spinning particle in four dimensions, presented in Refs. [27, 28, 29]. The extended

model is governed by the GGS action that was elaborated by adding the 1D Chen-

Simons terms Sa and Sb3 and the novel term Sbe to the gauged twistorial action Smg

[see Eq. (2.20)]. The GGS action remains invariant under the reparametrization,

the local U(1)a and local SU(2) transformations, although the SU(2) symmetry

is nonlinearly realized in the action. In the unitary gauge, the U(1)b symmetry is

manifestly exhibited, while the SU(2) symmetry is hidden.

In Chapter 4, we studied the canonical Hamiltonian formalism of the gauged

twistor model and performed its subsequent canonical quantization. The canon-

ical Hamiltonian formalism based on the GGS action was studied in the unitary

gauge by following Dirac’s recipe for constrained Hamiltonian systems. The clas-

sification of the constraints into first and second classes was carried out strictly,

and the Dirac brackets between the canonical variables were obtained concretely.

It was demonstrated that just sufficient constraints for the twistor variables are

consistently derived as the secondary first-class constraints [see Eqs. (4.1.28e)–

(4.1.28i)]. The subsequent canonical quantization of the system was performed

in terms of the new twistor variables WA
i and W̄i

A, because they satisfy the sim-

ple Dirac brackets given in Eq. (4.1.33). We have shown that the Chern-Simons

coefficients 2s and 2t are quantized to be arbitrary integer values as a result of

the canonical quantization based on the commutation relations (4.2.2a)–(4.2.2e).

In general, the quantization of Chern-Simons coefficient is a common consequence
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in certain theories in which the Chern-Simons terms play crucial roles (see e.g.

Refs. [41, 42, 43, 44]). Our gauged twistor model can be regarded as a specific

example of such theories. Intriguingly, the coefficient k of Sb12 is also quantized

via solving the eigenvalue problem of the SU(2) Lie algebra. We found that the

twistor functions in our model are eigenfunctions of the relevant differential opera-

tors governed by the U(1)a×SU(2) Lie algebra [see Eqs. (4.2.13e)–(4.2.13g)]. Each
twistor function F is then labeled by a set of three quantum numbers associated

with the U(1)a × SU(2) Lie algebra. We have carried out the Penrose transform

of the twistor function F to obtain a massive spinor field of arbitrary rank defined

on complexified Minkowski space [see Eq. (4.3.1)]. As emphasized earlier, this

spinor field has the upper and lower SU(2) indices in addition to the dotted and

undotted spinor indices. In fact, we observed that the number of upper (lower)

SU(2) indices is equal to the number of undotted (dotted) spinor indices. We also

demonstrated that the spinor field satisfies the generalized DFP equations with

SU(2) indices, given in Eq. (4.3.10). We have investigated the rank-one spinor

fields in detail to clarify the physical meanings of the gauge symmetries as well as

those of the constants s and t. It turned out that s is a quantum number specifying

the chirality of a spinor field and that the U(1)a symmetry is a gauge symmetry

leading to chirality conservation. It also turned out that t is a quantum number

proportional to the electric charge of a spinor field and that the U(1)b symmetry

is a gauge symmetry leading to electric charge conservation. The SU(2) symmetry

was shown to be a gauge symmetry realized in the particle-antiparticle doublets.

Such a symmetry, however, is not observed in nature, so that it should be consid-

ered to be hidden or broken. Fortunately our twistor formulation in the unitary

gauge is appropriate for describing this situation. Since the SU(2) symmetry is a

symmetry realized in the particle-antiparticle doublets, it cannot be identified with

the weak isospin symmetry. We thus conclude that the idea proposed by Penrose,

Perjés, and Hughston [6, 8, 9, 10, 11] is not valid in our gauged twistor model.

