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Abstract 
 

In this dissertation the author theoretically studies with respect to “light-matter interaction” 
by employing recently developed highly-accurate Maxwell-Schrödinger hybrid simulation that 
describes the mutual interaction procedure by solving Maxwell’s and Schrödinger equations for 
light and matter, respectively. His research interest is particularly stirred up to physical 
phenomena which cannot fully described by not only the classical but also quantum theories, that 
is, he expediently expresses the region involving such phenomena as “mesoscopic” whose general 
definition is the middle region between macroscopic- and microscopic- ones. 

The author investigates with respect to two typical problems characterized by light-matter 
interaction in mesoscopic phenomena by (i) many-electron systems and (ii) single-electron ones. 
Conventional theoretical models are employed to make comparisons with his more precise 
Maxwell-Schrödinger multi-physics simulation. As a result observed trends indicate qualitative 
differences obtained from those computational results and the importance of our hybrid 
simulation for investigating and clarifying the mesoscopic phenomena. 
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1  Introduction 
 

1.1  Research background 

 
In present-day society the information technologies have played a significantly important role 

as a basis strongly supporting our life which has been further rapidly sophisticated especially over 
last three decades. Such fast-growing advancements in Japan have started from 1985 when 
Nippon Telegraph and Telephone Public Corporation has privatized as NTT(:Nippon Telegraph 
and Telephone Corporation) and, after that, a competition principle has been introduced into 
domestic- and international-telecommunications markets in the country, leading to drastic 
developments in the information and communication industry [1]. During the passionate three 
decades the information equipment and system have made remarkable progress, such as a 
telephone transceiver, personal computer, mobile phone currently called as smartphone, optical 
transmission system, and so on.  

In a wide perspective a key ingredient of their functionalities carving out the forefront of 
information technologies is based on the so-called “light-matter interaction” in which matter is 
affected by the electromagnetic field, through the Lorentz’s force in a classical mechanical sense, 
and light is affected by electrical current excited from the matter. Particularly in recent studies 
utilizing the interaction in an ingenious way, some interesting phenomena and technologies have 
been actively proposed and studied as follows:  

 
(i) Plasmonic device 
Precious metals such as silver and gold have negative complex permittivity strongly 

interacting with laser fields especially in a visible light band from around 400 nm to 800 nm since 
almost numberless conduction electrons in the metals subjected to external electromagnetic fields 
are resonated for the band. The permittivity particularly for the case of nano-scale objects is well-
known to excite collective oscillatory motion of a large number of the electrons, namely plasmon, 
and enables us to enhance and localize the electromagnetic energy around the nano objects into a 
significantly minuscule region smaller than the wave length of light in spite of the fact that usually 
the electromagnetic energy cannot be concentrated into a such region because of diffraction 
limitation of light. This enhanced and extremely localized electromagnetic energy based on light-
matter interaction has been expected to apply to various next-generation key technologies in a 
wide range of areas, such as ultra-high sensitivity sensors [2] and significantly compact circuit 
combining photonics and electronics, namely plasmonic circuits [3]. Furthermore, also from 
perspective of information storage, such a way to highly concentrate electromagnetic energy by 
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plasomonic devices has attracted great interest, for instance a heat assisted magnetic recording 
system that is one of novel high density magnetic recording systems effectively using heat whose 
spot size directly determines the recording density and can be condensed to fine region by 
plasmon [4]. 

 
(ii) Quantum computer 
Although existing all conventional computers so far, that is, “classical computers”, have 

employed a certain operating system to the elementary component determining only 0 or 1, a 
quantum computer utilizes the superposition of discrete quantum levels of a particle, namely q-
bits, such as an electron, an atom, and a molecule. The parallelism of current classical 
supercomputers are restricted to almost 220 whereas one of the quantum computer is 2n for the 
case of n q-bits operating system, enabling significantly ultra-high speed computation if n being 
well over 20 can be realized. The first groundbreaking study with respect to the quantum computer 
was done by P. Benioff in 1980 when he theoretically presented that quantum systems could be 
utilized to computation without energy loss [5]. Also R. Feynman has discussed with respect to 
the quantum computer in 1982 when he suggests that it is exponentially faster than the classical 
computational systems [6]. After these innovative studies P. W. Shor has proposed novel 
functional algorithm that has attracted a tremendous attention to a study of quantum computation 
[7]. Through such fundamental and theoretical approaches, great efforts have been devoted to 
actually realize the quantum computer as a hardware system. Their representative examples are 
known as some adroit methodologies such as systems relying on the use of nuclear magnetic 
resonance [8], superconducting quantum interference devices [9], and quantum dots [10]. In 
addition to these a system much further directly utilizing light-matter interaction has been 
proposed and investigated, where a laser pulse is designed under an optimal control theory ( called 
“light control pulse” hereafter ) and operates the target quantum states [11-13]. 

 
The key ingredient of both above-mentioned topics is “light-matter interaction” which 

enables nano-scale objects consisted of precious metals, plasmonic devices, to generate strongly 
enhanced and localized electromagnetic fields while allows quantum computers, particularly for 
systems driven by light pulses, to control the discrete quantum levels. We, however, can notice 
that those interactions require us to carefully deal with their theoretical models because they 
involve some combined complex physical natures raging from macroscopic- to microscopic-
phenomena ( detail explanation is described in the next subsection 1.2 Research purpose ). More 
strictly speaking they need us to introduce “multi-physics theory” composed of classical- and 
quantum theories. In this dissertation the author expediently describes such situation as 
“mesoscopic”, hereafter, whose general definition is the middle region between macroscopic- and 
microscopic- ones. 
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Unfortunately, the almost phenomena observed in the mesoscopic region is still beyond the 
understanding of the newest theoretical works and known as mysterious mechanism since 
mesoscopic physics cannot be rationalized by only either classical- or quantum-theories in straight 
forward ways. Therefore, very recently, some novel approaches relying on computational 
simulation to investigate the mesoscopic phenomena have been proposed and actively discussed 
by our [14-16] and other groups[17-19], where we employ multi-physics treatment to efficiently 
and accurately model the light-matter interaction, namely hybrid simulation of Maxwell-
Schrödinger equations. This groundbreaking hybrid scheme utilizes both classical- and quantum-
theories to describe light and matter behaviors, respectively, and has been successfully applied to 
performing some numerical mesoscopic simulations: nonlinear propagation of attosecond pulses 
generated by high harmonic emissions [17], H2

+ gas interacting with ultrashort laser pulses [18], 
and a carbon nanotube transistor [19]. 

 

1.2  Research purpose 

 
This dissertation discusses with respect to the following topics, deeply relevant to plasmonic 

devices and quantum computers driven by light control pulses, in which the author makes a 
comparison between their conventional theoretical frames and his Maxwell-Schrödinger one, 
indicating qualitative differences observed by those computational results and the importance of 
multi-physics simulation for investigating and clarifying the mesoscopic phenomena: 

 
1. Light-matter interaction: many-electron systems 
Plasmonic devices to enhance and localize electromagnetic energy into a very small region 

are nano-scale objects composed of precious metals including an enormous amount of electrons 
constrained in the electrostatic potentials. Their conventional theoretical models are exclusively 
treated by solely classical theory so far, namely Maxwell-Newton approach, in spite of the fact 
that the devices have intricate nature characterized by not only classical- but also quantum-physics. 
Current some works [20, 21], thus, have actually revealed the inconvenient limitation for the 
conventional treatment by their experimentations where the theoretical results obtained by 
conventional Maxwell-Newton approach starts to deviate from the actual experimental ones 
particularly as the plasmonic devices become small from tens of nano meter to sub-nano meter 
scale. The main reason of such deviation is based on the lack of the quantum mechanical 
consideration for the modelling of the electrons in the devices. Therefore, very recently, far-seeing 
research groups [22, 23] have proposed a new theoretical optical response model, called a 
hydrodynamic Drude model, that takes into account a part of such mesoscopic problems 
composed of the classical- and quantum natures by incorporating the viscosity of collective 



7 
 

electrons with fitting parameters from experimentations. Although their new method does not 
fully model quantum-mechanical effects, as a result they have succeed to verify the reasonability 
of the method by making a comparison with the conventional Maxwell-Newton one in terms from 
the scale of the plasmonic devices raging tens of nano meter to sub-nano meter. 

