コンクリート製下水管腐食の現状と 耐硫酸性向上のためのフッ化物混合 セメント硬化体に関する研究

保坂成司

目 次

第1章 緒論 ···································	1
1.1 研究の背景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.2 下水道とは ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1.3 日本における下水道 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
1.4 下水道管における問題点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
1.5 下水道の維持管理 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1.6 研究の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
1.7 本論文の構成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
参考文献 · · · · · · · · · · · · · · · · · · ·	15
第2章 既設コンクリート製下水道管における腐食の現状 ·	16
2.1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
2.2 既設下水道管の腐食調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
2.3 腐食調査結果	23
2.4 腐食調査データの解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
2.4.1 腐食調査データの基本統計量および解析方法 ・・	28
2.4.2 判別分析法による腐食判定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
2.4.2.1 線型判別関数による判別 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
2.4.2.2 マハラノビスの汎距離による判別 ・・・・・	40
2.5 考察	45
2.6 結論	47
参考文献 · · · · · · · · · · · · · · · · · · ·	49
第3章 下水道施設におけるコンクリートの微生物腐食と	
その対策技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
3.1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
3.2 コンクリートの微生物腐食のメカニズム ・・・・・・・	52
3.3 コンクリートと硫酸の反応 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55

ง.4 ว ธ	コンクリー	トの 微 土 初 腐 良 に 刈 り る 刈 束 伩	₁ мј · · · · · · · 57
5.5 参考	ょとめ [·] 文献		

第4章 フッ化物混合セメント硬化体の耐硫酸性に関する検討

					• • •	•••	•••	• • •	•••	••	••	••	•••		• •	•••	•••	••	•	63
4.	1	はじ	めに			•••	• • •	• • •	•••	••	••	• •	•••	• • •	• •	•••	• •	• •	•	64
4.	2	カル	シウ	ム系(七合牧	勿に、	よる	耐	硫	姲忄	±σ.	〕向	了上	-		• •	• •		•	66
4.	3	実験	方法			• • •	• • •			•••	••	• •	•••		• •		• •	• •	•	68
	4.	3.1	実験	概要		•••	• • •	• • •	•••	••	••	• •		•••	• •		•••	••	•	68
	4.	3.2	供試	体		•••	• • •	• • •	•••	••	••	• •		•••	• •		•••	••	•	70
	4.	3.3	硫酸	水溶	液に	よる	暴	露実	験	条	件				• •		•••	•••	•	72
	4.	3.4	測定	項目	およ	び測	定:	方法			••	• •		•••	• •		•••	••	•	74
4.	4	予備	実験			• • •	• • •		• • •	• •	••	• •	•••		• •		• •	• •	•	80
4.	5	結果	および	び考察	Ř						••	• •	•••	•••	• •	•••	• •	• •	•	81
	4.	5.1	硫酸	水溶	液の	密度	測	定			••	••	•••	•••	• •		•	••	•	81
	4.	5.2	質量	測定				•	•••	••	••	••	• • •	• • •	• •		• •	••	•	82
	4.	5.3	形状	測定				•	•••	••	• •	••		•••	• •		•	••	•	84
	4.	5.4	硫酸	水溶	液の	密度	<u>ک</u>	供討	体	質	量			•	• •		• •	•••	•	86
	4.	5.5	質量	減少	量と	厚さ	減	少量	_						• •		• •	••	•	87
	4.	5.6	圧縮	強度	試験			•	•••	••	• •	••		•••	• •		•	••	•	88
	4.	5.7	中性	化範	囲測	定(〔硫	酸浸	透	範	囲	測	定))		•	•	•••	•	90
		4.5.	7.1	総面	積			•	•••	•••	•••	••	•••	•••	• •	•••	•	••	•	92
		4.5.	7.2	二水	石膏	部		•	•••	•••	••	••	•••	•••	• •	•••	•	••	•	93
		4.5.	7.3	健全	部			•	•••	•••	•••	••	•••	•••	• •	•••	•	••	•	94
		4.5.	7.4	中性	化部			•	•••	••	••	••	•••	•••	• •	•••	•	••	•	95
	4.	5.8	単位	体積	質量			•	•••	••	• •	••		•••	• •		•	••	•	97
	4.	5.9	硫酸	浸透	体積			•		• •	• •	••	•••	•••	• •		•	••	•	101
	4.	5.10	粉末	X 線	回折	測 定	! (XR	D)			•••	•••	• •		•	••	•	105
	4.	5.11	示差	熱	熱重	量分	·析	(т	G	_	D	т	A))			•	•••	•	108

			4.	5.	11.1	カル	シウ	ムチ	系化	合物	勿の)試到	薬の	тс	G —	D .	ΤA	•	••	108
			4.	5.	11.2	各供	試存	本の	健:	全音	ßの	Т	G -	- D	т	4		• •	••	110
			4.	5.	11.3	供試	体④	りの	中	性们	上部	の	ТС	<u> -</u>	D .	ТΑ	•	• •	••	112
			4.	5.	11.4	各供	試存	本の	<u> </u>	水石	言膏	·部(ר מ	G G	- 1	т с	- д		••	113
			4.	5.	11.5	各供	試存	本に	お	ける	6 C	a (co	₃の	定量	里			••	118
		4.	5.	12	ΒE	T比	表面	氠積	測	定			• •			• •	••		••	120
	4.	6	結	論			• • •	•••	••		•••	• • •		• • •		• •	• •		••	123
	参	考	文	献			• • •	• • •	•••	• • •	•••	•••	• • •	•••	•••	• •	••		• •	128
第	5	章		Ca	F ₂ 混合	によ	る雨	讨硫	酸	性뎌	句上	ອ	解り	月		• •	•••	•••	••	129
	5.	1	は	じ	めに		• • •	•••	••	• • •	• •	• • •	• • •	•••	•••	• •	• •		••	130
	5.	2	実	験	方法		• • •	•••	••	• • •	• •	• • •	•••	•••	•••	• •	• •		••	132
	5.	3	結	果	および	考察														
		5.	3.	1	CaF ₂	試薬と	<u></u> 1	Oma	ss%	6硫	酸:	水溶	፮液	に。	よる	反	応	性	•	133
		5.	3.	2	長期	暴露に	こよ	る	流酸	定混	合注	沈殿	と物	ወን	} 析			• •	••	135
		5.	3.	3	耐硫	酸性向	旬上	メフ	ヵニ	ズ	ム(の解	『明		•	••	•••		••	138
	5.	4	結	論			• • •	•••	••	• • •	• •	• • •	•••	•••	•••	• •	• •		••	140
	参	考	文	献			•••	•••	•••	•••	•••	•••	•••	•••	•••	••	•••		••	141
第	6	章		総	括		• • •	•••	••		•••	•••		•••	•••	• •	• •		••	142
	6.	1	総	括			• • •	•••	••		•••	•••		•••	•••	• •	• •		••	143
	6.	2	ま	٤	め		• • •	•••	••		•••	• • •		• • •	•••	• •	•••		••	147
謝	辞						•••	•••	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	••	149
付	録						• • •	•••	•••		•••	•••	• • •		•••	•••	•••	•••	••	150
	付	表	—	1			• • •	•••	•••		•••	•••	• • •		•••	•••	•••	•••	••	151
	付	表	_	2			• • •	• • •	• •		•••	• • •		• • •		••	• •		••	156

Abstract

Study on Hardened Cement Body with Fluoride for Obtaining Improved Sulfuric Acid Resistance in the Context of Current Issues on Corrosion of Concrete Sewer Pipes

Seiji HOSAKA

In the high economic growth period from the late 1950s, construction of Japanese infrastructure increased rapidly, and, according to studies by the Ministry of Land, Infrastructure, Transport and Tourism, in the next 20 years, it is estimated that buildings that have existed longer than 50 years and that have accumulated deterioration will comprise more than half of the total. The national sewered population rate increased by about 70% or more in 50 years, from 6% in 1961 to 76.3% at the end of 2012. Twenty years later, approximately 23% of these sewer pipes will surpass the legally designated service life of 50 years, and after that, the number of deteriorated sewers are expected to further increase.

In Tokyo's 23 districts, and in Yokohama, Nagoya, Osaka and other large cities in which construction had begun a long time ago, nearly 100% of the sewer pipes have been completed, and at present they have entered the period of maintenance management. In this connection, through the phased-in reconstruction work related to Tokyo's Pro-active Deterioration Control Measures Program among others, and using asset management method, which entails an extension of service life 30 years over the established commercial service life (80 years), for reconstruction, efficient and earnest maintenance management is under way.

Since sewerage systems are disposed in poor environments, and due to the occurrence of biological and chemical corrosion, deterioration spreads faster and more easily compared to other construction works. In particular, corrosion due to microbes in concrete causes a faster rate of deterioration over the official service life than that foreseen at the time of construction, and there are cases of breakdown in just a few years. Due to these factors, concrete sewer pipes' life expectancy predictions or efficient maintenance management is rendered difficult.

The final goal of this research is, through research / analysis into the actual conditions regarding concrete microbial corrosion and the regeneration of deteriorated sewer pipes, research into concrete material that will extend the lifespan of reconstructed or newly constructed infrastructure in the interests of creating a sustainable social infrastructure.

This paper consists of 6 chapters, and following is an outline of the chapter contents.

The first chapter, Introduction, outlines the problem of deterioration of social infrastructure, the background to this research, and national policies, etc. regarding this problem. The purpose of this research will be defined after the deterioration counter-measures and maintenance management methods used in Tokyo have been outlined.

While Chapter 2 concerned and was entitled Current Issues Related to Corrosion of Established Concrete Sewer Pipes, the current chapter details the investigation into the cause of early-stage deterioration: bacterial corrosion of concrete. As for the methods used in this research, the Bureau of Sewerage of the Tokyo Metropolitan Government collected, from sewerage ledgers and internal pipe investigation studies conducted in Bunkyo-ku, Taito-ku, Toshima-ku, Arakawa-ku, data relating to readings of the diameter of sewer pipes, gradients, extension, years of use of sewer pipes as well as abnormalities such as corrosion. Based on this, a field study was conducted on building types etc., for buildings connected to sewer pipes.

The cause of bacterial corrosion was analyzed based on data from the study; furthermore, using the discriminant analysis method in a multiple classification analysis, an effort was made to determine the feasibility of using the above parameters for estimates of bacterial corrosion in sewer pipes. The result of the study of the basic data concerning the pipes was the development of a satisfactorily accurate estimation method of corrosion for levels for which speedy intervention is required—Levels A and B, as well as other ranks. This estimation method can estimate / select, through a "screening method", the highly dangerous pipes that require reconstruction or renovation. The method is used in reconstruction methods, and it can contribute to an optimal maintenance management cycle as well as effective maintenance management generally.

In Chapter 3, Microbial Corrosion of Concrete in Sewerage Systems and Related Technical Measures, the mechanism of microbial corrosion of concrete and the reaction of concrete with sulfuric acid released by microbes is explained. Furthermore, the fundamental current thinking or approach regarding technical measures against microbial corrosion of concrete and application examples of sulfuric-acid-resistant concrete are introduced.

In Chapter 4, Study on Sulfuric-Acid Resistance of Hardened Cement Body with Fluoride, covers research on the disposing of a $CaSO_4 \cdot 2H_2O$ layer as a preventer or inhibitor of the permeation of sulfuric acid into the concrete surface in the interests of developing a sulfuric-acid resistant concrete.

In the experiment, a specimen consisting partially of $CaCO_3$ and CaF_2 substituted cement paste was created, and it was exposed to 10mass% aqueous sulfuric acid liquid to determine if it would exhibit increased sulfuric-acid resistance. The measurement items were of the density of the aqueous sulfuric acid solution the specimen was immersed in; changes in mass and shape modulation of the specimen as well as visual inspection and compressive strength tests on the specimen. Neutralization range measurements to study the degree of sulfuric acid permeation in the specimen were also carried out. Qualitative analysis of measurement of the products to sulfuric acid using X-ray diffraction analysis (XRD); and quantitative measurement of the products reactivity with sulfuric acid using differential thermal analysis and thermogravimetry (TG-DTA) were also carried out, and the products' surface condition was measured with the BET specific surface area.

According to the results of the measurements or the investigations, the following points were clarified regarding sulfuric acid resistance due to/related to Calcium Compound Admixtures.

(1): For specimens with a CaF₂ substitution rate of 50% relative to the cement mass, the sulfuric acid diffusion is the slowest, and because it is composed of a passivation layer on the surface layer made up of CaSO₄·2H₂O, which has high crystalline properties, this prevents or suppresses further permeation of sulfuric acid. As a result, the intact regions exist in high number and the neutralization area cannot be verified, and compared to the CaCO₃ composite specimen, it exhibits a high sulfuric acid resistance.

(2): According to TG-DTA, for the specimen with CaF_2 admixture, the material balance for the cement with respect to the production volume of $CaSO_4 \cdot 2H_2O$ is not consistent with that predicted, and this suggests a reaction between CaF_2 and sulfuric acid.

Chapter 5 is entitled Clarifications Regarding Increased Sulfuric Acid Resistance as a result of CaF_2 Admixture. Since in Chapter 4, the CaF_2 reaction with sulfuric acid was suggested, the CaF_2 reagent was mixed with 10 mass% sulfuric acid solution to determine if it would react.

According to the results of XRD and TG-DTA analysis of the sulfuric acid precipitate conducted after the experiment, $CaSO_4 \cdot 2H_2O$ generation was confirmed, and reaction between sulfuric acid and CaF_2 was confirmed in this experiment. The study showed that the HF resulting from the CaF_2 and sulfuric acid reaction dissolved the silica, and a colloidal silica was produced. Furthermore, HF reacted with the proximate Ca type compounds such as $Ca(OH)_2$ and C-S-H, etc., resulting in the regeneration of relatively dense CaF_2 . This colloidal silica and the regenerated dense CaF_2 replenish the pores in the concrete, thus densifying it and creating a sulfuric-acid-permeation-preventing silica-CaF_2 layer. It was concluded that due to the silica-CaF_2 layer and the dense $CaSO_4 \cdot 2H_2O$ layer with its good crystalline properties covering the concrete surface, there is a good synergistic effect and this increases sulfuric acid resistance

Chapter 6, Conclusion, consolidates the knowledge gained from these studies in the interests of dealing with increasing deterioration of social infrastructure going forward through maintenance management and lifespan increases.

This research was determined as having significant potential to contribute to sustainable development.

第1章

緒論

1.1 研究の背景

日本における社会資本(インフラストラクチャー)は,戦後 1950 年代後半の高度経済成長期頃から急速に整備が進められた.この急 速な整備の結果,表-1.1に示すように建設後 50 年以上経過する老 朽化社会資本が今後 20 年間で半数以上を占めることになる ¹⁻¹.

他の社会資本に比べ普及が遅れた下水道管路施設も,2032年(平成44年)には約23%が50年を超えることになり,また図-1.1に示す2012年(平成24年)度末の下水道管路施設の年度別整備延長 1-2)からも明らかなように,その後急速に老朽化施設が増加すること

	平成24年3月	平成34年3月	平成44年3月
道路橋(橋長2 m以上)	約 16%	約 40%	約 65%
トンネル	約 18%	約 31%	約 47%
河川管理施設(国管理の水門等)	約 24%	約 40%	約 62%
下水道管渠	約 2%	約 7%	約 23%
港湾岸壁(水深-4.5m以深)	約 7%	約 29%	約 56%

表-1.1 建設後 50 年以上経過する社会資本の割合 1-1)

資料)国土交通省

になる.

老朽化社会資本は、時として重大な社会問題を引き起こす.例え ば下水道管路施設に関しては、老朽化に起因する下水道管路の損傷 や崩壊、それに伴う道路の陥没事故が発生しており、日本全国にお いては年間約 3,900 件(図-1.2 下水道管路施設に起因する道路陥 没件数の推移 ¹⁻²⁾)も発生している.また国土交通省関東地方整備 局の調査では、下水道管路施設に起因する道路陥没事故は敷設後 30 年を経過すると急増する(図-1.3 下水道管路施設の経過年数別道

図-1.2 下水道管路施設に起因する道路陥没件数の推移 1-2)

図-1.3 下水道管路施設の経過年数別道路陥没箇所数(全国)¹⁻³⁾

路陥没箇所数(全国)¹⁻³⁾)ことが明らかとなっており,効率的な維持管理および予防保全型管理が必要となっている.近年では予防保 全型管理により,ピークの2005年(平成17年)度の約6,600件よ りも減少しているものの,依然として1日平均10件以上発生して いる.

国土交通省ではこれら老朽化社会資本の増加に対し,2012年(平 成24年)7月に社会資本メンテナンス戦略小委員会を設置し,今後 の維持管理・更新のあり方について検討を進めるとともに,国土交 通省を挙げて老朽化対策に取り組むための体制として,2013年(平 成25年)1月,国土交通大臣を議長とする「社会資本の老朽化対策 会議」を設置し,総合的・横断的に検討を進め,同年3月,老朽化 対策の全体像を工程表として取りまとめている.

この工程表に基づき,まず 2014年(平成 26 年)3月末を目途に 社会資本の集中的な点検の実施,および必要な修繕等を早急に実施 し,また各施設の特性を考慮した適切な点検による現状確認と,そ の結果に基づく的確な修繕を実現するため,原則として同期日まで に維持管理基準の改善を行うとともに,維持管理情報のデータベー ス構築等を進めている.さらに,社会資本の維持管理・更新の推進 等,制度面等の見直し・検討や,内容の充実を図った長寿命化計画 の策定等を通じ,平成 27 年度以降,維持管理・更新に係わる本格 的な PDCA サイクルへの移行を図っている ¹⁻¹⁾.

以上のように現在,社会資本施設の老朽化が社会問題となってい るが,本論文は特に社会資本の中でも日常的にその恩恵を被ってい るのにもかかわらず,一度整備が完了すると人目につきにくく,そ の存在すら忘れがちな下水道管路施設を研究対象とし,下水道管路 施設の現状を把握し,長寿命化のための新材料について研究を行っ た.

4

1.2 下水道とは

下水道法(昭和三十三年四月二十四日法律第七十九号)第一条の 法律の目的には『この法律は,流域別下水道整備総合計画の策定に 関する事項並びに公共下水道,流域下水道及び都市下水路の設置そ の他の管理の基準等を定めて,下水道の整備を図り,もつて都市の 健全な発達及び公衆衛生の向上に寄与し,あわせて公共用水域の水 質の保全に資することを目的とする.』と記されている.

日本では昔から屎尿は農作物の主要な肥料として有償として取 引されていた歴史があり、1900年(明治33年)に公布された汚物 掃除法において屎尿を廃棄物として規定したが、昭和30年代まで は有価物として扱われてきた.このため日本における下水道は汚物 処理ではなく、主に都市の雨水排除、浸水防除を目的としていた.

しかし 1954 年(昭和 29 年) 12 月からの高度経済成長期を迎え ると急速な都市化と、安価で即効性が高く施肥も容易な化学肥料の 増産により、肥料としての屎尿の用途は失われ、屎尿処理施設の建 設や、屎尿や生活排水の収集・処理を行う下水道施設の整備が急速 に行われるようになった.また高度経済成長に伴い、公共用水域の 水質汚濁が社会問題となり、下水道の整備が強く叫ばれるようにな った.1967年(昭和 42 年)の下水道整備五カ年計画で、はじめて 水質汚濁の解消がうたわれ、1970年(昭和 45 年)の公害国会では、 下水道法に水質汚濁防止の目的が加えられた.さらに、下水道普及 地区においては、水洗便所への改造が義務付けられるなど、下水道 の水質保全に果たす役割が拡大し、かつ責任も増大し、下水道の整 備が積極的に進められることになった.

この様な変遷を経て現在,下水道には汚水・雨水の排除により都 市の衛生環境を衛り,浸水を防除する目的のほかに,公共用水域を 保全する役割も担っている.

 $\mathbf{5}$

1.3 日本における下水道

日本の近代下水道の始まりは、1884年(明治17年)に着工され た東京の神田下水である.当時建設に当たっては内務大臣の許可を 必要とし、建設費の2/3は自治体が負担するなどの制約があるにも かかわらず、利益を伴わない事業であったため普及は進まず、神田 下水着工から約80年後の1961年(昭和36年)度における日本の 下水道処理人口普及率はわずか6%¹⁻⁴⁾であった(図-1.4 日本の下 水道処理人口普及率の推移).

しかし戦後の高度経済成長期以降,産業の進展による工業排水や, 都市への人口の集中による生活排水の増大により,水質汚濁といっ た公害問題が顕著になってきた.

この問題に対し、1967年(昭和42年)から始まった下水道整備 5 カ年計画において初めて水質汚濁の解消がうたわれ、1970年(昭 和45年)の下水道法改正により、公共用水域の水質保全という重 要な役割を下水道が担うことになった.その後下水道は、毎年1~ 2%の伸びで着々と整備が進められ、2012年度(平成24年度)末の

図 - 1.4 日本の下水道処理人口普及率の推移¹⁻⁴⁾

日本の下水道処理人口普及率は 76.3%(下水道利用人口/総人口; 岩手県,福島県は東日本大震災の影響により,調査不能な市町村が あるため除外)¹⁻⁴⁾,管渠布設延長は 447,334km,処理場数は 2,134 箇所(2011 年度(平成 23 年度)末)¹⁻⁵⁾と膨大なストックを抱える までとなった.しかし未だ約 4 人に 1 人が下水道の恩恵を受けてお らず,また徳島県の 16.3%や和歌山県の 22.7%など 50%未満の県が 8 県も存在するなど,先進諸国と比べても決して高い数値とはいえ ない.

整備が進まない原因としては、日本の地形的特徴が挙げられる. 基本的に下水道は自然流下方式で設計されるため、起伏が激しい日本の地形においては計画上不利な場合が多いためである.

一方で古くから整備が開始された東京 23 区,横浜市,川崎市, 名古屋市,京都市,大阪市,福岡市などの大都市においてはほぼ 100%整備が完了し,現在は維持管理の時代に移っている.たとえば 東京 23 区では,1884年(明治 17年)の神田下水の着工を初めに 近代下水道の整備が行われ,特に高度経済成長期の 1963年(昭和 38年)頃から急速に整備が進められ,1994年(平成 6年)度末に 100%普及概成した¹⁻⁶⁾.しかし管理延長約 15,937km (2012年(平 成 24年)度末)¹⁻⁷⁾の下水道管渠のうち約 1,500km が法定耐用年数 (コンクリート製下水道管=50年)¹⁻⁸⁾を超え,さらに今後 20年間 で新たに約 6,500km 増加する¹⁻⁹⁾ことから,現在ではアセットマネ ジメント手法を取り入れた積極的な維持管理が行われている.

このように下水道の普及率には地域格差があるが,既に整備が完 了した大都市では下水道管の維持管理と言った新たな課題に直面し ている.

 $\overline{7}$

1. 4 下水道管における問題点

下水道管の材料としては近年,耐薬品性,耐衝撃性に優れる塩化 ビニル管が φ 450mm 以下の小口径管に対して多く使われるように なってきた.しかし以前は小口径管に陶管,鉄筋コンクリート管が 多く用いられており,また現在でも φ 500mm 以上の中大口径管で は鉄筋コンクリート管が用いられている.

現在この陶製およびコンクリート製の下水道管に多くの異常を 来していることが明らかとなっている.例えば、陶管においては耐 薬品性は高いが、衝撃に弱く、破損やクラック等の異常が発生して いる.また鉄筋コンクリート管においては陶管に比べ衝撃には強い が、耐薬品性は低く、微生物が生成する硫酸(H₂SO₄)による腐食 が発生するなど、多くの異常が確認されている.

コンクリート構造物は一昔前,半永久的であると考えられていた が,特に下水道施設におけるコンクリートには種々の異常が生じて おり,これらの異常は最悪の場合,構造物の損壊,それに伴う道路 の陥没といった人命にも関わる社会的問題を引き起こすことになる.

整備が完了した大都市では道路陥没事故等を未然に防ぐため,管路内調査を積極的に実施している.この調査は下水道管が大口径の場合は,直接調査員が管渠内に入り,ハンマーと目視により調査を行うが,小口径で人が入れない場合は,ビデオカメラを取り付けた管路内調査ロボットを地上から遠隔操作し,そのビデオ映像から異常箇所を確認している.

この下水道管の調査を基に維持管理を行っているが, さらに効率 的な運用を行うべく, アセットマネジメントの導入や, ライフサイ クルコストの最小化を図るための予防的な維持管理が必要となって いる.

8

1.5 下水道の維持管理

下水道はこれまでの整備により管渠布設延長は 442,952km, 処理 場数は 2,145 箇所(2010年(平成 22年)度末)¹⁻⁵⁾, 1976年(昭 和 51年)度~2004年(平成 16年)度の 28年間の投資額は約 75 兆円という莫大な資産を有している ¹⁻¹⁰⁾.

この莫大な資産を有効に活用していく必要があるが,先に述べた ように建設後 50 年以上経過し,改築・更新を必要とする下水道施 設(管渠)が現在約 2%であるが,20 年後には約 23%にも達する. この老朽化に伴う下水道機能の低下,および陥没事故等の重大事故 の増加が懸念され,また老朽化により災害発生時の脆弱性も高まる ことが予想される.

下水道の老朽化は人命に関わる重大な問題であり、安全確保のた め、適正な維持管理あるいは改築を実施することが、中長期的課題 であるとともに,緊急に対応すべき課題として考える必要がある. しかしながら,1976年(昭和51年)度の下水道普及率が24%,2004 年(平成16年) 度が68.1%と28年間で44.1%の伸びに対する投資 額約75兆円から計算すると、普及率1%に対する投資額は約1.7兆 円となる. すなわち, 改築・更新を必要とする下水道施設(管渠) が 20 年後には約 20%増加することから、20 年間で 34 兆円の維持 管理への投資が必要と試算され,将来を見据えた予算配分により, 改築・更新の事業および費用を平準化する必要がある.あわせて下 水道の機能低下・事故防止・震災への対応を、従来の「発生対応型」 から「予防保全型」へ転換することを基本とし、下水道サービスを 中断させることのないよう、下水道施設に関する点検調査を施設に 優先順位を付けて実施し、機能診断や寿命予測などを通じて、下水 道施設の機能評価を行い,致命的な下水道機能の低下や重大な事故, 震災による損傷等が発生する前に、その緊急度に応じて適正な維持 更新を行うことが必要となる. すなわち「予防保全型」への転換に より、大規模な損傷等の復旧事業が不要となり、大幅なコスト縮減 にもつながることになる 1-11).

さらに財政的な制約が厳しくなる中,次世代の利用者にも安定し たサービスを提供し続け,社会や利用者へのアカウンタビリティを 果たすことや、ライフサイクルコストの低減や投資の平準化などに より、下水道事業に係わる支出を最小化する必要が求められている. そこでアセットマネジメント(政策目標,資産管理,投資計画,維 持管理,財務管理など)等により,新規整備,更新改築,および維 持管理の計画の一体的な立案による事業マネジメントを下水道事業 の運営に導入し、下水道に対する社会ニーズの変化に十分に対応で きるような事業展開・運営を実現することを基本とする ^{1.12)}.と「下 水道ビジョン 2100」、「Ⅲ.下水道の使命を実現するための施策体系」 の中で示された.

東京都下水道局では老朽化対策への取組が他の自治体に比べ早 くから行われ,1982年(昭和57年)度から区部の中でも老朽化が 進んでいる再構築エリアを中心に管路内調査を実施しており,また 100%普及概成翌年の1995年(平成7年)度からは本格的に老朽化 対策に併せて都市化の進展に伴う雨水流出量の増加による流下能力 不足の解消などを図るべく,再構築事業を進めている.

また 2000 年(平成 12 年) 度からは都民生活に直接影響する道路 陥没,臭気および震災対策について優先度の高い地区や対策を重点 化した「再構築クイックプラン」を策定し実施してきた.

2004年(平成 16 年)度には「〔新〕再構築クイックプラン」を 策定し,道路陥没対策として,能力不足の解消などを図る通常の再 構築に加え,段階的に再構築を進める「老朽化対策先行整備」地区 の拡大実施や,道路陥没の発生原因の多くを占める取付管を対象と した「取付管対策」の集中的実施,予防保全型の維持管理への移行 推進のための「デジタル技術」活用による、再構築エリア内の枝線 管渠及び取付管の調査完了などの取り組みを実施し効果を上げてい る.また臭気対策や震災対策に対する対策も行われている¹⁻¹³⁾.

さらに現在では法定耐用年数より 30 年程度延命化し,経済的耐 用年数(80 年程度)で再構築するアセットマネジメント手法により

10

効率的に再構築を行う 1-9)など、本格的な維持管理の時代に入って いる(図-1.5 下水道管のアセットマネジメントのイメージ 1-14)).

以上,下水道施設の老朽化が将来にわたって深刻な問題となって おり,また財政的な制約から効率的な維持管理手法の確立が必要と なっている.

1. 6 研究の目的

下水道管内を流下する下水は家庭からの生活排水や屎尿成分な どから成っており、流下の過程で嫌気性に変化したり、硫化水素 (H₂S)を生成するなど化学的な変化が生じている.このような劣 悪な環境下に下水道管路施設は置かれており、生物学的、化学的劣 化・腐食によりその劣化速度は通常の構造物とは異なる.