In Chapter 5, we treated the gauged twistor model formulated using the spinor

and space-time variables. The GGS action in this spinor formulation is written in

terms of the space-time and spinor variables and yields the mass-shell condition

in Eq. (5.1.3). The canonical Hamiltonian formalism based on the GGS action

(5.1.1) was also studied by taking the space-time and spinor variables as canoni-

cal coordinates. The classification of the constraints into first and second classes

was accomplished, and the Dirac brackets between the canonical variables were
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obtained. After the subsequent canonical quantization of the system based on

the relevant commutation relations, the physical state conditions defined from the

first-class constraints were read as the simultaneous differential equations (5.3.3a)–

(5.3.3i). By solving them, we found a plane-wave solution Φ and saw that each

of the constants (s, t, k) is quantized as with the result obtained in the gauged

twistor formulation. We defined the positive-frequency wave function Ψ+ as a lin-

ear combination of the plane wave solutions with a coefficient function f̃+ and

defined the negative-frequency wave function Ψ− as a linear combination of the

plane wave solution with a coefficient function f̃−. It was shown that Ψ+ and Ψ−

are well-defined on the forward tube CM+ and on the backward tube CM−, re-

spectively, and satisfy the DFP equations with SU(2) indices (5.4.9a) and (5.4.9b).

Also, it was demonstrated that the spinor wave functions with SU(2) indices can

be expressed as the Penrose transforms of the holomorphic functions f+ and f−

that are defined as the Fourier-Laplace transforms of f̃+ and f̃−, respectively. In

this way, we have obtained the Penrose transforms in the case of massive fields via

appropriate Fourier-Laplace transforms. Furthermore, we constructed the expo-

nential generating function Ψ± for the spinor wave functions and derived from it a

novel representation, Eq. (5.5.15), for each of the spinor wave functions. Then this

representation turned out to be a function of the conformally inverted space-time

variables 1
2
(z−1)µ. We have also investigated the physical meaning of the U(1) and

SU(2) symmetries as well as those of the constants s and t. The results turned

out to be identical with those obtained in Chapter 4.

The observation that s is a quantum number specifying the chirality of a spinor

field is supported for the following reason: The gauged Shirafuji action for a mass-

less spinning particle enjoys the U(1)a symmetry and contains its associated con-

stant s [27, 28, 29]. This constant is indeed shown to be the helicity of a massless

spinning particle. As is well known, the chirality is an analog of the helicity, while

the chirality is a Lorentz invariant quantity valid for massive particles as well as

massless particles. (For massless particles, chirality is the same as helicity.) For

this reason, in the present twistor model, it is quite natural to identify the Lorentz

invariant quantity s as the chirality quantum number.

We have seen that each eigenstate of Ť3 corresponds (via the Penrose transform)

to a particle or antiparticle state represented by its own spinor field. Remarkably,

we encounter a similar situation in studying the rigid body model [45, 46]. In this

model, the rigid body rotation leads to an intrinsic SU(2) symmetry in addition
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to the spin SU(2) symmetry. Hara et al. showed that the eigenstates of the third

generator of the intrinsic SU(2) group are assigned to particle and antiparticle

spinor fields. They also pointed out that this generator cannot be identified with

the third component of the isospin generators. (Accordingly, it turns out that the

intrinsic SU(2) symmetry cannot be regarded as the isospin symmetry. This result

contradicts the earlier idea concerning isospin proposed in Refs. [47, 48].) We

thus see that the gauged twistor model and the rigid body model share common

aspects.

Now we recall that the secondary first-class constraints (4.1.28e)–(4.1.28g), or

equivalently, Eqs. (4.1.36a), (4.1.36b), and (4.1.38), have been derived systemat-

ically on the basis of the U(1)a, U(1)b, and reparametrization symmetries of the

GGS action. By contrast, the remaining secondary first-class constraints (4.1.28h)

and (4.1.28i) have been derived as a result of incorporating the mass-shell con-

dition (3.1.3) into the GGS action by hand. Considering this fact, we can never

say that the present approach for constructing the GGS action is satisfactory from

the gauge-theoretical point of view. To make our gauged twistor formulation com-

plete, we need to establish an approach in which the mass-shell condition (3.1.3)

is supplied as an inevitable outcome of an extra gauge symmetry.