As with above previous studies the author’s purpose here is also to investigate and clarify 
light-matter interaction by many-electron systems as in plasmonic devices, but we especially 
focus on the potential structure that confines the electrons and is so far modelled by a purely 
harmonic oscillator though those can be extracted to have disarray, namely the anharmonicity of 
the potential, particularly around the surface of the plasmonic devices where many plasmon 
electrons especially concentrate [14, 15]. The author, therefore, has utilized the hybrid simulation 
of Maxwell-Schrödinger equations and studied a system of a nano-scale thin film, assumed as the 
surface of plasmonic devices, interacting with pulsed laser fields, where the electrostatic 
confining potential for the electrons is characterized by locally and globally anharmonicities. 
Furthermore in order to carefully discuss mesoscopic phenomena for this case, conventional 
Maxwell-Newton approach also have been employed to make a comparison with Maxwell-
Schrödinger one. Resultant observed trends from these two distinct hybrid simulations have 
enabled us to find some typical differences that deeply depends on the structure of electrostatic 
potential. 

 
2. Light-matter interaction: single-electron systems 
Modulated ultrashort laser pulses designed under an optimal control concept have potential 

ability to transfer completely probability densities among discrete quantum states of matter to an 
arbitrary desired state [24-26]. This pioneering technology has attracted great attention over the 
last two decades since it can be used in quantum computation in which q-bits realized in discrete 
quantum levels are processed by external laser pulses [11-13]. Although possibility in controlling 
quantum states of molecules has been demonstrated in actual experimentations by generating laser 
pulses using a generic algorithm and finding an optimal pulse [27-29], such approaches require 
us to conduct very high-cost experimentations through hundreds of accumulated trials and errors. 
This thing clearly indicates the need of theoretical ways to obtain such tailored laser pulses and 
has let previous vigorous researchers develop the innovative pulse designing scheme where the 
key ingredient here is the so-called optimal control theory which can lead an optimal laser pulse, 
namely light control pulse [30-32].  

We, however, note here that the previous innovative theoretical studies on light control pulses 
conducted so far have, to our best knowledge, exclusively relied on the assumption that the 
electromagnetic field near the target system is not disturbed by the excitation of electrons. 
Assuming that an atom or a molecule in its electronic ground state is irradiated by a pulsed laser 
field. When the incident laser pulse with an appropriate central frequency for exciting the target 
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system arrives, the atom or molecule becomes a time-dependent superposition of the ground and 
some excited states, or in a classical mechanical sense, the electrons in the system are forced to 
move back and forth along the polarization direction of the laser light by its alternating electric 
field. This forced-oscillatory motion of electrons becomes a local polarization current source and 
radiates a new electromagnetic field. Then, the electromagnetic field near the target system should 
become the sum of the original incoming wave and the induced new one, that interacts again with 
the target repeating the cycling processes of excitation and radiation. This modification of the 
laser field by the induced radiation from the excited electrons has been considered so far as being 
negligibly small particularly for the cases of isolated atoms and molecules since their number of 
electrons is much smaller than the number of photons in the laser pulses. This approximation has 
allowed one to facilitate easily designing light control pulses. On the other hand, since excited 
electrons could yield a locally strong electromagnetic field, sometimes referred to as a ‘near field’, 
in the vicinity of the electrons themselves [33-35], its validity of omission of the induced radiation 
needs to be verified carefully. In other words this problem can be classified as mesoscopic since 
reasonable physics then should be described by taking into account both the target quantum 
system and total laser field involving incident optimal pulse and newly generated near field. 
Therefore hybrid simulation of the coupled Maxwell-Schrödinger equations is the most 
straightforward way to check this validity, where the feedback from the electrons to the 
electromagnetic field is incorporated by adding to Maxwell’s equations a polarization current 
density that is obtained from the time-dependent wave function of the electrons.  

The author’s purpose here is to investigate and clarify the effect of the near field into a target 
system, by employing the hybrid simulation of Maxwell-Schrödinger equations, which is chosen 
as a single electron confined in a quasi-one-dimensional nanoscale structure modelling quantum 
dots with a light control pulse designed by the conventional method relying on the approximation. 
In addition to the verification for conventional scheme the author will propose a novel method to 
design a light control pulse which precisely takes into account the interaction consisted of near 
field owing to the Maxwell-Schrödinger algorithm [16]. 

 

1.3  Overview 

 
This dissertation is organized as follows.  
Section 2 discusses with respect to light-matter interaction by many-electron systems. The 

first subsections 2.1 describes our theoretical model, computational details for Maxwell-
Schrödinger and -Newton hybrid simulations, and how to implement these two distinct schemes 
in computer codes based on the so-called finite-difference time-domain (FDTD) method. The next 
subsection 2.2 represents our computational results. We will show three types of examples for the 
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electrostatic potentials confining electrons: (a) purely harmonic (b) locally anharmonic (c) 
globally anharmonic. Resultant trends for these potentials indicate some crucial qualitative 
differences between conventional Maxwell-Newton and our precise Maxwell-Schrödinger 
schemes. The observed differences are due to the typical quantum mechanical effects occurred by 
the anharmonicity of the confining potential structure. We briefly summarize those results in the 
subsection 2.3.  

Section 3 discusses with respect to light-matter interaction by single-electron systems. The 
first subsections 3.1 describes our theoretical model and computational details for hybrid 
simulation of Maxwell-Schrödinger equations and designing scheme of conventional light control 
pulses. The next subsection 3.2 represents our computational results. We will show here that even 
in the case of systems with a single electron the induced radiation from the excited electron cannot 
be negligible, that could substantially modify the original incoming electromagnetic fields locally. 
This leads to significantly low control ability of the conventional pulse particularly when the local 
electron density is large. Furthermore also new light control pulse designed by our proposed 
designing scheme has been verified, indicating stable control accuracy owing to consideration for 
light-matter interaction in the scheme. We briefly summarize those results in the subsection 3.3.  

Finally the author comprehensively concludes his thesis in the section 4. 
 

1.4  Technical symbols and terms 

 
The technical symbols and variables appeared into this dissertation are explained in the 

following list. 
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Symbols and variables Explanations 
zyx ,,  Discrete intervals for the x-, y-, and z-axes 

t  Discrete intervals for the time axis 
kji ,,  Indices for the space grids for the x, y, and z axes 

n  Index for the time step 

maxmaxmax ,, kji  Number of grid points for i, j, and k 

m Mass of an electron 

q Charge of an electron 

 Dirac constant 

0  Permittivity of vacuum 

0  Permeability of vacuum 

c Light speed in vacuum 

E Electric field 

H Magnetic field 

Wave function 
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2  Light-matter interaction: many-electron systems 
 
A novel hybrid simulation based on the coupled Maxwell-Schrödinger equations has been 

utilized to investigate, accurately, the dynamics of so many electrons confined in a one-
dimensional potentials and subjected to time-dependent electromagnetic fields, where this studied 
system is modelled to assume the surface of plasmonic devices. A detailed comparison has been 
made for the computational results between the Maxwell-Schrödinger and conventional Maxwell-
Newton approaches for some distinct cases, namely characterized by harmonic and anharmonic 
electrostatic confining potentials. The results obtained by the two approaches agree very well for 
the purely harmonic potential while disagree quantitatively for the anharmonic potential. This 
clearly indicates that the Maxwell-Schrödinger scheme is indispensable to study mesoscopic 
phenomena particularly when the anharmonicity effect plays an essential role. 

 

2.1  Theoretical model and computational details 

 
Figure 2.1 illustrates our theoretical model used in the present section. The thin film is uniform 

in the y-z plane and its optical properties are assumed to be calculated from the responses of one 
representative electron among a larger number of electrons comparable to the order of Avogadro's 
number. The incident laser fields consisting of only Ey and Hz components are given by a plane 
wave, which simultaneously excite all electrons in the film to the polarization direction y. 
Therefore, the computational model here can be significantly simply constructed by employing 
the one-dimensional models for both electrons and light. This effectively facilitated model enables 
us to solve both of Maxwell-Schrödinger and Maxwell-Newton equations very accurately and 
efficiently, allowing us a detailed comparison of their computational results. After this subsection 
the formulation based on FDTD algorithm [14-16, 18-19, 36-40] to solve the 1D-1D problem will 
be described. 
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FIG. 2.1. The geometry and coordinate systems. A thin film assumed as the surface of plasmonic 

devices and current sources exciting a incident plan wave, illustrated by a grey box and blue 

arrows, respectively, are uniform in the y-z plane. All electrons in the film are confined in the 

electrostatic potential V, and can move along the y axis which is parallel to the direction of the 

electric field. 