特にコンクリートにおいては微生物腐食が発生し、この腐食によ り設計時に考慮された耐用年数よりも早く老朽化を引き起こし、数 年で崩壊した事例が報告されるなど、寿命予測および効率的な維持 管理が困難なものとなっている.

本研究はコンクリート製下水管の腐食の現状について調査分析 すると同時に,老朽化したコンクリート製下水道管の更生,再構築 や新設のコンクリート製下水管の長寿命化のための,微生物腐食に 強い新しい発想の材料研究を目的とし,社会が要求する持続発展可 能な社会の構築のための,社会資本の効率的かつ戦略的維持管理に 応えようとするものである.

1.7 本論文の構成

本論文は第1章から第6章まで,全編6章で構成されており,各 章の項目とその概要は次の通りである.

第1章は『緒論』であり、社会資本の一つである下水道管渠の現 状や老朽化がもたらす社会問題、および社会資本のメンテナンスへ の国の対応などの研究背景と、下水道の目的、下水道の普及率、下 水道における問題点、下水道の維持管理などについて概説し、研究 の目的について述べた.

第2章は『既設コンクリート製下水道管の腐食の現状』であり, 特に早期老朽化の原因となる微生物によるコンクリート腐食につい て調査を行い,その調査結果から腐食が発生しやすい条件を調べる と同時に得られたデータの分析を行い,多変量解析による下水道管 の微生物腐食予測の可能性について検討した.

なお第2章は微生物腐食発生危険箇所について、下水管路内の調 査を行う前段階で予測・抽出するスクリーニング手法であり、第3 章以降は、実調査後に更生・再構築が必要な箇所に対し適用する、微 生物腐食に強い長寿命のセメント硬化体の研究である.

第3章は『下水道施設におけるコンクリートの微生物腐食とその 対策技術』として、コンクリートの微生物腐食のメカニズムおよび 微生物が生成する H₂SO₄ とコンクリートとの反応について解説し、 コンクリートの微生物腐食に対する対策技術として、現在実用化さ れている耐硫酸性コンクリートの一例を紹介した.

第4章は『フッ化物混合セメント硬化体の耐硫酸性に関する検討』 であり、コンクリート下水道管の老朽化の一因となる微生物腐食に 対して抵抗性を有する耐硫酸性コンクリートについて、これまでと は異なる新しい理論による耐硫酸性コンクリートに関する研究であ る.

本研究では Ca 系化合物に着目し、フッ化カルシウム(CaF2)と 炭酸カルシウム(CaCO3)によりセメントの一部を置換したセメン トペースト供試体(セメント硬化体)の硫酸暴露実験を行い、耐硫 酸性の向上効果およびメカニズムについて検討を行った.

測定・検討項目は,硫酸水溶液の密度,供試体の目視観察,質量 測定,形状測定,圧縮強度試験,供試体の中性化範囲測定(硫酸浸 透範囲測定),単位体積質量,硫酸浸透体積,粉末X線回折測定,示 差熱-熱重量分析,BET比表面積測定である.

第5章は『 CaF_2 混合による耐硫酸性向上の解明』であり,第4 章の結果から,本実験条件では生じないと考えられていた CaF_2 と H_2SO_4 の反応が示唆されたことから, CaF_2 試薬と H_2SO_4 による実 験を行い,これまでの結果と総合して, CaF_2 混合による耐硫酸性向 上のメカニズムを明らかにした.

第6章は『総括』であり、本論文のテーマである『コンクリート 製下水管腐食の現状と耐硫酸性向上のためのフッ化物混合セメント 硬化体の研究』に関して行った種々の実験から得られた知見を総括 し、社会資本の維持管理および長寿命化について述べた. 〈参考文献〉

- 1-1) 国土交通省編:国土交通白書 2013 平成 24 年度年次報告, pp.113~114, 2013
- 1-2)国土交通省ホームページ:ホーム>政策・仕事>水管理・国土 保全>下水道>計画的な改築・維持管理, 2014.4 http://www.mlit.go.jp/mizukokudo/sewerage/crd_sewerage_ tk 000135.html
- 1-3)国土交通省関東地方整備局ホームページ:ホーム>都市・公園・建設産業 > 社会資本整備 > まちづくり > 下水道 > 下水道 > 下水道事業の支援制度について、2014.4 http://www.ktr.mlit.go.jp/city_park/shihon/city_park_shihon 00000271.html
- 1-4) (公社)日本下水道協会:平成 25 年度 下水道白書 日本の 下水道 循環のみち下水道の成熟化へ,資料編 p13, 2014
- 1-5) (公社) 日本下水道協会:平成 25 年度 下水道白書 日本の 下水道 循環のみち下水道の成熟化へ,資料編 p22, 2014
- 1-6) 東京都下水道局:東京都の下水道 2013, p41, 2013
- 1-7) 東京都下水道局:東京都の下水道 2013, p4, 2013
- 1-8)地方公営企業法施行規則 第十五条および別表第二号,昭和二 十七年九月二十九日総理府令第七十三号
- 1-9) 東京都下水道局:東京都の下水道 2013, p11, 2013
- 1-10)「下水道ビジョン 2100」,国土交通省都市・地域整備局下水道
 - 部 日本下水道協会, p18, p22, 2005
- 1-11)「下水道ビジョン 2100」,国土交通省都市・地域整備局下水道
 部 日本下水道協会,pp.19~20,p22,2005
- 1-12)「下水道ビジョン 2100」,国土交通省都市・地域整備局下水道
 部 日本下水道協会,pp.20~21,p22,2005
- 1-13)〔新〕再構築クイックプラン」~老朽施設の速やかな改善~, 2004
- 1-14) 東京都下水道局:東京都の下水道 2013, p12, 2013

第2章

既設コンクリート製下水道管における 腐食の現状

2.1 はじめに

現在,下水道の普及率は全国平均で 76.3%(2012 年(平成 24 年) 度末)と整備が進んだ一方,古くから下水道の普及に着手し,既に 整備が完了した大都市においては維持管理・再構築といった新たな 問題に取り組んでいる.

『下水道施設改築・修繕マニュアル(案)1998年版(社)日本下 水道協会』によると下水道管渠(コンクリート製)の標準的耐用年 数は50年²⁻¹⁾とされており、この耐用年数を過ぎた下水道管は更新 の対象となる.また『下水道施設テレビカメラ調査マニュアル(案) 平成12年12月(社)日本下水道協会』では供用後30年を超える と、損傷・劣化が進み道路陥没などの事故につながるおそれがある ²⁻²⁾ことから、管路内調査を優先するとされている.しかし実際には 50年を経過しても健全な下水道管もある一方,わずか1年程度で早 期老朽化する下水道管も確認されている.

このコンクリート下水道管の早期老朽化を引き起こす要因は,大きく外的要因と内的要因の2つに分類できる.

外的要因としては外圧等による管のたわみ, ずれ, クラック等物 理的現象によるものである. この要因として地盤沈下や他工事の掘 削による影響,およびモータリゼーションの発達により当初予想さ れていなかった交通量, 車両重量の増加等によるものである.

一方,内的要因はコンクリートの化学的変化による劣化であり,以下の①から④ などの影響によるものである.

①大気中の CO₂とコンクリート成分との反応による中性化

- ②工業排水に含まれる有害物質等とコンクリート成分の反応による 劣化・腐食
- ③下水中に含まれる成分とコンクリート成分の反応による劣化・腐 食

④微生物によるコンクリートの腐食

特に内的要因のうち、微生物によるコンクリート腐食は早いものでは十数年で下水道の機能を低下させることから、近年問題化して

いる. すなわち, 微生物の作り出す H₂SO₄により腐食が徐々内部へ 進行し, 最悪の場合鉄筋をも腐食させ, 構造物としての機能を失い, 道路の陥没といった社会問題を引き起こすためである.

以上,本研究は下水道管の老朽化のうち,特に微生物による腐食 と思われる箇所ついて調査を行い,その調査結果から腐食が発生し やすい条件の分析を行った.さらに調査データから,多変量解析に より下水道管における微生物腐食予測が可能であるか検討を行った.

2.2 既設下水道管の腐食調査

既設下水道管の腐食調査は東京都下水道局北部第一管理事務所 の協力を得て行った.北部第一管理事務所は古くから下水道整備が 進められてきた文京区,台東区,豊島区,荒川区の4区を管理して おり,老朽化した下水管渠内の調査報告書が数多くある.

この調査報告書は、下水管渠内に調査ロボットや調査員が入り、 映像または目視により異常箇所を調査・記録・集計した成果報告書で ある.調査異常項目は東京都下水道局による管路内調査工標準仕様 書の『テレビカメラ調査および目視調査判定基準』²⁻³⁾では、表-2.1 に示す下水道管の破損、クラック、継ぎ目ずれ、腐食、たるみ・蛇 行、モルタル付着、浸入水、取付管突出し、ラードの付着・木の根 侵入について判定基準を設定している.

項目	ランク	А	В	С
管の	鉄 筋 コ ンクリート 管	欠 落軸方向のクラックで幅:5mm以上	軸 方 向 のクラックで 幅 : 2mm 以上	軸方向のクラックで 幅 2mm 未満
破損	陶管	欠 落軸方向のクラックが管長の1/2以上	軸方向のクラックが 管長の 1/2 未満	_
管の	鉄 筋 コ ンクリート 管	円周方向のクラックで 幅:5mm以上	円周方向のクラックで 幅:2mm以上	円周方向のクラックで 幅 2mm 未満
クラック	陶管	円周方向のクラックで その長さが円周の2/3 以上	円周方向のクラックで その長さが円周の2/3 未満	_
管の継ぎ	ぎ目ずれ	脱 却	陶管:50mm以上 鉄筋コンクリート管: 70mm以上	陶管:50mm 未満 鉄筋コンクリート管: 70mm 未満
管の	腐食	鉄筋露出状態	骨材露出状態	表面が荒れた状態
管のたる	み・蛇行	内径以上	内径の 1/2 以上	内径の 1/2 未満
モルタル付着		内径の3割以上	内径の1割以上	内径の1割未満
浸入水		ふきでている	流れている	にじんでいる
取付管突出し		取付管内径の 1/2以上	取付管内径の 1/10以上	取付管内径の 1/10 未満
ラードの 木の相)付着・ 夏侵入	内径の1/2以上 閉塞している	内径の1/2 未満 閉塞している	_

表-2.1 テレビカメラ調査および目視調査判定基準』²⁻³⁾

※段差は mm 単位で測定する. また, その他の異常(木片, 他の埋設物等で上記にないもの) も調査する. 一般的にコンクリートにおける腐食は、コンクリートの中性化や 塩化物による鉄筋などの鋼材腐食のことを指すが、管路内調査工に おける腐食は、主に微生物が生成した H₂SO₄によるコンクリート自 体の腐食を指す. H₂SO₄によるコンクリート腐食は長期間にわたり 持続的進行するため、管の寿命を検討する上で最重要項目である.

本研究では、調査報告書を基に腐食について再調査を行い、さら に現地踏査により得られたデータを基に分析・解析を行った. 図-2.1に、調査・分析・解析方法のフローを示す.

調査概要は,先ず下水道台帳からコンクリート下水道管埋設箇所 を調べ,次にコンクリート下水道管箇所の管路内調査工報告書と調 査ビデオの映像から路線毎(調査では中間マンホールは考慮せず, マンホール間を1路線とした.)に腐食ランクの確認,線延長およ び勾配,施工年,取付管位置と腐食箇所の確認を行い,これらデー タを下水道台帳平面図に記入する.次にこの平面図を基に現地踏査 を行い,取付管箇所および建築物の種類・戸数の調査を行う.最後 にこれらから得られたデータの集計・分析を行い腐食予測が可能で あるか検討を行う.以上の手順である.

ここで,東京都下水道局における腐食ランクの判定基準は先の表 -2.1 に示した A, B, C の 3 段階である.

しかしながら、管路内調査工報告書では腐食と判定されていない 箇所において調査ビデオによる映像では腐食と思われる箇所が多く 存在すること、また明らかに施工当初のコンクリートの表面とは異 なる状態のものが存在したことから、調査ではこの様な状態のもの を『D ランク』として新たに設け、表-2.2 に示す A~D の 4 段階 の評価を行うこととした.

なお、一般的に下水道施設のコンクリート腐食は、気相部に放出 された H₂S が硫黄酸化細菌により酸化され、H₂SO₄を生成すること により気相部で腐食が発生することが知られているが、ビデオ映像 からは水中部においても下水に含まれる成分によると思われる腐食 が確認されたことから、これらも腐食として取り扱うこととした.

腐食ランク	状態
A	鉄筋露出状態
В	骨材露出状態
С	表面が荒れた状態
D	表面が腐食していると思われる状態
なし	腐食なし

表-2.2 本調査における腐食ランクの判定基準

2.3 腐食調査結果

付表-1 に下水道管腐食度合いの調査および集計結果を示した. 本付表は路線毎の腐食度合い,管径,勾配,路線延長,使用年数, 取付管位置など下水道台帳や調査ビデオから得られたデータと,現 地踏査により得られた情報(ここで汚水取付管と雨水取付管は数量 のみの表示で腐食箇所の環境,地理的状況,建物の種類,集合住宅 の場合世帯数などは考慮していない.)についてまとめたものであり, 総調査路線数は411路線である.また,一路線内で様々な腐食ラン クが混在している場合は腐食ランクが高い方で区別した.なお,使 用年数が不明な路線は下水道台帳が整備される前のものであり,今 回の調査において最も古いものが,82年(1路線),76年(25路線) あったことから,80年と仮定し処理を行うこととした.

図-2.2 に全調査路線の腐食ランクの割合を示した. グラフより 全体の 6 割弱が東京都の設定した A~C ランクまで腐食しており, さらに本調査で新たに加えた D ランクを加えると全体の 9 割以上が 腐食を受けている. また早期に再構築が必要な A・B ランクは約 4 割の路線で存在することがわかる.

図-2.2 全調査路線の腐食ランクの割合

次にこの調査データを因子毎に分類し、ヒストグラムおよび
 100%積み上げ棒グラフに表したものを、図-2.3 管径別、図-2.4
 勾配別、図-2.5 路線延長別、図-2.6 使用年数に示した.

図-2.3の管径別における腐食のランクは400mm以下でC・Dが、 400mm以上ではA・Bランクが多く存在する. すなわち管径が大き くなると(下水の流下に伴い)腐食が進行しやすいと推察できる.

通常,下水道は管径が大きくなるほど勾配は緩やかに計画され, また合流管は計画雨水量と計画時間最大汚水量の合計水量で計画さ れているため晴天時における実流量は少なく下水が滞留しやすくな る.すなわち,下水道枝線の末端では(管径が小さい時),流入下水 は好気性状態であり腐食の原因となる H₂S は生成されにくい.しか

図-2.3 管径別のヒストグラムおよび腐食の割合

し流下に伴い管径が大きく,また流下途中で勾配が大きくなると流 速により下水は攪拌され,一度嫌気性状態となった下水からは気中 への H₂S 拡散が促進され腐食が進行しやすくなると言える.

図-2.4 の勾配別のグラフより,逆勾配では腐食ランク A・B が 約 50%,また 0~5%でも約 47%を占めている.しかし 5~15%に なると約 20%まで減少するが,15%以上なると A・B ランクは約 65% に急増する.したがってこの分布図から,勾配が 5~15%の時,腐 食の危険性が低くなることが読みとれる.

すなわち逆勾配や 5‰以下の緩い勾配では下水が滞留しやすく, 嫌気性状態となるため H₂S の発生を招き腐食が起こりやすくなる. また勾配が大きくなると流速により下水は攪拌され,気中に H₂S が

図-2.4 勾配別のヒストグラムおよび腐食の割合

拡散するため腐食が促進されるといえる.

図-2.5 の路線延長別のグラフより,腐食ランク A・B について 見ると 50m 以上の路延長では 50%以上,10m 以下では 40%であっ た.しかし 20m~40m の路線延長では平均 30%程度である.

これらのことから、延長が長い路線はマンホールのステップなど 落差・段差における下水の流れに乱れが生ずる箇所が少ないため下 水への酸素供給がされにくい.このため下水性状は嫌気性状態とな り H₂S が生成され、微生物による腐食が発生しやすくなる.一方延 長が短い路線ではマンホールのステップなど落差・段差箇所が近く、 攪拌により下水から拡散した H₂S 濃度が高くなりやすく、微生物に よる腐食が促進されると推察される.

図-2.5 路線延長別のヒストグラムおよび腐食の割合

図-2.6 より使用年数の増加に伴い前述の種々の原因から当然腐 食も増加しており、使用年数は腐食に関する最も重要な因子である ことは明らかである.

以上の結果を踏まえて、これら管径、勾配、路線延長、使用年数 といった要素を複合的に処理し、数値化することにより腐食の予測 が可能であるか検討を行うべく、本調査データの分析を多変量解析 により行うこととした.

図-2.6 使用年数別のヒストグラムおよび腐食の割合

2.4 腐食調査データの解析

2.4.1 腐食調査データの基本統計量および解析方法

本解析では,既存のデータ(下水道台帳などのデータ)のみで腐 食度合いの判別が可能であるかを検討すべく,先の付表-1の調査 データの管径,勾配,路線延長,使用年数および腐食ランクを用い て解析を行うこととした.したがって,本分析では現地踏査により 得られた情報(腐食箇所の環境,地理的状況,建物の種類,集合住 宅の場合世帯数など)加味していない.

まず付表-1 の調査データを統計学的に処理する前に、勾配が 300‰以上など通常の下水道計画・設計では用いない数値で、本集 計結果からも明らかに外れ値であり、処理に対して悪影響を及ぼす ものや、勾配など量的データが不明な路線は処理の対象外とし、付 表-2に示す総路線数 397 路線とした. この対象路線の基本統計量 を求めたものが表-2.3 である.

本調査データ(付表-1)は人が入ることが困難な小口径下水道 管に対し,管路内調査ロボットにより行った調査であり,また表-2.3 の最大値,最小値から分かるとおり,解析対象としたのは管径 900mm以下の小口径の一般的な枝線管渠である.

次に付表-2のデータの腐食ランクを構造物(管渠)自体の耐久 性に影響を与え早急に再構築が必要とされる重大な腐食度合いであ るA・Bランク(以降,『腐食大』と略す)構造物自体への影響は軽 微な腐食度合いであるC・Dおよびなし(以降,『腐食小』とする) の2通りに分類し(付表-2備考欄に記す),多変量解析手法の一つ である判別分析法により解析を行った.

判別分析法とはデータが持っている様々な特性から,そのデータ がどのグループに属するか判別する手法であり,判別方法には以下 の2通りがある.

 ①線型判別関数による判別

②マハラノビスの汎距離による判別

これらの判別方法により分析に用いたデータがどのグループに

属するか推定し、実際のグループとの比較により判別の精度を調べる方法 2-5)である.

基本統計量	管径(mm)	勾配(‰)	路線延長(m)	使用年数(年)
サンプル数	397	397	397	397
合計	170830	2467.3	12294.81	19181
平均值	430.3	6.21	30.969	48.3
標準偏差	162.7	8.86	14.630	26.3
分散	26463.9	78.54	214.033	690.6
範囲	650	124.7	75.20	72
最小値	250	-51.5	1.80	10
最大値	900	73.2	77.00	82
中央値	400	5.3	31.35	33
変動係数	0.38	1.428	0.4730	0.54

表-2.3 調査データの基本統計量

2.4.2 判別分析法による腐食判定

判別分析に使用したデータは付表-2に示した 397 路線であり, 目的変数は前述の『腐食大と『腐食小』,説明変数は『管径』,『勾配』, 『路線延長』,『使用年数』の4つである.

このデータの平均値,標準偏差,分散共分散マトリックスおよび 相関マトリックスの計算結果は次の表-2.4~表-2.11 に示す通り である.

	P 1	··· · · · · · · · · · · · · · · · · ·			
	サンプル	管径	勾配	路線延長	使用年数
十均	数	(mm)	(‰)	(m)	(年)
全体	397	430	6.2	30.97	48
腐食大	151	541	6.6	33.21	67
腐食小	246	363	6.0	29.59	37

表-2.4 調査データの平均値

表-2.5 調査データの標準偏差

博 淮 庐 羊	サンプル	管径	勾配	路線延長	使用年数				
惊华涌左	数	(mm)	(‰)	(m)	(年)				
全体	397	163	8.9	14.63	26				
腐食大	151	135	13.4	16.98	20				
腐食小	246	139	4.1	12.78	23				
全体	管径	勾配	路線延長	使用年数					
------	--------	--------	--------	-------	--	--	--	--	--
管径	26465	-294.0	368.92	1165					
勾配	-294.0	78.5	-8.65	18.2					
路線延長	368.92	-8.65	214.03	20.45					
使用年数	1165	18.2	20.45	691					

表-2.6 分散共分散マトリックス『全体』

表-2.7 分散共分散マトリックス『腐食大』

腐食大	管径	勾配	路線延長	使用年数
管径	18271	-396.9	112.23	329
勾配	-396.9	179.2	-19.01	41.4
路線延長	112.23	-19.01	288.42	-29.96
使用年数	329	41.4	-29.96	409

表-2.8 分散共分散マトリックス『腐食小』

腐食小	管径	勾配	路線延長	使用年数
管径	19457	-277.1	281.33	-385
勾配	-277.1	16.6	-3.23	-4.0
路線延長	281.33	-3.23	163.38	9.38
使用年数	-385	-4.0	9.38	510

全体	管径	勾配	路線延長	使用年数
管径	1.0000	-0.2039	0.1550	0.2725
勾配	-0.2039	1.0000	-0.0667	0.0780
路線延長	0.1550	-0.0667	1.0000	0.0532
使用年数	0.2725	0.0780	0.0532	1.0000

表-2.9 相関マトリックス『全体』

<u> 表 – 2.10 相関マトリックス『腐食大』</u>

腐食大	腐食大 管径 勾		路線延長	使用年数
管径	1.0000	-0.2194	0.0489	0.1203
勾配	-0.2194	1.0000	-0.0836	0.1529
路線延長	0.0489	-0.0836	1.0000	-0.0872
使用年数	0.1203	0.1529	-0.0872	1.0000

表-2.11 相関マトリックス『腐食小』

腐食小	管径	勾配	路線延長	使用年数
管径	1.0000	-0.4878	0.1578	-0.1222
勾配	勾配 -0.4878		-0.0621	-0.0439
路線延長 0.1578		-0.0621	1.0000	0.0325
使用年数	-0.1222	-0.0439	0.0325	1.0000

これらのマトリックスと調査データを用い,線型判別関数または マハラノビスの汎距離の式を導き出し,判別分析を行うわけである が,一般的に判別分析法を適応させる場合,分類するグループ(こ こでは『腐食大』と『腐食小』の2グループ)の分散共分散行列の 相等性の検定を行い,分散共分散行列が等しい場合は線型判別関数 による判別,それ以外場合はマハラノビスの汎距離による判別が適 しているとされている.

しかし今回の解析ではどちらが本判別に適しているのか調べる

ことを目的としているため『線型判別関数による判別』と『マハラノビスの汎距離による判別』の両方法について検討を行った.

2.4.2.1 線型判別関数による判別

前記の全体の分散共分散マトリックスと,調査データから解析を 行い得られた判別係数は以下の通りである.

変数名	判別係数
管径(mm)	0.0103
勾配(‰)	0.0411
路線延長(m)	0.0100
使用年数(年)	0.0658
定数項	-8.6362

また線型判別関数で表すと以下の式となる.

 $Y = 0.0103 \times X_1 + 0.0411 \times X_2 + 0.0100 \times X_3 + 0.0658 \times X_4$

-8.6362(2.1)

Y:判別得点
X₁:管径(mm)
X₂:勾配(‰)
X₃:路線延長(m)
X₄:使用年数(年)

ここで判別得点より以下の通り判別される.

Y>0のとき・・・『腐食大』
Y<0のとき・・・『腐食小』
Y=0のとき・・・・どちらとも言えない

(2.1)式と付表-2のデータから得られた判別得点および判別結果 を表-2.12,判別的中率を表-2.13に示した.

判別結果は表の右側に〇×で示してあり,『腐食大』における的中率は86.1%,『腐食小』では82.5%と『腐食小』の誤判別率が高くなるが, 危険側でなく安全側(腐食小なのに腐食大と判別)の誤判別

なので影響は少ないものといえる.また,全体における判別的中率 は83.9%と比較的良い精度で判別可能である.

また,表-2.12の判別得点の分布図を図-2.7に示した.分布図 より 0~1 における判別精度が低く,この区間の得点を持つ路線に ついては判別結果に関わらず『腐食大』として取り扱うことで,誤 判別の危険性を低減できるといえる.

表一	2.12	線形	判別関	数によ	る #	削別得」	点およ	び判別	結果	(1)
デー タNo.	真の群	判別得点	判別群	判別結果		データNo.	真の群	判別得点	判別群	判別結果
1	腐食小	-1.2628	腐食小	0		68	腐食大	0.1012	腐食大	0
2	腐食小	-1.7228	腐食小	0		69	腐食大	0.1475	腐食大	0
3	<u>腐食小</u>	-2.5674	腐食小	0		70	腐食大	1.4170	<u>腐食大</u>	0
4	<u> </u>	-2.56/4	腐良小	×		/1	<u> </u>	1.7750	<u> </u>	×
5	<u> </u>	-2.7774	<u> </u>			72	<u> </u>	-3 5335	<u> </u>	$\hat{\circ}$
7	<u>腐良八</u> 腐食大	0.8597	<u> </u>	ŏ		74	<u> </u>	-0 1082	<u>腐良小</u> 腐食小	Ö
8	<u>腐食大</u> 腐食大	0.5194	腐食大	ŏ		75	腐食小	1.4389	腐食大	×
9	腐食大	0.6701	腐食大	Ŏ		76	腐食小	-1.3157	腐食小	0
10	腐食大	1.9660	腐食大	0		77	腐食小	1.4986	腐食大	×
11	腐食大	1.2552	腐食大	0		78	腐食小	-4.3672	腐食小	0
12	<u>腐食大</u>	5.5542	腐食大	0		79	腐食小	-3.3697	腐食小	0
13	<u> </u>	2.//41	<u> </u>	0		80	<u> </u>	-2.854/	<u> </u>	0
14	<u> </u>	4.3319	<u> </u>			82		-3 3826	<u> </u>	
16		4 9022	<u>腐良八</u> 腐食大	ŏ		83	腐食小	-2.9157	腐食小	ŏ
17	腐食大	4.4569	腐食大	ŏ		84	腐食小	-3.1432	腐食小	ŏ
18	腐食大	4.2222	腐食大	0		85	腐食小	-3.5836	腐食小	0
19	腐食大	1.0903	腐食大	0		86	腐食小	-4.0464	腐食小	0
20	<u>腐食大</u>	1.1543	腐食大	0		87	腐食小	-2.6047	腐食小	0
21	<u>腐食大</u> <u></u>	2.8165	<u>腐食大</u>	0		88	腐食小	1.0203	<u>腐食大</u> <u></u>	×
22	<u> </u>	2.8509	腐良大	0		89	腐良小 	-0.3452	腐良小	0
23	<u> </u>	2.7710	<u> </u>			90	<u> </u>	-0.3232	<u> </u>	×
24	<u> </u>	3 7711	<u> </u>	ŏ		92	<u> </u>	-3.0986	<u>腐良小</u> 腐食小	ŏ
26	<u>腐良八</u> 腐食大	3.9291	腐食大	ŏ		93	腐食小	-3.5773	腐食小	Ö
27	腐食大	-3.7866	腐食小	×		94	腐食小	-3.5673	腐食小	Õ
28	腐食小	-3.7224	腐食小	0		95	腐食小	-2.2504	腐食小	0
29	腐食小	-3.3701	腐食小	0		96	腐食大	1.8603	腐食大	0
30	腐食小	-3.3212	腐食小	<u> </u>		97	腐食大	1.9011	腐食大	0
31	腐食小	-3.2888	腐食小	0		98	腐食大	1.4827	腐食大	0
32	<u> </u>	-1.9998	<u> </u>	×		99	<u> </u>	1.3912	<u> </u>	0
34	<u> </u>	-3 7670	<u> </u>			100	<u> </u>	-3.5925	<u> </u>	$\overline{)}$
35	腐食小	-3.7141	腐食小	ŏ		102	腐食小	-4.2550	腐食小	Ö
36	腐食小	-3.3392	腐食小	ŏ		103	腐食小	-4.4916		ŏ
37	腐食小	-3.1957	腐食小	Ó		104	腐食小	-4.4532	腐食小	Ó
38	腐食大	3.0516	腐食大	0		105	腐食小	-4.4612	腐食小	0
39	<u>腐食大</u>	2.6968	腐食大	0		106	腐食小	-4.5412	腐食小	0
40	<u>腐食大</u>	2.7195	<u>腐食大</u>	0		107	腐食小	-4.5312	<u>腐食小</u>	0
41	<u> </u>	1./316	<u> </u>	×		108	腐良小	-3.9439	<u> </u>	0
42	<u> </u>	1.1707	_	×		109	_	3.0683	<u> </u>	
43	<u>腐良</u> 小 庭食大	2 3101	<u>腐良八</u> 庭食大	Ô		111		3 4917	<u> </u>	0
45	腐食小	-4.2439	腐食小	ŏ		112	腐食小	-4.0464	<u>腐良八</u> 腐食小	ŏ
46	腐食小	-3.7700	腐食小	Ō		113	腐食小	-3.8726	腐食小	Ō
47	腐食大	1.7843	腐食大	0		114	腐食小	-3.8726	腐食小	0
48	腐食大	1.8516	腐食大	0		115	腐食小	-3.8962	腐食小	0
49	<u>腐食大</u>	3.3725	<u> 腐食大</u>	<u>Š</u>		116	腐食小	-3.9112	腐食小	<u> </u>
50 E1	<u> </u>	3.3221	<u> </u>			11/	<u> </u>	-4.0342	<u> </u>	
52	<u> </u>	3.3330	<u> </u>			110	<u> </u>	-3.3820	<u> </u>	
53	腐食小	-2,6003	<u>腐良小</u> 腐食小	ŏ		120	腐食小	-1.7847	<u>腐食小</u> 腐食小	õ
54	腐食小	-0.9749	腐食小	ŏ		121	腐食小	-4.0694	腐食小	Õ
55	腐食小	-0.9619	腐食小	Ŏ		122	腐食小	-3.7887	腐食小	Ŏ
56	腐食小	0.0324	腐食大	×		123	腐食小	-3.6864	腐食小	Ō
57	腐食小	-3.0231	腐食小	0		124	腐食大	-3.9547	腐食小	×
58	腐食小	-2.4992	腐食小	0		125	腐食小	-0.0441	腐食小	0
59	<u>腐食大</u>	-1.0713	腐食小	×		126	腐食小	-2.8022	腐食小	<u> </u>
60	<u> </u>	-1.0663	<u> </u>	×		12/	<u> </u>	-2.6679	<u> </u>	
10	<u> </u>	-1 7121	<u> </u>			120	_ 樹良小 	1 5/69	<u> </u>	
63	<u>腐良小</u> 腐食小	0.2178	<u>腐良小</u> 腐食大	×		130	腐食大	1.7601	<u> </u>	õ
64	腐食小	-1.1268	腐食小	0		131	腐食大	1.5736	腐食大	ŏ
65	腐食小	-3.4126	腐食小	Ō		132	腐食小	0.8744	腐食大	×
66	腐食大	0.2299	腐食大	Ō		133	腐食大	3.2630	腐食大	0
67	腐食小	-0.9909	腐食小	0		134	腐食小	-3.9253	腐食小	0

