舌乾燥に起因する舌痛覚過敏の経日変化

日本大学大学院歯学研究科歯学専攻

中谷 有香

(指導:今村 佳樹 教授,岩田 幸一 教授,岡田 明子 准教授)

緒言

ロ腔乾燥はシェーグレン症候群, 唾液腺疾患, 炎症, 腫瘍のような様々な口腔 疾患に付随してよく見受けられる口腔内症状の一つである^{1,2)}。口腔乾燥症患者 には口腔粘膜に多様な感覚障害やそれに関する運動障害が生じる³⁾。口腔乾燥症 患者においてもっとも深刻な症状の一つに舌痛が挙げられ, 捕食, 咀嚼など, 様々な口腔機能に悪影響を及ぼす^{4,5)}。そのため, 口腔乾燥による舌痛のメカニ ズムを解明することは, 口腔乾燥症に起因する舌痛の適切な治療法開発におい て非常に重要であるといえる。

三叉神経脊髄路核尾側亜核(Vc)は口腔顔面の侵害感覚情報を中継する代表 的な核としてよく知られている⁶⁾。口腔顔面の炎症や三叉神経障害モデル動物 において三叉神経節(TG)で観察される様々な分子変化⁷⁾と同様, Vcニュー ロンにおいても様々な分子の発現変化が生じている^{8,9)}。特に,口腔顔面への 侵害刺激後5分以内に, Vcにおいて extracellular signal-regulated kinase

(ERK)のリン酸化が生じ、リン酸化 ERK (pERK) 陽性細胞が機械刺激や熱 刺激に対して強度依存的に増加することが知られている⁹⁻¹¹⁾。さらに、リン酸 化 ERK は坐骨神経に強度の強い電気刺激を繰り返すことによって生じる脊髄 後角の侵害受容ニューロンに観察されるワインドアップ現象にも関与すると報 告されている¹²⁾。これは Vc ニューロンにおける ERK のリン酸化が侵害受容 ニューロンの興奮性増強に関与していることを示す。本研究では、ラットの舌乾 燥による舌痛発症メカニズムを明らかにするため、舌乾燥モデルラットを用い て機械刺激に対する逃避反射閾値の測定をするとともに延髄に存在するニュー ロンにおけるリン酸化 ERK の発現変化を免疫組織学的に解析した。

材料および方法

1. 実験動物

本研究は、日本大学歯学部動物実験委員会の承認(承認番号 AP13D011, AP13D011-1)を得、また動物の処置は国際疼痛学会のガイドラインに従って行 われた¹³⁾。Sprague-Dawley 系雄性ラット(Japan SLC)を用いた。 ラット の飼育環境は、恒温、恒湿(24 ± 1℃,55 ± 5%)で12時間の明暗サイク ルの環境下にて、感染のない状況で飼育した。さらに、苦痛を最小限にとどめ、 頭数の制限に努めた。

2. 舌乾燥モデルラットの作製

ラットを2%イソフルラン(Mylan)と空気が還流するプラスチック容器内に 保持して浅麻酔下で舌を口腔外へ引き出し,毎日2時間,舌乾燥状態を維持す ることを14日間続けた(舌乾燥群)。同様に舌乾燥群に準じてラットに浅麻酔 を施し,閉口させた状態を1日2時間,14日間反復した群を sham 群とした。

3. 舌の機械刺激に対する逃避反射閾値(HWT)の測定

閾値の測定に当たっては,舌乾燥群および sham 群とも酸素に 2%イソフルラ ンを混合したガスにて浅麻酔し,HWT を測定した^{11,14}。舌乾燥群では,舌を ロ腔外に引き出して放置し,2時間経過した時点で舌の左半側(舌先端より3mm) に以下に示す方法で機械刺激を加えた。一方 sham 群では,同様にラットに浅 麻酔を施し,2時間口を閉じた状態を保ち,閾値測定の直前に舌を引き出して刺 激を加えた。刺激は、浅麻酔下でラットの舌に、先端が4mm²のフラットなフ オーセップス (PAnlabs.l., BIOSEB)を用いて機械刺激 (0g-150g, 10g/sec, cutoff:150g)を与えた。機械刺激は10g/secの刺激速度をマニュアルでコン トロールし、0gから閾値まで連続的に刺激強度を上げた。逃避反射行動が生じ た刺激強度を反射閾値 (HWT)とし、記録した。舌乾燥および sham 処置開始 日を0日とし、舌乾燥および sham 処置前 (Pre)、3、7 および 14 日目に HWT を測定した。さらに、舌乾燥による機械痛覚過敏が処置後継続するかどうかを 明らかにするため、乾燥開始より14日以降も HWT の回復が認められるまで測 定を行った (dry: n = 4, sham: n = 4)。また、麻酔深度は後肢にピンチ刺激を 与えた時に弱いひっこめ反射が起こる程度に適宜イソフルラン濃度を調節して 維持した。