 

 

 

       

(a)                                     (b) 

FIG. 2.2. A schematic illustration of the computational schemes for the two hybrid simulations: 

Maxwell-Newton (a) and Maxwell-Schrödinger (b). 
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2.1.1  Maxwell-Schrödinger hybrid scheme for 1D-1D problems 
 

The computational procedure to solve the Maxwell-Schrödinger hybrid scheme is 
schematically illustrated in Figure 2.2 (a). Maxwell’s equations for dielectric objects are given by 

,0 t
HE  (2.1) 

,0 JEH
t

 (2.2) 

where J represents the polarization current density defined by the time derivative of the 
polarization vector P. Since the electromagnetic fields have only Ey and Hz components in the 
present section, they can be updated by the following recursion relations based on the Maxwell 
FDTD method [14-16, 18-19, 36-37, 40]: 
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where iF, and  represents the cell position of the thin film and Kronecker delta function, 
respectively. The edges of computational domain in the Maxwell FDTD simulation are 
supplemented by the Mur absorbing boundary condition [37]. 

The Schrödinger equation for an electron subjected to a laser field is given by 

,
2

2
2

Vq
mt

i rE  (2.5) 

where V represents the confining electrostatic potential and the so-called length gauge has been 
adopted to describe the interaction between the electron and the electromagnetic field [41]. Since 
the electron simulated here has the degree of freedom for only the y-axis, the following recursion 
relations based on the Schrödinger FDTD method [14-16, 18-19, 38-39] can be obtained by 
separating the real and imaginary parts of the Schrödinger equation: 
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where imag and real are the imaginary and real parts of the wave function  with Y denoting the 
discretizing y-axis. The operator j in these equations performs the following sixth-order accurate 
difference to simulate the second-order derivative 22 / y  for an arbitrary function F: 
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where  and  correspond to one of i, j, or k and one of x, y, or z, respectively. 
We employ the following Dirichlet boundary for the Schrödinger FDTD simulation: 

.0)()1()2(
,0)3()2()1(

maxmaxmax jjj
 (2.9) 

This condition is well-known to induce spurious oscillations when the wave function impinges 
on the boundary. Therefore, we utilize sufficient wide analysis domain so as to avoid these 
numerical artifacts. 

The polarization current density J in the Maxwell-Schrödinger scheme is defined by the 
following expression with the electron density N: 

.* d
im

qNJ  (2.10) 

Eq. (2.10) describes the average behaviour of the current density due to the motion of all electrons 
expressed by the wave function of a representative electron. The y component of (2.10) can be 
evaluated by 
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where the operator y performs the following sixth-order accurate difference to simulate the first-
order derivative y/  for an arbitrary function F. 
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The Maxwell-Schrödinger hybrid scheme for 1D-1D problems can be operated by using Eqs. 
(2.3), (2.4), (2.6), (2.7), and (2.11) recursively as illustrated in Figure 2.2 (a). 

 

2.1.2  Maxwell-Newton hybrid scheme for 1D-1D problems 
 
The computational procedure adopted in the Maxwell-Newton scheme is shown in Figure 2.2 (b). 
The part for solving Maxwell’s equations is the same as in the Maxwell-Schrödinger schemes 
based on (2.3) and (2.4). The following Newton equation is employed to describe the motion of a 
classical electron confined by the electrostatic potential V and subjected to an external 
electromagnetic field:  

,2

2
FEr q

dt
dm  (2.13) 

,VF  (2.14) 
where we assume that the electron feels no frictional force. The polarization vector P and 
polarization current density J in the Maxwell-Newton scheme [14-15, 40] are, respectively, 
defined by 
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,rP qN  (2.15) 

.
t
PJ  (2.16) 

Ones can derive the following recursion relations for simulating these polarization and current 
density in the FDTD framework as 
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In the Maxwell-Newton scheme Eqs. (2.3), (2.4), (2.17), and (2.18) are solved recursively as 
displayed schematically in Figure 2.2 (b). 

 

2.2  Computational results 

 
The incident laser fields characterized by rather strong intensity are generated from the 

following electric and magnetic current sources )(i
eJ and )(i

mJ with the unit function u(t) 
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where we have set J0, x, t , and t0 as 1000 MA/m, 0.125 nm, 1.25 fs, and 20 t fs, respectively. 
The time step t is chosen to be smaller by a factor of 0.9 than tCFL, i.e., the maximum value 
allowed in the CFL condition [37], so as to guarantee numerical stability. 

We compare the results simulated by the Maxwell-Schrödinger and Maxwell-Newton 
schemes for the following three electrostatic potentials Vh, Vla, and Vga : 
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where the parameters characterizing the potentials, h , Vl, l , yl , Vg, and yg , are given as 50 
Trad/s, 0.5 eV, 0.625 nm, 10 1 nm, 4.5 eV, and 25 nm, respectively. The potential energy curves 
for these three potentials are plotted in Figure 2.3. As displayed in this figure Vh is a single-well 
and harmonic potential, while Vla is almost identical to this Vh potential but is locally 
supplemented by a small anharmonic ‘humps’ located at around y = -6.25 nm. This hump allows 
the quantum electron to bifurcate every time when it impinges on the hump owing to tunnelling 
while does not for the classical electron. The third potential Vga is a single-well but globally 
anharmonic potential, which allows us to investigate a different quantum mechanical effect other 
than that caused by tunnelling. We have chosen the ground state of each of these electrostatic 
potentials as the initial wave packet in all quantum simulations. 
 

2.2.1  Excitation by a strong electromagnetic field 
 

The time responses of the polarization current density J in the thin film obtained by the two 
hybrid simulations are represented in Figure 2.4, where the blue solid and red broken lines 
represent, respectively, the numerical results obtained by the Maxwell-Schrödinger and Maxwell-
Newton schemes. Figure 2.4 (a) representing the results for the single and harmonic well Vh shows 
that both results agree excellently, indicating that the classical theory of the Maxwell-Newton 
scheme can be safely used for this case. On the other hand, Figure 2.4 (b), displaying the results 
for the locally anharmonic double-well potential Vla, shows that the polarization current densities 
obtained from these two schemes deviates from each other more and more strongly after the first 

 
FIG. 2.3. Spatial profile of the studied electrostatic potentials: the blue line with circles represents 

the harmonic potential Vh while the red and green lines denote the locally anharmonic potential Vla 

and globally anharmonic potential Vga, respectively. 
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30 fs. This indicates that the Maxwell-Newton scheme is unreliable for this locally anharmonic 
potential. The results displayed in Figure 2.4 (c) for the single but globally anhamonic well Vga 
shows a trend somewhat between (a) and (b): the polarization current density of the Maxwell-
Newton scheme roughly follows that of the Maxwell-Schrödinger scheme, but there can be 
observed a quantitative difference between them. This indicates that the Maxwell-Newton scheme 
could become unreliable for quantitative calculation even when the confining potential is single 
but globally anharmonic well. 
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(a) 

 

(b) 

 

(c) 

FIG. 2.4. Comparison of the time response of the polarization current density for the electrostatic 

potentials Vh , Vla , and Vga (See Figure 2.3). (a), (b), and (c) correspond, respectively, to the case 

for the electrostatic potentials Vh , Vla , and Vga. The blue solid and red broken lines represent the 

results obtained by the Maxwell-Schrödinger and Maxwell-Newton schemes, respectively. 
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In order to rationalize the observed trends, we have investigated the dynamics of electron in 
the thin film, namely, the spatiotemporal propagation of the electron wave packets and the 
corresponding classical trajectories obtained, respectively, by the Maxwell-Schrödinger and 
Maxwell-Newton schemes. The results for the three electrostatic potentials Vh , Vla , and Vga are 
displayed in Figures 2.5 (a), (b), and (c), respectively. In the figures the thick oscillatory curve in 
color whose scale is displayed on the right end of each figure indicates the time-evolution of the 

probability density of the electron wave packet | |2 and the triangles plotted in the same figure 
denote the classical trajectory. On the left-hand side of each figure the potential energy curve of 
the corresponding electrostatic potential is also plotted. The vertical axes for both sides of the 
figure commonly indicate the y axis. As shown in Figure 2.5 (a) representing the results for the 
single and harmonic well Vh, the electron wave packet is localized at each time step keeping a 
Gaussian shape similar to the ground state and closely follows the corresponding classical 
trajectory. This excellent agreement between the quantum and classical electron dynamics results 
in an almost identical behaviour of the current densities obtained by these two schemes as 
displayed in Figure 2.4 (a). On the other hand, Figure 2.5 (b) representing the results for the 
double-well and locally anharmonic potential Vla shows that the electron wave packet gets 
fragmented into several pieces due to the tunnelling. Furthermore interference among these 
fragments makes the wave packet complicated even further. Since the classical dynamics could 
not support such fragmentation and interference, the current density obtained by the Maxwell-
Newton scheme deviates largely from that obtained by the Maxwell-Schrödinger scheme as 
observed in Figure 2.4 (b). Figure 2.5 (c), representing the results for the globally anharmonic 
potential Vga, shows that the electron wave packet follows the corresponding classical trajectory 
in the beginning before t ~ 200 fs. For the later time t, however, the electron wave packet starts to 
spread gradually and a nodal structure in the probability density appears. This nodal structure 
reflects the fact that the electron wave packet is no more a single Gaussian distribution but is 
fragmented into a few components. In case for purely harmonic electrostatic potentials an initial 
Gaussian wave packet remains to be a Gaussian through time propagation. Therefore, the 
observed fragmentation is caused by global anharmonicity in the electrostatic potential, which 
induces dephasing of the electron wave packet. Since classical mechanics cannot account for such 
dephasing effects, the classical trajectory deviates from the center of the electron wave packet, 
which causes a difference in the polarization current density between the two schemes. 
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(a) 

 

(b) 

 

(c) 

FIG. 2.5. Time evolution of the electron wave packet and the corresponding classical trajectory. 