		122.115		<u> </u>						< = <i>i</i>
デー タNo.	真の群	判別得点	判別群	判別結果		データNo.	真の群	判別得点	判別群	判別結果
135	腐食小	-3.4643	腐食小	0		202	腐食小	-3.9831	腐食小	0
136	腐食小	-2.9153	腐食小	0		203	腐食小	-3.7298	腐食小	0
137	腐食小	2.0033	腐食大	×		204	腐食小	-3.9969	腐食小	Ô
138	腐食大	1,2183	腐食大	0		205	腐食小	-4.0018	腐食小	Õ
139	虚食大	2 6138	腐食大	ŏ		206	度食小	-3 2860	腐食小	ŏ
140	<u> </u>	2.5712		ŏ		207	<u></u>	-2 3515		ŏ
1/1	<u> </u>	2.3712		- O		207		1.6407		0
141	<u> </u>	3.4909	商 良 八 	<u> </u>		200	<u> </u>	1.0497	商 良 八 	<u> </u>
142	<u> </u>	3.4220	<u> </u>	0		209	<u> </u>	2.4701	<u> </u>	0
143	<u> </u>	3.4065) 一 茵 衣 工	0		210	<u> </u>	2.3347) 協良人	0
144	<u> </u>	4.9095	<u> </u>	<u> </u>		211	<u> </u>	2.8786	<u> </u>	<u> </u>
145	<u> </u>	6.0134	<u> </u>	0		212	<u> </u>	2.7481	<u> </u>	0
146	腐食大	3.5646	腐良大	0		213	腐食大	2.8002	腐食大	0
147	腐食大	2.8597	腐食大	0		214	腐食大	2.7429	腐食大	0
148	腐食大	4.2107	腐食大	0		215	腐食小	2.5606	腐食大	×
149	腐食小	1.5276	腐食大	×		216	腐食大	2.3724	腐食大	0
150	腐食大	-0.0220	腐食小	×		217	腐食大	2.3973	腐食大	0
151	腐食大	2.5100	腐食大	0		218	腐食大	1.1543	腐食大	Ő
152	腐食大	4,6337	腐食大	ŏ		219	腐食大	0,7590	腐食大	ŏ
153	虚食小	-3 2627	虚食小	ŏ		220	虚食大	-1 7824	虚食小	×
154	腐食小	-2 3341	腐食小	ŏ		221	腐食小	-0.4168	腐食小	0
155	<u>一兩良小</u> 	-3 6677	<u></u> 应合小	ŏ		221	<u>一</u> 应合小	-0 // 2/	<u>一</u> 应合小	ŏ
156	<u> </u>	-2.0602	<u> </u>	\sim		000	<u> </u>	-1 0275	<u> </u>	\sim
150	<u>肉良小</u> 府合小	-2 1 2 6 0	_ 肉良小 			223	_ 肉良小 一	-1 7576	_ 肉良小 	
157	<u>商良小</u>	-3.1309	商良小	<u> </u>		224	<u> </u>	1,500	_ 茵良小 	0
100	<u> </u>	-0.8300	<u> </u>	0		225	<u> </u>	-1.5202	<u> </u>	0
159	<u> </u>	0.1747	<u> </u>	×		226	<u> </u>	-0.4468	<u> </u>	0
160	<u> </u>	1.2/13	<u> </u>	×		227	<u> </u>	3.3464	<u> </u>	0
161	<u> </u>	1.7898	<u> </u>	0		228	腐食小	-3.1502	<u> </u>	0
162	<u> </u>	1.8366	<u> </u>	0		229	<u> </u>	-3.3285	<u> </u>	0
163	腐食大	1.8541	腐食大	0		230	腐食小	-2.9035	腐食小	0
164	腐食大	2.6702	腐食大	0		231	腐食大	1.9691	腐食大	0
165	腐食小	-0.8099	腐食小	0		232	腐食小	-3.6439	腐食小	0
166	腐食小	0.6636	腐食大	×		233	腐食小	-3.9108	腐食小	0
167	腐食大	3.1056	腐食大	0		234	腐食大	3.3170	腐食大	0
168	腐食大	-1.3454	腐食小	×		235	腐食大	4.3126	腐食大	0
169	腐食大	1.9767	腐食大	0		236	腐食大	4.3716	腐食大	0
170	腐食大	2.0602	腐食大	Ō		237	腐食大	4.8351	腐食大	Ő
171	腐食大	3.4920	腐食大	Ŏ		238	腐食小	-0.3084	腐食小	Ŏ
172	腐食大	3,1905	腐食大	ŏ		239	腐食小	-3,2310	腐食小	ŏ
173	腐食大	3.6114	腐食大	ŏ		240	腐食小	-2.9174	腐食小	ŏ
174	<u></u>	3 4689	<u>旅会大</u>	õ		241	虚食小	-2 8246	虚食小	Õ
175	<u></u>	4 0700		ŏ		242		-2 2719	虚 食 小	ŏ
176	<u></u>	4 0988		ŏ		243	<u></u>	-1 9187		ŏ
177	<u> </u>	3 8680	<u> </u>	ŏ		240	<u>商良小</u> 	-1 1//7	<u>腐良小</u> 	ŏ
170	<u>廠良八</u> 位合十	2 0760	図 良八	Ň		244	<u>廠</u> 夜小	-1 2006	<u>廠</u> 良小 _	Ň
170	<u> </u>	4 2 4 0 0		- O		245		2.4506		0
100	<u> </u>	9 7600	<u> </u>			240	<u> </u>	-2 0700	<u>肉良小</u> 府合小	
100	<u> </u>	2.7029	<u> </u>			24/	<u>肉良小</u> 府合小	-2 5707	<u> </u>	- X
101	<u> </u>	4.2002				240	<u> </u>	-0.0707	<u> </u>	X
102	<u> </u>	4.01/8				249	<u> </u>	-2.0001	<u> </u>	
183		0.0102	協良人			200		-4.2038		
184	<u> </u>	5.3112	<u> </u>	⊢ ×́		251	<u> </u>	-4.3/03	<u> </u>	Ň
185	<u> </u>	-0.1675	<u> </u>			252	<u> </u>	-3.3394	<u> </u>	0
186	<u> </u>	-0.3272	<u> </u>			253	<u> </u>	-3.2064	<u> </u>	<u> </u>
187	腐食小	0.3633	腐食大	×		254	腐食小	-3.4781	腐食小	<u> </u>
188	腐食小	-3.5765	腐食小	0		255	腐食小	-3.7811	腐食小	0
189	腐食小	-2.4934	腐食小	0		256	腐食大	-3.2656	腐食小	×
190	腐食小	-2.0148	腐食小	0		257	腐食小	-3.0274	腐食小	0
191	腐食小	-1.0570	腐食小	0		258	腐食小	-2.3015	腐食小	0
192	腐食大	0.1476	腐食大	0		259	腐食小	-0.7417	腐食小	0
193	腐食小	-4.6784	腐食小	0		260	腐食小	-2.5156	腐食小	0
194	腐食小	-2.7860	腐食小	0		261	腐食小	-2.3231	腐食小	0
195	腐食小	-2.7549	腐食小	0		262	腐食小	-0.3989	腐食小	0
196	腐食小	-0.2500	腐食小	Ō		263	腐食小	-0.1693	腐食小	Ō
197	腐食小	-0.2700	腐食小	Ō		264	腐食小	0.4923	腐食大	×
198	腐食小	-3.4756	腐食小	ŏ		265	腐食小	-0.0309	腐食小	0
199	腐食小	-3.0050	腐食小	ň		266	腐食小	0.9692	腐食+	×
200	<u>腐食小</u>	-3 1946	<u>腐食</u> 小	ŏ		267	<u>腐食</u> 小	1 0021	虚合大	×
200	<u> </u>	_2 670F	<u> </u>	\sim		207	<u> </u>	0.0021	<u> </u>	~
201	肉良小	-2.0703	肉 良 小		l	200	肉良小	0.9039	肉良八	^

表-2.12 線形判別関数による判別得点および判別結果(2)

1	2.12	421 112		<u></u>	W I	V [7] 1.1 1.1 1.1	IN 00 04	0 11 11		
デー タNo.	真の群	判別得点	判別群	判別結果		データNo.	真の群	判別得点	判別群	判別結果
269	腐食小	0.9005	腐食大	×		334	腐食小	-3.4864	腐食小	0
270	腐食小	0.8620	腐食大	×		335	腐食小	-3.6467	腐食小	0
271	腐食小	-3.3302	腐食小	0		336	腐食小	-3.6056	腐食小	0
272	腐食小	-2.2742	腐食小	Ō		337	腐食小	-2.6699	腐食小	Ō
273	腐食小	-0.6113	腐食小	Õ		338	腐食小	-2.5737	腐食小	Ŏ
274	腐食小	-0.0911	腐食小	Ŏ		339	腐食小	-4.0929	腐食小	Ŏ
275	腐食小	-0.1407	腐食小	Õ		340	腐食大	-4.0525	腐食小	×
276	腐食大	-2.6744	腐食小	×		341	腐食小	-4.3635	腐食小	0
277	腐食大	-3.1950	腐食小	×		342	腐食小	-2.6362	腐食小	ŏ
278	腐食大	1 3550	腐食大	0		343	腐食小	-4 0237	腐食小	Õ
279	腐食大	1,2786	腐食大	ŏ		344	腐食小	-3.4550	腐食小	ŏ
280	腐食大	1,4873	腐食大	ŏ		345	腐食小	-3.5937	腐食小	ŏ
281	腐食大	1.1374	腐食大	ŏ		346	腐食小	-3.5149	腐食小	ŏ
282	腐食大	1.1212	腐食大	ŏ		347	腐食大	-3.7927	腐食小	×
283	腐食大	2.0117	腐食大	ŏ		348	腐食小	-3.8333	腐食小	0
284	腐食大	1.9528	腐食大	ŏ		349	腐食大	-3.3946	腐食小	×
285	腐食大	3.1524	腐食大	ŏ		350	腐食小	-3.0225	腐食小	0
286	腐食大	3.6217	腐食大	ŏ		351	腐食小	-3,3433	腐食小	ŏ
287	腐食大	0.5058	腐食大	ŏ		352	腐食大	1.9374	腐食大	ŏ
288	腐食大	1,1897	腐食大	ŏ		353	腐食小	2,2159	腐食大	×
289	腐食小	1.5049	腐食大	×		354	腐食小	3,1988	腐食大	×
290	腐食大	3.1092	腐食大	0		355	腐食大	3.5353	腐食大	0
201	<u>虚合</u> +	2 9601	应合士	õ		356	庭食小	-0.2717	应 全 小	Õ
292	腐食小	3,3040	□ <u>協良八</u> 協食大	×		357	腐食小	-0.3757	腐食小	ŏ
202	应合十	1 6107	<u>府</u> 合士	0		359	应合小	0 1607	应合士	×
294		1.6774	<u> </u>	ŏ		359	<u>腐良小</u> 	-0.2451	<u> </u>	Ô
204		1 21 90	<u>腐良八</u> 	ŏ		360	<u>腐良</u> 小 	-0.4929	<u>腐良</u> 小 	ŏ
296	<u> </u>	1.6621	<u>腐良八</u> 	ŏ		361	<u>腐良</u> 小 	-0.1112	<u>腐良</u> 小 	ŏ
297	<u>腐良八</u> 庭食大	3 1 1 0 0	腐食大	ŏ		362	腐食小	-3 7600	腐食小	ŏ
298	腐食小	0.1146	腐食大	×		363	腐食小	2,5895	腐食大	×
299	腐食大	1.0123	腐食大	0		364	腐食小	-1.5867	腐食小	0
300	腐食大	1.7252	腐食大	ŏ		365	腐食小	0.1873	腐食大	×
301	腐食大	-1.7553	腐食小	×		366	腐食小	0.4103	腐食大	×
302	腐食大	-0.7323	腐食小	×		367	腐食小	-3.2051	腐食小	0
303	腐食小	-1.1132	腐食小	0		368	腐食小	-0.1035	腐食小	Ō
304	腐食大	-0.9237	腐食小	×		369	腐食小	-0.1186	腐食小	0
305	腐食大	0.3132	腐食大	0		370	腐食大	-0.0884	腐食小	×
306	腐食大	0.1174	腐食大	0		371	腐食小	-0.3569	腐食小	0
307	腐食小	-0.0872	腐食小	0		372	腐食小	0.9661	腐食大	×
308	腐食小	-0.2441	腐食小	0		373	腐食小	-3.1591	腐食小	0
309	腐食小	-0.1753	腐食小	0		374	腐食小	-3.1591	腐食小	0
310	腐食小	0.0482	腐食大	×		375	腐食小	-2.8256	腐食小	0
311	腐食小	-3.6313	腐食小	0		376	腐食小	-2.3308	腐食小	0
312	腐食小	-3.1269	腐食小	0		377	腐食小	-1.7393	腐食小	0
313	腐食大	2.6555	腐食大	0		378	腐食小	-3.3485	腐食小	0
314	腐食大	0.5714	腐食大	0		379	腐食小	-0.0762	腐食小	0
315	腐食大	0.5032	腐食大	0		380	腐食小	-2.3803	腐食小	0
316	腐食大	0.8893	腐食大	0		381	腐食小	-2.1349	腐食小	0
317	腐食大	1.2708	腐食大	0		382	腐食小	-2.2739	腐食小	0
318	腐食大	4.3689	腐食大	0		383	腐食小	-1.8947	腐食小	0
319	腐食小	-0.2020	腐食小	0		384	腐食小	-1.7612	腐食小	0
320	腐食小	1.3162	腐食大	×		385	腐食小	-1.9267	腐食小	0
321	腐食小	1.2596	腐食大	×		386	腐食小	-2.0107	腐食小	0
322	腐食小	1.6472	腐食大	×		387	腐食大	4.8268	腐食大	0
323	腐食小	1.6034	腐食大	×		388	腐食大	4.9606	腐食大	0
324	腐食小	2.6265	腐食大	×		389	腐食小	-1.3366	腐食小	0
325	腐食小	-4.0304	腐食小	0		390	腐食小	-2.3363	腐食小	0
326	腐食小	-3.9794	腐食小	0		391	腐食小	-2.4024	腐食小	0
327	腐食小	-3.6216	腐食小	<u> </u>		392	腐食小	-1.8640	腐食小	0
328	<u>腐食小</u>	-3.9063	<u> 腐食小</u>	<u>ŏ</u>		393	<u> </u>	2.0869	<u> 腐食大</u>	0
329	腐食小	-3.3234	<u> 腐食小</u>	0		394	<u> </u>	0.3881	<u> </u>	×
330	<u> </u>	-3.8940	腐食小	0		395	<u> </u>	0.3676	腐食大	×
331	<u> </u>	-3.8915	腐良小	<u> </u>		396	<u> </u>	-0.0128	」 腐良小	×
332	<u> </u>	-3.7464	<u> </u>	<u> </u>		397	腐食小	0.3266		×
333	協良小	-3.4803	腐良小		1					

直の群	判別さ	的山家			
美の件	腐食大	腐食大腐食小			
腐食大	130	21	86.1%		
腐食小	43	203	82.5%		
1	83.9%				

表-2.13 線形判別関数による判別的中率

2.4.2.2 マハラノビスの汎距離による判別

マハラノビスの汎距離の式は下記の(2.2)式で与えられ,各グルー プの式に各説明変数を代入し,それぞれ得られた数値を比較するこ とにより,どちらのグループに属するか判別する方法である.

《マハラノビスの汎距離の式》

 $x_{1i} = x_1 : i$ 番目のデータにおける管径の偏差

x_{2i}-x₂: i 番目のデータにおける勾配の偏差

*x*_{3*i}-<i>x*₃:*i* 番目のデータにおける路線延長の偏差</sub>

 $x_{4i} - x_4 : i$ 番目のデータにおける使用年数の偏差

S11, S22, S33, S44: 『腐食大』または『腐食小』における管径, 勾配, 路線延長, 使用年数の分散

S12, S21: 『腐食大』または『腐食小』における管径と勾配の共分散

S13, S31: 『腐食大』または『腐食小』における管径と路線延長の共分散

S14, S41: 『腐食大』または『腐食小』における管径と使用年数の共分散

S23, S32: 『腐食大』または『腐食小』における勾配と路線延長の共分散

S24、S42: 『腐食大』または『腐食小』における勾配と使用年数の共分散

S₃₄, S₄₃: 『腐食大』または『腐食小』における路線延長と使用年数の共分散

《判別方法》

(2.2)式に管径,勾配,路線延長,使用年数のデータを代入し4×4 の行列式に前記の分散共分散の『腐食大』または『腐食小』の数値 を用い計算を行う.

計算結果は以下の通り判別される.

 $D_{ggt}^{2} > D_{ggh}^{2}$ の時・・・『腐食大』 $D_{ggt}^{2} < D_{ggh}^{2}$ の時・・・『腐食小』 $D_{ggt}^{2} = D_{ggh}^{2}$ の時・・・判別不能

今回説明変数が 4 つであり(2.2)式に示す 4×4 の行列式となり, 計算が複雑化するため途中計算は省略し結果のみを表-2.14 に示 した.

この2群の重心の距離のマハラノビスの平方距離は3.8989 であ り誤判別の確率は16.18%となり線型判別関数により得られた判別 結果とほぼ一致しており(判別的中率と誤判別確率とは計算方法が 異なるため完全には一致しない.),線型判別関数またはマハラノビ スの汎距離による分析,どちらを用いても本分析においては問題な いといえる.

テ [*] ータ No.	真の群	D _{腐食大} 2	D _{腐食小} 2	判別群	判別 結果	テ [*] ータ No.	真の群	D _{腐食大} 2	D _{腐食小} 2	判別群	判別 結果
1	腐食小	2.1234	4.6583	腐食小	0	68	腐食大	3.3594	3.1725	腐食大	0
2	腐食小	3.3962	6.8552	腐食小	0	69	腐食大	3.4527	3.1731	腐食大	0
3	腐食小	1.5688	6.7123	腐食小	0	70	<u>腐食大</u>	12.2718	9.4602	<u>腐食大</u>	0
4	<u> </u>	1.5688	6.7123	腐食小	×	71	<u>腐食小</u>	9.4308	5.8991	<u> </u>	×
5	<u> </u>	3.8156	9.3810	<u>腐良小</u> 府会士		/2	<u> </u>	8.3605	5.1169	<u> </u>	×
0	<u> </u>	0.9/10	2.4047			73	<u> </u>	1.0070	0.0020	<u> </u>	
8	<u> </u>	5 3384	4 3172	<u>商良八</u> 	- O	74	<u> </u>	3 7367	0.8748	<u> </u>	×
9	<u>腐良八_</u> 腐食大	3.0007	1.6768	<u>腐良八</u> 腐食大	ŏ	76	腐食小	6.4241	9.0718	<u>腐良八</u> 腐食小	Ô
10	腐食大	12.8287	8.9099	腐食大	ŏ	77	腐食小	5.7622	2.7829	腐食大	×
11	腐食大	6.5328	4.0420	腐食大	ŏ	78	腐食小	3.0413	11.7799	腐食小	0
12	腐食大	72.7321	61.6455	腐食大	Õ	79	腐食小	0.9777	7.7252	腐食小	Õ
13	腐食大	7.8532	2.3257	腐食大	0	80	腐食小	1.0456	6.7644	腐食小	0
14	腐食大	36.3902	27.7496	腐食大	0	81	腐食小	2.3534	10.5446	腐食小	0
15	腐食大	21.2502	12.3641	腐食大	0	82	腐食小	0.7855	7.5577	腐食小	0
16	<u>腐食大</u>	27.9057	18.1249	<u>腐食大</u>	0	83	腐食小	0.2932	6.1330	腐食小	0
17	<u>腐食大</u>	10.7448	1.8535	<u>腐食大</u>	0	84	腐食小	2.4688	8.7657	腐食小	0
18	<u> </u>	11.8184	3.3985	<u> </u>	0	85	腐食小	1.3984	8.5721	<u> </u>	0
19	<u> </u>	3.6761	1.5096	<u> </u>	0	86	<u>腐良小</u> 安金小	1.6593	9.7576	腐良小	0
20	<u> </u>	3.8000	I.0007	<u> </u>		8/	<u> </u>	1.0Z17	0.2402	<u> </u>	Ŭ
21	<u> </u>	11 1926	5/079	<u> </u>		00	<u> </u>	0.0327	4.0097		Ô
22	<u> </u>	11.1020	5,8900	<u> </u>	- O	90	<u> </u>	4.0719	4.7731	<u> </u>	×
24	<u> </u>	32 1285	24 6944	<u> </u>	ŏ	91	<u>腐良八</u> 虚食小	4 1117	10 8764		Ô
25	<u>腐良八</u> 腐食大	32 8383	25 3159	<u>腐良八</u> 腐食大	ŏ	92	<u>腐食小</u> 腐食小	1 1914	7 3976	腐食小	ŏ
26	<u>腐食大</u>	20.8192	12,9820	<u></u>	ŏ	93	腐食小	0.7452	7.9078	腐食小	õ
27	腐食大	1.0123	8.5924	腐食小	×	94	腐食小	0.7105	7.8530	腐食小	Ŏ
28	腐食小	1.0972	8.5489	腐食小	0	95	腐食小	4.3798	8.8881	腐食小	Ŏ
29	腐食小	0.5475	7.2958	腐食小	0	96	腐食大	5.2405	1.5355	腐食大	0
30	腐食小	0.5199	7.1702	腐食小	0	97	腐食大	5.3784	1.5918	腐食大	0
31	腐食小	0.5304	7.1160	腐食小	0	98	腐食大	4.3126	1.3622	腐食大	0
32	腐食大	0.6532	4.6619	腐食小	×	99	腐食大	3.6852	0.9187	腐食大	0
33	腐食小	0.3113	3.1403	腐食小	0	100	腐食小	0.9969	8.1888	腐食小	0
34	腐食小	1.1000	8.6412	腐食小	0	101	腐食小	1.0591	8.2309	腐食小	0
35	<u>腐良小</u> 安金小	1.19/5	8.6330	<u> </u>	0	102	<u> </u>	3.3805	11.8958	腐良小	0
30	<u> </u>	0.0040	7.2501	<u> </u>		103	<u> </u>	2.4800	10.0056	<u> </u>	0
37	<u> </u>	12 6133	6 5 2 5 6	<u> </u>		104	<u> </u>	2.0041	10.9950		$\overset{\circ}{\sim}$
39	<u>腐良八</u> 庭食大	5 8936	0.5230	<u>腐良八</u> 腐食大	- Ö	105	<u>腐良小</u> 庭食小	1 8371	10.9350	<u>腐良小</u> 腐食小	ŏ
40	<u>腐良八</u> 腐食大	5 8503	0.4296	<u>腐良八</u> 腐食大	ŏ	100	<u>腐食小</u> 腐食小	1.8279	10.8960	腐食小	ŏ
41	腐食小	8.5866	5.1370	<u></u>	×	108	腐食小	2.3172	10.2105	腐食小	ŏ
42	腐食小	6.5616	4.2227	腐食大	×	109	腐食大	4.7930	1.6839	腐食大	Ŏ
43	腐食小	3.8500	1.0547	腐食大	×	110	腐食大	6.9050	0.7877	腐食大	0
44	腐食大	6.3179	1.7143	腐食大	0	111	腐食大	8.2627	1.2999	腐食大	0
45	腐食小	1.4677	9.9622	腐食小	0	112	腐食小	1.6593	9.7576	腐食小	0
46	腐食小	1.0324	8.5803	腐食小	0	113	腐食小	1.3580	9.1094	腐食小	0
47	<u>腐食大</u>	4.6576	1.1059	<u>腐食大</u>	0	114	腐食小	1.3580	9.1094	腐食小	0
48	腐良大	4.8143	1.1288	腐良大	N N	115	<u> </u>	1.0806	8.8799	腐良小	N N
49	<u> </u>	8.3003	1.0305	<u> </u>		110	<u> </u>	1.1300	8.9595 10.4006		
50	<u> </u>	7 7150	1.0008			110		2.3470	10.4230	_ 肉良小 	
52	<u> </u>	0.8078	6 9645	<u> </u>		110	<u>腐良小</u> 庭食小	0 7232	6 0087	<u> </u>	
53	<u>腐良小</u> 庭食小	0.3847	5 5948	<u>腐食</u> 小	ŏ	120	<u>腐良小</u> 庭食小	2 8138	6.3966	<u>腐良</u> 小 腐食小	ŏ
54	腐食小	0.4659	2,4280	腐食小	ŏ	121	腐食小	1.3009	9.4465	腐食小	ŏ
55	腐食小	0.5178	2.4538	腐食小	ŏ	122	腐食小	1.3386	8.9233	腐食小	ŏ
56	腐食小	6.4339	6.3841	腐食大	×	123	腐食小	1.5423	8.9224	腐食小	Ō
57	腐食小	0.7298	6.7843	腐食小	0	124	腐食大	1.2375	9.1530	腐食小	×
58	腐食小	0.2273	5.2347	腐食小	0	125	腐食小	4.6907	4.7904	腐食小	0
59	腐食大	0.5100	2.6649	腐食小	×	126	腐食小	1.3245	6.9397	腐食小	0
60	腐食大	0.5244	2.6693	腐食小	X	127	腐食小	1.2628	6.6095	腐食小	0
61	腐食小	0.6696	4.1040	腐食小	0	128	腐食小	3.6429	6.6528	腐食小	0
62	<u> </u>	0.6890	4.1274	<u> </u>	U U	129	<u> </u>	6.8522	3.7774	腐食大	O
63	<u> </u>	4.2251	3.8024	<u> </u>	×	130	<u> </u>	4.4604	0.95/1	<u> </u>	
04	<u> </u>	2.8369	0.1220	<u> </u>		131	<u> </u>	0.10//	3.0390		U V
60	<u> </u>	1 007/	7.0040	<u> </u>		122	<u> </u>	4.400Z	2./490	<u> </u>	Ô
67	<u>腐良八</u> 腐食小	4 0615	6.0580	<u> </u>	ŏ	134	<u>_ 腐良八</u> 腐食小	1.3906	9.2474	<u>腐良八</u> 腐食小	ŏ

表-2.14 マハラノビスの汎距離による判別結果(1)