4. 免疫組織化学的解析

舌乾燥処置開始7日目と舌乾燥処置終了後16日目(通算30日目:30日) に機械刺激を与えた舌乾燥群とsham 群を対象に免疫組織学的解析(IHC)を 行った。7日目において,舌乾燥およびsham 処置2時間後に以下に示す方法で 機械刺激(dry:n=4,sham:n=4)を与え5分後に灌流し,pERK陽性細胞の 免疫組織学的解析を行った。舌への機械刺激(強度:150g ピンチ,持続時間:20 秒,間隔:10秒,刺激回数:10回)はフォーセップスを用いた。

ラットを sodium pentobarbital (80 mg/kg, i.p.)で深麻酔後, 生理食塩水 にて灌流し, 0.1 M phosphate buffer (pH 7.4) に溶解した 4%パラホルムアル デヒド固定液を用いて灌流固定を行った。延髄と上部頸髄を含む脳部分を摘出 して、同固定液を用いて 4℃で 48 時間後固定した。20%スクロース(w/v)を 溶解した 0.01 M phosphate buffer saline (PBS) に 4℃で 24 時間浸漬した。ミ クロトーム (SM2000R, Leica) にて厚さ 30 µm の連続切片を作製し、4 枚毎に 1 切片を取り出し、0.01 M PBS に保存した。 抗 pERK 抗体染色のために、浮 遊組織切片を室温で 2 時間、0.3% tritonX-100/3% normal goat serum (NGS) in 0.01 M PBS に浸漬し、ブロッキングを行った。次に、4℃で 72 時間 rabbit anti-phospho-p44/42 mitogen-activated protein kinase (MAPK)

(Thr202/Tyr204) antibody (1:1000; Cell Signaling) に浸漬した。その後 0.01
M PBS にて洗浄し,室温で 2 時間 goat anti-rabbit IgG (1:600; Vector
Laboratories) に浸漬した。その後 0.01 M PBS にて切片を洗浄し,室温で 1
時間 peroxidase-conjugated avidin-biotin complex (1:100; Vector Laboratories)
で酵素抗体反応を行った。さらに,0.01 M PBS にて洗浄後,0.05 M Tris buffer
(TB) で 10 分間洗浄し,0.035% 3.3'- diaminobenzidine-tera HCL (DAB,
Sigma-Aldrich),0.2% nickel ammonium sulfate 0.05 M TB (pH 7.4) に
0.05%peroxide を加えて反応させ可視化した。さらに、切片を 0.01 M PBS で
洗浄し、MAS-GP コーディングスライド (Matsunami) に貼り付けて乾燥させ、
ー連のアルコール (50-100%) およびキシレンで脱水および脱脂し、カバーガ
ラスと Eukitt (O.Kindler) を用いて封入した。光学顕微鏡下で均質で灰-黒色の点状の構造物を有する pERK 陽性細胞を確認した。4枚ごとに 1枚ずつ切片
を抽出し、各切片に発現した pERK 陽性細胞数をカウントし、6枚分の切片に

発現した pERK 陽性細胞数の合計を平均し, 吻尾方向における pERK 陽性細胞 数の分布について解析を行った。

抗pERK 抗体 IHC, 抗 neuronal nuclei (抗 NeuN 抗体) IHC については 0.3% triton X-100/3% NGS in 0.01 PBS に室温で 2 時間浸漬し, ブロッキング を行った。その後,二重蛍光免疫組織学的解析において, rabbit anti-phospho-p44/42 MAPK (Thr202/Tyr204) 抗体 (1:300) に 4 °C, 3 日 間, mouse anti-NeuN (1:1000; Millipore) 抗体に 4 °C 24 時間浸漬した。 二重蛍光 IHC には, goat Alexa Fluor 568 IgG (1:200; Invitrogen), goat anti-mouse Alexa Fluor 488 IgG (1:200; Invitrogen) に, 暗室において室温 で 2 時間浸漬した。その後 PBS で 10 分ずつ 3 回洗浄し, PermaFluor (Thermo scientific) を用いてスライドガラスに封入した。次いで,標本を蛍光顕微鏡 (BZ9000, Keyence) で観察した。

