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Introduction

Let N be the set of nonnegative integers. A numerical semigroup H is a sub-
monoid of N whose complement in N is finite. We denote by

H = 〈a1, ..., an〉 := {λ1a1 + · · ·λnan | λ1, ..., λn ∈ N}

if it is minimally generated by a1, ..., an > 0. A numerical semigroup is an object
which is related to various fields in mathematics. In particular, we are interested in
the relationship to commutative algebra. For a numerical semigroup H, we define
its semigroup ring as

k[H] := k[th | h ∈ H] ⊂ k[t],

or k[[H]] := k[[th | h ∈ H]] ⊂ k[[t]] if we consider the local case, where k is a
field and t an indeterminate. The ring k[H] is a one-dimensional Cohen-Macaulay
ring as a commutative algebra. It is natural that the properties and invariants
of H correspond to those of k[H]. For example, E. Kunz [Ku] proved that H is
symmetric if and only if k[H] is Gorenstein, which is a classical and well-known
result in this subject. Therefore we can observe the object of study from both
numerical semigroups and commutative rings sides. This enables us to simplify
problems since we can use many tools in commutative ring theory.

Our main object in this paper is almost symmetric numerical semigroups. The
notion of almost symmetric numerical semigroups was introduced by V. Barucci and
R. Fröberg [BF]. The concept is a generalization of those of symmetric and pseudo-
symmetric numerical semigroups. In fact, both symmetric and pseudo-symmetric
numerical semigroups are almost symmetric. Conversely, almost symmetric numeri-
cal semigroups with type 1 and 2 are symmetric and pseudo-symmetric, respectively.
The notion of almost Gorenstein rings was also introduced in [BF] as the ring corre-
sponding to almost symmetric numerical semigroups, that is, H is almost symmetric
if and only if k[[H]] is almost Gorenstein. They developed many interesting theory
of almost symmetric numerical semigroups and almost Gorenstein rings. In [BF],
they defined the notion of almost Gorenstein rings for one-dimensional analytically
unramified local rings. A few years ago, S. Goto, N. Matsuoka and T. T. Phuong
[GMP] gave a new definition of almost Gorenstein rings. In the definition, almost
Gorenstein rings are defined for one-dimensional Cohen-Macaulay local rings. This
definition is more general than that of [BF]. They also developed more deeper the-
ory of almost Gorenstein rings and showed many interesting results. Furthermore,
S. Goto, R. Takahashi and N. Taniguchi [GTT] recently extended the definition of
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almost Gorenstein rings for any dimensional Cohen-Macaulay rings. We expect that
this could bring a new development to commutative ring theory.

Almost symmetric numerical semigroups produce many good examples of almost
Gorenstein rings. Therefore the study of almost symmetric numerical semigroups
could contribute to study of almost Gorenstein rings. Numerical semigroups are
very explicit, and hence we can compute various invariants, which is an advantage
to consider numerical semigroups. On the other hand, almost symmetric numerical
semigroups enjoy very interesting properties itself in the view of numerical semigroup
theory.

In this paper, we study almost symmetric numerical semigroups in the view of
commutative ring theory. At first, we observe 3 and 4-generated cases (Chapter 2
and Chapter 3). We note that all 2-generated numerical semigroups are symmetric.
In general, some problems are difficult when numerical semigroups have large number
of minimal generators. So, we consider numerical semigroups which have a special
system of minimal generators (Chapter 4). The highlight in this paper is Chapter
2. In this chapter, we give a characterization for 3-generated numerical semigroups
to be almost symmetric by using their minimal free resolutions (or defining ideals).
This is a new perspective of almost symmetric numerical semigroups. Let us explain
the contents of each chapter in this paper as follows.

We start Chapter 1 by recalling some basic definitions and notations on numer-
ical semigroups and numerical semigroup rings. We will follow the notations and
terminologies of [RG4].

In Chapter 2, we investigate 3-generated almost symmetric numerical semigroups
H = 〈a, b, c〉. We note that if H is not symmetric, then H is almost symmetric if
and only if H is pseudo-symmetric. When H is symmetric, the structure of H was
studied by [FGH], [He] and [Wa]. Hence we are interested in the case where H is
not symmetric. Then it is known by [He] that the defining ideal of k[H] is generated
by the maximal minors of the matrix(

Xα Y β Zγ

Y β′
Zγ′

Xα′

)
,

where α, β, γ, α′, β′, and γ′ are positive integers. Then we prove that we can
describe the genus of H, denoted by g(H), by α, β, γ, α′, β′, and γ′:

Theorem 1 (Theorem 2.8). Let H = 〈a, b, c〉 be a numerical semigroup which is
not symmetric. Then:

(1) if β′b > αa, then 2 · g(H) − (F(H) + 1) = αβγ,

(2) if β′b < αa, then 2 · g(H) − (F(H) + 1) = α′β′γ′.

As a direct consequence of Theorem 1, we get the characterization of pseudo-
symmetric numerical semigroups:
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Corollary 2 (Corollary 2.9). Let H be as above. Then H is pseudo-symmetric if
and only if either α = β = γ = 1 or α′ = β′ = γ′ = 1

As an application of Corollary 2, for any fixed even integer f , we can construct all
the pseudo-symmetric numerical semigroups H = 〈a, b, c〉 whose Frobenius numbers
are f . This Chapter is based on [NNW2].

In Chapter 3, we study 4-generated almost symmetric numerical semigroups. We
have the following conjecture on the upper bound of the type of 4-generated almost
symmetric numerical semigroups. We denote the type of H by t(H).

Conjecture 3 (Conjecture 3.1). If H is a 4-generated almost symmetric numerical
semigroup, then t(H) ≤ 3.

In general, it is known that there is no upper bound on type of numerical semi-
groups H = 〈a1, ..., an〉 if n ≥ 4 (see [FGH]). J. C. Rosales and P. A. Garćıa-Sánchez
[RG2] recently proved that every almost symmetric numerical semigroup can be
constructed by removing some minimal generators from an irreducible numerical
semigroup with the same Frobenius number. Using this result, we explicitly con-
struct 4-generated almost symmetric numerical semigroups from 2 or 3-generated
irreducible numerical semigroups. For those special semigroups, we see that Con-
jecture 3 is true. The main results in this chapter are Theorems 3.6, 3.12, 3.16 and
3.20. This Chapter is based on [Nu1].

At the end of Chapter 3, we add a comment about the defining ideals of 4-
generated almost symmetric numerical semigroups. If H is a 4-generated symmetric
or pseudo-symmetric numerical semigroup, then the defining ideals IH of k[H] are
completely determined by H. Bresinsky [Br] and R. Komeda [Ko], respectively. How-
ever, when H is almost symmetric but not symmetric and pseudo-symmetric, this
problem is still open. We expect that the upper bound of the number of minimal
generators of IH is 7 if H is almost symmetric.

In Chapter 4, we consider numerical semigroups which have a special system of
minimal generators, that is,

H = 〈a, sa + d, sa + 2d, ..., sa + nd〉 ,

where s, a, d > 0, n ≥ 2 and gcd(a, d) = 1. Then H is called a numerical semigroup
generated by a generalized arithmetic sequence and it is called a numerical semi-
group generated by an arithmetic sequence if s = 1. Numerical semigroups of those
forms are studied by many authors (see [EL], [GSS], [Ju], [MS], [Ma]). In partic-
ular, the characterization for H = 〈a, sa + d, sa + 2d, ..., sa + nd〉 to be symmetric
is given by M. Estrada, A. Lópes [EL] and G. L. Matthews [Ma]. When s = 1,
this characterization was given by L. Juan [Ju]. G. L. Matthews [Ma] also gave a
characterization for H to be pseudo-symmetric. We generalize this result for almost
symmetric numerical semigroups:
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Theorem 4 (Corollary 4.4). Let H = 〈a, sa + d, ..., sa + nd〉 be a numerical semi-
group generated by a generalized arithmetic sequence. Then H is almost symmetric
but not symmetric if and only if a = n + 1 and s = 1. In particular, H is pseudo-
symmetric if and only if H = 〈3, 3 + d, 3 + 2d〉.

In Chapter 5, as an application in Chapter 4, we investigate Ulrich ideals of
Gorenstein numerical semigroup rings which are generated by monomials. The no-
tion of Ulrich ideals was introduced by S. Goto, K. Ozeki, R. Takahashi, K. -i.
Watanabe and K. Yoshida [GOTWY]. Let us recall the definition of Ulrich ideals.

Definition ([GOTWY]). Let (R, m) be a Cohen-Macaulay local ring with d = dim R
and I be an m-primary ideal. Then I is called an Ulrich ideal of R if the following
two conditions hold true for a minimal reduction Q ⊂ I:

(1) I2 = QI and

(2) I/I2 is R/I-free.

In [GOTWY], they also gave a characterization of Ulrich ideals of Gorenstein
numerical semigroup rings which are generated by monomials (see Theorem 5.2).
This characterization is the key to achieve our goal. When H is a numerical semi-
group generated by an arithmetic sequence, we determine when k[[H]] has Ulrich
ideals generated by monomials. To be specific, we prove the following theorem:

Theorem 5 (Theorem 5.5). Let H = 〈a, a + d, a + 2d, ..., a + nd〉 be a symmetric
numerical semigroup generated by an arithmetic sequence. Then k[[H]] has an Urlich
ideal generated by monomials if and only if n = 2.

Chapter 4 and 5 are based on [Nu2]. Finally, we mention the case where H =
〈a, b, c〉 is a 3-generated symmetric numerical semigroup. In that case, the author in
[Nu3] completely determine when k[[H]] has Ulrich ideals generated by monomials.
We refer to the result and give some remarks.

In Chapter 6, we introduce a sufficient condition for a numerical semigroup to be
almost symmetric from [Nu4]. We expect that it is an important property of almost
symmetric numerical semigroups.
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Chapter 1

Numerical semigroups and
numerical semigroup rings

First, we recall some basic definitions and notations on numerical semigroups and
numerical semigroup rings.

1.1 The definitions of numerical semigroups and

numerical semigroup rings

Definition 1.1 (Numerical semigroups). A numerical semigroup H is a subset of
N which satisfies the following conditions:

(1) 0 ∈ H (contains the zero element).

(2) H + H ⊂ H (closed under addition).

(3) #(N \ H) < ∞ (complement in N is finite).

A numerical semigroup has the unique system of minimal generators. If H is
minimally generated by a1, ..., an > 0, then we denote by

H = 〈a1, ..., an〉 := {λ1a1 + · · · + λnan | λ1, ..., λn ≥ 0}.