テ [*] ータ No.	真の群	D _{腐食大} 2	D _{腐食小} 2	判別群	判別 結果	テ [*] ータ No.	真の群	D _{腐食大} 2	D _{腐食小} 2	判別群	判別 結果
135	腐食小	0.9697	7.9062	腐食小	0	202	腐食小	1.1759	9.1484	腐食小	0
136	<u>腐食小</u>	1.0713	6.9108	<u>腐食小</u> <u></u>	0	203	<u>腐食小</u>	1.8248	9.2911	腐食小	0
13/	<u> </u>	5.0344	1.0446	<u> </u>	×	204	<u> </u>	1.1699	9.1/01	腐良小	
138	<u> </u>	4.3985	1.9/08	<u> </u>		205	<u> </u>	1.2080	9.2091	<u> </u>	
139	<u> </u>	5 9973	0.7475	<u> </u>		200	<u> </u>	0.7090	/.2000	<u> </u>	
141		8 4392	1 4768	<u> </u>	ŏ	207		4 5363	1 2529	<u>腐食</u> 小 腐食大	ŏ
142	<u>腐食八</u> 腐食大	8.4250	1.5991	<u>腐良八</u> 腐食大	ŏ	209	<u>腐食八</u> 腐食大	5.3165	0.3945	腐食大	ŏ
143	腐食大	8.2735	1.4799	腐食大	Ŏ	210	腐食大	5.4496	0.7993	腐食大	Ŏ
144	腐食大	13.2295	3.4337	腐食大	Ó	211	腐食大	12.4364	6.6945	腐食大	0
145	腐食大	19.5556	7.5529	腐食大	0	212	腐食大	8.0733	2.5937	腐食大	0
146	腐食大	9.9603	2.8535	腐食大	0	213	腐食大	9.2207	3.6364	腐食大	0
147	腐食大	6.5315	0.8328	腐食大	0	214	腐食大	10.0985	4.6285	腐食大	0
148	腐食大	42.6444	34.2460	腐食大	0	215	腐食小	6.6000	1.4962	腐食大	×
149	<u>腐食小</u>	4.0053	0.9655	<u>腐食大</u>	×	216	<u>腐食大</u>	6.8688	2.1441	腐食大	0
150	<u> </u>	7.4520	7.5141	<u>腐食小</u>	×	217	<u> </u>	6.1012	1.3260	腐食大	0
151	<u> </u>	22.8722	17.8708	<u> </u>	0	218	<u> </u>	4.1297	1.8357	<u> </u>	0
152	<u> </u>	29.5808	20.3422	<u> </u>		219	<u> </u>	3.6/38	2.1699	<u> </u>	0
153	<u> </u>	1.2/40	7.8075	<u> </u>		220	<u> </u>	44.0950	4/.0/28	<u> </u>	×
104	<u> </u>	1.3407	0.0202	<u> </u>		221	<u> </u>	4.2/40	5.2500	<u> </u>	
156	<u> </u>	1.3400	0.0092	<u> </u>		222	<u> </u>	4.3013	5.0001	<u> </u>	
157	<u> </u>	0.9036	7 1845	<u> </u>	Ř	223	<u>腐良小</u> 应合小	2 0187	5 5443	<u> </u>	Ň
158	腐食小	8 9071	10 5925	腐食小	ŏ	225	<u>腐食小</u> 腐食小	2 4454	5 4997	腐食小	ŏ
159	腐食小	7.5455	7.2060	腐食大	×	226	腐食小	4.7346	5.6416	腐食小	ŏ
160	腐食小	4.1177	1.5904	腐食大	×	227	腐食大	7.6109	0.9393	腐食大	ŏ
161	腐食大	6.5333	2.9708	腐食大	0	228	腐食小	1.4406	7.7474	腐食小	Õ
162	腐食大	4.5928	0.9358	腐食大	0	229	腐食小	0.8007	7.4647	腐食小	0
163	腐食大	5.0257	1.3332	腐食大	0	230	腐食小	0.4881	6.3031	腐食小	0
164	腐食大	8.3511	3.0319	腐食大	0	231	腐食大	4.6246	0.7033	腐食大	0
165	腐食小	7.7630	9.3943	腐食小	0	232	腐食小	0.9431	8.2376	腐食小	0
166	腐食小	12.2928	10.9861	<u>腐食大</u>	×	233	腐食小	3.6199	11.4506	腐食小	0
167	<u>腐食大</u>	28.2462	22.0568	<u>腐食大</u>	0	234	<u>腐食大</u>	8.2087	1.5940	腐食大	0
168	<u>腐食大</u>	0.4677	3.1708	<u>腐食小</u>	×	235	<u>腐食大</u>	22.9312	14.3311	腐食大	0
169	<u> </u>	4.6909	0./541	<u> </u>		236	<u> </u>	17.2449	8.5285	<u> </u>	
170	<u> </u>	5.2398	1.1356	<u> </u>		237	<u> </u>	12./915	3.1451	<u> </u>	
171		9.3420	2.3773			230		1 0773	0.6277	<u> </u>	
172	<u> </u>	10.8306	3 6303	<u> </u>		239	<u> </u>	0.8710	6 7154	<u> </u>	
174	<u>腐良八</u> 庭食大	13 1588	6 2450	<u>腐良八</u> 腐食大	ŏ	240	<u>腐良小</u> 庭食小	0.2876	5 9455	腐食小	ŏ
175	腐食大	12,2243	4,1090	<u>腐食大</u>	ŏ	242	腐食小	0.1638	4,7172	腐食小	ŏ
176	腐食大	10.5284	2.3518	腐食大	ŏ	243	腐食小	0.1683	4.0163	腐食小	ŏ
177	腐食大	12.5513	4.8401	腐食大	Õ	244	腐食小	1.0969	3.3976	腐食小	Õ
178	腐食大	12.1953	4.2664	腐食大	0	245	腐食小	0.5805	2.9938	腐食小	0
179	腐食大	11.1936	2.7324	腐食大	0	246	腐食小	0.8723	7.7972	腐食小	0
180	腐食大	22.0256	16.5233	腐食大	0	247	腐食小	1.1282	7.2805	腐食小	0
181	腐食大	10.4493	2.0043	腐食大	0	248	腐食小	1.0912	8.2398	腐食小	0
182	<u> </u>	12.7250	4.7143	<u> </u>	<u> </u>	249	<u>腐食小</u>	0.3497	6.1340	<u> 腐食小</u>	<u> </u>
183	<u> </u>	21.7390	11.1270	<u> </u>	L O	250	<u> </u>	1.6235	10.1372	腐食小	L O
184	<u> </u>	16.4904	5.8902	<u> </u>		251	<u> </u>	1.6282	10.3/52	<u> </u>	
185	<u> </u>	4.0430	4.8903	<u> </u>		252	<u> </u>	1.4092	0.1041	<u> </u>	
100		2 1010	3 2006	<u> </u>		203		1 2431	7.0000	<u> </u>	
188	<u>腐良小</u> 	0.8744	8 0341	<u> </u>	Ô	255	<u>腐良小</u> 	1 6283	9 1966	<u> </u>	ŏ
189	腐食小	0.2752	5.2711	腐食小	ŏ	256	腐食大	1.5134	8.0514	腐食小	×
190	腐食小	0.2902	4.3302	腐食小	ŏ	257	腐食小	0.6984	6.7614	腐食小	0
191	腐食小	1.5481	3.6744	腐食小	Ŏ	258	腐食小	1.1902	5.8039	腐食小	Ŏ
192	腐食大	4.4855	4.2046	腐食大	0	259	腐食小	10.2857	11.7787	腐食小	0
193	腐食小	3.8774	13.2377	腐食小	Ō	260	腐食小	4.6049	9.6495	腐食小	Ō
194	腐食小	0.2801	5.8606	腐食小	0	261	腐食小	5.2853	9.9442	腐食小	0
195	腐食小	0.3872	5.9053	腐食小	0	262	腐食小	10.3885	11.2038	腐食小	0
196	腐食小	4.3926	4.9037	腐食小	0	263	腐食小	7.7746	8.1312	腐食小	0
197	<u>腐食小</u>	4.2778	4.8291	<u>腐食小</u>	<u>o</u>	264	<u>腐食小</u>	7.8090	6.8408	<u> </u>	×
198	<u> </u>	0.9936	/.9514	<u> </u>	N N	265	<u> </u>	8.0820	8.1623	<u> </u>	U U
199	<u> </u>	0.0396	0.00/4	<u> </u>		200	<u> </u>	12.0105	10.0866		×
200	<u> </u>	0.0114	7.2070	<u> </u>		207	<u> </u>	11 1060	0.2/20	<u> </u>	×
1 2011	腐成ない	0.4000	0.0000	/肉 皮 / 1 '	i U	200	腐成小	11.1303	0.2400	一周戊八	· · ·

表-2.14 マハラノビスの汎距離による判別結果(2)

τ-9 No.	真の群	D _{腐食大} 2	D _{腐食小} 2	判別群	判別 結果	テ [*] ータ No.	真の群	D _{腐食大} 2	D _{腐食小} 2	判別群	判別 結果
269	腐食小	12.2789	10.4921	腐食大	×	334	腐食小	2.9367	9.9195	腐食小	0
270	腐食小	11.6537	9.9442	腐食大	×	335	腐食小	0.9879	8.2888	<u> </u>	0
2/1	<u> </u>	0.7071	7.4347	<u> </u>		330	<u> </u>	0.9100	8.1331	<u> </u>	0
272	<u> </u>	1.2130	3 1010	<u> </u>	O	332	<u> </u>	0.2320	5 / 222	<u> </u>	0
273	<u>腐良小</u> 庭食小	3 6830	3,8820	<u>腐良小</u> 腐食小	ŏ	339	<u>腐良小</u> 庭食小	1 6415	9.8345	<u>腐良小</u> 腐食小	ŏ
275	腐食小	4 0223	4 3209	腐食小	ŏ	340	<u>腐食</u> 寸 腐食大	1 4854	9 5977	腐食小	×
276	腐食大	4.0929	9.4496	腐食小	×	341	腐食小	1.5777	10.3110	腐食小	0
277	腐食大	0.9963	7.3933	腐食小	×	342	腐食小	1.5492	6.8322	腐食小	Ŏ
278	腐食大	4.0640	1.3710	腐食大	0	343	腐食小	5.7277	13.7831	腐食小	0
279	腐食大	6.5235	3.9849	腐食大	0	344	腐食小	1.1007	8.0185	腐食小	0
280	腐食大	4.4895	1.5302	腐食大	0	345	腐食小	1.1144	8.3095	腐食小	0
281	<u>腐食大</u>	4.9578	2.6998	<u>腐食大</u>	0	346	<u>腐食小</u>	1.2964	8.3336	腐食小	0
282	<u> </u>	6.3705	4.1463	<u> </u>	<u> </u>	347	腐食大	1.0745	8.6670	<u> </u>	×
283	<u> </u>	6.6791	2.6/58	<u> </u>	0	348	<u>腐良小</u> 安金士	0.9976	8.6/11	腐良小 府会小	0 V
284	<u> </u>	5.0341 6.7772	1./4/3	<u> </u>		349	<u> </u>	0.5059	7.303Z	<u> </u>	Ô
205	<u> </u>	9.8404	2 6204	<u> </u>	0	351	<u> </u>	3 5433	10 2406	<u> </u>	ŏ
287		6 8249	5 8324	<u>腐良八</u> 腐食大	ŏ	352	<u>腐食</u> 寸 腐食大	7 7390	3 8788	腐食大	ŏ
288	腐食大	7.8939	5.5305	<u>腐食大</u> 腐食大	ŏ	353	腐食小	8.2280	3.8167	腐食大	×
289	腐食小	3.8612	0.8673	腐食大	×	354	腐食小	7.7240	1.3476	腐食大	×
290	腐食大	7.4758	1.2760	腐食大	0	355	腐食大	7.7611	0.7108	腐食大	0
291	腐食大	6.5468	0.6461	腐食大	0	356	腐食小	5.0781	5.6324	腐食小	0
292	腐食小	8.2210	1.6315	<u>腐食大</u>	×	357	腐食小	5.3786	6.1409	腐食小	0
293	<u>腐食大</u>	4.3733	1.1695	<u>腐食大</u>	0	358	<u>腐食小</u>	4.7551	4.4459	<u>腐食大</u>	×
294	<u>腐食大</u>	4.6855	1.3486	<u>腐食大</u>	<u> </u>	359	<u>腐食小</u>	4.5792	5.0811	腐食小	0
295	<u> </u>	6.9008	4.4814	<u> </u>	<u> </u>	360	<u> </u>	5.8208	6.8175	<u> </u>	0
296	<u> </u>	4.4365	1.1302	<u> </u>	0	361	<u> </u>	5.0685	5.3018	<u>腐良小</u> 安合小	0
297		9.1407	2.9433	<u> </u>	Ŭ,	302	<u> </u>	6.4004	1 2290		- V
290	<u>腐良小</u> 庭食大	4 9972	2 9861	<u> </u>	ô	364	<u>腐良小</u> 庭食小	4 2548	7 4432	<u>腐良八</u> 庭食小	Ô
300	腐食大	4.1166	0.6823	<u>腐食大</u> 腐食大	ŏ	365	腐食小	9,7010	9.3456	腐食大	×
301	腐食大	1.2994	4.8210	腐食小	×	366	腐食小	10.1824	9.3814	腐食大	×
302	腐食大	1.9792	3.4569	腐食小	×	367	腐食小	0.4791	6.8971	腐食小	0
303	腐食小	2.0516	4.2923	腐食小	0	368	腐食小	3.3490	3.5716	腐食小	0
304	腐食大	4.7816	6.6452	腐食小	×	369	腐食小	3.2978	3.5502	腐食小	0
305	腐食大	11.9684	11.3539	腐食大	0	370	腐食大	4.9908	5.1786	腐食小	×
306	腐食大	5.6631	5.4420	<u>腐食大</u>	0	371	腐食小	5.8664	6.5936	<u>腐食小</u>	0
307	腐食小	3./303	3.9168	腐食小	0	3/2	腐良小	4.5885	2.6698	腐良大	×
308	_	2 9 2 2 0	4.9020	<u> </u>		373	<u> </u>	0.7162	7.0420		
310	<u> </u>	3.6229	3 5457	<u>商良小</u> 	×	374	<u> </u>	1 0040	6.6632	<u> </u>	Ö
311	腐食小	0.8585	8,1283	<u>腐良八</u> 腐食小	Ô	376	腐食小	1.4667	6.1370	腐食小	ŏ
312	腐食小	1.7275	7.9913	腐食小	ŏ	377	腐食小	3.4537	6.9416	腐食小	ŏ
313	腐食大	14.6085	9.3117	腐食大	Õ	378	腐食小	0.8601	7.5643	腐食小	Õ
314	腐食大	5.3908	4.2652	腐食大	0	379	腐食小	4.5648	4.7290	腐食小	0
315	腐食大	5.4012	4.4124	腐食大	0	380	腐食小	1.0971	5.8668	腐食小	0
316	腐食大	7.0598	5.2971	腐食大	0	381	腐食小	1.6911	5.9734	腐食小	0
317	<u>腐食大</u>	8.4827	5.9609	<u>腐食大</u>	0	382	腐食小	4.4613	9.0229	腐食小	0
318	<u> </u>	12.2064	3.4929	<u> </u>	<u>v</u>	383	<u> </u>	1.8273	5.6298	<u> </u>	0
319	<u> </u>	4.5837	4.9993	<u> </u>	<u> </u>	384	<u> </u>	0.0107	4.1510	<u> </u>	0
320	_	5.6097	2.9090	<u> </u>	Ŷ	300	<u> </u>	2.3707	0.2370		
321	<u>腐良小</u> 庭食小	10 7092	7 4359	<u>腐良八</u> 庭食大	×	387	<u> </u>	12 6735	3 0443	<u>腐良小</u> 腐食大	ŏ
323	腐食小	14.6665	11.4828		×	388	<u>腐食大</u>	13.1972	3.2995	腐食大	ŏ
324	腐食小	15.6113	10.3817	腐食大	×	389	腐食小	2.6795	5.3663	腐食小	ŏ
325	腐食小	1.3046	9.3720	腐食小	0	390	腐食小	0.3309	5.0142	腐食小	Ō
326	腐食小	2.4704	10.4375	腐食小	0	391	腐食小	0.4421	5.2577	腐食小	0
327	腐食小	1.4868	8.7374	腐食小	0	392	腐食小	0.7339	4.4718	腐食小	0
328	腐食小	1.0664	8.8859	腐食小	0	393	腐食大	6.6364	2.4777	腐食大	0
329	腐食小	0.6127	7.2679	腐食小	ŏ	394	腐食小	6.6666	5.9028	腐食大	×
330	腐良小	3.8445	11.6418	<u> </u>		395	<u> </u>	4.3584	3.6357	<u> </u>	X
33	<u> </u>	1.32/1	9.11/0	<u> </u>		390	<u> </u>	0.1408	2,0002	<u> </u>	×
332	<u> </u>	0.72913	7 6986	<u> </u>		397	肉良小	4.J4UZ	0.0990	肉良八	^

表-2.14 マハラノビスの汎距離による判別結果(3)

2.5 考察

既設合流式下水道管の調査,分析の結果,下水道計画時に腐食発 生の抑制を考慮するならば,以下の点についての留意が必要である. また効果的な維持管理および長寿命化のためには,必要に応じ腐食 防止対策を検討することが望ましい.

- ①管径が 400mm 以上になると腐食が多くなる. すなわち,一般的 に管径が大きくなると勾配は緩やかに計画するため,下水は滞留 しやすく嫌気性状態になりやすい. このため, H₂S が生成され微 生物による腐食が発生しやすいといえる.
- ②管路勾配は 5~15‰に設定することが有利である.また 5‰以下 や 15‰以上勾配にすると腐食の危険性が高くなることも考慮す べきである.
- ③路線延長は 20m 以上 40m 未満とすることが有効であり,地理的 制約により 10m 以下とする場合,マンホールには落差・段差は付 けず,なるべく下水を攪拌させない構造とすべきである.また路 線延長が 40m 以上であると腐食の危険性が高くなる.
- ④『線型判別関数による判別』または『マハラノビスの汎距離による判別』,どちらを用いても約84%の確率で早期に再構築が必要な腐食ランクA・Bと腐食の初期段階であるC・Dおよびなしに判別することが可能である。

しかしながら、マハラノビスの汎距離の計算は煩雑なため、以 下に示す線型判別関数の方が簡略である.

 $Y = 0.0103 \times X_1 + 0.0411 \times X_2 + 0.0100 \times X_3 + 0.0658 \times X_4 - 8.6362$

- Y:判別得点
- $X_1: 管径(mm)$
- X₂:勾配(‰)
- X₃:路線延長(m)
- X₄:使用年数(年)

Y>0のとき・・・『腐食大』
Y<0のとき・・・『腐食小』
Y=0のとき・・・・どちらとも言えない

以上,既設下水道管の腐食調査により得られたデータの分析により,腐食の発生しやすい条件が明らかとなり,さらに多変量解析により下水道の腐食予測が可能であるか検討を行った結果,管径900mm以下の合流式下水管渠において管径,勾配,路線延長,使用年数といったパラメータから線型判別関数により良好な精度で腐食予測が可能である.

2.6 結論

本研究結果より,コンクリート製下水管の微生物腐食の予測が, 管径,勾配,路線延長,使用年数などの管渠の基本データから良好 な精度で可能であることが明らかとなった.

現在,維持管理のためには,先ず管路内調査ロボット等を用いた 管路内調査により現状把握を行うが,面的な調査のため財政への負 担が大きい.本手法は,管路内調査実施前に危険度の高い路線を抽 出する『スクリーニング手法』として有効であり,危険度が高いと 判定された路線から重点的に調査を行うことが可能となる.結果, 調査費用の適正配分等により維持管理費用の抑制および適切な維持 管理サイクルの実施につながり,効率的な維持管理が行えることか ら持続発展可能な社会の構築に寄与できると結論する.

なお予測式構築に当たっては、地域ごとにデータベースを整理す ることが重要であり、地域データの蓄積により各地域に合った適切 な予測が行えると考える.

また現在,管渠の更生・再構築の方法は,非開削で既設の下水管 渠の中に新しい管渠を構築する方法が主流であり,その工法は管径 により大きく二つに分けられる.

管径が 800mm 以下の場合,硬化性のビニル樹脂を管渠内に引き 込んで,管渠内面まで加圧拡張して密着硬化させる,反転工法や形 成工法,管渠内に板状の更生材をスパイラル状に嵌合させながら形 成し,既設管との隙間に裏込材を注入する製管工法,管渠内にポリ エチレン製の更生材を引き込み,内側から水圧で拡張させた状態で 裏込材を注入する鞘管工法,掘進機で既設の下水道管を破砕しなが ら新しい管渠を構築する推進工法などがある.

管径が 800mm 以上の場合は管渠内に直接人が入ることが出来る ため、管渠内面に耐食性、防水性を有するライニング材を塗布、ま たは吹き付けるライニング工法がある.

管渠においてはこのような更生工法が用いられているが,下水処 理施設においては,コンクリート表面の腐食物を高圧洗浄水で除去 し、モルタルで下地調整後、エポキシ系樹脂等で表面を防食塗装す る方法が主流である.

しかしライニング工法や防食塗装などは、ピンホール程度の小さ い孔が存在するとそこから硫黄酸化細菌が侵入し、内側で再度腐食 を進行させるため、数年で再度工事が必要になるなど維持管理費用 の増大を招いている.

すなわちセメント系材料で、今まで以上に微生物腐食に強く長寿 命の材料が開発されれば、構造物の長寿命化はもとより、維持管理 サイクルのスパンを飛躍的に拡大でき、さらに維持管理コストも大 幅に低減できることから持続発展可能な社会の構築に貢献できると いえる.

以上,第3章以降は予測後の調査により,更生·再構築が必要に なった管渠の更生·再構築材料,および下水処理施設の補修工事,ま た新設構造物の材料として,安価で通常の材料と同様に取り扱うこ とができ,これまで以上に耐硫酸性を有するセメント硬化体に関す る研究を行った.

48

〈参考文献〉

- 2-1)(社)日本下水道協会:下水道施設改築・修繕マニュアル(案)
 1998年版, p6, 1998
- 2-2)(社)日本下水道協会:下水道施設テレビカメラ調査マニュア ル(案), p10, 2000
- 2-3) 東京都下水道局:管路内調查工標準仕様書, p16, 2010
- 2-4) 菅民郎:初心者がらくらく読める多変量解析の実践(上), p88,
 現代数学社, 1996
- 2-5) 石村貞夫: すぐわかる多変量解析, 東京図書(株), 1995
- 2-6) 木下栄蔵:わかりやすい数学モデルによる多変量解析入門,近 代科学社,1995
- 2-7)(社)日本下水道協会:下水道施設計画・設計指針と解説 前 編 2001 年版, 2002

第3章

下水道施設におけるコンクリートの 微生物腐食とその対策技術

3.1 はじめに

下水道管のおかれている環境は厳しく, 土圧や輪荷重, 水圧, 摩 耗などの物理的要因や, 樹根の侵入などの生物学的要因といった外 的要因, H₂S等の腐食性ガス, 下水中に含まれる有害成分, 微生物 による硫酸腐食など化学的要因である内的要因により老朽化する. 特にコンクリート下水道管においては中性化や塩害、微生物腐食な ど内的要因によって早期に機能不全に陥るケースもある.

近年,これらの早期老朽化の原因のうち特に問題となっているの が,標準的耐用年数が 50 年 ³⁻¹)とされている鉄筋コンクリート下水 道管におけるコンクリートの微生物腐食である.

第2章にて論述した合流式鉄筋コンクリート下水道管において行った微生物腐食の実態調査では、調査対象地域の約6割の下水道管 が腐食ランクA~Cであり、さらに下水道管内面が腐食し始めてい ると思われる腐食ランクDの状態の管を合わせると9割以上の管に 腐食が認められた.このように微生物腐食はある特定の場所で発生 するものではなく、どのような場所でも発生する危険性があり、し かも腐食の進行は早く、施工後十数年で崩壊し、道路陥没事故を引 き起こした報告もある.

現在,微生物腐食により劣化した下水道管の処置および対策方法 として,腐食した管の内側に樹脂製の管を構築する更生工法や,抗 菌剤を混合した耐硫酸性コンクリートなど腐食に強い下水道管の開 発なども行われているが,レアメタルを混合するなど高価なものも ある.

51

3.2 コンクリートの微生物腐食のメカニズム

下水道管渠内では、化学的および微生物学的な反応が起きており その反応過程は複雑である.しかしコンクリート下水道管の腐食の 主原因は、微生物が生成する H₂SO₄に起因するものであることが明 らかになっており、このメカニズムは以下の通りであり、概略図は 図-3.1 に示す通りである.

①し尿や洗剤などに含まれる硫酸イオン(SO₄²)が、嫌気性状況下において生息する硫酸塩還元細菌によって H₂S へと還元される((3.1)式 ³⁻²).

 $SO_{4^{2^{+}}+2C^{*}+2H_{2}O \rightarrow 2HCO_{3^{+}}+H_{2}S$ ······(3.1) (※本式のCは有機物を表す.)

- ②H₂Sは pH が高くなるとイオン態,低くなると分子態で存在し, pH7付近では約 50%が分子態で存在している.通常の下水は pH6 ~8であり,分子態の H₂S はマンホールなどの落差箇所や,ポン プによる汲み上げなどの撹拌・衝撃により,容易に気相中に放散 される.
- ③気相中に放散された H₂S は,下水道管渠内面の気相部において好気性菌である硫黄酸化細菌によって,H₂SO₄ へと酸化される((3.2)式 ³⁻²⁾).

 $H_2S+2O_2 \rightarrow H_2SO_4 \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (3.2)$

 ④H₂SO₄とコンクリート内に含まれる水酸化カルシウム(Ca(OH)₂) などのカルシウム分が反応し二水石膏(CaSO₄·2H₂O)を生成する ((3.3)式).なお、このCaSO₄·2H₂Oは下水道管渠内面では膨潤 粉化しペースト状となって存在している.

H₂SO₄+Ca(OH)₂→CaSO₄·2H₂O ······(3.3) ⑤さらに CaSO₄·2H₂O とカルシウムアルミネート (3CaO·Al₂O₃· 6H₂O) が反応しエトリンガイト (3CaO·Al₂O₃·3CaSO₄·32H₂O) を生成する ((3.4)式).

 $3(\text{CaSO}_4 \cdot 2\text{H}_2\text{O}) + 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{H}_2\text{O} + 20\text{H}_2\text{O}$ $\rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O} \qquad \dots \dots \dots \dots \dots \dots (3.4)$ エトリンガイトは 32 の結合水を持つ膨張性の結晶であり、3~4 倍に膨張するため、エトリンガイト生成による膨張でコンクリート 表面はポーラスな状態となり、H₂SO₄による腐食を促進させる.

なお,材料中に塩化物が存在すると,フリーデル氏塩(3CaO・ Al₂O₃・CaCl₂・10H₂O)を生成することも知られている.

⑥エトリンガイトはコンクリートの中性化に伴って炭酸化され,硫酸イオンを解離し,硫酸イオンが未中性化領域へと移動し再びエトリンガイトを生成する((3.5)式).

またフリーデル氏塩も同様、中性化に伴い塩素イオンを解離し、 塩素イオンが未中性化領域へと移動し再びフリーデル氏塩を生成す る((3.6)式).

・エトリンガイトの炭酸化

 $3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O + 3CO_2$

 $\rightarrow 3CaCO_3 + Al_2O_3 + 3(CaSO_4 \cdot H_2O) + 26H_2O \qquad \cdots \cdots \cdots (3.5)$

・フリーデル氏塩の炭酸化

 $3CaO \cdot Al_2O_3 \cdot CaCl_2 \cdot 10H_2O + 3CO_2$

 $\rightarrow 3CaCO_3 + Al_2O_3 + CaCl_2 \cdot H_2O + 9H_2O \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (3.6)$

図-3.1 コンクリートの微生物腐食の概略図

この①から⑥のサイクルを繰り返しコンクリート内部へと腐食が進行していくことから、H₂SO₄とカルシウム分との反応を如何にして生じさせないか、または抑制させるかが課題となる.

3.3 コンクリートと硫酸の反応

先に記した通り、コンクリートの微生物腐食はコンクリート中の Ca(OH)₂が H₂SO₄との反応により CaSO₄·2H₂O を生成し、進行す ることが明らかとなっている.

ここで、コンクリートと H_2SO_4 との反応過程は以下の通りとなる. ①コンクリートと H_2SO_4 が反応した場合、強酸である H_2SO_4 と強 塩基である $Ca(OH)_2$ の酸-塩基反応((3.7)式)が激しく生じ $CaSO_4$ ・ $2H_2O$ を生成する.

反応式 $Ca(OH)_2+H_2SO_4\rightarrow CaSO_4\cdot 2H_2O$ ·····(3.7) 密度(g/cm³) 2.24 2.32 体積(cm³) 33.07 74.21

②中性化したコンクリートと H₂SO₄ が反応した場合, H₂SO₄と弱酸である炭酸カルシウム(CaCO₃)との反応((3.8)式)により CaSO₄・2H₂Oを生成し、二酸化炭素(CO₂)を遊離する.

反応式	CaCO ₃ +	$H_2SO_4+H_2O\rightarrow CaSO_4\cdot 2H_2O+CO_2 \cdots (3.8)$
密度(g/cm ³)	2.71	2.32
体積(cm ³)	36.92	74.21

③なお通常の状態ではコンクリート中の $Ca(OH)_2$ は大気中の CO_2 により炭酸化(中性化)され $CaCO_3$ となる.