(a), (b), and (c) indicate, respectively, the results for the electrostatic potential Vh , Vla , and Vga . 

The spatial profile of the potential is displayed on the left-hand side of each figure. The thick curve 

in color scale represents the probability density of the electron. 
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2.2.2  Excitation by a weak electromagnetic field 
 

Next, we have examined a dependence of the computational results on the strength of the 
applied laser field. Since the applied laser field we have studied so far is rather strong, we have 
employed a weaker laser field here by decreasing the amplitude of the current sources 10 times 
smaller than that used for the simulations in Figures 2.4 and 2.5 as J0 = 100 MA/m. Figures 2.6 
(a) and (b) display the resultant time responses of the polarization current densities J for the 
harmonic single- and locally anharmonic double-well potentials Vh and Vla . The blue solid and 
red broken lines represent the results obtained by the Maxwell-Schrödinger and Maxwell-Newton 
schemes, respectively, as for Figure 2.4. Unlike the results in Figure 2.4 the polarization current 
densities for not only the harmonic single-well potential Vh but also the locally anharmonic 
double-well potential Vla obtained by the two schemes agree very well as displayed in Figure 2.5 
(a) and (b). On the other hand, Figure 2.6 (c) representing the result for the gobally anharmonic 
single-well potential Vga shows that the computational results by the two hybrid simulations still 
differs quantitatively from each other. 
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(a) 

 

(b) 

 

(c) 

FIG. 2.6. Comparison of the time response of the polarization current density for different 

electrostatic potentials. (a), (b), and (c) correspond, respectively, to the cases of Vh , Vla , and Vga. 

The thin film is subjected to the weak electromagnetic fields excited by current sources with the 

amplitude J0 = 100 MA/m. See the caption to Figure 2.4 for other remarks. 
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As has been done in Figure 2.5 for the strong electromagnetic field, the time evolution of the 
electron wave packet and the corresponding classical trajectory for this weak laser field are 
displayed in Figure 2.7, where (a), (b), and (c) denote the numerical results for Vh , Vla , and Vga , 
respectively. It is noted that Figures 2.7 (a) and (b), representing the results for Vh and Vla , are 
almost identical to each other and that no fragmentation of the electron wave packet is observed 
for the locally anharmonic double-well case unlike the corresponding result in Figure 2.5 (b). This 
can be rationalized by the small strength of the laser field as follows: Since the electric field of 
the laser pulse is small, it could not give enough energy to the electron to reach the hump of the 
potential, namely local anharmonicity, for Vla. Therefore, since the potential energy curves of Vh 
and Vla below this hump are exactly the same harmonic potential, their electron dynamics should 
naturally be identical to each other for this weak strength of the laser field. In the case of the 
globally anharmonic potential Vga illustrated in Figure 2.7 (c), however, the electron wave packet 
spreads as the time proceeds and it undergoes bifurcation after t = 300 fs. Therefore, this 
dephasing effect existing only in the quantum simulation causes a difference between the results 
obtained by the two schemes even when the laser field is sufficiently weak. 
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      (a)                                     

 

(b) 

 

    (c) 

FIG. 2.7. Time evolution of the electron wave packet and the corresponding classical trajectory for 

the weak electromagnetic fields excited by current sources with the amplitude J0 = 100 MA/m. (a), 

(b), and (c) correspond, respectively, to the cases of the electrostatic potential Vh , Vla , and Vga . 

See the caption to Figure 2.5 for other remarks. 
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The present investigations show that the conventional Maxwell-Newton scheme can be 
applied not only to macroscopic problems as have been studied in most cases but also to 
microscopic problems of a nano-scale order on condition that the electrostatic confining potential 
for electron is purely harmonic. However, when the electrostatic potential deviates from a 
harmonic one even slightly, the Maxwell-Newton scheme would give unreliable results owing to 
quantum-mechanical tunnelling and/or anharmonicity effects. Therefore, such problems should 
be solved by the Maxwell-Schrödinger hybrid scheme. 

 

2.3  Discussion 

 
In this section we have focused on light-matter interaction by many electron systems 

especially with respect to the anharmonisity of the confining electrostatic potential, and 
investigated the interaction between laser fields and a nano-scale thin film, assumed as the surface 
of plasmonic devices, which is modelled by a representative electron among those. The two 
distinct hybrid simulations, the Maxwell-Schrödinger and the conventional Maxwell-Newton 
schemes, have been compared for three types of the potential structure consisted of the harmonic 
single-, locally anhharmonic double-, and globally anharmonic single-well. The computational 
results show that the two multi-physics simulations provide almost identical results for the 
harmonic confining potential, indicating a validity of use of the conventional Maxwell-Newton 
scheme for this case. In the case of the locally anharmonic double-well potential, however, the 
results by the Maxwell-Newton approach differ significantly from those by the Maxwell-
Schrödinger approach when the tunnelling plays an important role. Finally, for the case of the 
globally anharmonic single-well potential, the result of the Maxwell-Newton simulation deviates 
from that of the Maxwell-Schrödinger simulation quantitatively owing to an effect of dephasing 
of the electron wave packet by the anharmonicity in the electrostatic potential. These results have 
clearly demonstrated that the Maxwell-Schrödinger scheme is indispensable to multi-physics 
simulation particularly when the tunnelling, interference and anharmonicity effects play an 
essential role. 
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3  Light-matter interaction: single-electron systems 
 

A novel scheme of designing laser pulses for controlling discrete quantum states has been 
proposed relying on the highly-accurate Maxwell-Schrödinger hybrid simulation. A single 
electron confined in a quasi-one-dimensional nanoscale potential well has been used as an 
illustrative example and a control pulse to be modulated as transferring completely the probability 
density from the ground state to the first excited state has been designed by the present Maxwell-
Schrödinger hybrid scheme and by the conventional one that solves the time-dependent 
Schrödinger equation only without accounting for feedback from the electron system to the 
external electromagnetic field. The resultant pulses obtained by these two methods can be 
different largely owing to the modification of the laser field by the locally strong radiation from 
the excited electron. The present study demonstrates that light control pulses designed by the 
conventional method may need to be rectified for practical implementation in experimentations. 