In this thesis, we have not presented precise definitions of the chirality and

charge conjugation for a massive spinor field of arbitrary rank. The chirality may

be defined on the basis of the type of spinor indices of the field. For clarifying the

definition of charge conjugation and its associated concept of particle-antiparticle,

it is necessary to examine coupling of a massive spinor field of arbitrary rank to

the electromagnetic field. The precise definitions of chirality and charge conjuga-

tion should confirm our observation on the physical meanings of the constants s

and t. It is also interesting to incorporate interactions other gauge fields lying in

space-time and consider interactions between particles. We hope to address the

aforementioned issues in the near future.
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Appendix A

Poincaré symmetry and
Pauli-Lubanski pseudovector

In this appendix, we consider the Poincaré symmetry and the Pauli-Lubanski pseu-

dovector within the framework of the gauged twistor formulation.

We can easily show that the GGS action (3.3.9) remains invariant under the in-

finitesimal Poincaré transformation (or more accurately, the infinitesimal SL(2,C)⋉
R1,3 transformation)

ϱαi → ϱ′αi = ϱαi − εαβϱ
β
i − iεαβ̇ϖiβ̇ , (A.1 a)

ϱ̄iα̇ → ϱ̄′iα̇ = ϱ̄iα̇ − ε̄α̇β̇ ϱ̄
iβ̇ + iεβα̇ϖ̄i

β , (A.1 b)

ϖiα̇ → ϖ′
iα̇ = ϖiα̇ + ε̄α̇

β̇ϖiβ̇ , (A.1 c)

ϖ̄i
α → ϖ̄′i

α = ϖ̄i
α + εα

βϖ̄i
β . (A.1 d)

Here, εαβ and ε̄α̇β̇
(
:= εαβ

)
are parameters of the infinitesimal Lorentz transfor-

mation (or more accurately, the infinitesimal SL(2,C) transformation), satisfying

the symmetric properties εαβ = εβα and ε̄α̇β̇ = ε̄β̇α̇, while εαβ̇ is a parameter of the

infinitesimal translation, satisfying the Hermiticity εαβ̇ = εβα̇. The fields h, h̄, a,

and br are assumed to be Poincaré invariant. Since the GGS action is Poincaré

invariant, we can derive conserved quantities by applying Noether’s theorem. The

conserved quantities corresponding to εαβ, ε̄α̇β̇, and εαβ̇ are found to be

µαβ :=
i

2

(
ϱiαϖ̄

i
β + ϱiβϖ̄

i
α

)
, (A.2 a)

µ̄α̇β̇ := − i

2

(
ϱ̄iα̇ϖiβ̇ + ϱ̄i

β̇
ϖiα̇

)
, (A.2 b)

pαβ̇ := ϖ̄i
αϖiβ̇ . (A.2 c)
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Substituting Eqs. (4.1.37a) and (4.1.37b) into Eqs. (A.2 a) and (A.2 b), respec-

tively, we can rewrite µαβ and µ̄α̇β̇ as

µαβ =
i

2

(
ρiαϖ̄

i
β + ρiβϖ̄

i
α

)
, (A.3 a)

µ̄α̇β̇ = − i

2

(
ρ̄iα̇ϖiβ̇ + ρ̄i

β̇
ϖiα̇

)
. (A.3 b)

The angular momentum tensor is given by

Mαα̇ββ̇ := µαβϵα̇β̇ + µ̄α̇β̇ϵαβ , (A.4)

while the four-momentum vector is given by Eq. (A.2 c).