反応式 Ca(OH)₂+CO₂→CaCO₃+H₂O ······(3.9)
密度(g/cm³) 2.24 2.71
体積(cm³) 33.07 36.92

ここで体積および密度に着目すると、(3.7)の反応では 1mol の Ca $(OH)_2$ が 1mol の CaSO₄·2H₂O に変化すると、体積は 2.24 倍、 密度は 1.04 倍になり体積、密度ともに増加する.(3.8)の反応では 1mol の CaCO₃が 1mol の CaSO₄·2H₂O に変化すると、体積は 2.01 倍、密度は 0.86 倍となり、体積は増加し密度は低下するが、実際の 質量は増加する.また(3.9)のコンクリート中性化では 1mol の Ca $(OH)_2$ が 1mol の CaCO₃に変化すると、体積は 1.12 倍、密度は 1.21 倍になる. すなわちこれらの反応により CaSO4・2H2O を生成した場合,体積 増加によりコンクリート内部に膨張圧が生じ表面を剥落させること になる.

3.4 コンクリートの微生物腐食に対する対策技術

現在では、この下水道施設におけるコンクリートに対して大きな 問題となっている微生物腐食から、コンクリートを護るための様々 な対策技術が考案されている.

コンクリートの微生物腐食の対策技術は,表-3.1 に示す『発生 源対策』,『腐食抑制』,『防食』の3つに分類され,対策の主眼は以 下の6つに分類される.

下水中の硫酸イオン濃度の低下

②下水あるいは汚泥中の硫化物生成の抑制・固定

③H₂Sの気相中への放散防止

④H₂SO₄を生成する硫黄酸化細菌の活動抑制

腐食対策の分類	対策の主眼	原理と対策
	下水中の硫酸イ オン濃度の低下	H ₂ S 生成ポテンシャルの低下: ・工場排水・温泉排水等の規制,海水浸入の防止
(1) 発生源対策	下水あるいは汚 泥中の硫化物 生成の抑制・固 定	 嫌気性化防止: ・圧送管への空気注入,酸素注入,硝酸塩注入など ・伏越し管の構造変更 ・ビルピット対策。 ・自然流下管渠での再曝気,沈殿物の排除,コンクリート表面の洗浄,フラッシング液相中の硫化物の酸化・固定化: ・塩化第二鉄注入,ポリ硫酸第二鉄注入
	H ₂ S の気相中へ の放散防止	H ₂ S の放散を抑制する構造: ・合流部の撹乱防止 ・段差,落差の解消
(2)腐食抑制	硫酸を生成する 硫黄酸化細菌 の活動抑制	気相中の H ₂ S ガスの希釈・除去: ・換気・脱臭 コンクリート表面の乾燥: ・換気 硫黄酸化細菌の代謝抑制: ・コンクリートへの防菌剤,抗菌剤混入
	耐硫酸性材料	耐硫酸性材料による製品: ・FRPM管,塩ビ管,セラミックパイプ ・レジンコンクリート製品 ・塩ビ製小型マンホール
(3)防食	コンクリートの耐 硫酸性向上およ び表面被覆	 コンクリート自体の耐硫酸性向上: ・耐硫酸性コンクリート コンクリート表面の被覆: ・塗布型樹脂ライニングエ法 ・シートライニングエ法 ・埋設型枠工法

表-3.1 腐食対策の分類と対策技術³⁻³⁾

⑤耐硫酸性材料

⑥コンクリートの耐硫酸性向上および表面被覆

これらの対策技術のうち、①,②は H₂S の発生抑制と発生 H₂S の低減、③,④は H₂S の気相中への拡散抑制や、硫黄酸化細菌の増 殖抑制し H₂SO₄ 生成を抑制する『腐食抑制技術』である.⑤は耐硫 酸性材料の使用、⑥はコンクリートの耐硫酸性の向上、コンクリー トの表面被覆工法等を行う『防食技術』である.

⑥のコンクリートの耐硫酸性向上および表面被覆の方法としては,図-3.2³⁻⁴⁾に示す(a)コンクリート被覆防食工法と(b)耐硫酸モル タル工法に分けられる.

(a)コンクリート被覆防食工法は小さなピンホールから腐食が再 度進行する事例が多く,また施工の良否が耐久性に影響する.

(b)耐硫酸モルタル工法はコンクリート自体の耐硫酸性を向上さ せる方法である.一般にポルトランドセメント系モルタルの耐硫酸 性向上には,①Ca(OH)2の低減による CaSO4・2H2O 生成抑止,②構 造の緻密化による硫酸浸入抑制のために,高炉スラグや抗菌剤を添 加するなど様々な方法がある.しかし,Ca(OH)2量の低減などによ り,腐食の進行を遅らせているだけであり,腐食のメカニズムは基 本的に普通コンクリート・モルタルと同様である.

またアルミナセメント系耐硫酸モルタルは、Ca(OH)₂をほとんど 含まないため、ポルトランドセメント系材料とは全く異なる反応を 示す.アルミナセメントでは pH の低下に伴い、安定な水酸化アル ミニウム (Al(OH)₃) が形成され、モルタル内への硫酸イオンの侵 入を抑制する.pH<4 となった場合、Al(OH)₃はアルミニウムイオ ンとして溶出するが、モルタル健全部が酸と接触することで再度 Al(OH)₃が生成され表層の pH 低下を抑制する ³⁻⁵⁾.

これら対策方法の考えのもと、日本下水道事業団と民間企業は共同研究により表-3.2 に示す種々の耐硫酸モルタルの開発を行っている ³⁻⁶⁾.

(a) コンクリート被覆防食工法

(b) 耐硫酸モルタルエ法

図-3.2 コンクリート防食工法の分類³⁻⁴⁾

表-3.2 日本下水道事業団におけ	る耐硫酸モルタル開発の経緯 ³⁻⁶⁾
-------------------	-------------------------------

調查·研究名			調査年度								供出来
<固有研究>	調査・研究の概要		H12	H13	H14	H15	H16	H17	H18	H19	加巧
ライフサイクルコスト低減を目的とし た技術の開発・ホ防食工程の短縮化のための防食工法の確立							0	0	0	H21 まで	
<共同研究>	企業名	技術内容	H12	H13	H14	H15	H16	H17	H18	H19	
下水道施設のコンクリート耐久性向 上に関する技術の開発	宇部興産(株)	耐酸コンクリート、腐食環境下で単独 使用可能な補修材料	0	0	0	0					
セメント系耐酸材料の開発	電気化学工業 (株)	セメント系耐酸モルタル	0	0	0	0					
耐硫酸性コンクリートおよび耐硫酸 モルタルの開発	大成建設(株) 宇部興産(株)	耐硫酸性コンクリートの開発、コンクリ ート補修材料(アルミナセメント)の開 発					0	0	0	0	
アクリル樹脂含浸改質材を用いた補 修モルタルの開発	電気化学工業 (株)	工業 アクリル樹脂による表面含浸工法の 開発					0	0	0	0	
珪素化合物を用いた耐酸酸性モル タルの開発	日本ジッコウ(株)	中性モルタルの材料開発					0	0	0	0	
特殊骨材を用いた耐硫酸性を持つ コンクリート用断面修復材の開発	太平洋マテリアル (株)	下水溶融スラグを用いた耐硫酸モル タルの開発					0	0	0	0	
耐硫酸性を有する補修用モルタル の開発	昭和電工建材 (株)	アルミナセメントを用いた耐硫酸モル タルの開発					0	0	0	0	
新防菌剤を添加した耐硫酸モルタ ルの開発	防菌剤を添加した耐硫酸モルタ 間組(株) の開発 日本ヒューム(株) 二次製品を目的とした防菌剤の使用						0	0	0	0	

3.5 まとめ

以上,現在実用化されている耐硫酸性コンクリートは,高炉スラ グなどの混入により通常 20%程度含有する Ca(OH)2の量を低減し, CaSO4・2H2O の生成を抑止するものと,微生物腐食の原因となる H2SO4を生成する硫黄酸化細菌の活動・増殖を抑制,阻害するもの の 2 つに分類されるが,いずれも CaSO4・2H2O の生成を抑止・抑制 することが目的となっている.このため,H2SO4に対する抵抗性は あるが,いずれの耐硫酸性コンクリートも微生物腐食により CaSO4・2H2O を生成する可能性があり,生成した場合は進行速度に 差異は生ずるものの,コンクリートは表面から膨張,剥離,脱落を 繰り返すことになる.

以上,現在実用化されている耐硫酸性コンクリートよりもさらに 長寿命な材料が開発されれば,さらに効率的な下水道施設の維持管 理が可能になることから,持続発展可能な社会資本の構築に貢献で きる.よって次章以降ではさらに長寿命の耐硫酸性コンクリートの 研究を行った. 〈参考文献〉

- 3-1)(社)日本下水道協会:下水道施設改築・修繕マニュアル(案)-1998 年版-, p6,参考-1(p84),1998
- 3-2)(社)日本下水道協会:下水道管路施設腐食対策の手引き(案), p4,2002
- 3-3)(社)日本下水道協会:下水道管路施設腐食対策の手引き(案), p68,2002
- 3-4)日本下水道事業団:耐硫酸モルタル防食技術の技術評価に関す る報告書, p4-4, 2008
- 3-5)日本下水道事業団:耐硫酸モルタル防食技術の技術評価に関す る報告書, pp.4~5, p3-15, 2008
- 3-6)日本下水道事業団:耐硫酸モルタル防食技術の技術評価に関す る報告書, p4-2, 2008

第4章

フッ化物混合セメント硬化体の 耐硫酸性に関する検討

4.1 はじめに

第1章から第3章で論述した通り,下水道施設の老朽化対策は早 急に取り組まなければならない問題であり,持続発展可能な社会の 構築のためにも重要な課題の一つである.

以前より、コンクリートの劣化・老朽化は専門家の中でクローズ アップされており、特に下水道施設における微生物腐食は進行が早 く構造物に致命的なダメージを与え、最悪の場合道路陥没事故等の 社会問題を引き起こすことから、コンクリートに耐硫酸性を持たせ た様々な耐硫酸性コンクリートが開発され実用化されてきた.多く の耐硫酸性コンクリートは、高炉スラグ等を混入することによりコ ンクリート中の Ca(OH)₂の量を低減し、CaSO₄・2H₂O の生成抑止を 目的としているが、CaSO₄・2H₂O はコンクリート中の Ca(OH)₂など と H₂SO₄の反応により生成する硫酸塩であり、単斜晶系の結晶構造 を持つモース硬度 2、密度 2.315 (g/cm³)の無色の結晶で、溶解度 は 0.208g/100g (25°C) 4·1)と水に溶けにくい.

この様な性質を持っていながら、CaSO4・2H₂O 生成が腐食の原因 とされているのは、以下の事項が考えられる.

①第3章に示した様に、CaSO4・2H2O がカルシウムアルミネートとの反応により、膨張性物質であるエトリンガイトを生成し膨潤粉化する.

②コンクリートには様々な物質が含まれているため、生成される CaSO4·2H₂Oは結晶性が悪く膨潤粉化しやすい.

すなわち耐硫酸対策としては CaSO4・2H2O の生成抑止よりも、 CaSO4・2H2O およびエトリンガイト生成によりコンクリート内部 に膨張圧が生ずることから、この膨張圧対策が必要となる.

対策としては以上の2点に対する改善が主な方法であり,現行の 耐硫酸性コンクリートは特に CaSO4・2H2O 生成抑止に主眼が置か れている.この耐硫酸性コンクリートはH2SO4との反応を遅らせる ことは出来るが,H2SO4による腐食・劣化は何れ生じ補修が必要と なる. しかし $CaSO_4 \cdot 2H_2O$ は硫酸塩であることから,結晶性の良い緻密 な $CaSO_4 \cdot 2H_2O$ の層をコンクリート表面に作ることが出来れば, H_2SO_4 の浸透を抑制すると同時に,腐食や摩耗などから表面を護る ことが可能であると考えられる.

よって本研究では、 $CaSO_4 \cdot 2H_2O$ 生成による膨張圧対策よりも、 供試体への H_2SO_4 の浸透を抑制または抑止する、緻密な $CaSO_4 \cdot 2H_2O$ 層をコンクリート表面に生成させることを目的に研究を行った.

4.2 カルシウム系化合物による耐硫酸性の向上

コンクリートの微生物腐食では硫黄酸化細菌が生成する H₂SO₄ と, 強塩基であるコンクリート中の Ca(OH)₂が激しく酸-塩基反応 を生じ腐食の進行は早く, コンクリートに与えるダメージも大きい.

この強塩基である Ca(OH)2 の量をコンクリート中から減ずるこ とにより耐硫酸性が向上すると考えられること,また既存の報告で は,石灰石系材料をコンクリートに適正量添加すると耐硫酸性が向 上する 4-2)ことから, CaCO3でセメントの一部を置換することによ り耐硫酸性の向上を試みた.

過去の研究にはコンクリートに耐硫酸性を持たせる方法としてオ クラート法(Ocrat Vertahren)がある.これは密閉容器内の加圧下で 腐食性・毒性ガスである四フッ化ケイ素(SiF4)をコンクリート中 に浸透拡散させ、コンクリート中の Ca(OH)2を化学反応によって不 溶性化合物の CaF2 に置換し耐食層を形成するとともに、コロイド 状のシリカを析出させコンクリート中の細孔を充填し、緻密化させ る方法である.オクラート法はこのような処理方法のため、大規模 な設備・施設が必要となり、処理コストが高くなるばかりでなく、 SiF4 という人体に非常に有害なガスを用いるため、取扱が難しく細 心の注意を要する.

オクラート法で生成される CaF_2 は天然に存在する蛍石の主成分 であり、不溶性化合物で耐硫酸性が備わっていることから、本研究 では CaF_2 と $CaCO_3$ の 2 つのカルシウム系化合物(以降 Ca 系化合 物と略す)に着目し、これらを混練した供試体の耐硫酸性について 検討を行った.

なお CaSO₄・2H₂O 生成による膨張圧の低減対策としては,既往の 研究によると,従来コンクリートでは水セメント比が高くなるほど 細孔量が増加し,この細孔が CaSO₄・2H₂O 生成時の膨張圧を緩和す るため,耐硫酸性が向上する ^{4·3)}と報告されている.すなわち膨張 圧を吸収するためにはコンクリート中の空隙(細孔)を多くするこ とが有効とされ,もし細孔が膨張圧を受け止めた場合,膨張により
細孔が小さくなり組織が緻密になると同時に質量が増加し,圧縮強 度も増加すると予想される.しかし一方では,細孔量の増加により H₂SO₄が浸透しやすくなると考えられることから,本研究において は練り混ぜに必要な水分量と施工性も考慮し,水粉体比(水/(セメ ント+Ca系化合物)の質量比)を 60%とした.

4.3 実験方法

4.3.1 実験概要

本研究においては,普通ポルトランドセメント(図表中は"セ" と略す)の一部を, CaCO₃(図表中は "炭"と略す)および CaF₂ (図表中は"フ"と略す)で置換したセメント硬化体を作製し,硫 酸水溶液による暴露実験にて耐硫酸性について検討を行った.

実験方法は、耐硫酸モルタルの性能確認として東京都下水道局に よる断面修復用モルタルに関する試験 4-4)および日本下水道事業団 の断面修復用モルタルに関する品質試験方法 4-5)が一般的に用いら れるが、本研究では供試体への H₂SO₄の浸透と硫酸水溶液の密度の 変化についても検討を行うため、これら試験方法を参考に実験条件 を設定した.

測定項目は以下に示す①~⑧および目視観察とし,各測定項目の 結果および各測定項目の組み合わせによる検討も行った.

①硫酸水溶液の密度測定

②質量測定

③形状測定

④ 圧縮強度試験

⑤中性化範囲測定(硫酸浸透範囲測定)

⑥粉末X線回折測定 (XRD)

⑦示差熱-熱重量分析 (TG-DTA)

⑧BET 比表面積測定

これらの測定項目より得られた結果は,図-4.1 測定項目と耐硫 酸性向上の検討,メカニズムの解明との関係に示す様に,関連する 測定項目から,硫酸による侵食・形状保持状態,各領域の単位体積質 量,硫酸の拡散・浸透体積,硫酸反応生成物の定性・定量分析といっ た物理的変化,化学的変化,表面の生成物の物性・状態について複合 的に分析・検討を行い,総合して耐硫酸性向上の検討とメカニズム の解明を行った.

4.3.2 供試体

供試体の大きさは 40×40×160mm で,表-4.1 に示す 5 種類の配 合比のものを 6 本ずつ作製した.

セメントは表-4.2 に示す物性値の普通ポルトランドセメント (太平洋セメント製)を、CaCO₃および CaF₂は表-4.3 に示す特 性値の試薬を用い、水粉体比=60%で練り混ぜ、打設1日後に脱型 し、材齢28日まで標準水中養生を行った.なお目視観察では養生 終了時の供試体にひび割れ等の異常は確認されていない.

供試体	配合比 (質量比)	セメントに対するCaCO ₃ ま たはCaF ₂ の割合(比)	セメントに対す る置換率(%)
供試体①	セルトのみ	0	0.0
供試体2	セメント:CaCO3=2:1	1/2	33.3
供試体③	セメント:CaCO3=1:1	1	50.0
供試体④	セメント:CaCO3=1:2	2	66.6
供試体⑤	セメント:CaF ₂ =1:1	1	50.0

表-4.1 各供試体の配合比とセメントに対する置換率

表-4.2 普通ポルトランドセメントの物理的・化学的物性

密度	比表面		凝結		大学社	圧縮強さ 水和熱 N/mm ² J/g			強熱減		01- 0/	Na ₂ 0eq			C A 9/	C4AF			
g/cm ³	cm ² /g	水量 %	始発 h-min	終結 h-min	女正性	3d	7d	28d	7d	28d	重 ig.loss%	MgU %	503 %	CI %	%	U35 %	C25 %	U ₃ A %	%
3.16	3340	27.4	2-15	3-20	良	30.3	45.1	61.6	332	384	2.26	1.41	2.10	0.015	0.50	56	18	9	9

表-4.3 Ca系化合物の物理的・化学的特性

名称	分子式	式量	密度 (g/cm ³)	融点 (℃)	純度	溶解性	製造会社/規格
炭酸カルシウム	CaCO ₃	100.09	2.93	825	99.5%以上	水 およ びエ タノール にほとんど溶けない	和光純薬工業 /試薬特級
フッ化カルシウム	CaF ₂	78.08	3.18	1402	97%以上	水および有機溶媒に ほとんど溶けない	和光純薬工業 /特級

4.3.3 硫酸水溶液による暴露実験条件

通常,耐硫酸モルタルの性能確認は,東京都下水道局の断面修復 用モルタルに関する試験 4-4)や日本下水道事業団の断面修復用モル タルに関する品質試験方法 4-5)により行われている.

これらの試験方法は試験体を 5mass%硫酸水溶液に 28 日間浸漬 し、水溶液は7日ごとに全量を交換する.しかし本実験では硫酸水 溶液の密度および濃度の推移と試験体の腐食状況を調べるために、 実験期間を通して硫酸水溶液の交換は無しとし、10mass%硫酸水溶 液の静水中に供試体を 28 日間を基準に浸漬した.

なお日本下水道事業団の耐硫酸モルタル防食技術の技術評価に関 する報告書 4-6)によると、0.5~10mass%硫酸濃度での硫酸浸漬試験 では硫酸濃度毎の中性化速度は一定の傾向を示すことから、本研究 で用いた 10mass%硫酸水溶液の濃度に問題はない.

供試体浸漬には耐硫酸性を有するポリプロピレン(PP)製のコンテ ナ容器を用い,供試体の配合種類ごとに浸漬容器 A(容器内寸 (mm);W=257,D=190,H=122,水深=約68)と,浸漬容器 B(容 器内寸(mm);W=380,D=260,H=160,水深=約68)を用意した.

浸漬容器 A は,硫酸水溶液の密度測定および供試体の質量・形状 測定用の供試体 1 本を容器中央に浸漬した.浸漬容器 B は中性化範 囲測定用の供試体 2 本を容器内に等間隔に配置し,打設面が底面に なるよう硫酸水溶液に浸漬させた.容器を 2 つに分けたのは,浸漬 容器 B の供試体は中性化範囲測定のため端部を定期的に切断,体積 および表面積が減少し,硫酸水溶液の密度変化に影響を与える可能 性があったためである.

硫酸水溶液は供試体の配合種類ごとに各 10L 作製し,浸漬容器毎 に供試体の質量に対し硫酸水溶液を比例配分した.実験開始前の供 試体質量と硫酸水溶液の量は表-4.4 に示すとおりである.

72

				供試体① セメントのみ		供試体②		供試体③		供試体④		供試体⑤	
浸漬容器 測定項目	供試休木数	容器の内寸	セメント:Ca			セメント:CaCO3=2:1 セメント:Ca		aCO ₃ =1:1	セメント:CaCO3=1:2		セメント:CaF2=1:1		
	БШШТ	(mm)	質量(g)	硫酸水溶液 (mL)	質量(g)	硫酸水溶液 (mL)	質量(g)	硫酸水溶液 (mL)	質量(g)	硫酸水溶液 (mL)	質量(g)	硫酸水溶液 (mL)	
A	 1. 硫酸水溶液の 密度測定 2. 質量および 形状測定 	1本	W=257 D=190 H=122 水深=約68	492. 17	3331	472. 82	3331	460. 01	3332	449. 48	3329	390. 21	3369
В	3. 中性化範囲測定 (硫酸浸透範囲測定)	2本	W=380 D=260 H=160 水深=約68	491.68 493.63	6669	473.06 473.38	6669	458. 21 462. 21	6668	450. 84 450. 02	6671	389. 61 378. 40	6631
		3本		1477. 48	10000	1419. 26	10000	1380. 43	10000	1350. 34	10000	1158. 22	10000

表-4.4 各浸漬容器における測定項目と供試体質量および硫酸水溶液の量

4.3.4 測定項目および測定方法

耐硫酸性の検討は、以下の測定項目および測定方法で行った.

(1) 硫酸水溶液の密度測定

供試体を浸漬している硫酸水溶液の密度測定は,溶液中の硫酸密 度が均一になるように容器内をよく掻き混ぜた上で約 10mL 採取, 濾過(濾紙 5C)により浮遊物質を除去した上で,写真-4.1 に示す U字管を用いた振動式密度計 アントンパール社製 DMA-35(測 定範囲:0~3g/cm³,精度:0.001g/cm³,分解能:0.0001g/cm³,表 示値は 20℃換算値)により測定を行った.

なお測定間隔は実験開始直後は6時間毎とし、その後は測定値の 推移を確認の上、最大24時間まで拡大した.

写真-4.1 振動式密度計(アントンパール DMA 35)

(2) 質量測定および形状測定

供試体を硫酸水溶液から取り出した後,水道の蛇口を完全開放し た水圧で全面を均等に1分間洗浄し,容易に剥がれ落ちる表面部分 を除去した.その後,供試体をイオン交換水中に約5分間浸漬後,

図-4.2 形状寸法測定箇所図

表面の水分を拭き取り, さらに約5分気中に放置した後, 電子天秤 による質量測定とノギスによる形状測定,および目視観察を行った. なお測定に要した総時間は約20分であり, 測定終了後は直ちに硫 酸水溶液に浸漬させた.

形状寸法の測定箇所は図-4.2 に示す断面の位置とし容器に接している底部(打設面)は対象外とした.幅は A-A 断面, B-B 断面, C-C 断面の供試体上部1面3箇所,高さも同断面の供試体側面2面 6箇所,長さは E-E 断面, F-F 断面の供試体底部を除いた3面3箇 所とし測定結果は平均値で表した.

(3) 圧縮強度試験

CaCO₃および CaF₂混合によるセメント硬化体の圧縮強度への影響,および硫酸暴露による影響について検討した.

試験体は6本の供試体のうち,硫酸暴露実験に供しない3本を継続して56日間水中養生を行った『未暴露』と,硫酸暴露実験により浸漬容器 A において28日間暴露した『暴露』の供試体を高さ40mmになるよう切断し,支圧面を研磨した試験体を3本ずつ作製し圧縮強度試験を行った.

圧縮強度試験はマルイ社製 一軸試験器機 HI-TOUCU-Uを使用
し、モルタル圧縮試験モードで荷重レンジ 100kN,破断検出 95%,
変位レンジ 5mmの設定とした. 圧縮強度の計算に用いる断面積は
支圧面 2 面の平均値とし、支圧面の面積は KEYENCE 社製 デジ

タルマイクロスコープ VHX-1000の面積測定機能(測定領域を多 角形で囲み,包囲線内のピクセル数から面積を測定)を用い,5倍 で撮影したデジタル画像(撮像範囲:61×45.5mm,ピクセル数: 1600×1200,1ピクセルの大きさ:0.038×0.038mm,面積: 1.44×10⁻³mm²)から計測した.

(4) 中性化範囲測定(硫酸浸透範囲測定)

供試体への硫酸浸透深さは表-4.4 下段の 3.中性化範囲測定(硫酸浸透範囲測定)(p72)の供試体を 3 日ごとに長手方向に対し直角に端部より約 1cm の厚さに切断し,流水で切削粉を良く洗い流し,表面乾燥状態で切断面に 1%フェノールフタレイン溶液を吹き付けるフェノールフタレイン法(JISA 1152:2011)により中性化試験を行った.なお浸漬期間 3 日では硫酸の浸透はほとんどなく中性化は生じないので,1cm の厚さの試験片による中性化試験の測定結果への影響はない.

フェノールフタレインは pH 指示薬の一種で,1%エタノール溶液 として吹き付けて使用し, pH8.2~10.0 以上のアルカリ側で紅色に 発色し,中性側では無色である 4⁻⁷⁾ことを利用した測定方法である.

本研究では以下に示す4領域(写真-4.2参照)の面積をデジタ ルマイクロスコープの面積測定機能(倍率×5倍,撮像範囲: 61×45.5mm,ピクセル数:1600×1200)により測定した.

1) 『総面積』

写真-4.2 供試体の測定断面

2)セメント硬化体中の Ca 系化合物と H₂SO₄の反応により CaSO₄·2H₂O を生成したと考える『二水石膏部』

3)中性化試験で呈色した『健全部』

4)二水石膏部とは明らかに異なるが,中性化試験で呈色しない『中 性化部』

なお,切断後の供試体は表面洗浄後,水分を除去し再び硫酸水溶 液に浸漬し,中性化試験に用いた試験片は浸漬しないこととした.

(5)粉末X線回折測定(XRD)

硫酸暴露により各供試体に生成した物質の同定を行うべく,実験 終了後の各供試体から以下に示す a)~g)からサンプルを採取,粉末 状にすりつぶし,XRDにより同定解析を行った.なお供試体②,③, ④は配合比が異なるがセメントと CaCO₃の混合供試体であり,分析 結果は同様と考え c), d), e)を供試体②,③,④の各領域の代表サ ンプルとした.

- a) 供試体①の二水石膏部
- b) 供試体①の健全部
- c) 供試体③の健全部
- d) 供試体④の二水石膏部
- e) 供試体④の中性化部
- f) 供試体⑤の二水石膏部
- g) 供試体⑤の健全部

XRD 装置は理学電機社製 回折線湾曲結晶モノクロメーター付き RAD-B システムを使用し、測定は対陰極: Cu(モノクロメーター)、管電圧: 40kV,管電流: 20mA,発散スリット: 1deg、散乱スリット: 1deg、受光スリット: 0.15mm、スキャンスピード: 4°/min、スキャンステップ: 0.01°で行った.

- (6)示差熱-熱重量分析(TG-DTA)
 - Ca 系化合物混合供試体の内部は,硫酸暴露によって基本的に二

水石膏部,中性化部,健全部の3領域に変化する(写真-4.2 供 試体の測定断面)ことから,この3領域の生成物質の定性定量分析 を行うべく,次に示す a)~k)の各領域からサンプルを採取,乳鉢に て粉末状に磨り潰し TG-DTA を行った.

TG-DTA 装置は Rigaku 社製 示差熱天秤 Thermo plus EVO II /TG-DTA シリーズを使用し、測定条件は測定温度範囲:室温~ 1000℃,昇温速度:5.0℃/min とした.

- a) 供試体①の健全部
- b) 供試体②の健全部
- c) 供試体③の健全部
- d) 供試体④の健全部
- e) 供試体⑤の健全部
- f) 供試体④の中性化部
- g) 供試体①の二水石膏部
- h) 供試体②の二水石膏部
- i) 供試体③の二水石膏部
- j) 供試体④の二水石膏部
- k) 供試体⑤の二水石膏部

また $CaSO_4 \cdot 2H_2O$, $CaCO_3$, $Ca(OH)_2$ の TG-DTA 曲線の特徴確認のため、試薬の分析も行った. なお Ca 系化合物の分解温度は表 -4.5に示すとおりである.

物質名	化学式	分解温度℃	その他
水酸化カルシウム	Ca(OH) ₂	580	
炭酸カルシウム	CaCO ₃	898	
フッ化カルシウム	CaF₂	1423	
	CaSO₄·2H₂O	109	半水石膏を生成
硫酸カルシウム	CaSO ₄ ·1/2H ₂ O	133	無水石膏を生成
	CaSO ₄	1450	
酸化カルシウム	CaO	2572	

表 - 4.5 Ca 系 化 合 物 の 分 解 温 度 ⁴⁻⁸⁾

(7) BET比表面積測定

一般的にモルタル供試体などの細孔量の測定は,水銀ポロシメー ターを用いた水銀圧入法にて行うが,水銀圧入法は数 nm~数 100 μm までの比較的大きな細孔の測定に適している 4⁻⁹⁾.しかし本研 究は,セメントの一部を Ca 系化合物で置換したセメント硬化体を 用いた基礎的な実験であり,比表面積が測定できる定容量式ガス吸 着法である BET 法 4⁻⁹⁾により測定を行った.