We note that #(N \ H) < ∞ if and only if gcd(a1, ..., an) = 1.

Definition 1.2 (Numerical semigroup rings). For a numerical semigroup H, we
define its semigroup ring as

k[H] := k[th | h ∈ H] ⊂ k[t]

where k is a field and t is an indeterminate.

A numerical semigroup ring k[H] = k[ta1 , ..., tan ] is:

• a subring of a polynomial ring k[t],
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• a one-dimensional Cohen-Macaulay domain, and

• isomorphic to a quotient ring k[X1, ..., Xn]/IH , where IH is the kernel of the
k-algebra surjective homomorphism φ : k[X1, ..., Xn] → k[H], where Xi → tai

for each 1 ≤ i ≤ n. Then IH is called the defining ideal of k[H].

We usually regard k[H] as a Z-graded ring in the natural way. Then k[H] has the
unique homogeneous maximal ideal m = (ta1 , ..., tan). If we define as deg(Xi) = ai

for each 1 ≤ i ≤ n in k[X1, ..., Xn], then the map φ is homogeneous of degree 0.

1.2 Some invariants

The notion of Apéry sets is a very useful tool in numerical semigroup theory.

Definition 1.3 (Apéry sets). Let H be a numerical semigroup and take 0 6= a ∈ H.
The Apéry set of a in H is

Ap(H, a) = {h ∈ H | h − a /∈ H}.

From the definition, we can easily see the following.

Lemma 1.4 ([RG4, Lemma 2.4]). Let H be a numerical semigroup and take 0 6=
a ∈ H. Then

Ap(H, a) = {0 = w(0), w(1), ..., w(a − 1)},

where w(i) = min{h ∈ H | h ≡ i (mod a)} for each 0 ≤ i ≤ a − 1.

Let us recall some basic and important invariants of numerical semigroups.

Definition 1.5 (Some invariants of numerical semigroups). Let H be a numerical
semigroup.

(1) F(H) = max(Z \ H), the Frobenius number of H.

(2) PF(H) = {x ∈ Z \ H | x + h ∈ H, 0 6= ∀h ∈ H}, the set of pseudo-Frobenius
numbers of H.

(3) t(H) = # PF(H), the type of H.

(4) G(H) = N \ H, the set of gaps of H.

(5) g(H) = #G(H), the genus of H.

(6) e(H) = min(H \ {0}), the multiplicity of H.

(7) emb(H) = n, the embedding dimension of H
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By definition, F(H) ∈ PF(H). When emb(H) = n, we often say that H is n-
generated for simplicity. We discuss relations between those invariants for a while.

It is easily seen that e(H) and emb(H) correspond to the multiplicity and em-
bedding dimension of k[H], respectively. We can easily prove the following result.
In the view of commutative ring theory, however, it is a special case of the result in
[Ab].

Proposition-Definition 1.6 ([Ab], [RG4, Proposition 2.4]). Let H be a numerical
semigroup. Then the following inequality holds:

emb(H) ≤ e(H).

If equality holds true, then we say that H has maximal embedding dimension.

Let R = k[H] be a numerical semigroup ring. From the short exact sequence
0 → R → k[t, t−1] → k[t, t−1]/k[H] → 0, we get the isomorphism

H1
m(R) ∼= k[t, t−1]/R, (1.1)

where H1
m(R) is the first local cohomology module of R. Hence x ∈ PF(H) if and

only if tx ∈ Soc(H1
m(R)), the socle of H1

m(R). It follows that the Cohen-Macaulay
type of R, denoted by r(R), is equal to the type of H. The a-invariant of R is
defined by a(R) = max{i ∈ Z | [H1

m(R)]i 6= 0} (see [GW]). Therefore a(R) = F(H)
by (1.1). We summarize these results as follows.

Proposition 1.7 ([GW]). Let R = k[H] be a numerical semigroup ring. Then:

(1) t(H) = r(R).

(2) F(H) = a(R).

We can compute pseudo-Frobenius numbers by using Apéry sets as follows. For
a numerical semigroup H, we define the order ≤H over Z: x ≤H y if y − x ∈ H.
We note that the set {tw | w ∈ Ap(H, a)} is a k-basis of the quotient ring T =
k[H]/(ta). Hence maximal elements in Ap(H, a) with respect to ≤H correspond to
the generators of Soc(T ).

Proposition 1.8 ([RG4, Proposition 2.20]). Let H be a numerical semigroup and
take 0 6= a ∈ H. Then

PF(H) = {w − a | w is a maximal element in Ap(H, a) with respect to ≤H}.

In particular, F(H) = max Ap(H, a) − a.

Let H be a numerical semigroup. If h ∈ H, then F(H) − h /∈ H. This implies
that there exists an injection from the set {h ∈ H | h < F(H)} to G(H). From this,
we get the following relation between F(H) and g(H).

Proposition 1.9 ([RG4, Lemma 2.14]). Let H be a numerical semigroup. Then the
following inequality holds true:

2 · g(H) ≥ F(H) + 1.

3



1.3 Symmetric numerical semigroups

Definition 1.10 (Symmetric numerical semigroups). Let H be a numerical semi-
group. We say H is symmetric if for any x ∈ Z, either x ∈ H or F(H) − x ∈ H.

It it clear that if H is symmetric, then F(H) is odd. There are some characteri-
zation of symmetric numerical semigroups.

Proposition 1.11 ([RG4, Chapter 3]). Let H be a numerical semigroup, 0 6= a ∈ H
and Ap(H, a) = {0 = w1 < w2 < · · · < wa}. Then the following conditions are
equivalent:

(1) H is symmetric.

(2) wi + wa−i = wa for all 1 ≤ i ≤ a − 1.

(3) t(H) = 1.

(4) PF(H) = {F(H)}.

(5) 2 · g(H) = F(H) + 1.

By Proposition 1.7 and 1.11, we can see that H is symmetric if and only if k[H]
is Gorenstein. This result was originally proved by E. Kunz [Ku].

1.4 Pseudo-symmetric numerical semigroups

Definition 1.12 ([BDF]). A numerical semigroup H is pseudo-symmetric if F(H)
is even and for any x ∈ Z, x 6= F(H)/2, either x ∈ H or F(H) − x ∈ H.

Note that if H is pseudo-symmetric, F(H)/2 + a ∈ Ap(H, a).

Proposition 1.13 ([BDF], [RG4, Chapter 3]). Let H be a numerical semigroup
with even Frobenius number, 0 6= a ∈ H and Ap(H, a) = {0 = w1 < w2 < · · · <
wa−1 = F(H) + a} ∪ {F(H)/2 + a}. Then the following conditions are equivalent:

(1) H is pseudo-symmetric.

(2) wi + wa−1−i = wa−1 for all 1 ≤ i ≤ a − 1.

(3) PF(H) = {F(H)/2, F(H)}.

(4) 2 · g(H) = F(H) + 2.

We remark that a numerical semigroup with type 2 is not always pseudo-symmetric
(see Example 1.16)
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1.5 Almost symmetric numerical semigroups

The notion of almost symmetric numerical semigroups was introduced by V. Barucci
and R. Fröberg. For a numerical semigroup H, we define

L(H) = {x ∈ Z \ H | F(H) − x /∈ H}.

Definition 1.14 ([BF]). A numerical semigroup H is almost symmetric if L(H) ⊂
PF(H).

By definition, we can see that that H is symmetric (resp. pseudo-symmetric)
if and only if L(H) = ∅ (resp. L(H) = {F(H)/2}), and hence symmetric and
pseudo-symmetric numerical semigroups are almost symmetric. Conversely, almost
symmetric numerical semigroups with type 2 are pseudo-symmetric. Therefore, the
concept of almost symmetric numerical semigroups is a generalization of those of
symmetric and pseudo-symmetric numerical semigroups.

H. Nari gave a characterization of almost symmetric numerical semigroups. This
result is an analogue of Proposition 1.11 and 1.13.

Theorem 1.15 ([Na], cf. [BF]). Let H be a numerical semigroup and PF(H) =
{f1 < f2 < · · · < ft = F(H)}. Then the following conditions are equivalent:

(1) H is almost symmetric.

(2) fi + ft−i = F(H) for any 1 ≤ i ≤ t − 1.

(3) 2 · g(H) = F(H) + t(H).

1.6 Examples

We give some examples of symmetric, pseudo-symmetric and almost symmetric
numerical semigroups, respectively.

Example 1.16.

(1) All 2-generated numerical semigroups are symmetric. In particular, 〈2, a〉 is
symmetric for every a ≥ 3.

(2) Let 3 < a < b and H = 〈3, a, b〉. Then H is pseudo-symmetric if and only
if b = 2a − 3 (cf. Chapter 2). Hence, for example, 〈3, 7, 8〉 is not pseudo-
symmetric. Moreover, H is never symmetric for any a and b,

(3) 〈4, 5, 6〉 is symmetric, and 〈4, 5, 7〉 is pseudo-symmetric. However 〈4, 5, 6, 7〉 is
almost symmetric but not pseudo-symmetric or symmetric.

(4) In general, 〈a, a + 1, ..., 2a − 1〉 = {0, a →} is almost symmetric but not
pseudo-symmetric or symmetric if a ≥ 4.
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1.7 Minimal graded free resolutions of numerical

semigroup rings

Now we observe minimal graded free resolutions of numerical semigroup rings. Let
H = 〈a1, ..., an〉, S = k[X1, ..., Xn] and R = k[H]. Since R is a one-dimensional
Cohen-Macaulay ring, the minimal graded free resolution of R has length n − 1 by
Auslander-Buchsbaum formula:

0 →
⊕

j

S(−mn−1,j)
βn−1,j → · · · →

⊕
j

S(−m1j)
β1j → S → R → 0,

where βij > 0 for each i, j. Note that KS
∼= S(−ω), where KS is the canonical

module of S and ω =
∑n

i=1 ai. Taking HomS(∗, KS) ∼= HomS(∗, S(−ω)), we have

0 → S(−ω) →
⊕

j

S(m1j − ω)β1j → · · · →
⊕

j

S(mn−1,j − ω)βn−1,j → KS → 0.

Since KS
∼= Extn−1

S (R, KS) is generated by the elements of degree −PF(H), we have

PF(H) = {mn−1,j − ω | 1 ≤ j ≤ t},

where t = r(R) = t(H). We also note that βn−1,j = 1 for each 1 ≤ j ≤ t.