The Pauli-Lubanski pseudovector is defined by [3, 49]

Wαα̇ :=
1

2
ϵαα̇ββ̇γγ̇δδ̇pββ̇Mγγ̇δδ̇ , (A.5)

which can be written as

Wαα̇ = −iµαβpβα̇ + iµ̄α̇β̇pαβ̇ (A.6)

by using the formula

ϵαα̇ββ̇γγ̇δδ̇ = i
(
ϵαγϵβδϵα̇δ̇ϵβ̇γ̇ − ϵαδϵβγϵα̇γ̇ϵβ̇δ̇

)
. (A.7)

Using the identity

ϵαβργi + ϵβγραi + ϵγαρβi = 0 (A.8)

and its complex conjugate, we can express Eq. (A.6 ) with Eqs. (A.2 c) and (A.3

) as

Wαα̇ =
(
ρβi ϖ̄

j
β +ϖiβ̇ ρ̄

jβ̇
)
ϖ̄iαϖα̇

j −
1

2

(
ρβi ϖ̄

i
β +ϖiβ̇ ρ̄

iβ̇
)
ϖ̄jαϖα̇

j , (A.9)

or concisely,

Wαα̇ =

(
δliδ

j
k −

1

2
δji δ

l
k

)
W̄k
BW

B
l ϖ̄

iαϖα̇
j . (A.10)

Here, WB
k and W̄k

B are the twistors defined by WB
k :=

(
ρβk , ϖkβ̇

)
and W̄k

B :=(
ϖ̄k
β, ρ̄

kβ̇
)
(see right above Eq. (4.1.33)). Applying the formula

1

2
σri

jσrk
l = δliδ

j
k −

1

2
δji δ

l
k (A.11)
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valid for the Pauli matrices σr to Eq. (A.10 ), we obtain

Wαα̇ = Trσri
jϖ̄iαϖα̇

j , (A.12)

with

Tr :=
1

2
W̄k
Bσrk

lWB
l (A.13)

(see Eq. (4.1.39)). Equation (A.12 ) can be written in terms of the (original)

twistors ZB
l and Z̄k

B as

Wαα̇ = Trσri
jπ̄iαπα̇j , (A.14)

with

Tr :=
1

2
Z̄k
Bσrk

lZB
l . (A.15)

Using the mass-shell constraints

ϖiα̇ϖ
α̇
j ≈ m√

2
ϵije

iφ, (A.16 a)

ϖ̄i
αϖ̄

jα ≈ m√
2
ϵije−iφ (A.16 b)

equivalent, respectively, to Eqs. (4.1.11e) and (4.1.11f), and utilizing the formula

σ2σrσ2 = −σT
r , we can show for Eq. (A.12 ) that

Wαα̇W
αα̇ ≈ −m2TrTr . (A.17)

In our model, twistor quantization is performed with the commutation relations

(4.2.2a) and (4.2.3), or equivalently,[
ρ̂iα, ˆ̄ϖ

j
β

]
= −δji ϵαβ ,

[
ˆ̄ρiα̇, ϖ̂jβ̇

]
= δijϵα̇β̇ , all others = 0 . (A.18)

The operators corresponding to µαβ and µ̄α̇β̇ are defined by replacing the twistor

variables in Eq. (A.3 ) with their corresponding operators and by obeying the Weyl

ordering rule. After using the commutation relations in Eq. (A.18 ), we have

µ̂αβ =
i

2

(
ρ̂iα ˆ̄ϖ

i
β + ρ̂iβ ˆ̄ϖ

i
α

)
, (A.19 a)

ˆ̄µα̇β̇ = − i

2

(
ˆ̄ρiα̇ϖ̂iβ̇ + ˆ̄ρi

β̇
ϖ̂iα̇

)
. (A.19 b)
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The operator corresponding to pαβ̇ is found immediately from Eq. (A.2 c) to be

p̂αβ̇ = ˆ̄ϖi
αϖ̂iβ̇ . (A.20)