5. 統計学的解析

各データは平均値 ± SEM として表した。統計学的分析は,HWT の結果に対 して一元配置分散分析 (ANOVA) を行った後に Dunnett's test による多重比較 を行った。Sham 群 (7日) と舌乾燥群 (7日と 30日)の pERK 陽性細胞数の解 析には Student's *t*-test または paired *t*-test を使用した。統計学的解析後,P < 0.05を有意差ありと判定した。

1. 機械刺激に対する HWT

舌の機械刺激に対する HWT は処置前に比較して 3 日において変化は認めら れなかったが, 7 日および 14 日において有意に低下した(第1図)。また舌乾 燥群は舌乾燥後 7, 14 日において sham 群に比較して有意に低下した(データを 示さず)。さらに, sham 群では sham 処置後 7 日および 14 日において, 舌の 機械刺激に対する HWT に変化は認められなかった(データを示さず)。

2. pERK 発現部位

抗 pERK 抗体免疫染色を施した延髄の組織切片を光学顕微鏡下で観察した結 果, 均質で黒色の点状の構造物を有する pERK 陽性細胞を確認することができ た。舌乾燥群では多くの pERK 陽性細胞が同側の Vc 背側部(第2図A), 両 側の NTS(第2図C)および延髄網様体(RF)(第2図D)に認められた。 pERK 陽性細胞が認められた領域には黒色に濃染された細胞体だけでなく,二 次ニューロンあるいは一次求心性神経の軸索と思われる黒色に濃染された線維 が多数観察された。また,NTSにおいて pERK 陽性細胞発現が認められた領域 は NTS の背側部に広がっており腹側部には少数認められるだけであった。これ に対し,舌乾燥群(7日)のラットにおいては,三叉神経傍核(Pa5)に数個の pERK 陽性細胞発現が認められるだけであった(第2図B)。第3図に舌乾燥 群(30日)のラットの舌に侵害機械刺激を与えた時,Vc,Pa5,NTS および RF で観察された pERK 陽性細胞を示した。舌乾燥群(30日)のラットにおい ても, pERK 陽性細胞は舌乾燥群(7日)に観察されたのと同様の発現パターン を示していた。また, 舌乾燥群(7日)の標本に比べ, 舌乾燥群(30日)のラ ットにおいては, どの核でも pERK 陽性細胞数は少ない傾向が認められた。

さらに、それぞれの核における左右の違いについて検討した結果、Vc におい ては刺激と反対側においては少数の pERK 陽性細胞が Vc の背側部に認められ ただけであった(第4図Aおよび第5図A)。また、Pa5 では左右どちらにお いても、発現数は少なく左右差は認められなかった(第4図Bおよび第5図B)。 一方、NTS(第2図Cおよび第3図C)およびRF(第4図Cおよび第5図C) においては刺激側だけでなく刺激と反対側においても、刺激側とほぼ同数の pERK 陽性細胞が検出された。

3. Vc, NTS および RF における pERK 陽性細胞発現の比較

本研究ではさらに、口腔顔面領域から侵害情報入力を受け、三叉神経系の侵 害情報処理において重要とされている Vc, NTS および RF^{15,16}に注目し、この 領域に発現した pERK 陽性細胞発現数を解析した。舌への機械刺激により発現 した pERK 陽性細胞は Vc の obex より尾側 1440 µm から吻側 720 µm にかけ て分布しており, obex レベルで最も多くの pERK 陽性細胞が認められた。pERK 陽性細胞の発現数を sham 群 (7 日), 舌乾燥群 (7 日および 30 日)で比較す ると、舌乾燥群 (7 日)において、sham 群 (7 日)および舌乾燥群 (30 日)よ りも有意に多くの発現数を認めた (表 1)。また、舌乾燥群 (7 日)と舌乾燥群 (30 日)を比べると,30 日の方が全体的に減少する傾向を認め,obex レベル で有意な減少を示していた。