6



Chapter 2

Almost symmetric numerical
semigroups generated by three
elements

We investigate 3-generated numerical semigroups H = 〈a, b, c〉. First, let us mention
the symmetric case. In that case, the structure of H is well known by [FGH], [He]
and [Wa].

Theorem 2.1 (Herzog [He], cf. [FGH], [Wa]). Let H = 〈a, b, c〉 be a numerical
semigroup. Then the following conditions are equivalent:

(1) H is symmetric.

(2) Changing order of a, b and c if necessary, we can write a = a′d, b = b′d where
gcd(a, b) = d > 1 and c ∈ 〈a′, b′〉, c 6= a′, b′. In this case, we denote by
H = 〈d 〈a′, b′〉 , c〉.

This is a very useful characterization of 3-generated symmetric numerical semi-
groups. Let us show some examples.

Example 2.2.

(1) Both 〈4, 5, 6〉 and 〈6, 10, 11〉 are symmetric. In fact, we can write as 〈4, 5, 6〉 =
〈2 〈2, 3〉 , 5〉 and 〈6, 10, 11〉 = 〈2 〈3, 5〉 , 11〉, respectively.

(2) Both 〈7, 10, 12〉 and 〈9, 11, 13〉 are not symmetric.

(3) In general, if any pairs of minimal generators of H = 〈a, b, c〉 are relatively
coprime, then H is not symmetric.

Therefore, we are interested in the case where H = 〈a, b, c〉 is not symmetric. It
is shown in [FGH] that if H is 3-generated, then t(H) ≤ 2. Hence the following is
easily verified by definition.

Proposition 2.3. Let H = 〈a, b, c〉 be a numerical semigroup which is not symmet-
ric. Then H is almost symmetric if and only if it is pseudo-symmetric.
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Thus, we study 3-generated pseudo-symmetric numerical semigroups in the fol-
lowing.

2.1 Characterization of pseudo-symmetric numer-

ical semigroups generated by three elements

Let R = k[H] ∼= k[X, Y, Z]/IH be the semigroup ring of H = 〈a, b, c〉. Then it is
known by [He] that the ideal IH of S = k[X,Y, Z] is generated by the maximal
minors of the matrix (

Xα Y β Zγ

Y β′
Zγ′

Xα′

)
, (2.1)

where α, β, γ, α′, β′, and γ′ are positive integers. We define the grading on S by
deg(X) = a, deg(Y ) = b, deg(Z) = c.

In another word, this corresponds to the following assertion.

Proposition 2.4. If H = 〈a, b, c〉 is not symmetric, then

(1) (α + α′)a = β′b + γc and α + α′ = min{n > 0 | an ∈ 〈b, c〉},

(2) (β + β′)b = αa + γ′c and β + β′ = min{n > 0 | bn ∈ 〈a, c〉},

(3) (γ + γ′)c = α′a + βb and γ + γ′ = min{n > 0 | cn ∈ 〈a, b〉}.

Since k[H]/(ta) ∼= k[Y, Z]/(Y β+β′
, Y β′

Zγ, Zγ+γ′
), the defining ideal of k[H]/(ta)

is generated by the maximal minors of the matrix

(
0 Y β Zγ

Y β′
Zγ′

0

)
. Since a =

dimk k[H]/(ta) = dimk k[Y, Z]/(Y β+β′
, Y β′

Zγ, Zγ+γ′
), and likewise for b, c, we get

the equations
a = βγ + β′γ + β′γ′,
b = γα + γ′α + γ′α′,
c = αβ + α′β + α′β′.

(2.2)

We put l = Zγ+γ′ −Xα′
Y β, m = Xα+α′ −Y β′

Zγ, and n = Y β+β′ −XαZγ′
. There

are obvious relations

Xαl + Y βm + Zγn = Y β′
l + Zγ′

m + Xα′
n = 0.

We put p = deg(l) = c(γ + γ′), q = deg(m) = a(α + α′), r = deg(n) = b(β + β′).
Also we put s = aα+p, t = bβ′ +p. Then we get the minimal graded free resolution
of R over S as follows:

0 → S(−s) ⊕ S(−t) → S(−p) ⊕ S(−q) ⊕ S(−r) → S → R → 0.

Note that KS
∼= S(−ω) with ω = a+b+c. Taking HomS(∗, KS) = HomS(∗, S(−ω)),

we get

0 → S(−ω) → S(p − ω) ⊕ S(q − ω) ⊕ S(r − ω) → S(s − ω) ⊕ S(t − ω) → KR → 0.
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From this exact sequence, we have that PF(H) = {s−ω, t−ω}. We put f = s−ω
and f ′ = t − ω.

In conclusion, we obtain the following results.

Proposition 2.5. If H = 〈a, b, c〉 is not symmetric, then PF(H) = {f, f ′} where

(1) f = αa + (γ + γ′)c − (a + b + c),

(2) f ′ = β′b + (γ + γ′)c − (a + b + c).

Remark 2.6. Above formulas related to our results can be found in [RG2], [RG3],
[RG4].

The following is the key lemma to prove our main theorem.

Lemma 2.7. Let H = 〈a, b, c〉 be as in the previous section.

(1) If β′b > αa, or equivalently, f ′ > f , then

(i) for p, q, r ∈ N, f ′ − f + pa + qb + rc 6∈ H if and only if p < α, q < β and
r < γ.

(ii) #{h ∈ H | f ′ − f + h 6∈ H} = αβγ.

(2) If β′b < αa, or equivalently, f ′ < f , then

(i) for p, q, r ∈ N, f − f ′ + pa + qb + rc 6∈ H if and only if p < α′, q < β′ and
r < γ′.

(ii) #{h ∈ H | f − f ′ + h 6∈ H} = α′β′γ′.

Proof. We assume β′b > αa. Since f ′−f +αa = β′b, f ′−f +βb = γ′c, f ′−f +γc =
α′a ∈ H, f ′ − f + pa + qb + rc ∈ H if p ≥ α or q ≥ β or r ≥ γ. Conversely,
assume p < α, q < β and r < γ and f ′ − f + pa + qb + rc = ua + vb + wc ∈ H
for some u, v, w ∈ N. Then we have (β′ + q − v)b = (α − p + u)a + (w − r)c.
If β′ + q − v ≤ 0, then (r − w)c = (α − p + u)a + (v − β′ − q)b, which implies
r−w ≥ γ +γ′. This is a contradiction since r−w < γ. Thus we have β′ +q−v > 0.
If w ≥ r, then this contradicts Proposition 2.4 (2). If r > w, we have (α−p+u)a =
(β′ + q−v)b+(r−w)c. Then by Proposition 2.4 (1), we must have u−p ≥ α′. This
means Xα−p+u − Y β′+q−vZr−w ∈ IH , which is impossible by (2.1) and Proposition
2.4 (1), since r−w < γ. This finishes the proof of (i), and (ii) is a direct consequence
of (i).

Theorem 2.8. Let H = 〈a, b, c〉 be a numerical semigroup. Then

(1) if β′b > αa, then 2 · g(H) − (F(H) + 1) = αβγ,

(2) if β′b < αa, then 2 · g(H) − (F(H) + 1) = α′β′γ′.
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Proof. We may assume β′b > αa. Then by Proposition 2.5, F(H) = f ′. Since for
h ∈ H, f − h 6∈ f ′ − H if and only if f ′ − (f − h) 6∈ H, using Lemma 2.7 we have

#[(f − H) ∩ N \ (f ′ − H)] = #{h ∈ H | f ′ − f + h 6∈ H} = αβγ.

Since N \ H = ((f ′ − H) ∩ N) ∪ ((f − H) ∩ N), we get

g(H) = #[(f ′ − H) ∩ N] + #[[(f − H) ∩ N] \ (f ′ − H)]

hence
g(H) = (F(H) + 1 − g(H)) + αβγ.

As a corollary, we find a characterization of 3-generated pseudo-symmetric nu-
merical semigroups.

Corollary 2.9. H is pseudo-symmetric if and only if

(1) if β′b > αa, then α = β = γ = 1 and

(2) if β′b < αa, then α′ = β′ = γ′ = 1.

Proof. We may assume that β′b > αa. By Theorem 2.8, 2 g(H)−(F(H)+1) = αβγ.
Since H is pseudo-symmetric if and only if 2 g(H) = F(H) + 2 by Proposition 1.13,
we obtain that αβγ = 1, or equivalently, α = β = γ = 1.

2.2 The structure of a pseudo-symmetric numer-

ical semigroup generated by three elements

In this section, we assume that H = 〈a, b, c〉 is a pseudo-symmetric numerical semi-
group. Our purpose is to classify, for any fixed even integer f , all the pseudo-
symmetric numerical semigroups H = 〈a, b, c〉 with F(H) = f . For example, it is
shown in Exercise 10.8 of [RG4] that there is no pseudo-symmetric numerical semi-
group H = 〈a, b, c〉 with F(H) = 12. Actually, we can now give many examples of
such an even integer f for which there does not exist a pseudo-symmetric numerical
semigroup H = 〈a, b, c〉 with F(H) = f . (It is shown in [RGG] that every even
integer is the Frobenius number of some numerical semigroup generated by at most
4 elements.)

As is mentioned before, the defining ideal IH is generated by the maximal minors
of the matrix as in (2.1) and by Corollary 2.9, we can always assume that α = β =
γ = 1. Recall that in this case we have by (2.2),

a = β′γ′ + β′ + 1, b = γ′α′ + γ′ + 1, c = α′β′ + α′ + 1. (2.3)

The following is the key for our goal.
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Theorem 2.10. Let H = 〈a, b, c〉 be a pseudo-symmetric numerical semigroup and

assume that IH is generated by the maximal minors of the matrix

(
X Y Z
Y β′

Zγ′
Xα′

)
.

Then we have

α′β′γ′ =
F(H)

2
+ 1.

Proof. From our hypothesis and Corollary 2.9, we have f < f ′. Thus by Proposition
2.5 and (2.3), F(H) = f ′ = β′b + (1 + γ′)c − (a + b + c) = 2α′β′γ′ − 2.

Now, given a positive even integer f , we can list all possibilities of the set
{α′, β′, γ′} by prime factorization of F(H)

2
+ 1.

Remark 2.11. Let σ be a permutation of {α′, β′, γ′}. Then it is easy to see that if σ
is an even permutation, then the set {a, b, c} obtained by {σ(α′), σ(β′), σ(γ′)} as in
(4.1.1) is the same and hence the semigroup H = 〈a, b, c〉 does not change.