 

3.1  Theoretical model and computational details 

 
In the present study we consider a model system of an electron confined in a quasi-one-

dimensional space (chosen as being parallel to the z axis) and irradiated by a pulsed laser field 
polarized along this z axis. The geometry and coordinates of the studied system is schematically 
illustrated in Figure 3.1. Since the laser field is polarized along the z axis, the initial electric and 
magnetic fields, E and H, have only the z and y component, respectively, i.e., E = (0, 0, Ez) and 
H = (0, Hy, 0) as displayed in Figure 3.1. Also the other components of electromagnetic fields, 
however, must be solved because those explicitly appear as soon as near field by the excited 
electron is generated. Therefore, the model system simulated here has the three- and one-
dimensional degree of freedom for the electromagnetic fields and electron, respectively. After this 
subsection the formulation of Maxwell-Schrödinger hybrid scheme to solve the 3D-1D problem 
will be described with conventional designing scheme for a light control pulse [32]. 
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3.1.1  Maxwell-Schrödinger hybrid scheme for 3D-1D problems 
 

The time-dependent wave function  of this non-relativistic electron confined in a quasi-one-
dimensional potential V and subjected to a radiation field with its scalar potential  and z 
component of the vector potential Az is obtained by solving the following Schrödinger and 
Maxwell’s equations, 

,
2
1 2

VqqA
z

i
mt

i z  (3.1) 

,11

00
JHE

t
 (3.2) 

,1

0
EH

t
 (3.3) 

where J = (0, 0, Jz) represents the z component of the polarization current density. The vector and 

scalar potentials, A and , satisfy the following relations in the Lorentz gauge as 
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The Lorentz gauge is employed here, since it is convenient for solving Maxwell’s equations 
numerically in the sense that it automatically satisfies the causality relation for space and time 

 
FIG. 3.1. The geometry and coordinates of the studied system. A single electron is confined in a 

rectangular narrow tube placed parallel to the z axis (right hand side of the figure) and it has a 

degree of freedom only along this axis. The electric current source Je(i) of the incident laser pulse 

is distributed uniformly on the y-z plane (left hand side of the figure) and excites a plane-wave 

light control pulse polarized along the z axis. 
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required by relativity. 
Schrödinger equation [Eq. (3.1)] and Maxwell’s equations [Eqs. (3.2) and (3.3)] are mutually 

coupled through  and Az in Eq. (3.1) and J in Eq. (3.2), respectively. The latter is defined by the 
time-dependent wave function  as 

.||
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These equations (3.1) - (3.6) describe the following physical situation: An external laser field is 
propagating by Maxwell’s equations (3.2) and (3.3) towards the confined electron system. When 
the laser field arrives, the electron starts to propagate by Schrödinger equation (3.1) under the 

influence of the scalar and vector potentials,  and Az, which have been updated by Eqs. (3.4) and 
(3.5). Then, the excited electron creates a polarization current density as defined by Eq. (3.6), 
which in turn goes into Eq. (3.2) of Maxwell’s equations. This feedback from the excited electron 
to the electromagnetic field refines the laser field, which interacts again with the electron system 
and repeats the cycle mentioned above. Although the incident electromagnetic field is polarized 
along the z axis having thus only Ez and Hy components initially, it acquires other nonzero 
components through interacting with the electron. Therefore, all components of the 
electromagnetic field, namely Ex , Ey , Ez , Hx , Hy , Hz , as well as the vector and scalar potentials, 

Ax , Ay , Az , and , need to be evaluated throughout the simulation. 
 

3.1.2  Conventional pulse designing scheme 
 

In the traditional theory of light-matter interaction in atomic and molecular physics the 
feedback from the electron systems to the electromagnetic field described in the last subsection 
has been neglected in most cases. The major reason for it may be a small number of charged 
particles included in an atom or a molecule in comparison to the huge number of photons in a 
laser pulse. Neglecting this feedback allows one to treat propagation of the electromagnetic field 
and electron separately. One can then focus only on the electron system and solves the time-
dependent Schrödinger equation with the effect of electromagnetic field included as a pre-defined 

time-dependent potential. The scalar potential  for the electromagnetic field is then chosen as 
being permanently zero (radiation gauge) independently from that for the electron system, which 
makes Eqs. (3.4) and (3.5) simpler as 

,EA
t

 (3.7) 

.0A  (3.8) 
The potential function in the Schrödinger equation (3.1) then becomes only the electrostatic 
confining potential V. The effect of electromagnetic field on the electron thus appears only in the 
vector potential A in Eq. (3.1). 
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There are a number of known ways to transform the time-dependent Schrödinger equation of 
Eq. (3.1) to a particular form suitable for actual computation thanks to the gauge invariance of 
expectation values of observables under any unitary transformations. Among others, the so-called 
length gauge [41] is often used for atoms and molecules, since the dipole approximation, that is, 
neglecting the position dependence of the vector potential, such that A(r,t) ~ A(t), is valid for a 
typical wavelength of laser lights and since the transformed Hamiltonian becomes a simple sum 
of the field-free atomic or molecular Hamiltonian and a dipole interaction term in this 
representation, as shown below. We introduce a unitary transformation to perform a displacement 
of the wave function in a momentum space defined as 

]./)(exp[ˆ ztiqAz  (3.9) 

By applying this unitary transformation to the wave function  on both sides of Eq. (3.1) and then 
rewriting the vector potential into the electric field by Eq. (3.7), the time-dependent Schrödinger 
equation for the transformed wave function ˆ~  becomes 
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We use this length gauge form of the time-dependent Schrödinger equation in the next section for 
obtaining a light control pulse in the conventional method. 
 

3.1.3  FDTD method, electrostatic confining potential, and space-time grids 
 

The time propagation of the electromagnetic field and the electron wave packet described by 
Eqs. (3.1) - (3.6) and (3.10) in the previous subsections 3.1.1 and 3.1.2 is performed by the FDTD 
method [14-16, 18-19, 36-39], where the mathematical formulas for practical use in coding are 
described in detail in Appendix. The electromagnetic field and the wave function are thus 
discretized and represented on the common space-time grid points explained in detail below. 

The electrostatic confining potential V is chosen as a simple bowl like potential defined by  

,
4

max
0 z

zVV  (3.11) 

where the parameters V0 and zmax characterizing the potential are set as 5000 eV and 1.0 nm, 
respectively. This kind of a bowl-like potential simulates the confining potential of quantum dots 
or nanowires [42-44]. The spatial profile of this electrostatic potential as well as the wave 

functions of the ground state and of the first excited state, 0 and 1 , for an electron confined in 
this potential are displayed in Figure 3.2. The energy difference between these two states is 5.3 
eV. In the present study we have focused on these two states and studied light control pulses that 
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transform the ground state into the first excited state.  
The space- and time-grids have been generated as follows. The grid is equispaced and its 

spacing for the x and y coordinates, x and y, has been both set as 1.0 nm while it has been set 
as 0.01 nm for the z coordinate, z. The number of grid points imax and jmax for x and y coordinates 
have been set as 40 while it has been set as 201 for z-coordinate, kmax. The origin of the space 
coordinate system coincides with the centre of the electrostatic potential. The spacing for the time 

grid t is not independent from the spacings for the space grid, x, y, and z but has to be chosen 
so as to satisfy Courant-Friedrichs-Lewy (CFL) condition [37]. In order to guarantee numerical 

accuracy the time spacing t has been chosen in the present study to be smaller by a factor of 0.9 
than the maximum value allowed by the CFL condition.  

The normalization of the wave function is as follows. Since the electron is confined in the 
quasi-one-dimensional space extending along the z axis like a “tube”, its wave function is 
dependent only on the z coordinate. Along the x and y coordinates the wave function is assumed 

to be uniform and has a nonzero value only within one unit x and y of the grid cell. Therefore, 
its probability density is zero outside of this narrow tube. The wave function  of the electron is 
thus normalized as 

.1|)(| 2 dzzyx  (3.12) 

 

 

FIG. 3.2. Spatial profile of the studied electrostatic potential V (in eV) and the probability density 

distributions of the ground 0 state (solid blue line) and of the first excited 1 state (broken red 

line). The eigenenergies of the ground and first-excited states are 2.05 and 7.35 eV, respectively. 
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3.2  Computational results 

 

3.2.1  Conventional light control pulse 
 

In this section we investigate the efficiency of light control pulses obtained by the 
conventional method, i.e., neglecting feedback from the electron system to the electromagnetic 
fields. The Maxwell-Schrödinger hybrid simulation described in the previous section is employed 
to study the near field generated by the interaction between the laser field and electron as shown 
in Figure 3.1. Among several variants of the conventional method in designing light control pulses 
we have focused on the method developed by Ohtsuki et al. [32], which is very simple but 
efficient. The light control pulse in the conventional method has been obtained as follows. Firstly, 
we set the initial state )0,(~ tz  and the target or objective state . These states are basically 

the ground state and the first excited state,  and , respectively, as mentioned in the previous 
section, but for a convenience of computational convergence, the following initial state that 
incorporates a very tiny amount of the target state has been used as 

.0001.09999.0)0,(~
0tz  (3.13) 

This condition is used only for generating a light control pulse. Time-dependent simulations with 
an optimized light control pulse are done starting from the pure ground state without a 
contamination of the target state.  