これに対し,NTS および RF では両側性に比較的多くの pERK 陽性細胞が認 められたことから,刺激と同側に発現した pERK 陽性細胞数についても解析を 行った。その結果,NTS と RF に発現した pERK 陽性細胞数は,舌乾燥群(7 日)および舌乾燥群(30日)のラットにおいて有意差は認められなかった(第 6図)。

4. Vc における pERK 陽性細胞と NeuN 陽性細胞

本研究ではニューロンのマーカーである NeuN を用いて抗体染色を行ない, Vc に発現した pERK 陽性細胞がニューロンであるか否かの同定を行った。第7 図A に認められるように NeuN 陽性細胞は Vc の表層から深層まで一様に分布し ていた。これに対し, pERK 陽性細胞は Vc の背側部に限局した分布を示してい た(第7図B)。さらに, pERK 陽性細胞のほとんどは NeuN 陽性細胞であった (第7図C)。

考察

本研究では、舌を乾燥させることによって舌に機械痛覚過敏が発症すること を、初めて報告した。さらに、この痛覚過敏の発症には Vc に存在するニューロ ンにおける ERK のリン酸化が重要な役割を担っている可能性を示した。また、 このような舌の痛覚過敏は舌の乾燥を中止後約2週間で消失することも明らか になった。このような結果から、本研究で用いたモデルラットの舌痛覚過敏は 中枢神経系の可塑的変化を伴わず、末梢神経系の可逆的な変化に起因する可能 性があると考えられた。

1. 舌の機械的侵害逃避反射亢進に関与する末梢機構

舌乾燥群は 7~14 日間舌を乾燥させることによって作製したが,機械刺激に 対する舌の痛覚過敏は乾燥後 7~14 日で生じた。舌乾燥によってなぜ機械刺激 で痛覚過敏が生じるのかは明らかではないが,以下の理由により末梢神経にお ける受容体メカニズムが関与する可能性が高いと考えられる。すなわち,TRP チャネルが一次求心性神経における熱,冷あるいは機械感覚に関与しているこ とが知られている ¹⁰が,このチャネルは末梢の炎症や末梢神経障害のような病 的状況下で感作され,さまざまな侵害または非侵害刺激に対して過敏になると いわれている。このようなことから,TRP チャネルは舌の熱痛覚過敏だけでな く,機械痛覚過敏にも関与しうると考えられる。その詳細なメカニズムを明ら かにするためには,さらに一次求心性神経における神経機構を解明する必要が ある。

2. Vc ニューロンにおける ERK のリン酸化

これまでに、口腔顔面領域に侵害刺激を与えると、脊髄後角や Vc と C1- C2 ニューロンにおいて ERK のリン酸化が誘導されると報告されている^{15,18)}。 ERK のリン酸化は侵害刺激を与えてから 10 分以内に生じ, pERK 陽性細胞数 が侵害刺激強度の上昇とともに増加することが知られている ¹⁵⁾。また, ERK の リン酸化は脊髄後角侵害受容ニューロンのワインドアップ現象に関与するとい う報告がある¹²⁾。これらの知見は二次ニューロンにおける ERK のリン酸化が 侵害受容ニューロンの活性化を示す信頼性の高いマーカーとなることを示して いる。本研究では、舌乾燥群(7日)の舌に機械刺激を与えると、Vc、NTS お よび RF で多くの pERK 陽性細胞発現を認めた。侵害刺激後にこれらの諸核に 発現した pERK 陽性細胞のうち,Vc の背側部に発現した pERK 陽性細胞だけ が,舌乾燥群で sham 群よりも多く検出された。この結果から,本モデルラッ トの Vc に発現した pERK 陽性細胞は舌の乾燥に起因した舌神経の活動性増加 によるものと考えることができる。また、舌の侵害機械刺激後に Vc 内で観察さ れた多くの pERK 陽性細胞は Vc の背側部に限局しており、舌の乾燥によって 活動性を増すのはVc背側部の侵害受容ニューロンである可能性が高いと考えら れる。以前の研究報告で、Vc において細胞体に加えて多くの線維で ERK のリ ン酸化が認められたこと、ならびにその細胞体のほとんどは NeuN 陽性であっ たことと照らし合わせると¹⁰⁾,本研究で確認された pERK 陽性細胞も以前に報 告された形態と同様であり、また NeuN 陽性を示したことから、これらの pERK 陽性細胞はニューロンであると考えられる。