But if σ is an odd permutation, then the set {a, b, c} does change. So, from the

factorization of
F(H)

2
+ 1, we get 2 different semigroups in general.

Example 2.12. For example, let us classify all pseudo-symmetric semigroup H =
〈a, b, c〉 with F(H) = f = 18. Since we have α′β′γ′ = f/2+1 = 10 by Theorem 2.10,
we have {α′, β′, γ′} = {10, 1, 1} or {5, 2, 1}. But if we put {α′, β′, γ′} = {10, 1, 1}
in any order to (4.1.1), a, b, c are all multiple of 3 and we don’t get a numerical
semigroup.

Thus we get 2 semigroups with F(H) = 18; if (α′, β′, γ′) = (5, 2, 1) we get
H = 〈5, 7, 16〉 and if (α′, β′, γ′) = (5, 1, 2), then we get H = 〈4, 11, 13〉.

If f is an even integer not divisible by 12, then there is a pseudo-symmetric
semigroup H = 〈a, b, c〉 with F(H) = f by [RGG].

Proposition 2.13 (Rosales, Garćıa-Sánchez, Garćıa-Garćıa [RGG]). Let H = 〈a, b, c〉
be a numerical semigroup and F(H) = f . Then

(1) If f is an even integer not divisible by 3, then

H =

〈
3,

f

2
+ 3, f + 3

〉
is a pseudo-symmetric numerical semigroup with Frobenius number f .

(2) If f is a multiple of 6 and not a multiple of 12, then

H =

〈
4,

f

2
+ 2,

f

2
+ 4

〉
,

is a pseudo-symmetric numerical semigroup with Frobenius number f .

If f is divisible by 12, there are many cases such that there does not exist pseudo-
symmetric numerical semigroup H = 〈a, b, c〉 with F(H) = f .
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Proposition 2.14. We suppose 12 | f . If there exists a pseudo-symmetric numerical
semigroup H = 〈a, b, c〉 with F(H) = f , then f/2+1 has a prime factor of the form
3k + 2 (k ≥ 1).

Proof. Otherwise, since α′, β′, γ′ are divisors of f/2 + 1, we get α′ ≡ β′ ≡ γ′ ≡ 1
(mod 3). Then by (2.3), we see that a, b, c are divisible by 3 and H = 〈a, b, c〉 is not
a numerical semigroup.

Example 2.15. Let f be an integer divisible by 12.

(1) By Proposition 2.14, there is no pseudo-symmetric semigroup H = 〈a, b, c〉
with F(H) = 12, 24, 36, 60, 72, 84, 96, 120, 132, 144, 156, 180, 192.

(2) On the other hand, there exists pseudo-symmetric semigroups H = 〈a, b, c〉
with F(H) = 48, 108, 168. Actually, H = 〈7, 11, 31〉 is the unique pseudo-
symmetric semigroup generated by 3 elements, with F(H) = 48, and H =
〈11, 19, 103〉 is the unique pseudo-symmetric semigroup generated by 3 el-
ements with F(H) = 168. Furthermore, both 〈11, 13, 67〉 and 〈7, 23, 61〉 are
pseudo-symmetric numerical semigroups generated by 3 elements with F(H) =
108.

(3) The converse of Proposition 2.14 is not true. Indeed, If f = 1596, then
f/2 + 1 = 799 = 17 × 47 has a prime factor which is congruent to 2 mod
3. But if we substitute (α′, β′, γ′) = (17, 47, 1) (resp. (47, 17, 1)) in (4.1.1),
then we get (a, b, c) = (95, 19, 817) (resp. (35, 49, 847)). These are not numer-
ical semigroups since (a, b, c) have common prime factor. It is not difficult to
show that f = 1596 is the smallest of such examples.

2.3 Simple numerical semigroups

In this section, we give a characterization of 3-generated simple numerical semi-
groups. Let us recall the definition of simple numerical semigroups.

Let H = 〈a1, ..., an〉 be a numerical semigroup. We assume that a1 is the least
positive integer in H. For every i ∈ {1, ..., n}, set

δi := min{k ∈ N \ {0} | kai ∈ 〈{a1, ..., an} \ {ai}〉}.

The notion of simple numerical semigroup was defined in Exercise 10.3 of [RG4].

Definition 2.16 (Simple numerical semigroups). We say that H is simple if a1 =
(δ2 − 1) + (δ3 − 1) + · · · + (δn − 1) + 1.

Proposition 2.17. Let H = 〈a1, a2, ..., an〉 be a simple numerical semigroup. Then
the type of H is n − 1. Hence if H is simple with n ≥ 3, then H is not symmetric.

Proof. By definition of pseudo-Frobenius number, we have that

PF(H) = {(δ2 − 1)a2 − a1, (δ3 − 1)a3 − a1, ..., (δn − 1)an − a1},

that is, H has type n − 1.
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The following is the main result in this section.

Theorem 2.18. Let H = 〈a, b, c〉 be a numerical semigroup defined by the matrix
as in (2.1). If we assume that a is the least positive integer in H. H, then H is
simple if and only if β′ = γ = 1.

Proof. Since a = βγ + β′γ + β′γ′, and since we have δ2 = β + β′, δ3 = γ + γ, H is
simple if and only if

βγ + β′γ + β′γ′ = β + β′ + γ + γ′ − 1

or, equivalently,

(β − 1)(γ − 1) + (β′ − 1)(γ′ − 1) + (β′γ − 1) = 0.

Since β, β′, γ, γ′ are positive integers, the latter equation is equivalent to β′ = γ =
1.
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Chapter 3

Almost symmetric numerical
semigroups generated by four
elements

Next, we study 4-generated almost symmetric numerical semigroups. As is men-
tioned in Chapter 2, if H = 〈a, b, c〉 is not symmetric, then t(H) = 2, and hence it is
almost symmetric if and only if it is pseudo-symmetric (Proposition 2.3). Hence the
first interesting case is the 4-generated case. In particular, we are interested in the
upper bound of the type of 4-generated almost symmetric numerical semigroups.

Conjecture 3.1. If H is a 4-generated almost symmetric numerical semigroup, then
t(H) ≤ 3.

In [NNW3], the authors classified 4-generated almost symmetric numerical semi-
groups of multiplicity 5. In particular, we proved that the type of such numerical
semigroups is at most 3. In general, we know that there is no upper bound on type
of H = 〈a1, ..., an〉 for n ≥ 4 (see [FGH]).

A numerical semigroup is irreducible if it cannot be expressed as an intersection
of two numerical semigroups properly containing it. It is known that an irreducible
numerical semigroup is either symmetric or pseudo-symmetric ([RG4, Chapter 3]).
J. C. Rosales and P. A. Garćıa-Sánchez proved that every almost symmetric numer-
ical semigroup can be constructed by removing some minimal generators from an
irreducible numerical semigroup with the same Frobenius number.

Theorem 3.2 (Rosales, Garćıa-Sánchez [RG5]). Let H1 be a numerical semigroup.
Then H1 is almost symmetric if and only if there exists an irreducible numerical
semigroup H with F(H) = F(H1) such that H1 = H \ A, where A is a set of
minimal generators of H1 such that

A ⊂ [F(H)/2, F(H)] and x + y − F(H) /∈ H1 for any x, y ∈ A. (∗)

When this is the case, t(H1) = 2 · #(A) + t(H).
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In this chapter, we explicitly construct 4-generated almost symmetric numerical
semigroups from 2 or 3-generated irreducible numerical semigroups by using The-
orem 3.2. Then we see that Conjecture 3.1 holds true for those almost symmetric
numerical semigroups.

3.1 The case where H is 2-generated

We remark that all 2-generated numerical semigroups are symmetric. Let H = 〈a, b〉
be a numerical semigroup and H1 = H \ {b}. Then since H1 = 〈a, a + b, 2b, 3b〉, we
see that emb(H1) ≤ 4 and a, a + b are always minimal generators of H1.

Lemma 3.3. Let H = 〈a, b〉 be a numerical semigroup and H1 = H \ {b}. Then
emb(H1) = 4 if and only if a ≥ 4. In this case, H1 = 〈a, a + b, 2b, 3b〉.

Proof. It is easily seen that if emb(H1) = 4, then H1 = 〈a, a + b, 2b, 3b〉. If H1 =
〈a, a + b, 2b, 3b〉, then 2b, 3b /∈ 〈a〉 and hence a ≥ 4. Conversely, if a ≥ 4, then
2b, 3b /∈ 〈a〉. This implies 2b /∈ 〈a, a + b, 3b〉 and 3b /∈ 〈a, a + b, 2b〉. Hence H1 =
〈a, a + b, 2b, 3b〉 and emb(H1) = 4.

Proposition 3.4. Let H = 〈a, b〉 be a numerical semigroup and A ⊂ {a, b} with
#A = 1. If emb(H \ A) = 4 and the set A satisfies Condition (∗), then H = 〈2, 5〉
and A = {2}, or H = 〈3, 4〉 and A = {3}.

Proof. We may assume that A = {b}. Since F(H) = ab−a−b, we have (a−3)b < a
from F(H)/2 < b. Since a ≥ 4 by Lemma 3.3, we get a = 5 and b = 2, or a = 4
and b = 3. Hence H = 〈2, 5〉 or H = 〈3, 4〉. Then A = {b} satisfies Condition (∗),
respectively.

Next, we consider the case of removing 2-generators from H = 〈a, b〉.

Proposition 3.5. Let H = 〈a, b〉 be a numerical semigroup and A = {a, b}. If the
set A satisfies Condition (∗), then H = 〈3, 4〉, and H \ A = 〈6, 7, 8, 9, 10〉.

Proof. We may assume that 2 ≤ a < b. Since F(H) = ab − a − b, Condition (∗)
implies that

ab − a − b

2
< a < b < ab − a − b.

Then we have that ab−3a−b < 0 and ab−a−2b > 0. Hence 2(b−3)a < 2b < (b−1)a.
This yields that b ≤ 4 and thus (a, b) = (3, 4).

Theorem 3.6. 4-generated almost symmetric numerical semigroups that are con-
structed from H = 〈a, b〉 under Condition (∗) are

〈4, 5, 6, 7〉 and 〈4, 6, 7, 9〉 .

Proof. By Proposition 3.4 and Proposition 3.5, the pairs of H = 〈a, b〉 and A ⊂
{a, b} that satisfy Condition (∗) are H = 〈2, 5〉 and A = {2}, or H = 〈3, 4〉 and
A = {3}. Then H \ A = 〈4, 5, 6, 7〉 or 〈4, 6, 7, 9〉, which are almost symmetric with
t(H) = 3 by Theorem 3.2.
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By Theorem 3.6, we conclude that we cannot construct 4-generated almost sym-
metric numerical semigroups whose type are bigger than 3 from H = 〈a, b〉.