Using Eq. (A.18 ), we can calculate the commutation relations between µ̂αβ, ˆ̄µα̇β̇,

and p̂αβ̇ to obtain[
µ̂αβ, µ̂γδ

]
= − i

2

(
ϵαγµ̂βδ + ϵαδµ̂βγ + ϵβγµ̂αδ + ϵβδµ̂αγ

)
, (A.21 a)[

ˆ̄µα̇β̇, ˆ̄µγ̇δ̇

]
= − i

2

(
ϵα̇γ̇ ˆ̄µβ̇δ̇ + ϵα̇δ̇ ˆ̄µβ̇γ̇ + ϵβ̇γ̇ ˆ̄µα̇δ̇ + ϵβ̇δ̇ ˆ̄µα̇γ̇

)
, (A.21 b)[

µ̂αβ, p̂γδ̇

]
= − i

2

(
ϵαγ p̂βδ̇ + ϵβγ p̂αδ̇

)
, (A.21 c)[

ˆ̄µα̇β̇, p̂γδ̇

]
= − i

2

(
ϵα̇δ̇p̂γβ̇ + ϵβ̇δ̇p̂γα̇

)
, (A.21 d)

all others = 0 . (A.21 e)

These commutation relations specify together a spinor representation of the Poincaré

algebra. The operators µ̂αβ, ˆ̄µα̇β̇, and p̂αβ̇ are thus established as the generators of

SL(2,C)⋉R1,3. We can verify that µ̂αβ, ˆ̄µα̇β̇, and p̂αβ̇ commute with the generators

T̂0 and T̂r defined in Eq. (4.2.4). This implies that the Poincaré symmetry and the

U(1)a×SU(2) internal symmetry are not combined, so that the result is consistent

with the Coleman-Mandula theorem [51, 52].

The Weyl ordered operator corresponding to the Pauli-Lubanski pseudovector

Wαα̇ can be simplified as

Ŵαα̇ = T̂rσri
j ˆ̄ϖiαϖ̂α̇

j (A.22)

by using the commutation relation[
T̂r, σsi

j ˆ̄ϖiαϖ̂α̇
j

]
= iϵrstσti

j ˆ̄ϖiαϖ̂α̇
j . (A.23)

Then, using the physical state conditions

ϖ̂iα̇ϖ̂
α̇
j |F ⟩ = m√

2
ϵije

iφ̂|F ⟩, (A.24 a)

ˆ̄ϖi
α
ˆ̄ϖjα|F ⟩ = m√

2
ϵije−iφ̂|F ⟩ (A.24 b)

equivalent, respectively, to Eqs. (4.2.3h) and (4.2.3i), we can show that

Ŵαα̇Ŵ
αα̇|F ⟩ = −m2T̂rT̂r|F ⟩ . (A.25)
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This is precisely a quantum mechanical counterpart of Eq. (A.17 ). The Casimir

invariants of the Poincaré algebra are given by p̂αβ̇ p̂
αβ̇ and Ŵαα̇Ŵ

αα̇. From Eq.

(A.24 ), it follows that

p̂αβ̇ p̂
αβ̇|F ⟩ = m2|F ⟩ . (A.26)

Then it can be shown that [49, 50]

Ŵαα̇Ŵ
αα̇|F ⟩ = −m2J(J + 1)|F ⟩ , (A.27)

with J being the spin quantum number taking the values

J = 0,
1

2
, 1,

3

2
, . . . . (A.28)

Here, |F ⟩ is assumed to be a simultaneous eigenvector of Ŵαα̇Ŵ
αα̇ and the other

relevant operators T̂0, T̂3, T̂ı̂T̂ı̂, and p̂αβ̇ p̂
αβ̇ (see Eqs. (4.2.3e), (4.2.3f), and

(4.2.3g)). This assumption holds true, because the generators of SL(2,C) ⋉ R1,3

commute with those of U(1)a × SU(2). The vector |F ⟩ turns out to be character-

ized by the set of quantum numbers (s, I, t ;m, J). In terms of |F ⟩, Eq. (4.2.20)

reads

T̂rT̂r|F ⟩ = I(I + 1)|F ⟩ . (A.29)

Applying Eqs. (A.27 ) and (A.29 ) to Eq. (A.25 ), we eventually have

I = J . (A.30)

This result is consistent with the fact that the number of SU(2) indices of the

spinor field Ψ , given in Eq. (4.3.1), is equal to the number of its spinor indices.
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