A control pulse is usually designed so as to maximize the probability density of the objective 
state within a certain time duration. Therefore, the following cutoff function has been used to 
force the strength of the laser pulse decaying exponentially after a given time τ as 

,)(exp 0
0

0 ttuttE  (3.14) 

where , t0, and  have been chosen as 0.5 GV/m, 15 fs, and 3 fs, respectively, with u(t) denoting 
the unit step function. Following the study by Ohtsuki et al., the conventional pulse Ez

(i)(t) has 
been constructed here by solving the equation, 

,~~Im2 0)( Wqz
m
EE i

z  (3.15) 

where W denotes the projection operator to the objective state, namely, 

.W  (3.16) 

Eq. (3.15) can be derived by a more general formulation based on the optimal control theory [30-
31]. Briefly, the light control pulse Ez

(i)(t) is constructed so as to take an extremal value in the 
following objective functional I[Ez

(i)(t)], defined by the sum of a functional K to maximize the 
expectation value of the target operator W at a controlling time tf and a penalty function to avoid 
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a too high intensity of the laser pulse, as 

.)(
)(

1)()(
2)(

0

)( dttE
t
t tG

tWKtEI i
z

f
f

i
z  (3.17) 

The function G(t) in the penalty function in second term of the right-hand side of the equation 
represents an arbitrary time-dependent weight. By setting G(t) = 1 and the functional K to be 
identity as a simplest choice, Eq. (3.17) together with the time-dependent Schrödinger equation 
(3.10) yields the equation (3.15) of determining the light control pulse. A low-pass filter has been 
also used after designing the light control pulse to clean numerical artifacts associated with an 
extremely high frequency over several thousand times higher than the transition angular 
frequency of 5.30 eV/ . These numerical errors, although they are very tiny, are caused by the 
FDTD algorithm. The temporal profile of the resultant light control pulse Ez

(i) designed by this 
method is displayed in Figure 3.3. 

In order to implement this light control pulse in the Maxwell-Schrödinger hybrid simulation 
we employ the following incident electric current source J(i) which is uniform on the x-y plane as 
shown in Figure 3.1: 
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where Z0 represents the characteristic impedance in vacuum. This source generates a plane-wave 
pulse which propagates in the positive and negative x direction. In addition the following initial 
condition is employed in the hybrid simulation: 

.)0,( 0tz  (3.19) 
 

 

FIG. 3.3. Temporal profile of the light control pulse Ez(i) obtained by the conventional method. 

This pulse is designed to transfer the probability density of an electron confined in the electrostatic 

potential V [See Eq. (3.11)] from the ground state to the first excited state (See also Figure 3.2). 
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3.2.2  Near field generated by a single electron 
 

The spatiotemporal propagation of the z component of the electric field Ez, polarization current 

density Jz, and the probability density of the electron wave packet |  |2 in the narrow tube obtained 
by the Maxwell-Schrödinger hybrid simulation employing the conventional light control pulse 
Ez

(i) has been calculated and is displayed in Figure 3.4. The probability density distribution of the 
wave packet displayed in Figure 3.4 (c) shows a single-peak at the beginning of the time 
propagation reflecting the distribution of the ground state. It undergoes a drastic change at around 
t = 3 ~ 4 fs and becomes a double-peak distribution and stabilized after t > 5 fs. At the right end 
of Figure 3.4 (c) the probability density distribution of the objective state is displayed. The 
electron wave packet should become closer and closer to this distribution when the ‘true’ light 
control pulse is employed. Although it has undergone a transition as mentioned from a single-
peak into a double-peak that reflects a node of the first excited state, it never becomes identical 
to the distribution of the objective state after the laser pulse has disappeared. 
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(a) 

 
(b) 

 
(c) 

FIG. 3.4. The spatiotemporal propagation of the z component of the electric field Ez [(a)], the 

polarization current density Jz [(b)], and the probability density of the electron wave packet | |2 

[(c)] obtained by the Maxwell-Schrödinger hybrid simulation employing the conventional light 

control pulse Ez(i). The size of the cross section of the tube (See Figure 3.1) is set as x = y = 1.0 

nm. In all figures the horizontal and vertical axes represent the time t (in fs) and the z coordinate 

(in nm) in the narrow tube where the electron is confined. At the far right-end of the figure (c) the 

probability density distribution of the objective state is indicated. 
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A quantitative measure of the control ability of this conventional light control pulse has been 

estimated by projecting the time-dependent wave packet onto the ground 0 state and the 
objective 1 state, respectively, as  

,~||~
000  (3.20) 

,~||~
111  (3.21) 

where we have applied the unitary transformation ˆ  to the time-dependent wave function , 
such as ˆ~ , in order to evaluate the overlap of wave functions in the same gauge. The 

resultant time variation of 0 and 1 are displayed in Figure 3.5. 0 and 1 start from unity and 
naught, respectively, since the initial wave packet is prepared as the ground 0 state. When the 
laser pulse is on, 1 increases rapidly during the period of time 2 < t < 10 fs in accord with the 
decrease of 0, indicating that the component of the objective state in the time-dependent wave 
packet increases. However, 0 and 1 stay at around 0.25 and 0.75, respectively, even after the 
pulse has disappeared. 

The origin of the observed insufficient control ability of the conventional light control pulse 
can be found in the time-propagation of the electric field and of the polarization current density 
displayed in Figures 3.4 (a) and 3.4 (b), respectively. The z component of the electric field Ez 
inside the tube is very low at the beginning of the laser pulse and becomes strong at around t ~ 5 
fs when the peak of the laser pulse arrives as displayed in Figure 3.4 (a). We note here that the 
spatial dependence of the electric field on the z axis becomes appreciable almost at the same time 

 

FIG. 3.5. The temporal variation of each component of the electronic states in the time-dependent 

electron wave packet obtained by the Maxwell-Schrödinger hybrid simulation employing the 

conventional light control pulse Ez(i). The size of the cross section of the tube (See Figure 3.1) is 

set as x = y = 1.0 nm. The blue and red lines represent the magnitude of the component of the 

ground state 0 and of the objective state 1, respectively [See Eqs. (3.20) and (3.21)]. 
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of the peak arrival. For example, at the time of t ~ 5 fs, the electric field in the “center” region of 
the tube ranging |z| < 0.15 becomes significantly weaker than in the rest part of the “outer” region 
of |z| > 0.15. This center region coincides with the region where the electron wave packet has a 
meaningful probability density. As the time proceeds further so that the intensity of the laser pulse 
becomes decreasing, the intensity of Ez in the outer region in turn decays rapidly while that in the 
center region around the vicinity of the wave packet persists or becomes even stronger. 

This behavior of Ez is caused by the induced emission from the excited electron as confirmed 
by the result of the polarization current density displayed in Figure 3.4 (b). The polarization 
current density is very small at the beginning of the laser pulse since the electron is not excited 
enough remaining thus almost in the ground state. As the laser pulse rises, the electron is forced 
to move back and forth by the electric field of the laser pulse to acquire energy for reaching the 
objective state, that generates a strong polarization current in the center region as seen in the result 
at t ~ 5 fs in Figure 3.4 (b). This strong polarization of electron causes the weakening of the 
electric field around the center region of the tube. In the meantime after the laser pulse has gone, 
the electron is still in a mixed state between the ground and excited states, allowing the 
polarization current persisting as seen in the result of Figure 3.4 (b) for t > 10 fs. This polarization 
current creates a near field with an oscillatory electric field as confirmed by Figure 3.4 (a). The 
oscillation of the electric field then causes a small modification of the electron wave packet, which 

manifests itself with the small oscillations in the amplitude of 0 and 1 as observed in Figure 
3.5 for t > 10 fs. This small oscillatory behavior of 0 and 1 can be seen only when the feedback 
from the electron system to the electromagnetic field is taken into account in the simulation as 
has been done in the present study. Eventually, the polarization current should diminish to zero 
owing to spontaneous emission but it occurs in a much longer time scale than in the present 
simulation. 