3.2 The case where H is 3-generated

Next, we consider the case of H = 〈a, b, c〉. Then the embedding dimension of
H1 = H \ {b} is at most 6, that is H1 = 〈a, c, a + b, b + c, 2b, 3b〉.

Lemma 3.7. Let H = 〈a, b, c〉 be a numerical semigroup and H1 = H \ {b}. If
emb(H1) = 4, then one of the following conditions holds:

(a) 2b ∈ 〈a, c〉, a + b /∈ 〈c〉, b + c /∈ 〈a〉 and H1 = 〈a, c, a + b, b + c〉.

(b) 2b /∈ 〈a, c〉, 3b ∈ 〈a, c〉, a + b ∈ 〈c〉, b + c /∈ 〈a〉 and H1 = 〈a, c, b + c, 2b〉.

(c) 2b /∈ 〈a, c〉, 3b ∈ 〈a, c〉, a + b /∈ 〈c〉, b + c ∈ 〈a〉 and H1 = 〈a, c, a + b, 2b〉 (If we
change a and c in (b), then we get case (c)).

Proof. It is easy to check that H1 is either one of the above forms since a and c are
always minimal generators of H1.

First, we consider the symmetric case. We recall the characterization of 3-
generated symmetric numerical semigroups in Theorem 2.1. Then we can classify
symmetric numerical semigroups H with emb(H1) = 4.

Theorem 3.8. Let H = 〈a, b, c〉 be a symmetric numerical semigroup and H1 =
H \ {b}. If emb(H1) = 4, then, changing a and c if necessary, H is one of the
following form:

(1) 〈d 〈2, b′〉 , c〉, where a = 2d, b = b′d and c 6= 2 + b′.

(2) 〈2 〈a′, c′〉 , b〉, where a = 2a′ and c = 2c′.

(3) 〈d 〈3, b′〉 , c〉, where a = 3d, b = b′d and c = 3 + b′.

Proof. By Lemma 3.7, H must satisfy one of condtions (a), (b) or (c).
First, we assume that H satisfies the condition (a). Then one of the following

two cases occurs:

(i) If 2b ∈ 〈a〉, then we see that H = 〈d 〈2, b′〉 , c〉, where a = 2d, b = b′d. In this
situation, it holds that b+ c /∈ 〈a〉 since otherwise, a, b and c are dividisible by
d. Since c ∈ 〈2, b′〉, it follows that a + b /∈ 〈c〉 if and only if c 6= 2 + b′. Hence
we see that H is as in (1).

(ii) If 2b ∈ 〈a, c〉 and 2b /∈ 〈a〉 , 〈c〉, then H = 〈2 〈a′, c′〉 , b〉, where a = 2a′, c = 2c′.
Then a + b /∈ 〈c〉 and b + c /∈ 〈a〉. Hence in this case, we see that H is as in
(2).
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Next, we assume that H satisfies the condition (b) (or (c) if changing a and c).
Then we should also consider following two cases:

(i) If 3b ∈ 〈a〉, we know that H = 〈d 〈3, b′〉 , c〉, where a = 3d, b = b′d. In this
case, b + c /∈ 〈a〉 since otherwise, a, b, c are divisible by d. It is also easily seen
that a + b ∈ 〈c〉 if and only if c = 3 + b′. Hence H is as in (3).

(ii) If 3b ∈ 〈a, c〉 and 3b /∈ 〈a〉 , 〈c〉, we guess that H = 〈3 〈a′, c′〉 , b〉, where a =
3a′, c = 3c′. But in this case, a + b /∈ 〈c〉 and b + c /∈ 〈a〉 since otherwise, a, b, c
are divisible by 3. So we see that emb(H1) > 4, which is a contradiction.

Thus, we conclude that H is the one of forms of (1), (2) or (3) if emb(H1) = 4.

In each case of Theorem 3.8, if F(H)/2 < b, then H = 〈a, b, c〉 and A = {b}
satisfy Condition (∗). In this case, t(H \ A) = 3 by Theorem 3.2.

Next, we consider the case of removing 2 or 3 generators from H = 〈a, b, c〉.

Lemma 3.9. Let H = 〈a, b, c〉 be a symmetric numerical semigroup. Assume that
H = 〈d 〈a′, b′〉 , c〉, where a = a′d and b = b′d. Then

(1) if F(H)/2 < b, then a + b > c(d − 1) if a′ = 2, or a > c(d − 1) if a′ ≥ 3.

(2) if F(H)/2 < c, then d = 2.

Proof. (1) Since F(H) = d(a′b′ − a′ − b′) + c(d− 1) = a′b− a− b + c(d− 1) < 2b, we
get a − c(d − 1) > (a′ − 3)b. Hence the assertion follows from this inequality.

(2) From F(H) < 2c , we have d F(H ′) < (3− d)c, where H ′ = 〈a′, b′〉. So we get
d = 2.

Lemma 3.10. Let H = 〈a, b, c〉 be a symmetric numerical semigroup. If F(H)/2 <
x and F(H)/2 < y for some x, y ∈ {a, b, c}, x 6= y, then H = 〈4, b, c〉 = 〈2 〈2, b′〉 , c〉,
where b − 4 < c.

Proof. We may assume that H = 〈d 〈a′, b′〉 , c〉, where a = a′d, b = b′d and a′ < b′.
First, we assume that F(H)/2 < a, b.

(i) If a′ ≥ 3 and b′ ≥ 3, then c < a/(d − 1) = and c < b/(d − 1) by Lemma 3.9.
Since a = a′d, b = b′d and d > 1, we get the following inequalities;

c <
a

d − 1
=

d

d − 1
a′ ≤ 2a′, c <

b

d − 1
=

d

d − 1
b′ ≤ 2b′. (3.1)

Then we see that c = a′ + b′ since c ∈ 〈a′, b′〉. But it is a contradiction since
we get b′ < a′ and a′ < b′ by (3.1).

(ii) If a′ = 2, then F(H) = d(b′ − 2) − c + dc. Since F(H)/2 < a, we get

c <
3a − b

d − 1
=

d

d − 1
· (6 − b′) ≤ 2(6 − b′). (3.2)
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So we have b′ = 3 since c > 3, and hence c = 4 or 5.

If c = 4, then d = 2 or 3 by (3.2). When d = 2, it is a contradiction since
c = 4. If d = 3, then we see that H = 〈3 〈2, 3〉 , 4〉 = 〈6, 9, 4〉. Note that we
can also write as H = 〈4, 6, 9〉 = 〈2 〈2, 3〉 , 9〉.
If c = 5, then we get d = 2 by (3.2). Hence we see that H = 〈2 〈2, 3〉 , 5〉 =
〈4, 6, 5〉.

Next we assume that F(H)/2 < b and F(H)/2 < c. Then we may also assume
that b′ ≥ 3 and we have d = 2 by Lemma 3.9. If a′ > 2, then we get c < 6 since
F(H) = 2(a′b′−a′−b′)+c ≥ 2(3b′−3−b′)+c. This is a contradiction since c ∈ 〈a′, b′〉
and a′, b′ > 2. Hence we have a′ = 2. Then b−4 < c since F(H) = 2(b′−2)+c < 2c.
So in this case, we see that H = 〈2 〈2, b′〉 , c〉, where b − 4 < c.

Hence, we conclude that H = 〈2 〈2, b′〉 , c〉, where b − 4 < c if F(H)/2 < x and
F(H)/2 < y for some x, y ∈ {a, b, c}, x 6= y.

Lemma 3.11. Let H = 〈a, b, c〉 be a symmetric numerical semigroup. If F(H)/2 < z
for any z ∈ {a, b, c}, then H = 〈4, 5, 6〉.

Proof. We may assume that H = 〈d 〈a′, b′〉 , c〉, where a = a′d, b = b′d and a′ < b′.
Then we have d = 2 by Lemma 3.9.

(i) If a′ = 2 and b′ ≥ 3, then it follows that b = 6 and c = 5 since F(H) =
b − 4 + c < 2a = 8. Hence H = 〈4, 6, 5〉.

(ii) If a′, b′ ≥ 3, then c < a and c < b by Lemma 3.9. Since c ∈ 〈a′, b′〉, we write
c = λ1a

′ + λ2b
′, where λ1, λ2 ≥ 0. So we have that λ2b

′ < (2 − λ1)a
′ and

λ1a
′ < (2 − λ2)b

′. Then it must be λ1 = λ2 = 1 since c 6= a′, b′. Hence we get
b′ < a′ and a′ < b′, which is a contradiction.

Hence we conclude that H = 〈4, 5, 6〉.

Theorem 3.12. Let H = 〈a, b, c〉 be a symmetric numerical semigroup and A ⊂
{a, b, c} with #A ≥ 2. If H 6= 〈4, 5, 6〉, then the set A never satisfies Condition (∗).

Proof. If #A = 3, then it follows by Lemma 3.11.
If #A = 2, then H = 〈4, b, c〉 = 〈2 〈2, b′〉 , c〉 by Lemma 3.10. Then we see that

F(H)/2 < b, c by the proof of Lemma 3.11. Since F(H) = b + c − 4, it follows
that b + c − F(H) = 4 ∈ H \ {b, c}, which implies that A = {b, c} does not satisfy
Condition (∗).

Theorem 3.12 implies that 〈4, 5, 6〉 is the only symmetric numerical semigroup
with embedding dimension 3 which constructs almost symmetric numerical semi-
groups by removing 2 or 3 elements under Condition (∗). Thus, the following
example (1) shows that if H = 〈a, b, c〉 is symmetric and emb(H \ A) = 4, then
t(H \ A) = 3.

Example 3.13.
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(1) Let H = 〈4, 5, 6〉. Then all almost symmetric numerical semigroups con-
structed from H are H \ {5} = 〈4, 6, 9, 11〉, H \ {4} = 〈5, 6, 8, 9〉, H \ {4, 5} =
〈6, 8, 9, 10, 11, 13〉 and H \ {4, 5, 6} = 〈8, 9, 10, 11, 12, 13, 14, 15〉.

(2) Let H = 〈5 〈2, 5〉 , 8〉. Then H \ {25} = 〈8, 10, 33, 35〉 is almost symmetric and
PF(H \ {25}) = {22, 25, 47}.