舌乾燥後,多くのpERK 陽性細胞が確認された Vc の背側部領域は,以前の 解剖学的,電気生理学的研究により三叉神経第Ⅲ枝領域から入力を受ける侵害 受容ニューロンが存在する部位であると考えられる¹⁵⁾。さらに,舌に対する機 械刺激後,Vc 背側部の第Ⅲ枝領域には,sham 群と比較して舌乾燥群の方が有 意に多くのpERK 陽性細胞が発現した。これらの結果は,Vc 背部における pERK 陽性細胞は舌乾燥によって感作され,機械痛覚過敏が生じた可能性を示してい る。

3. 舌乾燥中止後の舌痛覚過敏の回復

これまでの研究において、三叉神経を切断したモデル動物では、pERK 陽 性細胞発現が、長期間にわたって増強していることから¹⁰, Vc の侵害受容ニュ ーロン活動が長期間にわたって継続している可能性が考えられる。これに対し、 本研究で得られた研究結果では、舌乾燥による Vc 背側部に発現した pERK 陽 性細胞は舌乾燥群(30 日)でほとんど sham レベルまで回復していたことから、 舌乾燥による Vc 侵害受容ニューロンの感作は神経切断のような半永久的な神経 損傷とは異なり、一過性の現象であると推測された。

結論

今回の研究結果を(第8図)にまとめた。舌乾燥によって一次求心性ニュー ロンの活動性が亢進し、Vcの侵害受容ニューロン活動を増強する。これによっ てVcの侵害受容ニューロンにおいて ERK のリン酸化が促進し、結果的に舌の 機械痛覚過敏が発症する可能性が示された。すなわち Vc 侵害受容ニューロンに おける ERK のリン酸化が舌乾燥による舌の機械痛覚過敏において、重要な役割 をなすものと推察された。

謝辞

稿を終えるあたりに、本研究遂行に格別なご指導ご鞭撻を賜りました日本大 学歯学部ロ腔診断学講座の今村佳樹教授に謹んで心より感謝申し上げます。

また、本研究を通じ多大なるご協力とご助言を賜りました、生理学講座の岩 田幸一教授、口腔診断学講座の岡田明子准教授をはじめ、生理学講座、口腔診 断学講座の皆様に深く感謝いたします。

なお,本研究は,平成26年度日本大学大学院歯学研究科研究費(学生分)に よってなされました。

引用文献

- Kramer JM (2015) Current concepts in Sjogren's syndrome and considerations for the dental practitioner. N Y State Dent J 81, 24-29.
- Casterline PF, Jaques DA (1978) The surgical management of recurrent parotitis. Surg Gynecol Obstet 146, 419-422.
- 3) Aggarwal H, Pal-Singh M, Mathur H, Astekar S, Gulati P, Lakhani S (2015) Evaluation of the effect of transcutaneous electrical nerve stimulation (TENS)on whole salivary flow rate. J Clin Exp Dent 7, e13-17.
- Field A, Lesley L, Tyldesley WR (2003) Tyldesley's Oral Medicine. Oxford UniversityPress, NY, 90-98.
- 5) Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829.
- 6) Sessle BJ (2011) Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol 97, 179-206.
- 7) Shinoda M, Asano M, Omagari D, Honda K, Hitomi S, Katagiri A, Iwata K (2011) Nerve growth factor contribution via transient receptor potential vanilloid 1 to ectopic orofacial pain. J Neurosci 31, 7145-7155.
- 8) Kiyomoto M, Shinoda M, Okada-Ogawa A, Noma N, Shibuta K, Tsuboi Y, Sessle BJ, Imamura Y, Iwata K (2013) Fractalkine signaling in microglia contributes to ectopic orofacial pain following trapezius muscle inflammation. J Neurosci 33, 7667-7680.