In order to confirm our reasoning, namely that the excited electron disturbs the original light 
control pulse significantly, thus preventing an intended control of the system, we have varied the 
strength of the induced emission from the excited electron to see how it affects the control ability 
of the conventional light control pulse. This variation of the strength of the induced radiation can 
be achieved by changing the size of the cross section of the tube in which the electron resides, i.e., 

x y. As indicated by the normalization condition of the electron wave function in Eq. (3.12) the 
electron density can be increased or decreased by choosing a smaller or larger value of x y, 
respectively. In the case of the result displayed in Figure 3.4 we have chosen x = y = 1.0 nm. 
Therefore, we have performed similar simulation by choosing x = y = 0.5 nm and x = y = 
1.5 nm. The results are displayed in Figures 3.6 and 3.7, respectively, in a similar manner as has 
been done for Figure 3.4. 
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(a) 

 
(b) 

 
(c) 

FIG. 3.6. The spatiotemporal propagation of the z component of the electric field Ez [(a)], the 

polarization current density Jz [(b)], and the probability density of the electron wave packet | |2 

[(c)] obtained by the Maxwell-Schrödinger hybrid simulation employing the conventional light 

control pulse Ez(i). The size of the cross section of the tube (See Figure 3.1) is set as x = y = 0.5 

nm. See the caption to Figure 3.4 for further details. 
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(a) 

 
(b) 

 
(c) 

FIG. 3.7. The spatiotemporal propagation of the z component of the electric field Ez [(a)], the 

polarization current density Jz [(b)], and the probability density of the electron wave packet | |2 

[(c)] obtained by the Maxwell-Schrödinger hybrid simulation employing the conventional light 

control pulse Ez(i). The size of the cross section of the tube (See Figure 3.1) is set as x = y = 1.5 

nm. See the caption to Figure 3.4 for further details. 
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The results displayed in Figure 3.6 for the smaller value of x and y correspond to the case 
with a larger effect of the induced radiation. This is confirmed by the larger disturbance of the 
electric field Ez of the original laser pulse at around t ~ 5 fs as displayed in Figure 3.6 (a). 
Furthermore, the corresponding time-propagation of the electron wave packet displayed in Figure 
6 (c) shows that the probability density along the z axis never becomes a double peak characteristic 
of the node structure of the wave function of the objective state. This indicates a lower control 

ability of the conventional light control pulse than in the case of x = y = 1.0 nm displayed in 
Figure 3.4. On the other hand, the results displayed in Figure 3.7 (c) corresponding to the case of 

x = y = 1.5 nm show that the probability density distribution along the z axis manifests itself a 
more clear doubly-peaked structure whose peak positions are closer to those of the objective state 

than does the case of x = y = 1.0 nm. This indicates a higher control ability of the conventional 
light control pulse in this case. We note here that in this case of a higher control ability the electric 
field Ez of the original light control pulse is less disturbed as confirmed by Fig. 3.7 (a). 

In order to see a global trend of the control ability of the conventional pulse with respect to 

the size of the tube we have extended our simulation for different values of x and y ranging 
from 0.5 nm to 5.0 nm. The square of the projection of the wave packet obtained by the simulation 

onto the objective state, 1, evaluated at t = 30 fs are summarized in Figure 3.8 for different values 
of x (= y). This figure shows that 1 becomes larger and converges to unity in proportion to the 
increasing size of the cross section of the tube. This indicates that the conventional light control 
pulse can fully control the system in the limit of low density of electron. On the other hand, in 

case of smaller size of the tube than the case with x = y = 2.0 nm, the deviation of 1 from 
unity becomes increasingly larger, indicating that the system can hardly be controlled by the 
conventional light control pulse. 
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3.2.3  New light control pulse and its control ability 
 

The last subsection 3.2.2 has clearly demonstrated that the conventional light control pulse 
designed without accounting for the near field generated by the excited electron could hardly 
control the system particularly when the charge density of the system is high. In this subsection 
we propose a novel scheme of designing light control pulses that takes into account the local 
modification of the incident laser field by the electron. The new scheme of designing light control 
pulses is a direct extension of the conventional method, i.e., to maximize the objective function 
under the constraint of avoiding too high laser intensity as described in Eq. (3.15), but it 
incorporates the effect of the modification of the incoming laser field. This can be done simply 
by replacing the time-dependent electron wave packet ~  in Eq. (3.15) obtained by the 
conventional method with the new one ,~  obtained by the Maxwell-Schrödinger hybrid 

simulation being transformed by a similar unitary transformation that is used to define the length 
gauge:  

,~~Im2 0)( Wqz
m
EE in

z  (3.22) 

where a letter “n” is added to the superscript of the left-hand side of the equation as Ez
(in) in order 

to discriminate it from the conventional pulse of Ez
(i). The unitary transformation that transforms   

into  is similar to ~  as mentioned above, but, unlike Eq. (3.9), the dipole approximation is 

not used here, namely, 

 
FIG. 3.8. The square-norm of the projection of the electron wave packet onto the objective state 

1 evaluated at t = 30 fs for the Maxwell-Schrödinger hybrid simulation employing the 

conventional light control pulse Ez(i). The horizontal axis represents the size of the cross section of 

the narrow tube (See Figure 3.1). 
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.),(exp'~ ztzAqi z  (3.23) 

The control ability of the new light control pulse obtained by solving Eq. (3.22) has been 
examined by applying it to the same problem as described in the previous section 3.2.2. The 

resultant new light control pulse Ez
(in) is displayed in Figure 3.9 for the case of x = y = 1.0 nm 

in both the time- and frequency-domain. In the frequency-domain spectrum the horizontal axis is 
normalized by the transition frequency. In the same figure the conventional light control pulse is 
also plotted as a reference. We have used the same parameters as have been used to design the 
conventional light control pulse Ez

(i). This figure shows that there can be observed some 
meaningful difference in the amplitude and in the central frequency between the new and 
conventional light control pulses.  
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(a) 

    

(b) 

FIG. 3.9. A comparison between the light control pulses, Ez(i) and Ez(in), designed, respectively, by 

the conventional and the present Maxwell-Schrödinger hybrid simulation for the size of the cross 

section of the tube x = y = 1.0 nm: (a) and (b) represent the temporal profile of these pulses and 

their spectrum in the frequency domain. The blue solid and red broken lines represent Ez(i) and 

Ez(in), respectively. The horizontal axis of the figure (b) is normalized with respect to the transition 

frequency. 
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The time propagation of the electric field Ez, the polarization current density Jz, and the 

electron wave packet | |2 in the tube is displayed in Figure 3.10 as has been done for the case of 
Figures 3.4, 3.6, and 3.7. As displayed in Figure 3.10 (a) the incoming light control pulse 
interferes with the radiation field from the excited electron particularly at around t = 5 ~ 10 fs 
when the light intensity is strong. Further, during this period of time, the interfered pulse makes 
the electronic state stably reach the objective state as confirmed by Figure 3.10 (c). We note here 
that the z-component of the electric field remains as a static one even after the laser pulse has 
gone through the electron as displayed in Figure 3.10 (a) for t > 10 fs. This remaining static field 
is generated by the polarization charge density of the electron in its first excited state.  
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(a) 

 
(b) 

 
(c) 

FIG. 3.10. The spatiotemporal propagation of the z component of the electric field Ez [(a)], the 

polarization current density Jz [(b)], and the probability density of the electron wave packet | |2 

[(c)] obtained by the Maxwell-Schrödinger hybrid simulation employing the new light control 

pulse Ez(in). The size of the cross section of the tube (See Figure 3.1) is set as x = y = 1.0 nm. 

See the caption to Figure 3.4 for further details. 
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The temporal variation of the probability density in the ground and objective states, 0 and 

1, is displayed in Figure 3.11. Unlike the case for the conventional light control pulse displayed 
in Figure 3.5, the probability density in the objective state 1 increases rapidly from zero to unity 
during the period of time t = 3 ~ 10 fs and is stabilized after the laser pulse has gone. These results 
indicate that the present new light control pulse can successfully control the quantum states by 
accounting for the modification of the incoming laser pulse by the excited electron. 

Finally, in order to further confirm the reliability of the present method for designing light 
control pulses, the hybrid simulation with the new light control pulses has been performed for 
different sizes of the cross section of the tube, as has been done in the previous section 3.2.2. We 

have examined the cases with x = y = 0.5 ~ 5.0 nm, and in all cases the electron wave packet 
becomes the objective state after t = 30 fs within numerical accuracy. 

As a demonstration, the resultant light control pulses for x = y = 0.5 and x = y = 1.5 nm 
are displayed in Figures 3.12 and 3.13, respectively. The conventional light control pulse is also 
displayed in the same figures for a comparison. Figure 3.13 representing the case with a small 
electron density shows that the light control pulse is rather similar to the conventional pulse. This 
is due to the fact that the induced radiation from the electron is weak. Therefore, the system can 
be somehow controlled by the conventional pulse. On the other hand, for the case with a high 
electron density the present light control pulse shows a large deviation from the conventional 
pulse as displayed in Figure 3.12. Since a larger electron density creates a stronger radiation, the 
electromagnetic field near the electron is modified more strongly, thus making the conventional 
pulse more and more impractical. 

 

FIG. 3.11. The temporal variation of each component of the electronic states in the time-dependent 

electron wave packet obtained by the Maxwell-Schrödinger hybrid simulation employing the 

present new light control pulse Ez(in). See the caption to Figure 3.5 for further details. 