(3) Let H = 〈6, 8, 11〉 = 〈2 〈3, 4〉 , 11〉. Then H \ {11} = 〈6, 8, 17, 19〉 is almost
symmetric with PF(H \ {11}) = {10, 11, 21}.

Now, we consider the case where H = 〈a, b, c〉 is pseudo-symmetric. Let H1 =
H \ {b}. Then we prove that if emb(H1) = 4, then H1 has maximal embedding
dimension. This means that A = {b} never satisfies Condition (∗). We recall
the characterization of pseudo-symmetric numerical semigroup (see Corollary 2.9 in
Chapter 2).

Lemma 3.14. Let H = 〈a, b, c〉 be a numerical semigroup. If H is pseudo-symmetric,
the followings hold:

(1) If 2b ∈ 〈a, c〉, then b + c ∈ 〈a〉 or a + b ∈ 〈c〉.

(2) If a + b ∈ 〈c〉, then 2a ∈ 〈b, c〉 or 2b ∈ 〈a, c〉.

(3) If b + c ∈ 〈a〉, then 2c ∈ 〈a, b〉 or 2b ∈ 〈a, c〉.

Proof. Since H is pseudo-symmetric, α = β = γ = 1 or α′ = β′ = γ′ = 1 in the
matrix of (2.1) by Corollary 2.9.

(1) First, assume that α = β = γ = 1. Since 2b ∈ 〈a, c〉, it must be β′ = 1 and
hence b + c ∈ 〈a〉. Next, we assume that α′ = β′ = γ′ = 1. Then we have β = 1
since 2b ∈ 〈a, c〉. This implies that a + b ∈ 〈c〉.

(2) If α = β = γ = 1, then α′ = 1 since a + b ∈ 〈c〉, which implies 2a ∈ 〈b, c〉. If
α′ = β′ = γ′ = 1, then we have β = 1 since a + b ∈ 〈c〉, and hence 2b ∈ 〈a, c〉.

(3) Changing a and c in (2), we get the assertion.

Remark 3.15. In Lemma 3.14, we need to assume pseudo-symmetric for H. For
example, let H = 〈5, 8, 6〉 , H ′ = 〈5, 7, 6〉, both of which are not pseudo-symmetric
and do not satisfy (1), (2), respectively.

Theorem 3.16. Let H = 〈a, b, c〉 be a pseudo-symmetric numerical semigroup and
A ⊂ {a, b, c} with #A = 1. If emb(H \A) = 4, then H \A has maximal embedding
dimension. In particular, the set A never satisfies Condition (∗).

Proof. We may assume that A = {b}. We use the classification of Lemma 3.7.
First, assume that H1 = H \ A is as in the case of (a) in Lemma 3.7. Then

b + c ∈ 〈a〉 or a + b ∈ 〈c〉 by Lemma 3.14 since 2b ∈ 〈a, c〉. Hence emb(H1) < 4,
which is a contradiction.

Next, we consider the case where H1 is as in the case (b).

19



(i) If α = β = γ = 1, we have α′ = 1 since a + b ∈ 〈c〉, and β′ = 2 since
2b /∈ 〈a, c〉 and 3b ∈ 〈a, c〉. Then it necessary holds that 2a ∈ 〈b, c〉 by
Lemma 3.14. By (2.2), we get a = 2γ′ + 3, b = 2γ′ + 1 and c = 4. Hence
H1 = 〈4, 2γ′ + 3, 2γ′ + 5, 4γ′ + 2, 〉 has maximal embedding dimension.

(ii) If α′ = β′ = γ′ = 1, then β = 2 since 2b /∈ 〈a, c〉 and 3b ∈ 〈a, c〉. Then
a + b /∈ 〈c〉, which contradicts the condition of (b).

Lastly, we consider H1 is as in the case (c).

(i) If α = β = γ = 1, then β′ = 2 from the condition of (c). In this case,
b + c /∈ 〈a〉, which contradicts the condition of (c).

(ii) If α′ = β′ = γ′ = 1, we have β = 2 and γ = 1 by the condition of (c) and
Lemma 3.14. Then we see that a = 4, b = 2α + 1 and c = 2α + 3 from (2.2).
Hence H1 = 〈4, 2α + 3, 2α + 5, 4α + 2〉 has maximal embedding dimension.

In conclusion, H1 has maximal embedding dimension if emb(H1) = 4. Then
t(H1) = 3 and hence A does not satisfy Condition (∗).

Next, we consider the case of removing 2 or 3 elements.

Lemma 3.17. Let H = 〈a, b, c〉 be a pseudo-symmetric numerical semigroup and
A ⊂ {a, b, c} with #A = 2. If F(H)/2 < x and F(H)/2 < y for x, y ∈ A, x 6= y,
then H is either 〈

3,
f

2
+ 3, f + 3

〉
, or

〈
4,

f

2
+ 2,

f

2
+ 4

〉
,

where F(H) = f .

Proof. By Corollary 2.9, we may assume that α′ = β′ = γ′ = 1. Then F(H) =
2αβγ − 2. We may also assume that F(H)/2 < a and F(H)/2 < b by considering of
changing order of a, b, c. Then we get the following inequalities by (2.2).

αβγ < βγ + γ + 2,

αβγ < γα + α + 2.
(3.3)

The pairs (α, β, γ) which satisfy (3.3) are, changing order of α, β, γ if necessary,
(1, 1, γ) and (2, 1, γ), where γ is any positive integer. Then we see that H is the
above form by (2.2).

Lemma 3.18. Let H = 〈a, b, c〉 be a pseudo-symmetric numerical semigroup and
A = {a, b, c}. If F(H)/2 < z for any z ∈ A, then H = 〈3, 4, 5〉, 〈3, 5, 7〉, or 〈4, 5, 7〉.

Proof. We may assume that α′ = β′ = γ′ = 1. By the proof of Lemma 3.17,
we may also assume that (α, β) = (1, 1) or (2, 1). In both cases, we have γ < 3
from F(H)/2 < c and (2.2). Then the pairs (α, β, γ) which H is to be a numerical
semigroup are (1, 1, 2), (1, 1, 3) and (1, 2, 2). By (2.2), we see that H = 〈3, 4, 5〉,
〈3, 5, 7〉 or 〈4, 5, 7〉.
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Note that 〈3, 4, 5〉, 〈3, 5, 7〉 and 〈4, 5, 7〉 do not satisfy Condition (∗) since a
minimal generator of those numerical semigroups is more than F(H). Hence we
have the following proposition.

Proposition 3.19. Let H = 〈a, b, c〉 be a pseudo-symmetric numerical semigroup
and A = {a, b, c}. Then the set A never satisfies Condition (∗).

Now we can prove our main theorem.

Theorem 3.20. Let H = 〈a, b, c〉 be a pseudo-symmetric numerical semigroup and
A ⊂ {a, b, c} with #A ≥ 2. If H 6= 〈4, 5, 7〉, then the set A never satisfies Condition
(∗).

Proof. If #A = 3, then the assertion follows from Proposition 3.19.
If #A = 2, then H = 〈3, f/2 + 3, f + 3〉 or 〈4, f/2 + 2, f/2 + 4〉 by Lemma

3.17. First, assume that H = 〈3, f/2 + 3, f + 3〉. We may assume that f ≥ 8 and
A = {f/2 + 3, f + 3}. But, then f + 3 > f = F(H), which implies the set A does
not satisfy Condition (∗).

Next we assume that H = 〈4, f/2 + 2, f/2 + 4〉. Since H 6= 〈4, 5, 7〉, we may
also assume that f ≥ 10. Then we guess that A = {f/2 + 2, f/2 + 4}. But,
2b − F(H) = 4α + 2 − 4α + 2 = 4 ∈ H \ A, which implies that A does not satisfy
Condition (∗).

By Theorem 3.20, we conclude that if H = 〈a, b, c〉 is pseudo-symmetric and
if the set A satisfies Condition (∗), then H = 〈4, 5, 7〉 and A = {4, 5}. Since
H \ A = 〈7, 8, 9, 10, 11, 12, 13〉 in this case, we cannot construct 4-generated almost
symmetric numerical semigroups from 3-generated pseudo-symmetric semigroups.
Also, we conclude that all 4-generated almost symmetric semigroups obtained from
3-generated irreducible semigroups by the method of J. C. Rosales and P. A. Garćıa-
Sánchez [RG5] have type ≤ 3.

3.3 The defining ideals of 4-generated almost sym-

metric numerical semigroups

Finally, we mention the defining ideals of 4-generated almost symmetric numerical
semigroups. Let H be a 4-generated numerical semigroup. When H is symmetric,
H. Bresinsky [Br] completely determined the defining ideal IH of k[H]. In particular,
he proved that µ(IH) = 3 or 5, where µ(IH) is the number of minimal generators of
IH . When H is pseudo-symmetric, J. Komeda [Ko] gave a complete characterization
of the defining ideal IH , and he proved that µ(IH) = 5. Therefore, it is natural to
ask if µ(IH) is bounded in the case where H is almost symmetric. We expect that
the following conjecture is true about this.

Conjecture 3.21. If H is 4-generated almost symmetric, then µ(IH) ≤ 7.

Remark 3.22. The authors in [NNW3] proved that if H is 4-generated almost sym-
metric with multiplicity 5, then µ(IH) ≤ 6.
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Chapter 4

Numerical semigroups generated
by generalized arithmetic
sequences

In this chapter, we study numerical semigroups which are in the form of the following:

Definition 4.1. We say that H is a numerical semigroup generated by a generalized
arithmetic sequence if H = 〈a, sa + d, sa + 2d, ..., sa + nd〉, where a, s, d > 0, n ≥ 2
and gcd(a, d) = 1. When s = 1, H is said to be generated by an arithmetic sequence.

Our main aim is to give a characterization for H to be almost symmetric. Apéry
sets play a central roll in this chapter and next chapter.

Let H = 〈a, sa + d, sa + 2d, ..., sa + nd〉 be a numerical semigroup generated by
a generalized arithmetic sequence. Put a = qn + r, 0 ≤ r < n. We define the subset
Ai of H for 1 ≤ i ≤ q as the following:

Ai := {isa + ld | (i − 1)n + 1 ≤ l ≤ in}.

Then we determine the Apéry set of a in H and the type of H.

Theorem 4.2 (Matthews [Ma]). Let H be as above.

(1) If r = 0, then

Ap(H, a) = {0} ∪ A1 ∪ A2 ∪ · · · ∪ Aq−1 ∪ (Aq \ {qsa + qnd}).

Then PF(H) = {ω − a | ω ∈ Aq \ {qsa + qnd}} and t(H) = n − 1.