BET 比表面積測定は日本ベル社製 BELSORP-18 を使用し, サン プルは先の TG-DTA 分析用に粉末状に磨り潰したサンプル a)~k) から分取し,吸着ガスは N₂,吸着温度は 77K とした. また測定の 前処理として水分除去と脱ガスのために 300℃, 0.1Pa で 10 時間, 減圧・加熱処理した.

なお前処理温度の 300℃では供試体に含まれると考えられる Ca 系化合物は分解しないが、CaSO₄·2H₂O は 109℃で CaSO₄·1/2H₂O

(半水石膏)に,133℃で CaSO₄(無水石膏)へと脱水分解する ⁴⁻⁸⁾. しかし結晶の一次粒子を測定・評価するため,考察への影響は少な いと考えられる.

4.4 予備実験

供試体⑤はセメントに CaF_2 を混合していることから,実験において CaF_2 と H_2SO_4 の反応で毒性の強いフッ化水素(HF)発生の懸念があった.

HF の製法は CaF₂ と濃硫酸を混合し、 $450 \sim 550 \degree$ の加熱条件下 で行われる $4 \cdot 10$)が、本研究で用いる H₂SO₄ は 10mass%の希硫酸で あり、加熱もしないことから HF 発生の可能性は低いと考えられた. しかし実験における安全確保・確認と万一に備え、実験室内(室温 約 20°C)で気体採取用コックを設けた密閉容器を用い、容器内に 10mass%硫酸水溶液と CaF₂混合供試体が硫酸水溶液に完全に浸漬 するように入れ、HF の測定を行った.

測定は気体採取用コックにシリコンチューブを接続したガス検知 管(No.17 HF 測定範囲 0.25~100ppm)を取り付け,吸引(1 回 100mLの吸引時間は約 45 秒)と同時にコックを開いて行った.

測定間隔は実験開始直後は3時間毎としたが、1日経過しても検 出されなかったため、徐々に測定間隔を拡大、最大24時間とし1 週間測定を行った.しかしいずれの測定においてもHFは検出され なかった.

4.5 結果および考察

4.5.1 硫酸水溶液の密度測定

図-4.3 に暴露実験中の硫酸水溶液の密度の変化を示した.実験 開始直後から 90 時間頃までは全ての実験ケースにおいて密度の数 値変動が大きく安定しなかったが,90 時間を過ぎからセメントのみ の供試体①を浸漬した硫酸水溶液の密度は大きく低下し,実験終了 時には 1.0404g/cm³(硫酸濃度 6.2%)となった.

またセメントの質量の33.3%をCaCO₃で置換した供試体②の硫酸 水溶液の密度は150時間頃から供試体①と類似した低下傾向を示し, 実験終了時には1.0471g/cm³(同7.5%)となった.

一方,セメントの質量の 50%以上を CaCO₃または CaF₂で置換し た供試体③,④,⑤の硫酸水溶液の密度は 90 時間経過後も大きな 変化はなく,実験終了時には CaCO₃で置換した供試体③は

1.0605g/cm³ (同 9.1%),供試体④は 1.0596g/cm³ (同 9.0%), CaF₂ で置換した供試体⑤は 1.0620g/cm³ (同 9.6%)と硫酸水溶液の密度 の低下はわずかであった.

図-4.3 硫酸水溶液の密度の変化

4.5.2 質量測定

実験では供試体質量を電子天秤により測定しているが、供試体ご とに初期の質量が異なること、および H₂SO₄の侵食による質量の減 少度合いを見るため、供試体質量の変化率について検討した.

硫酸暴露実験における各供試体の質量の変化率を図-4.4 に,また セメントのみの供試体①と、セメントの質量の 50%を Ca 系化合物 で置換した供試体③,⑤の硫酸暴露実験前後の様子を写真-4.3 に 示した.

図より供試体①と供試体②の質量は実験開始後,増加傾向を示し, 供試体①では48時間,供試体②では66時間まで増加傾向を示した 後,先に示した硫酸水溶液の密度の低下と連動するように質量の減 少傾向を示し,実験終了時の30日目には供試体①は65.3%,供試 体②は80.2%まで減少した.

また目視観察では供試体①,および供試体②の表面は実験開始直後からH₂SO₄により激しく侵食し,また容器内底部には供試体より剥離した腐食物が沈殿していた.

一方供試体③は実験開始後36時間に96.7%まで減少傾向を示し,

図-4.4 供試体の質量変化率

供試体④では 60 時間に 92.6%まで減少傾向を示した後,増加傾向 に転じ実験終了時には供試体③は 103.6%,供試体④は 102.8%とな った.

供試体⑤は開始直後6時間目に98.5%を示したが,その後は増加 傾向に転じ実験終了時には105.4%となった.

目視観察では、硫酸暴露により容易に侵食を受けたセメントのみの供試体①,および供試体②とは異なり、供試体③,④,⑤は H₂SO₄の侵食をほとんど受けず、表面は乳白色の生成物で覆われていた.特に供試体④,⑤の表面の生成物は質量および形状測定時の供試体表面を洗い流す際の触感では表面は滑らかで硬く、また侵食および剥離は認められず、容器内底部への沈殿物もほとんど無かった.

なおこの生成物はその状態,また供試体の混合物から考察すると 結晶性の良い CaSO₄·2H₂O であると考え,この CaSO₄·2H₂O が H₂SO₄の浸透を抑制していると推察する.

写真-4.3 硫酸暴露実験前後の供試体①,③,⑤の様子

4.5.3 形状測定

硫酸暴露実験において供試体の長さ,幅,高さの各寸法を測定しているが,長さ,幅は非常に良く似た傾向と変化量を示したことから,ここでは長さと高さの変化量を図-4.5,図-4.6に示した.

図より長さと高さの変化の傾向は似ているものの,高さの変化量 は長さの約 3/5~4/5 となっている.これは供試体底面が容器に接し ているため,供試体底面における H₂SO₄の浸透および侵食が抑制さ れたためである.

また長さ,高さの変化量の両結果より,供試体①は実験開始から 66時間まで,供試体②は実験開始から126時間までは長さ,幅,高 さともにプラス(膨張)の変化を示し,その後はマイナス(減少) の変化を示した.一方供試体③,④,⑤は実験開始後から200時間 頃までは極微量な増減の変化を示したが,その後は変化が少なくな り,ほぼ0mm付近で安定した値を示した.

なお先の質量測定結果と併せて考察すると、供試体①、②の形状 変化は質量の変化と同期しており、目視観察からも供試体は H₂SO₄ による侵食を受け、表面から腐食物が剥離していたことから、この データの結果は妥当といえる.一方、供試体③、④、⑤に関しては、 質量は初期に減少しその後は増加傾向にあるにもかかわらず、形状 の変化はほとんど無く 0mm 付近で安定した値を示した.また先に 示した様に供試体③、④、⑤は目視観察から表面に結晶性の良い CaSO₄·2H₂O と考える白色の硬質な生成物で覆われていたことか ら、この生成物が質量増加の原因になったと推察した.

84

図-4.5 供試体の長さ変化量

図-4.6 供試体の高さ変化量

4.5.4 硫酸水溶液の密度と供試体質量

供試体を浸漬した硫酸水溶液の密度と供試体質量の関係を図-4.7 に示した.

図より,供試体①,②は硫酸水溶液の密度と質量の間に強い正の 相関が認められる.しかし,供試体③,④,⑤に関しては,逆に負 の相関が認められる.これは供試体③,④,⑤が H₂SO₄との反応 により密度の高い物質を生成したことを示しており,さらに先の形 状変化の結果からも生成物が剥離せず,供試体表面に留まっている ためである.

さらに本図は測定期間中の全データで作成しており,測定期間が 各供試体とも同じであることを考慮すると,データの分布幅から供 試体⑤が H₂SO₄ との反応, すなわち侵食が一番少なく, 次に供試 体③, ④が少ないといえる.

4.5.5 質量減少量と厚さ減少量

硫酸暴露試験における供試体の質量減少量と厚さ減少量の関係 を示したものが図-4.8 である.ここで厚さ減少量とは供試体の H₂SO₄との反応面の数を考慮し,底部が容器に接している高さを除 外した,長さ,幅の変化量の平均値の 1/2 とした.

図より,供試体①,②は質量減少量と厚さ減少量に関連性が認め られるが,供試体③,④,⑤に関しては,質量の変化に対する厚さ の減少量はわずかである.すなわち形状変化は少ないが,質量が変 化していることを示している.

さらに、供試体③、④、⑤に関しては質量減少量はマイナス(質量増加)の傾向があり、その傾向は特に供試体⑤が強い.これは前述の通り、供試体⑤がH₂SO₄との反応により供試体表面に緻密な物質を生成し、形状保持に寄与しているためである.

以上,本結果からもセメントの質量の 50%以上を Ca 系化合物で 置換したセメント硬化体には耐硫酸性があり,中でも CaF2で置換 したセメント硬化体の耐硫酸性は高い.

図-4.8 供試体の質量減少量と厚さ減少量の関係

4.5.6 圧縮強度試験

表-4.6 および図-4.9 に未暴露,暴露の供試体の平均圧縮強度 を示す.平均圧縮強度より,供試体①では暴露による変化はないが, CaCO₃ で置換した供試体②から④に関しては暴露により圧縮強度 が増加しており,CaCO₃ の置換割合が多くなるほどその傾向は大き くなる.特にセメントの質量の 50%以上を CaCO₃ で置換した供試 体③,④は強度増加が著しく,暴露により圧縮強度は約 1.8 倍増加 する.また CaF₂ で置換した供試体⑤は若干強度増加の傾向を示し ているが,暴露による変化はほとんどないものと判断できる.

なお CaCO₃ で置換した供試体②,③,④の圧縮強度増加の理由 としては以下のことが考えられる.

今回作製した供試体②,③,④,⑤のセメント配合量は供試体① に比し 2/3 から 1/3 であり、このセメント配合量の減少が強度低下 を引き起している.さらに水粉体比=60%としているが、これは Ca 系化合物でセメントの一部を置換することにより、流動性が低下し 練り混ぜが困難になるのを防ぐためである.このため水セメント比 は 90%から 180%となり、結果的に水密性の低い細孔量が多い供試 体になったと考える.

前述のとおり,通常 $Ca(OH)_2$ や $CaCO_3$ が H_2SO_4 と反応し $CaSO_4$ ・ 2 H_2O を生成した場合,体積は約2倍となる.さらにエトリンガイ トを生成すると体積は3~4倍に膨張する.しかし本実験で作製し た Ca系化合物混合供試体は細孔量が多い供試体であると考えられ, この細孔が $CaSO_4 \cdot 2H_2O$ やエトリンガイト生成による膨張圧を受 け止め,結果として組成が緻密になり圧縮強度が増加したと考える.

一方 CaF2 で置換した供試体⑤は、今回の暴露実験の条件下では H2SO4 と CaF2の反応は考えにくい.また先の硫酸水溶液の密度と 供試体質量の結果、および供試体の質量減少量と厚さ減少量の結果 より、供試体⑤は質量変化、形状変化および硫酸水溶液の密度の変 化が少ないことから CaF2には供試体内部へのH2SO4の浸透を妨げ る効果があるといえる.

		(n=3本)			
供試体	平均圧縮強度(N/mm ²) (標準偏差)				
	未暴露	暴 露			
供試体①	54.2	54.5			
(セメントのみ)	(1.08)	(6.26)			
供試体②	21.2	26.8			
(セ:炭=2:1)	(2.05)	(1.11)			
供試体③	9.1	16.3			
(セ:炭=1:1)	(0.32)	(1.87)			
供試体④	3.9	7.3			
(セ:炭=1:2)	(0.09)	(1.46)			
供試体⑤	13.9	15.7			
(セ:フ=1:1)	(1.32)	(1.23)			

表-4.6 硫酸暴露による圧縮強度の変化

図-4.9 硫酸暴露による圧縮強度の変化

以上圧縮強度試験結果と、先の供試体形状および供試体質量の測 定結果を総合すると供試体の質量増加と圧縮強度の増加の関連性 が強く、H₂SO₄との反応による組成の緻密化が圧縮強度増加に繋が ったといえる.

4.5.7 中性化範囲測定(硫酸浸透範囲測定)

写真-4.4 の左側に硫酸暴露実験開始3日目,右側に暴露実験開始から30日目に中性化試験を行った各供試体を示した.

図より供試体①, ②に関しては総面積の著しい減少が確認された. また供試体③, ④では当初の形状をほぼ保っているが,内部のアル カリ分消失が確認され,このアルカリ分消失は特に供試体④におい て激しく,3日目の段階で30%弱,実験終了時(30日目)では80% 以上のアルカリ分が消失した.

一方供試体⑤では表面付近は二水石膏部に変化しているが,内部 はアルカリ分を保持しているのが確認された.

供試体③ セメント: CaCO3=1:1

供試体④ セメント: CaCO₃=1:2

写真-4.4 硫酸暴露実験3日目,30日目の中性化状況

4.5.7.1 総面積(図-4.10)

総面積の残存率の経時変化の傾向は,4.5.1の図-4.3に示した硫酸水溶液の密度の変化(p81),4.5.2の図-4.4に示した供試体の質量変化率(p82)および,4.5.3の図-4.5に示した供試体の長さ変化量(p85)とよく類似している.

供試体①は実験開始後360時間まで直線的に減少したのち緩やかな減少に転じ,実験終了時の総面積の残存率は約65%であった.

供試体②も供試体①同様,減少傾向を示したが供試体①に比べ変 化は少ない.しかし写真-4.4に示したように表面が徐々に剥離し ていく様子が確認され,耐硫酸性は低いといえる.

また実験終了時の質量は元の質量の約80%であったのに対し総 面積の残存率は約75%と若干少ない.これはH₂SO₄との反応により 供試体表面に生成した物質の密度が高いことを示している.

供試体③,④,⑤の総面積も減少傾向を示したが,逆に質量変化率は増加傾向を示した.この結果からも H₂SO₄ との反応による生成物の密度が高いことが裏付けされる.

なおデジタルマイクロスコープによる 10~50 倍での拡大観察で は、供試体①、②の表面は H₂SO₄による侵食で凹凸が多いが、供試

図-4.10 総面積の残存率

体③,④,⑤の表面は CaSO₄・2H₂O と考えられる乳白色の生成物で 覆われ滑らかな状態であった.

4.5.7.2 二水石膏部(図-4.11)

二水石膏部は、セメント硬化体中の Ca 系化合物と H₂SO₄の反応 により CaSO₄·2H₂O を生成したと考える、白色に変化した領域であ る.二水石膏部の測定は実験開始前の総面積から二水石膏部の内側 (中性化部+健全部)の面積を引いて求めており、H₂SO₄による侵 食で脱落した部分も含まれる.

CaSO₄・2H₂O は本来,水和したセメント中には存在せず,H₂SO₄ との反応により生成することから,図は硫酸暴露実験前の総面積を 基に算出した増加率で表した.

なお,以降に示す健全部の残存率および中性化部の増加率の算出 も硫酸暴露実験前の総面積を基準とした.

図より供試体①は実験終了時に元の面積のほぼ 50%が二水石膏 部に変化した.また Ca 系化合物で置換した供試体②,③,④,⑤ も差はあるが約 15%から約 40%が二水石膏部に変化した.

しかし 4.5.3 形状測定 (p84) の結果, 目視観察, 写真-4.4 (p91)

図-4.11 二水石膏部の増加率

および 4.5.7.1 総面積(p92)の結果より,供試体③,④,⑤の二水 石膏部はほとんど脱落せずに供試体表面に留まっているといえる.

また硫酸水溶液の密度の変化からも、セメントの質量の 50%以上 を $CaCO_3$ または CaF_2 で置換することにより $CaSO_4 \cdot 2H_2O$ などの 生成を抑制し、生成しても膨張圧を内部で受容するため脱落に至ら ないといえる.

4.5.7.3 健全部(図-4.12)

健全部は H₂SO₄ との未反応領域であり,中性化試験で呈色するア ルカリ保持領域である.

供試体①,②,③は同様な傾向を示し,実験終了時に約50%から 60%まで減少したが,供試体④の健全部は実験終了時で約16%しか 残存しておらずアルカリの消失が著しい.

しかし硫酸水溶液の密度の変化は供試体③とほぼ同じであること から,供試体④は CaCO3置換量が多く元々のアルカリ量が少ないこ とが健全部残存率が小さい原因と考えられた.また 30 日目の写真 からアルカリ分は内部から表面付近へ移動すると推察される.

供試体⑤は最も多く健全部を保持しており,実験終了時において

図-4.12 健全部の残存率

約86%が健全部であった. また 4.5.1 硫酸水溶液の密度測定(p81) においても H₂SO₄の消費量が一番少なく, 耐硫酸性が高いといえる.

4.5.7.4 中性化部 (図-4.13)

中性化部は中性化試験で呈色しないアルカリ消失領域であり、本 実験では二水石膏部と健全部の間の領域である.この領域は鉄筋コ ンクリート構造としては発錆等の問題が生ずる部分である.

図より供試体④は中性化部の増加が著しく,実験終了時には約 57%が中性化した.また供試体③も約14%が中性化した.しかし供 試体①,②の中性化部は3~5%とわずかであり,供試体⑤において は中性化領域は確認されなかった.

この結果は供試体①,②は供試体中のセメント量,すなわちアル カリ量が多く,供試体③,④は CaCO₃置換により元々のアルカリ量 が少ないことに起因していると考えられる.なお供試体⑤に関して は、前述したように CaF₂には供試体への H₂SO₄の浸透抑制,なら びにアルカリ分の溶出を抑制する作用があるといえる.

図-4.13 中性化部の増加率

以上,総面積,二水石膏部,健全部,中性化部の測定結果より, 供試体①,②は総面積および健全部の減少率が大きく,また二水石 膏部の増加率が大きい.これは供試体表面に生成した二水石膏部が 形状を保持できずに脱落し,その結果,供試体内部へのH₂SO₄の浸 透を容易にしたことを示している.

二水石膏部の増加率が大きい原因は、供試体①および②はセメント量すなわちアルカリ量が元々多いため、激しい酸-塩基反応により CaSO4・2H₂O 生成量が増加するが、供試体①、②はこの CaSO4・2H₂O 生成による膨張圧を内部で受容することができず供試体表面が崩壊、この崩壊による新たな面の露出、CaSO4・2H₂O 生成のサイクルを繰り返すため、二水石膏部の増加が大きくなると考えられる.

供試体③,④は総面積の減少率および二水石膏部の増加率とも供 試体①,②ほど大きくなく耐硫酸性が確認されるが、中性化部の増 加率が大きい供試体④に至っては健全部の残存率が15%とアルカ リ分の消失が多い結果となった.これはセメントの一部を CaCO₃ に置換しているため、Ca(OH)₂などの強アルカリ物質が元々少ない ことが原因と考えられる.

また既往の研究によると、従来コンクリートでは水セメント比が 高くなるほど細孔量が増加し、この細孔が $CaSO_4 \cdot 2H_2O$ 生成時の膨 張圧を緩和するため、耐硫酸性が向上する $4 \cdot 3$)との報告がある.本 研究で作製した供試体は Ca 系化合物置換による施工性(流動性) 低下を防ぐため水粉体比=60%としており、実際のセメント量に対す る水セメント比は 90%から 180%となり、結果的に細孔量が多く水 密性が低い、 H_2SO_4 が浸透しやすい供試体であったとも考えられる.

なお,セメントの質量の 50%以上を CaCO₃で置換した供試体は, 当初の形状をほぼ保持したことから, CaSO₄·2H₂O 生成による膨張 圧を受容できる細孔が多く存在すると推察する.

供試体⑤については、置換した Ca 系化合物は異なるが水セメン ト比が同じ供試体③との比較から、供試体⑤は総面積と健全部の減 少率が小さく、また二水石膏部の増加率が小さく、中性化部は確認 できず、さらに H₂SO₄の消費量も最も少ないことから、CaF₂置換 供試体は高い耐硫酸性を有することは明らかである.

4.5.8 単位体積質量

4.5.2 質量測定(p82)と4.5.3 形状測定(p84)の結果から算出 した各供試体の単位体積質量の変化を図-4.14 に示した.なお単位 体積質量は以下の方法で求めた.

単位体積質量=質量/供試体形状より求めた体積

図より,単位体積質量は全ての供試体において実験開始直後急激 に低下し,供試体①,②はその後も低下傾向を示すが,供試体⑤は

図-4.14 各供試体の単位体積質量の変化

表-4.7 単位体積質量の変化

2.

			(単位:g/cm [°])
	実験開始前	実験開始直後	実験終了時
/#≢≠/★①	1.915	1.827(36H)	1.809
供試件①	100%	95.40%	94.46%
供試体②	1.837	1.789(18H)	1.727
	100%	97.39%	94.01%
/#≡⁺/★⊘	1.791	1.711(30H)	1.803
天民をし	100%	95.53%	100.67%
╓╡╓	1.743	1.636(24H)	1.775
供試件色	100%	93.86%	101.84%
供試体⑤	1.866	1.829(6H)	1.941
	100%	98.02%	104.02%

※上段:単位体積質量:()は測定時間

下段:実験開始前の単位体積質量に対する割合

直ぐに増加傾向に転じ、供試体③、④は48時間から増加傾向に転じる.この実験開始直後の低下と実験終了時の単位体積質量をまとめたものが表-4.7である.

まず実験開始直後の単位体積質量の低下は CaCO₃ 置換量が多い ほど大きい.

これは理論上,次のように考察する.

CaCO3置換供試体とH2SO4との反応は,次の2段階で行われる.

第1段階(強酸-強塩基の反応)

反応式 $Ca(OH)_2+H_2SO_4\rightarrow CaSO_4\cdot 2H_2O$ ······(4.1)

式量(g) 74.09 98.08 172.17

体積 (cm^3) 33.07 53.30 74.21

・第2段階(強酸-弱塩基の反応)

反応式 $CaCO_3+H_2SO_4+H_2O\rightarrow CaSO_4\cdot 2H_2O+CO_2$

式量(g) 100.09 98.08 172.17 ·····(4.2) 体積(cm³) 36.92 53.30 74.21

(4.1)式および(4.2)式より Ca(OH)₂が CaSO₄・2H₂O に変化した場合,式量は 2.32 倍,体積は 2.24 倍になるため単位体積質量は 1.04 倍の微量な増加となる.

また CaCO₃ が CaSO₄·2H₂O に変化した場合,体積は 2.01 倍と なるが式量が 1.71 倍となるため,単位体積質量は 0.85 倍に減少す ることになる. すなわち CaCO₃ 置換量が多いほど Ca(OH)₂ 量が少 なく,早く第 2 段階の反応に移行するため,実験開始直後の単位体 積質量の低下量が大きくなる.

次に,供試体①,②の実験終了時の単位体積質量は供試体 ①1.809g/cm³(94.46%),供試体②1.727g/cm³(94.01%)であっ た.供試体①はセメントのみ,供試体②はセメントの質量の33.3% を CaCO₃で置換したセメント量が多い供試体であり,これら供試 体は酸-塩基反応が激しく進行し CaSO₄・2H₂Oの生成が急激に行 われるが,供試体①,②の配合では CaSO₄・2H₂O 生成による膨張 圧を受容する細孔が少なく,表面から崩壊したと推察される. またこの崩壊による新たな面の露出, CaSO₄・2H₂O 生成のサイク ルを繰り返すため,結果的に総面積に対する二水石膏部の占める割 合が大きくなり,単位体積質量が低下すると考えられる.

供試体①の 360 時間から 528 時間における急激な単位体積質量の減少は、4.5.3 形状測定(p84)の結果では形状の大きな変化はなく、質量が減少していることから供試体中の Ca 系化合物が H₂SO₄ との反応過程で一時的に脱水や脱炭酸を生じ、組成がポーラスになったと考えられる.またその後の急な増加は、脱水や脱炭酸を起こした Ca 系化合物が H₂SO₄ との反応により CaSO₄·2H₂O を生成したためと推察する.

なお供試体②の単位体積質量の変化のサイクルは短いが,供試体 ①と同様な傾向を示している.

供試体③,④の実験開始直後の単位体積質量の低下量は CaCO₃ 置換量に比例し大きくなるが,実験期間を通しての全体的な傾向は ほぼ同様である.

また先の図-4.13 に示した中性化部の増加率からも明らかであ るが、特に供試体④の中性化部が他の供試体に比べ大きく増加した. これは元々の CaCO₃置換量が多いことも一因であるが、(4.2)式に 示したように CaCO₃と H₂SO₄の反応によって生ずる CO₂が、硫酸 水溶液よりも供試体の細孔中に保持されたアルカリ性の自由水に 溶解しやすく、このため供試体内部に CO₂が濃縮し中性化が促進 され、中性化範囲が拡大したと考えられる.

なお中性化により Ca(OH)₂が CaCO₃に変化し,式量は 1.35 倍, 体積は 1.12 倍となるため((4.3)式)膨張圧が生じ,また単位体積 質量は 1.21 倍になる.

反応式 Ca(OH) 2+CO2→CaCO3+H2O ······(4.3) 式量(g) 74.09 100.09 体積(cm³) 33.07 36.92

しかし本実験の配合ではセメント硬化体中の細孔が膨張圧を受容し緻密化するため、結果として質量が増加したと判断する.

なお,供試体③,④の単位体積質量の変化量の違いは CaCO₃置換 量の違いによるものといえる.

供試体⑤の単位体積質量は実験開始直後6時間目の測定で 1.829g/cm³(98.02%)を示したのち増加傾向に転じ,実験終了時 は 1.941g/cm³(104.02%)まで増加した.供試体⑤においては置換 した CaF₂と H₂SO₄の反応は本実験条件では考えにくい.すなわち 供試体⑤の初期の単位体積質量の低下,およびその後の増加はセメ ント由来の Ca(OH)₂などに起因すると判断する.

また生成した CaSO₄・2H₂O は脱落せず供試体に留まっており供 試体③,④と同様,本配合ではセメント硬化体中の細孔が膨張圧を 受容,緻密化し単位体積質量が増加したと判断される.

以上, Ca 系化合物混合供試体は H_2SO_4 との反応により CaSO₄· 2 H_2O などを生成するが, セメントの質量の 50%以上を CaCO₃ で 置換した供試体,および CaF₂ で置換した供試体では, CaSO₄·2 H_2O などの脱落が生じにくく, また単位体積質量が増加する. これはセ メント硬化体中の細孔が生成した CaSO₄·2 H_2O などの膨張圧を受 容し, 結果として組織が緻密化するためと結論する.

なおセメントの質量の 50%を $CaCO_3$, CaF_2 で置換した供試体③, ⑤の比較から,耐硫酸効果は CaF_2 の方が高いといえる.

100

4.5.9 硫酸浸透体積

図-4.15 に供試体の硫酸浸透体積(=実験開始前の体積-健全部の体積)の変化を示した.

図より各供試体とも時間の経過とともに H_2SO_4 が供試体へ浸透 しにくくなることを表している. すなわち,本実験で用いた硫酸水 溶液の濃度は 10mass%であり,試料量に対して H_2SO_4 が過剰で H_2SO_4 の濃度が供試体表面で一定であると仮定すると, H_2SO_4 の拡 散量と時間変化の関係は \sqrt{t} で比例関係が成立し,物質の拡散に関 する基本法則である Fick の拡散則に従うといえる.

ここで図を詳細に分析すると、供試体①、②、③と、供試体④お よび供試体⑤は H₂SO₄の浸透の挙動が異なる.供試体①、②、③は ほぼ同等であるが、供試体④は他に比べて拡散速度が速い.これは 先の写真-4.4 (p91) や 4.5.7.4 中性化部 (p95) からも明らかなよ うに、供試体④はセメントの一部を CaCO₃に置換しているため、 Ca(OH)₂などの強アルカリ物質が元々少なく、また水粉体比=60% のため、実際の水セメント比は 180%となり結果的に細孔量が多く 水密性が低い、H₂SO₄が浸透しやすい供試体であったと考える.な お図より、供試体③、④の実験開始後 72 時間のプロットは近似曲

図-4.15 供試体の硫酸浸透体積の変化

線よりも上にずれた位置にあり,初期拡散が他の供試体に比べ速い といえる.

供試体⑤は他の供試体に比べ著しく拡散が遅い.ここで図を詳細 に分析すると、300時間付近で H_2SO_4 の拡散挙動が異なることが分 かる.312時間を境に近似曲線を分けると、312時間までの初期の 拡散は \sqrt{t} で近似出来る($R^2=0.9386$)ことから拡散が生じているが、 その後は直線で近似され、拡散現象は生じていないものと考えられ る.このことから供試体⑤は初期の H_2SO_4 との反応で表面に H_2SO_4 の浸透を抑制・抑止する不動態層を生成したと判断する.なおこの不 動態層は先の単位体積質量の結果より、結晶性の良い $CaSO_4 \cdot 2H_2O$ から成ると考える.