- 9) Shimizu K, Matsumoto K, Noma N, Matsuura S, Ohara K, Komiya H, Watase T, Ogiso B, Tsuboi Y, Shinoda M, Hatori K, Nakaya Y, Iwata K (2014) Involvement of trigeminal transition zone and laminated subnucleus caudalis in masseter muscle hypersensitivity associated with tooth inflammation. PLoS ONE 9, e109168.
- 10) Suzuki I, Tsuboi Y, Shinoda M, Shibuta K, Honda K, Katagiri A, Kiyomoto M, Sessle BJ, Matsuura S, Ohara K, Urata K, Iwata K (2013) Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury. PLoS ONE 8, e57278.
- 11) Honda K, Kitagawa J, Sessle BJ, Kondo M, Tsuboi Y, Yonehara Y, Iwata K (2008) Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment. Mol Pain 4, 59.
- 12) Fukui T, Dai Y, Iwata K, Kamo H, Yamanaka H, Obata K, Kobayashi K, Wang S, Cui X, Yoshiya S, Noguchi K (2007) Frequency-dependent ERK phosphorylation in spinal neurons by electric stimulation of the sciatic nerve and the rol e in electrophysiological activity. Mol Pain 3, 18.
- Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16, 109-110.
- 14) Saito K, Hitomi S, Suzuki I, Masuda Y, Kitagawa J, Tsuboi Y, Kondo M, Sessle BJ, Iwata K (2008) Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats. J Neurophysiol 99, 2251-2263.

- 15) Noma N, Tsuboi Y, Kondo M, Matsumoto M, Sessle BJ, Kitagawa J, Saito K, Iwata K (2008) Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats. J Comp Neurol 507, 1428-1440.
- 16) Panneton WM, Gan Q, Livergood RS (2011) A trigeminoreticular pathway: implications in pain. PLoS ONE 6, e24499.
- 17) Yin K, Zimmermann K, Vetter I, Lewis RJ (2015) Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol 93, 125-140.
- 18) Tsujimura T, Shinoda M, Honda K, Hitomi S, Kiyomoto M, Matsuura S, Katagiri A, Tsuji K, Inoue M, Shiga Y, Iwata K (2011) Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats. Brain Res 1417, 45-54.

		Distance fr	ance from obex (µm)		
	total	-1440	-720	obex	720
sham群 (Sham)	51.6± 15.0	1.6±2.6	10.0±7.4	36.8±8.0	3.2±7.2
舌 乾燥 群(7日) (Day7)	# 87.0± 13.3	4.0±1.6	16.8±6.8	56.0± 10.8	10.3±11.8
舌 乾燥群 (30日) (Day30)	* 48.8±5.7	1.5±0.3	6.9±0.32	27.8±1.5 [*]	* 7.8±0.7

*****: *P* < 0.05(Day7 vs Day30) #: *P* < 0.05(Sham vs Day7)

第1図

舌乾燥前(Pre)および舌乾燥群(7日), (14日), (30日)の舌への機械刺激 に対する逃避反射閾値(HWT) **: P < 0.01 (vs Pre)

第2図

舌乾燥群(7日)に延髄の諸核に発現した pERK 陽性細胞の組織標本 A: Vc, B: Pa5,
C: NTS, D: 延髄の RF, Vc: 三叉神経脊髄路核尾側亜核, Pa5: 三叉神経傍核,
NTS: 孤束核, CC: 中心管, RF: 網様体

第3図

舌乾燥群(30日)に延髄の諸核に発現した pERK 陽性細胞の組織標本
A: Vc, B: Pa5, C: NTS, D: 延髄の RF, Vc: 三叉神経脊髄路核尾側亜核, Pa5: 三
叉神経傍核, NTS: 孤束核, CC: 中心管, RF: 網様体

第4図

舌乾燥群(7日)に反対側の延髄の諸核に発現した pERK 陽性細胞の組織標本A: Vc 領域, B: Pa5 領域, C: 延髄の RF

第5図

舌乾燥群(30日)に反対側の延髄の諸核に発現した pERK 陽性細胞の組織標本 A: Vc, B: Pa5, C: 延髄の RF

第6図

第7図

舌乾燥群(7日)のラット Vc における NeuN 陽性細胞および pERK 陽性細胞 矢印: NeuN-pERK 陽性細胞

第8図

舌乾燥による Vc ニューロンに関する研究結果の模式図

Glu: Glutamate, NMDAR: NMDA receptor

Tongue mechanical hypersensitivity