(2) If r = 1, then
Ap(H, a) = {0} ∪ A1 ∪ · · · ∪ Aq.

Then PF(H) = {ω − a | ω ∈ Aq} and t(H) = n.

(3) Otherwise (r 6= 0, 1),

Ap(H, a) = {0} ∪ A1 ∪ · · · ∪ Aq ∪ {(qs + 1)a + ld | qn + 1 ≤ l ≤ qn + r − 1}.

Then PF(H) = {(qs+1)a+ ld−a | qn+1 ≤ l ≤ qn+r−1} and t(H) = r−1.
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Proof. This theorem is shown by G. L. Matthews (see [Ma, Proof of Lemma 2.7]).
But we reproduce the proof for the convenience of readers. We know that

Ap(H, a) = {0 = w(0) < w(d) < w(2d) < · · · < w((a − 1)d)},

where w(jd) ≡ jd (moda) for all 1 ≤ j ≤ a − 1 since gcd(a, d) = 1. Furthermore,
w(jd) = (p + 1)sa + jd if j = pn + u, where 0 < u ≤ n. Therefore, the theorem
easily follows from the definition of Apéry sets and Proposition 1.8.

The following result was firstly shown by M. Estrada and A. López [EL] (when
s = 1, it was shown by L. Juan [Ju]). We obtain this result as a corollary of Theorem
4.2 since H is symmetric if and only if t(H) = 1 by Proposition 1.11.

Corollary 4.3 (Estrada, López [EL], cf. [Ma]). Let H = 〈a, sa + d, ..., sa + nd〉 be
a numerical semigroup generated by a generalized arithmetic sequence. Then H is
symmetric if and only if a ≡ 2 (mod n).

G. L. Matthews gave a characterization for H to be pseudo-symmetric (see [Ma]).
We generalize this result for almost symmetric numerical semigroups.

Corollary 4.4. Let H = 〈a, sa + d, ..., sa + nd〉 be a numerical semigroup generated
by a generalized arithmetic sequence. Then H is almost symmetric but not symmetric
if and only if H has maximal embedding dimension and s = 1. In particular, H is
pseudo-symmetric if and only if H = 〈3, 3 + d, 3 + 2d〉.

Proof. If H has maximal embedding dimension and s = 1, then PF(H) = {d, 2d, ..., nd}
by Proposition 1.8, and hence H is almost symmetric by Theorem 1.15.

Conversely, assume that H is almost symmetric with PF(H) = {f1 < f2 <
· · · ft = F(H)}, where t ≥ 2. Then it holds that fi +ft−i = F(H) for all 1 ≤ i ≤ t−1
by Theorem 1.15. By Theorem 4.2, we see that this condition holds if and only if
q = 1, r = 1 and s = 1. Hence H has maximal embedding dimension. The last
statement of Corollary easily follows from Corollary 1.13

Remark 4.5. When H is a numerical semigroup generated by an arithmetic sequence,
the explicit formula of the Betti numbers of k[H] is given by P. Gimenez, I. Sengupta
and H. Srinivasan [GSS]. In [EL] and [Ma], the definition of generalized arithmetic
sequences does not except the case of n = 1. Therefore, Corollary 4.3 is slightly
different from that in [EL] or [Ma].

Example 4.6.

(1) Let H = 〈11, 25, 28, 31, 34〉. Then

Ap(H, 15) = {0, 25, 28, 31, 34, 59, 62, 65, 68, 93, 96}.

Thus PF(H) = {82, 85} and t(H) = 2.

(2) Let H = 〈6, 11, 16, 21, 26, 31〉. Then H is almost symmetric. In fact, since
PF(H) = {5, 10, 15, 20, 25}, we see that H is almost symmetric.
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(3) If H = 〈6, 17, 22, 27, 32, 37〉, then H has maximal embedding dimension, but
which is not almost symmetric. Indeed, we have PF(H) = {11, 16, 21, 26, 31},
which implies that H is not almost symmetric. This example show that the
condition “s = 1” in Corollary 4.4 is essential.

(4) If H = 〈17, 56, 61, 66, 71, 76〉, then H is symmetric. In fact, since

Ap(H, 17) = {0, 56, 61, 66, 71, 76, 132, 137, 142, 147, 152, 208, 213, 218, 223, 228, 284},

we have PF(H) = {267}, and hence H is symmetric.
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Chapter 5

Ulrich ideals of some Gorenstein
numerical semigroup rings

In this chapter, we study Ulrich ideals of Gorenstein numerical semigroup rings
which are generated by monomials. First, we recall the definition of Ulrich ideals
from [GOTWY].

Definition 5.1 (Goto, et al [GOTWY]). Let (R, m) be a Cohen-Macaulay local
ring with d = dim R ≥ 0 and I be an m-primary ideal of R. Suppose that I contains
a parameter ideal Q = (a1, ..., ad) of R as a minimal reduction. Then I is called an
Ulrich ideal of R if the following two conditions hold true:

(1) I2 = QI and

(2) R/I-module I/I2 is free.

By definition, any parameter ideal of R is clearly Ulrich. For convenience, in this
paper, we except parameter ideals whenever we refer to Ulrich ideals. We consider
the case of R = k[[H]] ⊂ k[[t]], a formal power series ring. Let χg

R denote the set of
Ulrich ideals of R which are generated by monomials in t. The following is the key
theorem to achieve our goal.

Theorem 5.2 ([GOTWY]). Suppose that R = k[[H]] is a Gorenstein numerical
semigroup ring (equivalently, H is symmetric) and let I be a nonzero ideal of R.
Then following condition are equivalent.

(1) I ∈ χg
R.

(2) I = (tα, tβ) (α, β ∈ H,α < β) and if we put x = β−α, the following conditions
hold.

(i) x /∈ H, 2x ∈ H.

(ii) the numerical semigroup H1 = H + 〈x〉 is symmetric, and

(iii) α = min{h ∈ H | h + x ∈ H}.
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In particular, we note that χg
R 6= ∅ if and only if there is an integer x ∈ Z which

satisfies that conditions (i) and (ii) above. We show examples to see how to use
Theorem 5.2.

Example 5.3.

(1) Let H = 〈4, 5〉 = {0, 4, 5, 8, 9, 10, 12 →}. We can find the integers which satisfy
the condition (i):

x = 2, 6, 7, 11.

Among these integers, 2 and 6 just satisfy the condition (ii). Therefore we
have

χg
k[[H]] = {(t8, t10), (t4, t10)}

by the condition (iii).

(2) If H = 〈3, 5〉, then χg
k[[H]] = ∅ since we can check that there are no integers

which satisfy the conditions (i) and (ii).

Remark 5.4. When H is a 2-generated numerical semigroup, the set χg
k[[H]] is com-

pletely described in [GOTWY].

5.1 The case where H is generated by an arith-

metic sequence

Let H = 〈a, a + d, ..., a + nd〉 be a numerical semigroup generated by an arithmetic
sequence. In that case, we completely determine when χg

k[[H]] is empty or not.
Our purpose is to show the following theorem.

Theorem 5.5. Let H = 〈a, a + d, a + 2d, ..., a + nd〉 be a symmetric numerical
semigroup generated by an arithmetic sequence. Then χg

k[[H]] 6= ∅ if and only if
n = 2.

We provide some lemmas to prove this theorem.

Proposition 5.6. Let H be a numerical semigroup and x ∈ Z be an integer such
that x /∈ H and 2x ∈ H. Put H1 = H + 〈x〉. Then:

(1) Every element y ∈ H1 which is not in H can be written as y = x + h for some
h ∈ H.

(2) Let 0 6= a ∈ H. Every element ω′ ∈ Ap(H1, a) which is not in Ap(H, a) can
be written as ω′ = x + ω for some ω ∈ Ap(H, a).

Proof. (1) It is clear since 2x ∈ H.
(2) If ω′ ∈ Ap(H1, a) and ω′ /∈ Ap(H, a), then ω′ /∈ H, and hence ω′ = x + ω

for some ω ∈ H by (1). Then it is easily seen that ω ∈ Ap(H, a) since otherwise
ω′ /∈ Ap(H1, a).
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Now let H = 〈a, a + d, ..., a + nd〉 be a numerical semigroup generated by an
arithmetic sequence and put

Ap(H, a) = {0 = w(0) < w(d) < w(2d) < · · · < w((a − 1)d)}, (5.1)

where w(id) ≡ id (moda) for all 1 ≤ i ≤ a − 1.

Lemma 5.7. Let H and Ap(H, a) be as above, and let x ∈ Z be an integer such that
x /∈ H and 2x ∈ H, and set H1 = H+〈x〉. If x ≡ rd (moda) for some 1 ≤ r ≤ a−1,
then

Ap(H1, a) = {0 = w(0) < w(d) < w(2d) < · · · < w((r − 1)d)}
∪ {w′((r + i)d) := x + w(id) | 0 ≤ i < a − r},

(5.2)

where w′((r + i)d) ≡ (r + i)d (moda). Furthermore, if w′((r + i)d) ∈ H, then
w′((r + i)d) = w((r + i)d), and otherwise w′((r + i)d) < w((r + i)d).

Proof. First, we claim that x+w(id) ≤ w((r+i)d) for all 0 ≤ i < a−r. It suffices to
show this for i = 1 by induction. Since x ≡ w(rd) (moda) and x /∈ H, w(rd)−x ≥ a,
and which implies x+(a+d) ≤ w(rd)+d. Thus we see that x+w(d) ≤ w((r +1)d)
since w((r + 1)d) = w(rd) + d or w(rd) + (a + d) by Theorem 4.2.

By Proposition 5.6, every element ω′ ∈ Ap(H1, a) is in Ap(H, a) or the form
of ω′ = x + ω for some ω ∈ Ap(H, a). Thus we should only prove that w(jd) ∈
Ap(H1, a) for all 1 ≤ j ≤ r − 1 since the last statement of Lemma is clear from the
claim in previous paragraph. Now we fix the j. Then there exists an integer 0 ≤ i <
a − 1 such that r + i ≡ j (moda) with r + i ≥ a. Thus we have x + w(id) > w(jd)
since w(id) > w(jd). This implies w(jd) ∈ Ap(H1, a).

Example 5.8. Let H = 〈14, 17, 20, 23, 26〉. By Theorem 4.2, we have

Ap(H, 14) = {0, 17, 20, 23, 26, 43, 46, 49, 52, 69, 72, 75, 78, 95}.

We can take x = 7, 38, 50, 58 and so on. Then Apéry sets in H + 〈x〉 are as follows.