以上の結果を総合して考察すると、供試体③,④は細孔量が多い ため、実験開始直後は H₂SO₄ が浸透しやすく拡散が速いが、表面 付近で生成した CaSO₄·2H₂O により細孔が満たされ緻密化するた め、以降の H₂SO₄の浸透を抑制し拡散速度が遅くなると推察され る.

なお供試体⑤は H₂SO₄の拡散が特に遅く,先の中性化範囲測定 結果からも供試体③,④とは反応が明らかに異なり,CaF₂を混合 することにより H₂SO₄の浸透を抑制・抑止する不動態層を生成し, 高い耐硫酸性を有したと判断する.

図-4.16 は以上の結果を基に,供試体の中性化領域の有無による H₂SO₄の浸透の概念を示したものである.

(a)の中性化領域のある場合は、二水石膏部と健全部の間に緩衝 領域となる中性化部が存在するため酸-塩基反応が穏やかとなる. このケースは H₂SO₄ が浸透しやすいが H₂SO₄ との反応生成物の膨 張圧を受容し形状を保持するケースであり、供試体③、④が該当す る.供試体③、④はセメントの質量の 50%以上を CaCO₃ で置換し ているため元々のアルカリ量が少なく中性化しやすい. さらに水セ メント比が高いため細孔量が多く水密性が低く、H₂SO₄の浸透が容 易で硫酸浸透体積が増加しやすいといえる. またこの細孔が

102
CaSO₄・2H₂O や CaCO₃ 生成による膨張圧を受容するため,形状を 保持すると判断する.なお供試体③,④の拡散速度の違いは CaCO₃ 置換量の違いといえる.

(b)の中性化領域がない場合は、H₂SO₄が供試体に浸透しにくく、 H₂SO₄との反応が二水石膏部と健全部の境界面で行われる.このた め激しい酸-塩基反応が生じ,また緻密な供試体であるため H₂SO₄ との反応生成物の膨張圧を受容する細孔が少なく崩壊するケース であり、供試体①、②、⑤が該当する.

供試体①,②はアルカリ量の多い、すなわちセメント量が多く緻密で H_2SO_4 が浸透しにくい供試体であり、また $CaSO_4 \cdot 2H_2O$ 生成による膨張圧を受容できる細孔が少なく生成した $CaSO_4 \cdot 2H_2O$ は容易に脱落すると考えられる.

しかし供試体⑤は、セメントの質量の 50%を CaF2 で置換した供 試体であり、セメント量が 50%であるにもかかわらず中性化部が存 在せず、硫酸水溶液の密度の変化も少なく供試体形状も保持し、硫 酸浸透体積も少ない.また供試体①、③との比較から供試体⑤には 酸-塩基反応を抑制し、さらにアルカリ分の溶出を抑制する効果が あるといえる.なお単位体積質量の変化および硫酸浸透体積の変化

図-4.16 供試体への硫酸浸透の概念図

から、H₂SO₄の浸透を抑制・抑止したのは緻密で結晶性の良い CaSO₄・2H₂Oから成る不動態層によるものと結論する.

以上,供試体へのH₂SO₄の拡散はFickの拡散則に従い,その拡 散速度は供試体⑤が最も遅く耐硫酸性が高い.

4.5.10 粉末X線回折測定(XRD)

図-4.17に供試体①の二水石膏部,図-4.18に供試体①の健全部,
 図-4.19に供試体③の健全部,図-4.20に供試体④の二水石膏部,
 図-4.21に供試体④の中性化部,図-4.22に供試体⑤の二水石膏部,
 図-4.23に供試体⑤の健全部の XRD の結果を示した.

図-4.18、図-4.19、図-4.23 に示す各供試体の健全部の XRD より、供試体①の主成分は $Ca(OH)_2$ であり、供試体③、⑤は $Ca(OH)_2$ 以外に混合した $CaCO_3$ や CaF_2 の回折線が認められ、供試体内部は 健全な状態と考えられる.

図-4.17、図-4.20に示す各供試体の二水石膏部の XRD より、 供試体①,④の回折線は CaSO₄·2H₂O のみである. すなわち本結果 より、セメントのみの供試体では Ca(OH)₂ などが CaSO₄·2H₂O に 変化するが、CaCO₃ で置換した供試体においては Ca(OH)₂ に加え CaCO₃ も CaSO₄·2H₂O に変化するといえる.

図-4.21に示す供試体④の中性化部のXRDより回折線はCaCO₃ のみであり,健全部に存在するCa(OH)₂や,H₂SO₄との反応により 生成されるCaSO₄·2H₂Oは確認されない.これは先の図-4.16の 供試体への硫酸浸透の概念図にも記したが,置換したCaCO₃が H₂SO₄との反応によりCO₂を遊離し,健全部の細孔中に保持された アルカリ性の自由水に溶解し中性化させたためと結論する.

図-4.22,図-4.23に示す供試体⑤の二水石膏部と健全部の XRD より、二水石膏部では CaSO₄·2H₂O 以外に CaF₂の回折線が健全部 と同様に確認されたこと、また理論上本実験条件では CaF₂ と H₂SO₄ との反応は考えにくく、4.4 予備実験(p80)の結果からも HF ガスが検出されなかったことから、CaF₂ と H₂SO₄ との反応は考 えにくいが、先の写真-4.4 (p91)の結果、単位体積質量の変化お よび硫酸浸透体積の結果より、CaF₂が緻密で結晶性の良い CaSO₄· 2H₂O から成る不動態層生成に何らかの影響を与えたと判断する.

以上 XRD による分析結果より, Ca(OH)₂や CaCO₃は H₂SO₄との 反応により, CaSO₄·2H₂O に変化し, CaF₂も結晶性の良い緻密な $CaSO_4 \cdot 2H_2O$ 生成に影響を与え、この $CaSO_4 \cdot 2H_2O$ より形状を保持し、以降の H_2SO_4 の浸透を抑制し耐硫酸性が向上すると考える.

しかし CaCO₃ と H₂SO₄の反応によって生ずる CO₂ は硫酸水溶液 に溶解しにくく,供試体の細孔中のアルカリ性の自由水に溶解し供 試体内部の中性化を促進する.

4.5.11 示差熱-熱重量分析 (TG-DTA)

4.5.11.1 カルシウム系化合物の試薬のTG-DTA

図-4.24 に CaSO₄·2H₂O, 図-4.25 に CaCO₃, 図-4.26 に Ca(OH)₂の各試薬(和光純薬工業製/特級)のTG·DTAの結果を示した.

図-4.24 に示す CaSO₄·2H₂O 試薬の熱重量分析(TG)の結果よ り,約 100~160℃で水和物の脱水分解が生じており,この時の質 量減少量は 5.24mg(20.94%)であった.この減少量から CaSO₄· 2H₂O の含有率を計算すると 100.10%となり,試薬の純度(98.0% 以上)とほぼ一致する.

CaCO₃の分解温度は 898℃⁴⁻⁸⁾であり,図-4.25 に示す CaCO₃試 薬の TG の結果では約 660~760℃で脱炭酸分解による質量減少が 生じている.この減少量は 2.20mg(43.96%)であり,この減少量 から CaCO₃の含有率を計算すると 99.99%となり,試薬の純度 (99.5%以上)とほぼ一致する.

 $Ca(OH)_2$ の分解温度は $580 C^{4\cdot8}$ であり, 図 - 4.26 に示す $Ca(OH)_2$ 試薬の TG の結果では,約 400~510 Cで脱水分解による質量減少が 生じている.しかしこの減少量は 6.12mg (22.57%) であり,この 減少量から $Ca(OH)_2$ の含有率を計算すると 92.85%となり,試薬の 純度 (96.0%以上) とずれが生ずる.また理論上の分解温度以上の 約 690 Cまで質量が減少していることから $Ca(OH)_2$ の一部が炭酸化 したと仮定し,減量分から $CaCO_3$ の含有率を計算すると 3.33%, $Ca(OH)_2$ に換算すると 2.46%が炭酸化したことになり, $Ca(OH)_2$ 試 薬の純度とほぼ一致することから,試薬の一部が炭酸化していたと 結論する.

なお, 今回用いた試薬は TG-DTA 分析用として新規に用意したものである.

図-4.26 Ca(OH)2 試薬の TG-DTA

4.5.11.2 各供試体の健全部のTG-DTA

図-4.27~図-4.31 に示した各供試体の健全部の TG-DTA の分 析結果より、TG はいずれも同様な傾向を示し、約 100℃までは供 試体中の自由水の蒸発、その後約 440℃まではセメント水和物から の脱水による質量減少が見られ、約 440~470℃で Ca(OH)₂の脱水 分解が生じ、その後 CaCO₃で置換した供試体② (図-4.28)、供試 体③ (図-4.29)、供試体④ (図-4.30) では、約 780~810℃まで CaCO₃の脱炭酸分解による質量減少が生じている.

一方で CaCO₃を混合していない供試体① (図-4.27),供試体⑤ (図-4.31)においても,約 690℃付近までセメント水和物の分解

サンプル	Ca系化合物 と置換率	化合物 CaSO₄·2H₂O 換率 含有率		CaCO₃ 含有率	推定CaCO ₃ 置换率	CaCO₃収支
a)供試体①の健全部	0.0%	-	14.5%	12.9%	0.0%	0.0%
b)供試体②の健全部	CaCO ₃ 33.3%	-	7.2%	44.5%	35.9%	2.6%
c)供試体③の健全部	CaCO ₃ 50.0%	-	7.9%	58.8%	52.4%	2.4%
d)供試体④の健全部	CaCO ₃ 66.6%	_	2.5%	70.5%	66.1%	-0.5%
e)供試体⑤の健全部	CaF ₂ 50.0%	_	7.1%	6.0%	-0.5%	-0.5%

表-4.8 各供試体の健全部におけるCa系化合物含有率

とともに CaCO₃の脱炭酸分解による質量減少が生じている.なお, 同温度における TG 曲線の変化は Ca(OH)₂試薬の TG (図-4.26) と類似している.

この熱分解による質量減少量から Ca 系化合物の含有率を求めた 結果を表-4.8 に示した.表中の Ca(OH)₂含有率と CaCO₃含有率は TG の変化から計算した含有率であるが,ここでセメントのみの供 試体①において CaCO₃含有率が 12.9%であったことから,供試体② ~⑤に含まれるセメントが CaCO₃ に転換したと仮定し,元々の CaCO₃含有率を計算したものが推定 CaCO₃置換率である.

この推定 CaCO₃置換率と元々の CaCO₃置換率の収支を求めたものが CaCO₃収支であるが,推定置換率と置換率はほぼ同じであり, 各供試体の健全部は硫酸浸透による影響はなかったと判断する.

4.5.11.3 供試体④の中性化部のTG-DTA

図-4.32 に供試体④の中性化部の TG-DTA を示した.

4.5.7 中性化範囲測定(硫酸浸透範囲測定)(p90~)に示した様 に,中性化部は硫酸暴露試験により,供試体⑤以外の全ての供試体 に現れ,供試体④は中性化領域が最も大きく 60%近く現れた.また 供試体①,②,③は中性化領域が全体面積の数%から十数%と少な くサンプル採取が困難であったため,分析は供試体④のみ行った.

TGの傾向は,他の供試体の健全部のTGから約440~約470℃の Ca(OH)2の質量減少を除いた変化と類似している.この熱分解によ る質量減少量から Ca 系化合物の含有率を求めた結果が表-4.9 で あり,先の表-4.8各供試体の健全部における Ca 系化合物含有率の

表 - 4.9 供試体④の中性化部におけるCa系化合物含有率

サンプル	 Ca系化合物 と置換率		CaSO ₄ ·2H ₂ O 含有率	Ca(OH)₂ 含有率	CaCO₃ 含有率	推定CaCO ₃ 置換率	CaCO₃収支	
f)供試体④の中性化部	CaCO ₃	66.6%	—	—	97.3%	93.0%	26.4%	

計算方法と同様に,供試体④に含まれるセメントが CaCO₃に転換したと仮定し,推定 CaCO₃置換率を求めると 93.0%となり, CaCO₃収支は 26.4%と大幅に置換率を上回ることになる.

すなわち H₂SO₄ との反応により CaCO₃ から遊離した CO₃²が健 全部(供試体内部)へ移動し Ca 系化合物を炭酸化させ CaCO₃含有 率の増加を引き起こしたと判断する.

なお先の図-4.15 供試体の硫酸浸透体積の変化(p101)からも, 供試体④において硫酸の供試体内部への拡散が速いことから, CaCO3 置換量が多い供試体は内部の中性化が進行しやすいと結論 する.

4.5.11.4 各供試体の二水石膏部のTG-DTA

図-4.33~図-4.37 に示す各供試体の二水石膏部の TG-DTA 分 析結果より, TG に関してはいずれも同様な傾向を示し,約 100~ 160℃で CaSO₄·2H₂O の水和物の脱水分解による質量の減少が確認 された.

表-4.10 各供試体の二水石膏部におけるCa系化合物含有率

サンプル	Ca系化合物と	CaSO₄·2H₂O	Ca(OH) ₂	CaCO ₃	CaSO ₄ ·2H	20生成割合	CaSO₄·2H₂O転	未転換 Ca系化合物	
	置換率	含有率	含有率	含有率	セメント	Ca系化合物	換Ca系化合物		
g)供試体①の二水石膏部	0.0%	84.1%	-	-	84.1%	-	-	-	
h)供試体②の二水石膏部	CaCO ₃ 33.3%	82.8%	-	-	56.1%	26.7%	15.5%	17.8%	
i)供試体③の二水石膏部	CaCO3 50.0%	87.9%	_	_	42.0%	45.9%	26.7%	23.3%	
j)供試体④の二水石膏部	CaCO ₃ 66.6%	88.3%	_	_	28.1%	60.3%	35.0%	31.6%	
k)供試体⑤の二水石膏部	CaF ₂ 50.0%	75.3%	_	_	42.0%	33.2%	15.1%	34.9%	

セメントのみの供試体①(図-4.33),および CaCO₃の置換率 50% 以下の供試体②(図-4.34),供試体③(図-4.35)は 160℃以降の 質量の変化はほぼ横這いか若干の増加を示した. $CaCO_3$ の置換率 66.6%の供試体④ (図-4.36) および CaF_2 の置 換率 50%の供試体⑤ (図-4.37) は 160℃以上で質量の緩やかな減 少傾向を示し,供試体④では約 600~700℃の間に $CaCO_3$ の脱炭酸 分解と考えられるわずかな質量の減少があるようにも見受けられる. また供試体⑤は 160℃以上でなだらかな減少傾向を示し続けた. こ の 160℃以上の傾向は先のセメントのみの供試体①の TG-DTA(図 -4.27) から $Ca(OH)_2$ の質量減少を除いた変化と類似している. す なわち供試体⑤の二水石膏部には $CaSO_4 \cdot 2H_2O$ 以外にセメント系 の物質が残存していると推察された.

この残存の理由として供試体⑤は 4.5.7 硫酸浸透範囲測定結果 (p90~),および 4.5.1 硫酸水溶液の密度測定(p81)から実験開 始直後は供試体への H₂SO₄ の浸透により内部の二水石膏部が増加 するが、300時間辺りから二水石膏部の増加、硫酸水溶液の密度の 変化が少なくなる.また 4.5.9 硫酸浸透体積(p101)においても 300 時間辺りから硫酸の拡散速度が遅くなる.すなわち表面に生成した 緻密で結晶性の良い CaSO₄・2H₂O から成る不動態層が以降の H₂SO₄ の浸透を妨げたため、表面から内側の二水石膏部は完全に CaSO₄・2H₂O に変化せず、セメント系物質と初期に生成した CaSO₄・2H₂O が共存していたと考える.

次に表-4.10 に熱分解による質量減少量から Ca 系化合物の含有 率を求めた結果を示した.結果より,供試体①~④の約 83%~88% が CaSO₄·2H₂O であり,Ca(OH)₂および CaCO₃が定量されなかっ たことから,ほとんどの Ca 系化合物は CaSO₄·2H₂O に変化したと 判断する.また表中の CaSO₄·2H₂O 生成割合は,セメントのみの供 試体①において CaSO₄·2H₂O 含有率が 84.1%であったことから,供 試体②~⑤に含まれるセメントが同率で CaSO₄·2H₂O に転換した と仮定し,セメント由来と Ca 系化合物由来の CaSO₄·2H₂O の割合 を推定したものである.

またこの推定により $CaSO_4 \cdot 2H_2O$ に転換した $CaCO_3$ および CaF_2 の割合を求めたものが、 $CaSO_4 \cdot 2H_2O$ 転換 Ca 系化合物である.

表より,供試体②~④において CaCO₃は定量されなかったが,計 算上未転換 Ca 系化合物が存在する結果となった.

すなわち先の図-4.16 供試体への硫酸浸透の概念図 (p103) に示 した(a)中性化領域のある場合の二水石膏部において, H₂SO₄ は内部 への浸透に伴い Ca 系化合物との反応で硫酸イオンが消費され,中 性化部との境界ではほぼ H₂O だけとなると推定される.ここで混合 した CaCO₃ が H₂O に溶解し供試体内部に移動したと仮定すると, 先の表-4.9 供試体④の中性化部における Ca 系化合物含有率 (p113)の CaCO₃ 収支で置換率を大幅に上回ったことを説明でき る.

硫酸浸透領域の測定および目視観察からは CaCO₃の置換率 50% 以上の供試体③,④は硫酸暴露後も形状を保持していたことから, CaCO₃混合セメント硬化体に生成された CaSO₄·2H₂O は緻密で結 晶性が高いと判断される.なおこのことは 4.5.6 圧縮強度試験(p88) に示した硫酸暴露による圧縮強度の増加からも裏付けされる.

117

4.5.11.5 各供試体におけるCaCO₃の定量

4.5.11.3 供試体④の中性化部の TG-DTA (p112) の結果より, CaCO₃ で置換した供試体④の中性化部において,置換量よりも多く CaCO₃ が定量され,また 4.5.11.4 各供試体の二水石膏部の TG-DTA (p113)において, CaCO₃ が H₂SO₄により Ca²⁺と CO₃²⁻に分解され, CO₃²⁻が健全部の炭酸化を促進させたと推察された.

このことから 4.5.8 単位体積質量 (p97) で求めた暴露実験前・後 の単位体積質量と,暴露実験後の二水石膏部,健全部,中性化部の 各領域面積から各領域の単位体積質量を推定し,CaCO₃が定量され た中性化部,健全部における CaCO₃含有率を求めた結果を表-4.11 に示した.なお体積は,デジタルマイクロスコープ (KEYENCE VHX-1000)の面積測定機能(撮像倍率:5倍,撮像範囲:61×45.5mm, ピクセル数:1600×1200,測定領域を多角形で囲み,包囲線内のピ クセル数から面積を計測)を用いて計測した面積に,単位長さ1mm を掛けて求めた.

各供試体の中性化部の CaCO₃含有率は,前述のとおり供試体①から供試体③は全体面積に占める中性化領域が小さくサンプル採取が困難なことから,供試体④の分析値を代替値として用いた.

表より、CaCO₃推定含有率は供試体②において若干誤差があるも ののCaCO₃の置換率とほぼ一致した.しかし供試体②は,総体積の 減少量と CaCO₃推定含有率から,元の含有率を推定すると 31.4% となり、置換率とほぼ一致する.すなわち,供試体②は H₂SO₄との 反応により CaCO₃から遊離した CO₃²⁻イオンが供試体内部へ移動し, 再び CaCO₃を生成するため内部の CaCO₃含有率が高くなる.一方 で供試体表面に生成した CaSO₄·2H₂O による膨張圧を受容できず, 表面が剥離・脱落,総体積が減少するため,内部に CaCO₃が濃縮さ れた形となり全体として CaCO₃含有率が高くなったといえる.これ は 4.5.10 粉末 X 線回折測定 (XRD) (p105)の結論と一致する.

118

総体;		"総体積※	¢	本積※(mm	3)	実験終了 時単位体	推定単位	立体積質量	(g/cm³)	総質量	:	推定質量(g	;)	Ca(含有 ³	CO ₃ 率(%)	CaC	O ₃ 推定質量	<u>t(g)</u>	CaCO₃
供試体	Ca糸化合物 置換率	(mm ³)	中性化部	健全部	二水石膏 部	積質量 (g/cm ³)	中性化部	健全部	二水石膏 部	(g)	中性化部	健全部	二水石膏 部	中性化部	健全部	中性化部	健全部	合計	1 推定含有率 (%)
		А	В	с	D	а	b	с	d	E=A×a	F=B×b	G=C×c	H=D × d	f	g	I=F×f	J=G×g	K=I+J	K/E×100
供試体① (セメントのみ)	0%	1029	44	795	190	1.81	1.74	1.92	1.37	1.86	0.08	1.53	0.26	97.3%	12.9%	0.08	0.20	0.28	15.1%
供試体② (セ:炭=2:1)	CaCO ₃ 33.3%	1207	90	865	252	1.73	1.74	1.84	1.35	2.09	0.16	1.59	0.34	97.3%	44.5%	0.16	0.71	0.87	41.6%
供試体③ (セ:炭=1:1)	CaCO ₃ 50.0%	1625	253	980	392	1.80	1.74	1.79	1.88	2.93	0.44	1.75	0.74	97.3%	58.8%	0.43	1.03	1.46	49.8%
供試体④ (セ:炭=1:2)	CaCO ₃ 66.6%	1525	919	260	346	1.78	1.74	1.74	1.88	2.71	1.60	0.45	0.65	97.3%	70.5%	1.56	0.32	1.88	69.4%
供試体⑤ (セ:フ=1:1)	CaF₂ 50.0%	1616	0	1363	253	1.94	1.74	1.87	2.35	3.14	0.00	2.55	0.59	97.3%	6.0%	0.00	0.15	0.15	4.8%

表-4.11 硫酸暴露実験後の各供試体の CaCO₃含有率

※長さ1mm当たりの体積として計算

4.5.12 BET比表面積測定

表-4.12に各供試体の各領域のBET比表面積および全細孔容積, 平均細孔直径の測定結果を示した.測定結果より,いずれの供試体 も二水石膏部のBET比表面積の方が健全部より大きく,全細孔容 積は供試体②以外は二水石膏部の方が大きく,また平均細孔直径は 二水石膏部の方が小さくなっている.

この結果を基に H_2SO_4 との反応による粒子の表面状態の変化を 模式化したものが図-4.38 であり、粒子表面の $CaSO_4 \cdot 2H_2O$ 生成

サンプル	BET比表面積 (m ² /g)	全細孔容積 (cm ³ /g)	平均細孔直径 (nm)
a)供試体①の健全部	12.1	0.08	27.4
b)供試体②の健全部	16.0	0.11	28.3
c)供試体③の健全部	16.3	0.08	18.8
d)供試体④の健全部	5.7	0.08	53.4
e)供試体⑤の健全部	9.9	0.07	27.8
f)供試体④の中性化部	12.7	0.08	26.0
g)供試体①の二水石膏部	52.5	0.19	14.5
h)供試体②の二水石膏部	59.6	0.09	6.3
i)供試体③の二水石膏部	41.4	0.19	18.6
j)供試体④の二水石膏部	35.9	0.16	18.1
k)供試体⑤の二水石膏部	26.3	0.11	17.3

表 - 4.12 各供試体の各領域の BET 比表面積測定結果

により BET 比表面積が増加し,全細孔容積も増加するが,逆に平均細孔直径は小さくなると説明できる.

次に表-4.11 に示した各領域の推定単位体積質量と BET 比表面 積との関係を示したものが図-4.39 である.図より健全部のプロッ トは単位体積質量:1.74~1.92g/cm³(範囲:0.18g/cm³),BET 比 表面積:5.7~16.3m²/g(範囲:10.6m²/g)と狭い範囲に分布してお り,単位体積質量と BET 比表面積の相関(r=0.2895)は低い.

一方,二水石膏部のプロットは単位体積質量:1.37~2.35g/cm³ (範囲:0.98g/cm³),BET 比表面積:26.3~59.6m²/g(範囲: 33.3m²/g)と広い範囲に分布し,高い負の相関関係(r=-0.9709) が確認された.特に耐硫酸性が高い供試体ほど,BET 比表面積が小 さく単位体積質量が大きいことから,生成した CaSO₄·2H₂O の結晶 性が良く,結晶が大きく成長し,供試体表面を被覆していると判断 する.

なお供試体①,②は二水石膏化により単位体積質量は低下し, BET比表面積は他の供試体に比べ大きく,また目視観察では形状を

121

保持できず表面から剥離・崩壊していたことから、 H_2SO_4 との反応 により生成された $CaSO_4 \cdot 2H_2O$ は結晶性の悪い、ポーラスな構造と いえる.

これまでの結果と総合して考察すると、供試体③、④は二水石膏 化により単位体積質量は若干の増加を示すが、BET比表面積は供試 体①、②に比べ小さく、また形状変化はわずかであり表面の触感は 硬質であったことから、生成した CaSO4・2H₂O の結晶性は良く、表 面を被覆した状態と考えられる.

供試体⑤は最も BET 比表面積の変化が少ないが,単位体積質量が増加していることから,供試体③,④以上に結晶性の良い緻密な CaSO4・2H2O を生成し,表面を被覆していると結論する.

4.6 結論

本研究は Ca 系化合物を用いコンクリートの耐硫酸性向上を目的 とし, セメントの一部を CaCO₃ または CaF₂ で置換したセメント硬 化体を用いて硫酸暴露実験を行った.本章の実験結果から得られた 知見をまとめると以下の通りである.

(1) 硫酸水溶液の密度測定

セメントの質量の 50%以上を、CaCO₃または CaF₂で置換した供 試体の硫酸水溶液の密度の低下は少なく、特に CaF₂で置換した供 試体を浸漬した硫酸水溶液の密度の低下が少ない.

(2) 質量測定

セメントのみ,およびセメントの質量の 33.3%を CaCO₃で置換 した供試体の質量は,実験開始当初は増加傾向を示すが,その後は 硫酸水溶液の密度の低下と連動するように質量の減少傾向を示す.

一方セメントの質量の 50%以上を CaCO₃ で置換した供試体は実 験開始当初は減少傾向を示すが,その後は増加傾向に転じ,実験終 了時には元の質量とほぼ同じとなった.

またセメントの質量の 50%を CaF2で置換した供試体は,実験開 始直後に微量の減少を示すが,その後は増加傾向に転じ,実験終了 時には元の質量より若干増加した.

(3) 目視観察

硫酸暴露によりセメントのみ、およびセメントの質量の 33.3%を CaCO₃ で置換した供試体は、容易に H_2SO_4 による侵食を受けるが、 セメントの質量の 50%以上を CaCO₃ または CaF₂ で置換した供試 体は、 H_2SO_4 の侵食をほとんど受けず、表面は結晶性の良い CaSO₄・ 2 H_2O と考える乳白色の硬い生成物で覆われ、容器内底部への沈殿 物もほとんどない.

(4)形状測定

セメントのみ、およびセメントの質量の 33.3%を CaCO₃ で置換した供試体は、実験開始後若干の膨張傾向を示すが、その後は減少傾向を示す.この変化は供試体の質量変化と同期している.

セメントの質量の50%以上を CaCO₃または CaF₂で置換した供試体は、形状変化はほとんどないが、表面は結晶性の良い CaSO₄・ 2H₂O と考える乳白色の硬質な物質に変化しており、この変化が先 の質量増加を引き起こしたといえる.

(5) 硫酸水溶液の密度と供試体質量

セメントのみ,およびセメントの質量の 33.3%を CaCO₃で置換 した供試体は硫酸水溶液の密度低下とともに質量減少を示す.

しかし、セメントの質量の 50%以上を CaCO₃または CaF₂で置換した供試体は、硫酸水溶液の密度の低下とともに質量増加を示す. これは供試体が H₂SO₄ との反応により密度の高い物質を生成した ことを示しており、また形状変化の結果からも生成物が供試体表面 に留まっているためである.

(6) 質量減少量と厚さ減少量

セメントのみ,およびセメントの質量の 33.3%を CaCO₃で置換 した供試体は,質量減少量と厚さ減少量に関連性が認められるが, セメントの質量の 50%以上を CaCO₃または CaF₂で置換した供試 体は,質量の変化に対し形状の変化はわずかであり,形状は保ちつ つ質量が変化している.中でもセメントの質量の 50%を CaF₂で置 換した供試体は質量増加の傾向が強い.

(7) 圧縮強度試験

暴露実験前後でセメントのみの供試体に変化はないが、CaCO₃ で置換した供試体は圧縮強度が増加しており、CaCO₃置換割合が多 くなるほどその傾向は大きくなる.この圧縮強度増加は、硫酸暴露 による組成の緻密化によりもたらされると考える.

一方 CaF_2 で置換した供試体の圧縮強度に変化はないが、これは CaF_2 に H_2SO_4 の浸透を妨げる働きがあり、内部で H_2SO_4 との反応 が生じなかったことが原因と考えられる.

(8)中性化範囲測定(硫酸浸透範囲測定)

セメントのみ,およびセメントの質量の 33.3%を CaCO₃で置換 した供試体は,酸-塩基反応が激しく生じ CaSO₄・2H₂O 生成量も 多い.また水セメント比が他の供試体に比べ小さいため,組織は緻密となり CaSO4・2H2O 生成による膨張圧を受容できず,二水石膏部が脱落し健全部への H2SO4の浸透が容易になる.このため総面積および健全部の減少率も大きくなる.