0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2
   

: W0
: W1

t [fs]

W



46 
 

 

 

 
 

 

 

(a) 

      

(b) 

FIG. 3.12. A comparison between the light control pulses, Ez(i) and Ez(in), designed, respectively, by 

the conventional and the present Maxwell-Schrödinger hybrid simulation for the size of the cross 

section of the tube x = y = 0.5 nm. See the caption to Figure 3.9 for further details. 
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(a) 

      

(b) 

FIG. 3.13. A comparison between the light control pulses, Ez(i) and Ez(in), designed, respectively, by 

the conventional and the present Maxwell-Schrödinger hybrid simulation for the size of the cross 

section of the tube x = y = 1.5 nm. See the caption to Figure 3.9 for further details. 
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3.3  Disucussion 

 
In this section we have studied a system of an electron confined in a quasi-one-dimensional 

electrostatic potential and examined in detail the effect of the near field created by the electron 
excited by the incident laser pulse. We have focused particularly on a light control pulse that could 
transfer completely the probability density of the ground state to the objective first excited state. 
Relying on the Maxwell-Schrödinger hybrid simulation, we have first tested the control ability of 
the conventional light control pulse that has been designed without taking into account the 
modification of the incident laser field by the excited electron. The results show that the 
conventional pulse could somehow control the system in the case where the electron density is 
small. On the other hand, in the case with a high electron density, the conventional pulse can 
hardly transfer the system from the ground state to the objective state.  

We have then proposed a novel method to design a light control pulse by extending the 
conventional method so as to incorporate the effect of the local modification of the laser field by 
the induced radiation from the excited electron. This new light control pulse has been examined 
and shown to control the quantum states ideally not only for the case with a small electron density 
but also for the case with a high electron density. These results indicate that even a single electron 
can create a locally strong radiation field in the vicinity of the region where its wave function 
extends, that could make the conventional method impractical in designing light control pulses. 
Strictly speaking, the present results can be applicable only to the studied model of an electron 
confined in a quasi-one-dimensional nanostructure, simulating quantum dots or nanowires. The 
significance of the induced radiation could, however, be equally applicable to atomic and 
molecular systems in general, since their average electron density is comparable or even larger 
than that of the present model. For example, in the case of the hydrogen atom in its 2p state one 
electron is confined in a sphere with the radius of 4 times Bohr radius, i.e., 0.21 nm. Therefore, 
its average electron density is estimated to be 4.0×109 C/m3. On the other hand, the average 
electron density of the present model for the case when the conventional pulse is of no practical 
use is 1.8×109 C/m3 and is thus smaller than the case for the hydrogen atom.  

Finally, we would like to comment on a possibility of observing the effect of local 
modification of the incident laser field by the excitation of electron in actual experimentations. 
Recent experimental developments in generating ultrashort laser pulses have already enabled us 
to shape the temporal profile of the laser pulses in an almost arbitrary way within the range of, of 
course, coverage of their frequency spectrum. Therefore, the control ability of the laser pulses 
obtained by the present Maxwell-Schrödinger hybrid scheme and by the conventional one can be 
examined by implementing them into a pump-probe type of experimentations in which a target 
quantum system is pumped by the control pulse whose final state is then monitored by a probe 
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pulse. A promising target system may be a simple atom or a molecule with only a small number 
of active electrons for which the accurate Maxwell-Schrödinger hybrid simulation can be 
performed. 
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4  Conclusions 
 

In this dissertation the author has studied where phenomena occurred in the “mesoscopic” 
region which is expediently defined to involve not only the classical- but also quantum-theories, 
by utilizing recently developed highly-accurate hybrid simulation to investigate the light-matter 
interaction. Since both of the Maxwell and Schrödinger equations could be successfully coupled 
in the simulation, the hybrid scheme could realize very efficient and precise computation and has 
been successfully applied to two problems constructed by light-matter interaction: (i) many-
electron systems and (ii) single-electron ones. 

The former problem has been strongly motivated in terms of theoretical modelization of 
plasmonic devices which have currently attracted great attention as one of important roles in next 
generation key information technologies and been modeled so far by solely the classical physics 
despite the fact that the quantum mechanical effects for the devices have been actually observed 
in very recent experimental works. Therefore, the validity of such conventional classical 
simulation, namely a Maxwell-Newton scheme, has been challenged by making a comparison 
with the hybrid simulation of Maxwell-Schrödinger equations, where the author especially has 
focused on the structure of the electrostatic potentials that confine electrons. The resultant trend 
has clearly represented the applicable scope of the conventional Maxwell-Newton scheme whose 
simulated results coincides with precise one of our Maxwell-Schrödinger scheme for the purely 
harmonic potential structure while qualitatively deviates for the potentials characterized by 
locally- or globally anharmonicities, due to the some typical quantum mechanical effects: 
tunnelling or dephasing. These things explicitly indicate the need of Maxwell-Schrödinger 
algorithm for the simulation of the plasmonic devices. 

Another problem, that the author addressed, has been motivated by the design of light control 
pulses which can adjust the discrete quantum levels of particles in matter to arbitrary desired one, 
namely have potential ability to realize q-bit for quantum computers that is significantly faster 
than classical computers so far. The conventional schemes to design the pulses are based on the 
assumption that the electromagnetic field near the target system is not disturbed by the excitation 
of electrons, going against a sense of near field optics. Therefore, in order to verify this 
assumption actually, the author has firstly tried to simulate the near field generated by a single 
electron set as a target system irradiated with the conventional designing pulse, by relying on the 
use of precise Maxwell-Schrödinger hybrid simulation. As a result the conventional pulse could 
not stably control the electronic state since the strong near field is generated around the electronic 
wave packet and the field significantly modifies the original incoming pulse. Furthermore, it has 
been revealed that the intensity of the near field deeply depends on the density of the electron 
wave packet which determines that of polarization current. Hence the author has then proposed a 
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novel designing scheme to obtain light control pulses which precisely considers such near field 
effects and could stably control the electronic state. These clarified trends indicate that the 
Maxwell-Schrödinger algorithm should be indispensable for such problems. 
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Appendix 
 

In this appendix we present mathematical formulas to be used for developing computational 
codes for performing the Maxwell-Schrödinger hybrid simulation to solve 3D-1D problems. 
 

(A)  FDTD 

 
Our hybrid simulation solves the coupled Maxwell and Schrödinger equations simultaneously 

as described by Eqs. (3.1) - (3.3). It needs to evaluate E, H, A, J, , and  at every time steps. 
All these functions are placed on the space-time grid points as displayed in Figure A.1. The 
following recursion relations are used to update each component of the discretized E and H: 
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The recursion relations for updating the vector and scalar potentials, A and , are obtained by 
applying the second-order accurate difference formula to the time- and space-derivatives to Eqs. 
(3.4) and (3.5) as. 
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(a) 

 
(b) 

FIG. A.1. Space- and time-configurations[(a) and (b)] of the physical quantities on the 

spatiotemporal grid in the Maxwell-Schrödinger hybrid simulation. The set of symbols i, j, and k 

represents indices to specify the grid points on the x-, y-, and z-axes, respectively, while n specifies 

the grid points on the time axis. 
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The recursion relation for the time-dependent electron wave packet  is obtained by applying 
the Schrödinger FDTD method to Eq. (3.1) as 
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where real and imag represent, respectively, the real and imaginary parts of the wave function  
with iT and jT denoting the indices to specify the position of the tube on the x-y plane shown in 
Figure 3.1.  
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The following boundary conditions have been utilized to the discretized wave function 
throughout the present study: 

,0)2()1()()3()2()1( maxmaxmax kkk  (A.13) 
where perfectly matched layers[30] have also been used to the boundary condition for the 
electromagnetic fields. 

The polarization current density of Eq. (3.6) is evaluated by the following expressions with 

the  operator defined by Eq. (2.12) to compute the first-order derivative of z/  as 
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The Maxwell-Schrödinger hybrid simulation can be realized by using these equations (A1) - 
(A15) in the manner as illustrated schematically in Figure A.2. 
 

(B)  Novel design method for a light control pulse 

 
Our new method of designing light control pulses is based on Eqs. (3.22) and (3.23). First, the 

time-dependent wave function  obtained by solving the coupled Maxwell-Schrödinger equations 
needs to be transformed into ~  by the discretized formula of Eq. (3.23) as  

 

FIG. A.2. A schematic illustration of the computational algorithm for updating the physical 

quantities in the Maxwell-Schrödinger hybrid simulation. 
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where Z(k) represents the discretized z axis. Then, the new light control pulse Ez(in) is obtained 
by the discretized formula of Eq. (3.24) as 
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