Ap(H + 〈7〉 , 14) = {0, 17, 20, 23, 26, 43, 46, 7, 24, 27, 30, 33, 50, 53}.
Ap(H + 〈38〉 , 14) = {0, 17, 20, 23, 26, 43, 46, 49, 38, 55, 58, 61, 64, 81}.
Ap(H + 〈50〉 , 14) = {0, 17, 20, 23, 26, 43, 46, 49, 52, 69, 72, 75, 50, 67}.
Ap(H + 〈58〉 , 14) = {0, 17, 20, 23, 26, 43, 46, 49, 52, 69, 58, 75, 78, 81}.

Remark 5.9. Lemma 5.7 is not true for numerical semigroups generated by general-
ized arithmetic sequences. Indeed, if H = 〈8, 17, 18, 19〉 and x = 9, then Ap(H +
〈9〉 , 8) is not in the form of (5.2) since Ap(H, 8) = {0, 17, 18, 19, 36, 37, 38, 55} and
Ap(H + 〈9〉 , 8) = {0, 9, 18, 19, 28, 37, 38, 47}.

Observing carefully Example 5.8, we show Theorem 5.5.

Proof of Theorem 5.5. We assume that χg
k[[H]] 6= ∅. Then there exists an integer

x ∈ Z such that x /∈ H, 2x ∈ H and H1 := H + 〈x〉 is symmetric by Theorem 5.2.
Since H is symmetric, we have

a ≡ 2 (mod n) (5.3)
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by Corollary 4.3. Let Ap(H, a) be as in (5.1). We assume that x ≡ rd (moda), 1 ≤
r < a, and let Ap(H1, a) = {0 = ω′

0 < ω′
1 < · · · < ω′

a−1 = F(H1) + a}. Then, by
Proposition 1.11, it holds that

ω′
i + ω′

a−1−i = ω′
a−1 for all 1 ≤ i ≤ a − 1. (5.4)

By Lemma 5.7, max Ap(H1, a) = ω′
a−1 is either w((r − 1)d) or x + w((a − r − 1)d).

(i) If max Ap(H1, a) = x + w((a − r − 1)d), then

r ≡ 0 (mod n) (5.5)

since otherwise t(H1) > 1, and hence H1 is not symmetric. And to satisfy the
condition (5.4), we must have r − 1 = a − r − 1, and hence we get

a = 2r. (5.6)

Now solving (5.3), (5.5) and (5.6), we obtain n = 2.

(ii) If max Ap(H1, a) = w((r − 1)d), then we have

r ≡ 2 (mod n) (5.7)

since otherwise t(H1) > 1. Furthermore, since equations (5.4) hold in the set
{x + w(id) | 0 ≤ i < a− r}, we get the condition (5.5). By solving (5.4), (5.5)
and (5.7), we obtain n = 2.

In both cases, we have n = 2 as desired.
Conversely, we assume that n = 2, that is, H = 〈a, a + d, a + 2d〉. Then a is

even by Corollary 4.3, and so we put a = 2m, where m ≥ 2. We note that m /∈ H
but a = 2m ∈ H, and m + d /∈ H but a + 2d = 2m + 2d ∈ H. We claim H + 〈m〉 or
H + 〈m + d〉 is symmetric.

(i) If m is even, then H + 〈m〉 = 〈2 〈m′,m + d〉 , 2m + d〉, where m = 2m′. Hence
H + 〈m〉 is symmetric by Theorem 2.1.

(ii) If m is odd, then H + 〈m + d〉 = 〈2 〈m, (m + d)/2〉 , 2m + d〉 since d is odd,
and hence which is symmetric.

Thus we conclude that χg
k[[H]] 6= ∅ if n = 2 by Theorem 5.2. This complete the

proof.

Example 5.10.

(1) If H = 〈10, 11, 12〉, then χg
k[[H]] 6= ∅. Actually, we can easily check that H +〈6〉

is symmetric by using Theorem 2.1.

(2) Let H = 〈16, 19, 22〉. Then H + 〈8〉 is symmetric, and hence χg
k[[H]] 6= ∅.

(3) When H = 〈8, 11, 14, 17〉, we can check directly that there is no integers x
such that x /∈ H, 2x ∈ H and H + 〈x〉 is symmetric. Hence χg

k[[H]] = ∅.
For the reasons mentioned in Remark 5.9, we cannot apply the proof of Theorem

5.5 for numerical semigroups generated by generalized arithmetic sequences.

Question 5.11. When H is a numerical semigroup generated by a generalized arith-
metic sequence, does Theorem 5.5 hold true ?
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5.2 Other cases

Now we mention the case where H is 3-generated symmetric numerical semigroups.
The author in [Nu3] completely determined when Ulrich ideals generated by mono-
mials of k[[H]] are exist. We refer to the result from [Nu3].

Theorem 5.12 ([Nu3]). Let H = 〈a, b, c〉 be a symmetric numerical semigroup and
assume that H = 〈d 〈a′, b′〉 , c〉. We put R = k[[H]], H1 = 〈a′, b′〉 and R1 = k[[H1]].
Then the following assertions hold true.

(1) If d and c are odd, then

χg
R = {(tdα, tdβ) | α, β ∈ H1 such that (tα, tβ) ∈ χg

R1
}.

In particular, #χg
R = #χg

R1
.

(2) If a, b and c are odd, then χg
R = ∅.

In the following, we assume that a′ and b′ are odd.

(3) If d is odd and c is even, then

(i) χg
R 6= ∅ if and only if H + 〈c/2〉 is symmetric.

(ii) if χg
R 6= ∅, then

χg
R = {(t

c
2
l, t

c
2
d) | l is even with 1 < l < d}.

In particular, #χg
R = (d − 1)/2.

(4) If d is even and c is odd, then H + 〈da′/2〉 or H + 〈db′/2〉 is symmetric. In
particular, χg

R 6= ∅. Furthermore, the number of χg
R does not depend on d.

Finally, we give a remark. For H = 〈a, b, c〉, it is symmetric if and only if
it is a complete intersection (see [He]). When H = 〈a, a + d, a + 2d, ..., a + nd〉
is a symmetric numerical semigroups generated by an arithmetic sequence, it is a
complete intersection if and only if n = 2 (see [MS]). Hence we may expect that
if k[[H]] is Gorenstein but not a complete intersection, then it has no Ulrich ideals
generated by monomials. However, unfortunately, there exist a counter example.

Example 5.13 ([Nu3]). A numerical semigroup H = 〈10, 12, 13, 14, 15〉 is symmetric
but not a complete intersection. However H + 〈5〉 = 〈5, 12, 13, 14〉 is symmetric, and
hence χg

k[[H]] 6= ∅. In general, Hm = 〈2m, 2m + 2, 2m + 3, ..., 3m〉 is symmetric but

not a complete intersection if m ≥ 5. Then we can check that H +〈m〉 is symmetric.
Therefore χg

k[[Hm]] 6= ∅.
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Chapter 6

Some properties of almost
symmetric numerical semigroups

We conclude the paper by introducing some interesting properties of almost sym-
metric numerical semigroups. In particular, we refer to the result from [Nu4].

We recall the definition of gluing of numerical semigroups.

Definition 6.1 (Delorme [De], cf. [RG4, Chapter 8]). A gluing of two numerical
semigroups H1 = 〈a1, ..., an〉 and H2 = 〈b1, ..., bm〉 is defined by

〈d1H1, d2H2〉 := 〈d1a1, ..., d1an, d2b1, ..., d2bm〉 ,

where d1 ∈ H2 \ {b1, ..., bm}, d2 ∈ H1 \ {a1, ..., an} and gcd(d1, d2) = 1.

Theorem 6.2 (Delorme [De], cf. [RG4, Chapter 8]).

(1) If H = 〈d1H1, d2H2〉 is a gluing of H1 and H2, then H is symmetric (resp. a
complete intersection) if and only if both H1 and H2 are symmetric (complete
intersections).

(2) If H 6= N is a complete intersection, then H is a gluing of two numerical
semigroups which are complete intersections.

We see that Theorem 6.2 (2) is a generalization of Herzog’s result (Theorem 2.1)
since H = 〈a, b, c〉 is symmetric if and only if it is a complete intersection.

H. Nari proved that the almost symmetric property is not preserved by gluing.

Theorem 6.3 (Nari [Na]). Let H be a gluing of two numerical semigroups and
assume that H is not symmetric. Then H is never almost symmetric.

The author in [Nu4] studied the relation between two numerical semigroups

〈a1, ..., an〉 and 〈da1, ..., dan−1, an〉 ,

where d > 1 and gcd(d, an) = 1. Let us explain the motivation of this work. K -i.
Watanabe [Wa] constructed the numerical semigroups H = 〈da1, ..., dan, b〉 for given
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H1 = 〈a1, ..., an〉, where d > 1, b ∈ H1 \ {a1, ...a,n } and gcd(d, b) = 1. We see that
this construction is a special case of gluing of numerical semigroups, that is, the
case of H2 = N in Definition 6.1. In gluing, the condition that b ∈ H1 \ {a1, ..., an}
is essential. Then we want to know what happen if b /∈ H1.

Let H1 = 〈a1, ..., an〉 and H = 〈da1, ..., dan−1, an〉, where d > 1. Then we proved
the following result which is an analogue of Watanabe’s result (see [Wa, Lemma 1]).

Proposition 6.4 ([Nu4]). Let H1 and H be as above. Then the Betti numbers of
k[H] are equal to those of k[H1]. In particular, H is symmetric (resp. a complete
intersection) if and only if H1 is symmetric (resp. a complete intersection).

Furthermore, we also had an analogue of a special case of Theorem 6.3.

Proposition 6.5 ([Nu4]). Let H1 and H be as above. Assume that H is not sym-
metric (equivalently, H1 is not symmetric). Then H is never almost symmetric.

By this result, we get the following theorem.

Theorem 6.6 ([Nu4]). If H = 〈a1, ..., an〉 is almost symmetric which is not sym-
metric, then any (n − 1)-tuples of {a1, ..., an} are relatively coprime.

J. C. Rosales and P. A. Garćıa-Sánchez proved the following result. Therefore,
we can regard Theorem 6.6 as an natural generalization of Theorem 6.7.

Theorem 6.7 (Rosales, Garćıa-Sánchez [RG4, Corollay 10.14]). If H = 〈a1, a2, a3〉
is a pseudo-symmetric numerical semigroup, then any pairs of {a1, a2, a3} are rela-
tively coprime
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