CaCO₃置換供試体は,置換量が増えるほど中性化部が増加する. これはセメント量減少によるアルカリ量の減少と,CaCO₃とH₂SO₄ の反応によって生ずる CO₂がセメント硬化体内部の中性化を促進 するためである.

セメントの質量の 50%を CaF2で置換した供試体は,総面積と健 全部の減少率が低く中性化部も存在しない.また二水石膏部の増加 率も小さく H₂SO₄の消費量も少ないことから,高い耐硫酸性を有 するといえる.

(9) 単位体積質量

セメントの質量の 50%以上を CaCO₃ で置換した供試体は,細孔 量が多く CaSO₄・2H₂O 生成による膨張圧を細孔が受容し,組織が 緻密化するため,形状を保持しつつ単位体積質量が増加する.

(10) 硫酸浸透体積

供試体への H₂SO₄の拡散は Fick の拡散則に従い, 拡散速度はセ メントの質量の 50%を CaF₂ で置換した供試体が最も遅く, また H₂SO₄ との反応で結晶性の良い CaSO₄·2H₂O から成る不動態層を 表面に生成するため, 以降の H₂SO₄ との反応が抑制・抑止される. (11) 粉末 X線回折測定(XRD)

 $Ca(OH)_2$ や $CaCO_3$ は H_2SO_4 との反応により, $CaSO_4 \cdot 2H_2O$ に変化するが, XRD からは CaF_2 と H_2SO_4 と反応は確認できない.

(12)示差熱-熱重量分析(TG-DTA)

CaCO₃を混合した供試体は、H₂SO₄との反応により CaCO₃から 遊離した CO₃²⁻が健全部(供試体内部)へ移動し、Ca(OH)₂などと 反応し CaCO₃を再生成するため、内部の CaCO₃含有率が高くなる.

なお,この結果は暴露実験後の供試体の CaCO₃ 推定含有量と置換 率がほぼ一致すること,および XRD による生成物質の同定解析結 果からも裏付けされる.

また CaF_2 で置換した供試体において、 $CaSO_4 \cdot 2H_2O$ 生成量とセ メントおよび CaF_2 の配合量との収支が合わず、本実験条件では生 じないと考えられていた CaF_2 と H_2SO_4 の反応が示唆された.

(13) BET 比表面積測定

二水石膏部の単位体積質量と BET 比表面積には高い相関関係が 確認され,耐硫酸性が高い供試体ほど,BET 比表面積が小さく,単 位体積質量が大きくなる.

これは生成した $CaSO_4 \cdot 2H_2O$ の結晶性が良く,結晶が大きく成長 しているためと考える.特に CaF_2 で置換した供試体は BET 比表面 積の変化が少なく、単位体積質量は増加していることから、結晶性 の良い緻密な $CaSO_4 \cdot 2H_2O$ を表面に生成し、被覆していると結論す る. なお、これは先の硫酸浸透体積の結果からも裏付けされる.

以上,総合的に判断すると,セメントのみ,およびセメントの質量の 33.3%を CaCO₃ で置換した,セメント量の多い供試体は耐硫酸性が低く,H₂SO₄による侵食が激しい.

セメントの質量の50%以上を $CaCO_3$ で置換した供試体は, H_2SO_4 との反応により結晶性の良い $CaSO_4 \cdot 2H_2O$ を生成し、組織が緻密 化し圧縮強度も増加する.しかし、 $CaCO_3$ から遊離した CO_3^2 が健 全部(供試体内部)へ移動し $CaCO_3$ を再生成するため、内部の $CaCO_3$ 含有率が高くなる.なお $CaCO_3$ 置換量が多いほど H_2SO_4 の内部への拡散が速く、中性化領域も増加することから、強アルカ リにより鉄筋を保護する鉄筋コンクリート構造には適さない.

セメントの質量の 50%を CaF_2 で置換した供試体は, H_2SO_4 の拡 散速度は最も遅く, また H_2SO_4 との反応で結晶性の良い $CaSO_4$ ・ $2H_2O$ から成る不動態層を表面に生成するため, 以降の H_2SO_4 の浸 透が抑制・抑止される. このため圧縮強度の増加はなく, また健全 部が多く残存し中性化領域も確認されないことから, 鉄筋コンクリ ート構造としての可能性が示された. なお TG の分析結果より、 CaF_2 で置換した供試体において $CaSO_4 \cdot 2H_2O$ 生成量の収支が合わず、本実験条件では生じないと考 えられていた CaF_2 と H_2SO_4 の反応が示唆された. 〈参考文献〉

- 4-1) 無機マテリアル学会編:セメント・セッコウ・石灰ハンドブ ック,技報堂出版, p46, pp.139~140, p322, 1995.11
- 4-2)小西和夫,黒澤功,五十嵐秀明,須賀雄一:下水道施設用コンクリートの耐硫酸性に関する研究,セメント・コンクリート
 論文集 Vol.57, pp.15~320, 2003
- 4-3) 蔵重勲,魚本健人:コンクリート中の水和物および微細構造 が耐硫酸性に及ぼす影響,コンクリート工学年次論文集,

Vol.23, No.2, pp.469~474, 2001

- 4-4)東京都下水道局施設管理部:コンクリート改修技術マニュアル(処理施設編),参-11,2005
- 4-5)日本下水道事業団:下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル,付 pp.20~22, 2007
- 4-6) 日本下水道事業団:耐硫酸モルタル防食技術の技術評価に関 する報告書, p6, pp.3-21~3-24, 2008
- 4-7) 岸谷孝一,西澤紀昭他編:コンクリート構造物の耐久性シリーズズ 中性化,技報堂出版, p5, 1986.8
- 4-8) 無機マテリアル学会編:セメント・セッコウ・石灰ハンドブック, 技報堂出版, pp.215~221, 1995.11
- 4-9)野呂純二,加藤淳:解説 比表面積,細孔分布,粒度分布測定,
 ぶんせき 2009.7,(公社)日本分析化学会,pp.349~355,2009
- 4-10) 無機マテリアル学会編:セメント・セッコウ・石灰ハンドブ ック,技報堂出版, p373, 1995.11

第5章

CaF2 混合による耐硫酸性向上の解明

5.1 はじめに

第4章では、セメントの質量の 50%以上を CaCO₃ または CaF₂ で置換することにより、耐硫酸性が向上することを明らかにした. この耐硫酸性向上について種々の測定項目について行った検討結果 をまとめたものが表-5.1 である.

特にセメントの質量の 50%を CaF_2 で置換した供試体は,高い耐硫酸性を有することが明らかとなり, H_2SO_4 との反応により結晶性の良い緻密な $CaSO_4 \cdot 2H_2O$ から成る不動態層を表面に生成し,以降の H_2SO_4 の浸透を抑制・抑止すると考察した.

さらに本実験条件では生じないと考えられていた CaF_2 と H_2SO_4 の反応が示唆された.

 $CaF_2 と H_2SO_4 の反応により HF を生成する場合,濃硫酸を用い$ $450~550℃の加熱条件下で行われる <math>4 \cdot 10$)ため,本実験のように 10mass%の希硫酸を用い,加熱なしの条件では CaF_2 と H_2SO_4 との 反応は考えにくく,第4章4.4予備実験(p80)からも HF ガスは 検出さなかったことから,本実験条件では CaF_2 と H_2SO_4 の反応は ないと考えられた.しかし供試体⑤の二水石膏部の TG 分析結果(図 -4.37 および表-4.10 k))(p115)では CaSO_4 \cdot 2H_2O 生成量は約 75%となり,配合したセメントが全て CaSO_4 · 2H_2O に転換した場合 よりも多くの CaSO_4 · 2H_2O が定量されたことから, CaF_2 と H_2SO_4 の反応が示唆された.

この結果を踏まえ、CaF2 試薬(和光純薬工業/特級:純度 97.0% 以上)を 10mass%硫酸水溶液に入れ、100 時間後の CaF2 と硫酸混 合沈殿物の分析を行った.

130

測定·検討項目	①セメントのみ	②セ:炭=2:1	③セ:炭=1:1	④セ:炭=1:2	⑤セ:フ=1:1			
硫酸水痰液の密度	×	x	Δ	Δ	0			
则的小石仪》山及	低下	傾向	低下が	少ない	特に低下が少ない			
	×	X	Δ	Δ	0			
供試体質量の変化	減少	傾向	一旦減少後	一旦減少後, 増加傾向				
供試体形状の変化	×	×	0	0	Ø			
一日本の学校である。	一旦増加	旧後減少		ほとんど変化なし				
硫酸水溶液の密度と	x x	×	0	0	0			
供試体質量	硫酸密度低下と	同時に質量減少	硫酸密度低下と	ともに質量増加, ⑤が一	番変化が少ない			
供試体の質量減少量と	X X	×	0	0	0			
厚さ減少量	質量減少とと	もに厚さも減少	形状変化は少ない	いが,質量が変化.特に①	5は質量増加傾向			
 圧縮強度試験	0	0	0	0	0			
	変化なし		暴露により圧縮強度増加]	変化なし			
硫酸浸透範囲測定	X	X	X	X	0			
	総面積の	咸少著しい	内部のアルカリ消失	夫. 特に④が著しい	アルカリ分保持			
総面積	×	×	0	0	0			
	64%	75%	97%	95%	88%			
一水石膏部	×	×	Δ	Δ	0			
	48%	41%	25%	27%	15%			
健全部	×	×	×	X X	0			
	50%	54%	61%	16%	86%			
中性化部	0	0	Δ	×	0			
	3%	6%	14%	57%	0%			
까지 시 수준은 호수가	X	X	Δ	Δ	0			
単位体積買重の変化	低下	傾向	実験開始後一旦減少、その後増加傾向		実験開始直後に低下, その後は増加傾向			
協務温添休積の変化	Δ	Δ	Δ	×	0			
则政汉边种很妙交化		硫酸の拡散ほぼ同じ		硫酸の拡散大	硫酸の拡散小			
XRD	Ca(OF	i) ₂ やCaCO3は硫酸との反	え応により、CaSO₄・2H₂O	CaF₂と硫酸の反応は確 認できず				
TG-DTA		CaCO₃から遊離した(CO ₃ ²⁻ が供試体内部へ移	CaF₂と硫酸の反応が示 唆				
BET比表面積測定	ħ	()						
総括	硫酸との反応で供試体 が経時的に侵食	セメントのみの供試体 ①よりも耐硫酸性はあ るが、硫酸との反応で 供試体が経時的に侵 食	・硫酸の密度低下は少な ・硫酸暴露により質量増 度も増加 ・CaCO ₃ から遊離したCC せ、CaCO ₃ 混合量が多し 中性化領域の拡大が大	⁽ く, 形状変化も少ない 加(組成が緻密化), 強) ₃ ²⁻ が内部を中性化さ いほど硫酸の拡散が速く きい	・硫酸の密度低下は少 なく、形状変化も少ない ・硫酸との反応で結晶 性の良いCaSO4・2H ₂ O から成る不動態層を表 面に生成 ・硫酸暴露により質量 増加(組成が織密化) ・硫酸との反応は表面 のみ、硫酸の拡散が遅 く健全部を多く保持			

表-5.1 耐硫酸性向上に関する測定・検討結果総括表

5.2 実験方法

実験は第4章4.3実験方法(p68~)に示した供試体⑤の実験条件を考慮し、 $CaF_2 \ge H_2SO_4$ の最大反応量は供試体質量を超えることはないため、 CaF_2 量は供試体の質量と同じ比率で次のとおりに設定した.

CaF2 試薬 : 46.33g

10mass%硫酸水溶液 : 400mL

500mLのビーカーに上記硫酸水溶液と CaF2 試薬を入れ、よく攪拌した後、100時間静置した. その後 5C の濾紙で濾過し、CaF2と 硫酸混合沈殿物を 40℃で 12 時間乾燥した.

乾燥後, XRD および TG-DTA により CaF₂と硫酸混合沈殿物の同 定および定量分析を行った.

XRD 装置は理学電機社製 回折線湾曲結晶モノクロメーター付き RAD-B システムを使用し、測定は対陰極: Cu (モノクロメーター)、管電圧: 40kV、管電流: 20mA,発散スリット: 1deg、散乱スリット: 1deg、受光スリット: 0.15mm、スキャンスピード: 4°/min、スキャンステップ: 0.01°で行った.

TG-DTA 装置は Rigaku 社製 示差熱天秤 Thermo plus EVOⅡ /TG-DTA シリーズを使用し、測定条件は、測定温度範囲:室温~ 1000℃,昇温速度:10.0℃/min とした.

132

5.3 結果および考察

5.3.1 CaF₂試薬と10mass%硫酸水溶液による反応性図-5.1にCaF₂と硫酸混合沈殿物のXRDの同定解析結果,図 5.2にTG-DTAの分析結果を示した.

図-5.1の XRD の同定解析結果より、CaF₂ と CaSO₄・2H₂O の 2 つの回折線が確認され、本実験条件では生成しないと考えられていた CaSO₄・2H₂O の生成が確認された.

図-5.2のTG-DTAの分析結果より,約 100~160℃付近に質量減 少が確認された.この質量減少は図-5.3(図-4.24 を再掲)に示 す CaSO₄·2H₂O 試薬のTG 曲線と綺麗に一致しており,CaSO₄· 2H₂O の脱水分解による減少と断定できる.この減少量から求めた CaSO₄·2H₂O 生成量は 7.8%であり,CaF₂が 3.5%反応したことに なる.

なお、CaSO₄・2H₂O は 109℃で CaSO₄・1/2H₂O(半水石膏),133℃ で CaSO₄(無水石膏)へと脱水分解する ⁵⁻¹ため DTA 曲線で約 100 ~160℃の間に通常 2 つの吸熱ピークが現れるが、本結果において ピークが 1 つしか確認されないのは、本測定では昇温速度を 10.0℃ /min としたためである.

以上 CaF_2 試薬と 10mass%硫酸水溶液による実験結果から、本硫酸暴露実験の条件でも CaF_2 と H_2SO_4 が反応し、生成量はわずかながら $CaSO_4 \cdot 2H_2O$ を生成し、HFも発生しているといえる.なお前

図 - 5.1 CaF2と硫酸混合沈殿物の XRD

述の HF の製法は大量に HF を発生させることを目的に,反応量が 最大になるように設定された条件と考える.

5.3.2 長期暴露による硫酸混合沈殿物の分析

CaF₂ 試薬と 10mass%硫酸水溶液による実験結果から,本硫酸暴 露実験の条件でも, CaF₂と H₂SO₄が反応し CaSO₄·2H₂O を生成す ることが明らかとなったことから,暴露期間を 9 ヶ月まで延長し CaF₂と硫酸混合沈殿物の分析を行った.

写真-5.1が9ヶ月後のCaF2と硫酸混合沈殿物をビーカーから取 り出し,乾燥後の状態を写したものである.CaF2と硫酸混合沈殿物 はビーカー底部で完全に一体化して固化した状態であり,叩くと硬 質な音でハンマーを用いないと砕けないほど硬化していた.また表 面には透明な針状結晶を生成している様子が目視でも確認された.

写真-5.2 はデジタルマイクロスコープ (KEYENCE 社製 VHX-1000)を用い, 倍率×100 で観察した CaF2と硫酸混合沈殿物 の顕微鏡写真であり, 無数の針状結晶が確認される.

図-5.4 に沈殿生成物の XRD を示した. この回折線は CaF₂と

写真-5.1 9ヶ月暴露した CaF₂と硫酸混合沈殿物の状態

写真-5.2 CaF₂と硫酸混合沈殿物の顕微鏡写真(倍率×100)

 $CaSO_4 \cdot 2H_2O$ の典型的なピークと一致している.また TG-DTA の結 果を図-5.5 に示した.TG の分析結果より,先の実験結果同様,約 $100 \sim 160 \degree$ 付近に $CaSO_4 \cdot 2H_2O$ の脱水分解による質量減少が確認 された.この減少量から $CaSO_4 \cdot 2H_2O$ 生成量を計算すると 54.4% となり, CaF_2 の 24.7%が反応したことになる.すなわち先の 100 時間の実験結果と合わせて,時間経過とともに $CaSO_4 \cdot 2H_2O$ 生成量 が増加することが明らかとなった.また写真-5.3 に CaF_2 の試薬, 写真-5.4 に $CaSO_4 \cdot 2H_2O$ の試薬の顕微鏡写真を示したが,いずれ の試薬も写真-5.2 に見られたような結晶とは異なる粒子状のもの

図-5.4 9ヶ月暴露した CaF₂と硫酸混合沈殿物のXRD

図 - 5.5 9ヶ月暴露した CaF2と硫酸混合沈殿物のTG-DTA

であり、先の針状結晶は CaF_2 と H_2SO_4 との反応により生成した $CaSO_4 \cdot 2H_2O$ が結晶成長したものと判断する.

写真-5.3 CaF₂試薬の顕微鏡 写真(倍率×100)

写真-5.4 CaSO₄·2H₂O 試薬 の顕微鏡写真(倍率×100)

5.3.3 耐硫酸性向上メカニズムの解明

 CaF_2 試薬と 10mass%硫酸水溶液による実験結果から、本硫酸暴 露実験の条件でも、 CaF_2 と H_2SO_4 が反応し $CaSO_4 \cdot 2H_2O$ を生成し ていることから HF も生成しているといえる. しかし、第 4 章 4.4 予備実験(p80)においては HF ガスが検出されなかった.

この予備実験の結果と、これまでの結果を総合して CaF2 混合に よる耐硫酸性向上のメカニズムを推察すると以下の通りとなる.

本実験条件において、CaF2混合セメント硬化体と 10mass%硫酸 水溶液の反応により生成した HF が微量であり、また HF の沸点は 19.5℃で、容易に水に溶けて HF になる ⁵⁻²⁾ため、ガス態でなくセメ ント硬化体の細孔中の溶液に溶存状態で存在していると推察する.

さらに HF は反応性が高いため,細孔中の Ca(OH)₂ や, H₂SO₄ により分解されたケイ酸カルシウム水和物 (C-S-H) 中などの Ca 系化合物と反応し微細な CaF₂を再生成し,細孔を充填していくと 考える.

また HF はシリカやケイ酸塩を溶かす 5-2)性質があるため, HF 生成から CaF2 再生成の過程で, 周囲の C-S-H 中のシリカを溶解しコロイド状のシリカを生成する. このコロイド状シリカと再生成した 微細な CaF2 がセメント硬化体中の細孔を充填することにより緻密 化したシリカ・CaF2 層を形成し, 耐硫酸性が向上すると推察する.

138
緻密な CaSO₄・2H₂O 層を生成すると同時に,その下にコロイド状シ リカと再生成した微細な CaF₂ でセメント硬化体中の細孔を充填, 緻密化したシリカ・CaF₂層を形成し,この二層構造の相乗効果によ り硫酸浸透抑制効果が高まると結論する.

このシリカ・CaF2 層による耐硫酸性向上のメカニズムは、SiF4 をコンクリート中に浸透拡散させ、コンクリート中の Ca(OH)2を化 学反応によって不溶性化合物の CaF2 に置換し耐食層を形成すると ともに、コロイド状のシリカを析出させコンクリート中の細孔を充 填し、緻密化させるオクラート法の理論と同様なものといえる.

なお供試体表面に結晶性の良い緻密な『CaSO4・2H2O 層』とその 下のコロイド状シリカと再生成した微細な CaF2 でセメント硬化体 中の細孔を充填, 緻密化した『シリカ・CaF2層』の生成は,以下に 示す第4章の CaF2 で置換した供試体の測定結果からも裏付けされ る.

- ①図-4.7 硫酸水溶液の密度と供試体質量の関係(p86),図-4.8 供試体の質量減少量と厚さ減少量の関係(p87),および図-4.9 硫酸暴露による圧縮強度の変化における変化(p89)が小さい.
- ②4.5.7 供試体の中性化範囲測定(硫酸浸透範囲測定)(p90~)の 測定結果から,他の供試体に比べ二水石膏部の増加率が低く,ま た健全部の残存率が高い.
- ③図-4.15 供試体の硫酸浸透体積の変化(p101)において硫酸の拡 散速度が遅い.
- ④図-4.37 供試体⑤二水石膏部の TG-DTA,および表-4.10 各供試体の二水石膏部における Ca 系化合物含有率(p115)より, CaF2 置換量以上に CaSO4・2H2O が定量された.
- ⑤図-4.39 BET 比表面積と各領域の単位体積質量の関係(p121) において CaF₂ 混合供試体の二水石膏部の比表面積が小さい.
- ⑥目視観察では硫酸による侵食が少なく,表面の剥離・脱落も少ない.

5.4 結論

第4章に示した TG の分析結果より, CaF2 で置換した供試体にお いて CaF2 と H2SO4 の反応が示唆されたことから, CaF2 試薬を硫酸 水溶液に暴露し, CaF2 と硫酸混合沈殿物を XRD および TG-DTA に より分析を行った.

分析の結果,本実験条件からは生成しないと考えられていた CaSO₄·2H₂O 生成が確認されたことから,本実験条件でも CaF₂と H₂SO₄の反応が生じていると結論する.

また反応により発生する HF は C-S-H 中のシリカを溶解, コロイ ド状のシリカを生成し, さらに HF は周囲の Ca(OH)2や C-S-H な どの Ca 系化合物と反応し微細な CaF2を再生成する.このコロイド 状シリカと再生成した微細な CaF2が, セメント硬化体中の細孔を 充填, 緻密化した, シリカ・CaF2層を形成すると考える.

また第4章における種々の測定結果および考察を踏まえ総合的に 判断すると、この耐硫酸性向上は、表面に生成した結晶性の良い緻 密な CaSO₄・2H₂O 層と、シリカ・CaF₂層との二層構造の相乗効果 により、H₂SO₄ の浸透が抑制・抑止され、耐硫酸性が向上すると推 察する. 〈参考文献〉

- 5-1) 無機マテリアル学会編:セメント・セッコウ・石灰ハンドブック,技報堂出版, p221, 1995.11
- 5-2) 大木道則・大沢利昭・田中元治・千原秀昭:化学辞典,東京化 学同人会, p1225, 2007.2

第6章

総括

6.1 総括

本論文は、公衆衛生や浸水の防除などの役割を担い、人々の生活 を快適にする、下水道施設の維持管理を効率的かつ戦略的に行い、 持続発展可能な社会の構築に貢献すべく行った研究である.特に設 計時に考慮された耐用年数よりも早く老朽化を引き起こし、維持管 理を困難なものにしている、コンクリート製下水道管の微生物腐食 について実態調査と分析を行い、その上で長寿命化のための微生物 腐食を生じさせない、新たな耐硫酸性コンクリートについて研究を 行った.

第1章では『緒論』として、本研究の背景となる社会資本の老朽 化問題および国の対応などについて概説し、特に都市の健全な発達 及び公衆衛生の向上と、公共用水域の水質保全に不可欠な社会資本 である下水道について、その概略や普及率などの現状、抱えている 問題点について概説した.さらに東京都が実施している老朽化対策 などの維持管理方法について概説し、その上で本研究の意義につい て述べた.

第2章の『既設コンクリート製下水道管における腐食の現状』で は、下水管渠の早期老朽化の一因であるコンクリートの微生物腐食 について、既設下水道管の実態調査を行い、その調査結果から腐食 が発生しやすい条件を調べると同時に得られたデータの分析を行っ た. さらに多変量解析によりコンクリート製下水道管の微生物腐食 予測の可能性についても検討を行った.

結果,既設下水道管の腐食調査により得られたデータの分析によ り腐食の発生しやすい条件が明らかとなり,さらに多変量解析によ り管径 900mm 以下の管渠において管径,勾配,路線延長,使用年 数といった,各自治体が管理している下水道台帳から容易に抽出可 能なパラメータから線型判別関数により良好な精度で腐食予測が可 能であることを示した.

本手法は危険度の高い路線を選別する,スクリーニング手法として有効であり,本手法により選別された箇所から優先的に調査を行

うことで維持管理費用の削減,および適切な維持管理サイクルの構築などが可能となる.

なお本研究結果を参考に、多くの研究者がこのようなパラメータ を用いた老朽化予測や、アセットマネジメントに関する論文を発表 しており、本論文に関連した発表論文の引用回数も4回(①~④に 示す)と下水道の維持管理手法の構築に貢献している.

- ①松宮ら、下水道管きょのアセットマネジメント研究、下水道協会
 誌 Vol.44 No.538, pp.13~19, 2007
- ②稲垣ら、多変量解析を用いた下水道管渠の劣化箇所の予測、セメント・コンクリート No.734, pp.26~30, 2008
- ③ 藤生ら,アセットマネジメントにおける解析結果の実務的援用手 法の提案,下水道協会誌 Vol.46 No.563, pp.118~125, 2009
- ④藤生ら,管渠劣化に関わる必要年間調査延長の算出及び調査箇所の選定のための統計的手法,下水道協会誌 Vol.50 No.605, pp.118-~25, 2013

第3章では『下水道施設におけるコンクリートの微生物腐食とその対策技術』として、コンクリートの微生物腐食のメカニズム、および微生物が生成する H₂SO₄ とコンクリートとの反応について解説し、現在のコンクリートの微生物腐食に対する対策技術の基本的な考え方、またコンクリートの防食工法として耐硫酸性コンクリート(モルタル)の実用化例を紹介した.

第2章の分析で明らかになったとおり、コンクリート製下水道管 に発生する微生物腐食は、特定の箇所ではなく様々な箇所で発生す る危険性があり、しかもその進行が早く、供用後 10 年未満で機能 しなくなった例の報告もあり、これら補修にかかる費用や補修工事 に伴う施設の停止など、多くの問題を抱えている.

この問題解決のためには新設はもとより,更生・再構築に用いる 材料の長寿命化が必要不可欠である.

よって第4章『フッ化物混合セメント硬化体の耐硫酸性に関する 検討』では、微生物腐食を受けた施設の補修材料として、また新設 構造物の材料として、「コンクリート表面に緻密な CaSO₄・2H₂O 層 を生成させ、H₂SO₄の浸透を抑制または抑止する」と言った新しい 発想による耐硫酸性コンクリートの研究を行った.

緻密な $CaSO_4 \cdot 2H_2O$ 層を生成のために本研究では $CaCO_3$ および CaF_2 に着目し,これらでセメントの一部を置換したセメント硬化体 を作製し、10mass%濃度の硫酸水溶液による暴露実験により耐硫酸 性の検討を行った.

研究結果より、CaCO₃および CaF₂でセメントの一部を置換した セメント硬化体は耐硫酸性を有するが、置換率により耐硫酸効果に 違いが生じ、耐硫酸効果が現れるのは、Ca系化合物をセメントの質 量に対し 50%以上置換した条件の時であった.

 $CaCO_3$ 混合セメント硬化体は H_2SO_4 との反応により結晶性の良い $CaSO_4 \cdot 2H_2O$ を生成し、組織が緻密化し圧縮強度も増加するが、 CaCO₃から遊離した CO_3^2 が健全部(供試体内部)へ移動し CaCO₃ を再生成するため、内部の CaCO₃含有率が高くなる. なお CaCO₃ 置換量が多いほど内部への H_2SO_4 の拡散が速く、中性化領域も増加 することから、強アルカリにより鉄筋を保護する鉄筋コンクリート 構造には適さない.

CaF2混合セメント硬化体は H2SO4の拡散速度が最も遅く, CaF2 と H2SO4の反応により供試体表面に結晶性の良い緻密な CaSO4・ 2H2Oから成る不動態層を生成し, 耐硫酸性が向上すると推察した.

第5章は『CaF2 混合による耐硫酸性向上の解明』であり,第4 章において高い耐硫酸性を示した,CaF2 混合セメント硬化体の耐硫 酸性向上のメカニズム解明を試みた.結果より,本実験条件からは 生じないと考えられていた CaF2 と H2SO4の反応が生じ,反応によ り発生する HF が C-S-H 中のシリカを溶解,コロイド状のシリカを 生成する.さらに HF は Ca 系化合物と反応し,微細な CaF2を再生 成し,セメント硬化体中の細孔をコロイド状シリカと微細な CaF2 が充填・緻密化した「シリカ・CaF2層」を形成すると推察する.

CaF2 混合セメント硬化体はこの「シリカ・CaF2 層」と、結晶性

の良い緻密な「 $CaSO_4 \cdot 2H_2O$ 層」の表面被覆による相乗効果により、 高い耐硫酸性を有すると結論した.

以上『フッ化物混合セメント硬化体は』優れた耐硫酸性を有する が,現時点では強度面の問題から構造体ではなく,微生物腐食を受 ける施設の補修材,微生物腐食が予想される新設構造物の表面被覆 材,遠心成形鉄筋コンクリート管の内面仕上げ材など,様々な用途 が考えられる.

6.2 まとめ

本論文『コンクリート製下水管腐食の現状と耐硫酸性向上のため のフッ化物混合セメント硬化体に関する研究』から得られた知見は 以下の通りである.

- ①コンクリート製下水道管における微生物腐食は,管径 900mm 以下の管渠において管径,勾配,路線延長,使用年数といった下水道の基本データから,多変量解析の線型判別関数により良好な精度で予測可能である.
- ②CaCO₃でセメントの質量の 50%以上を置換したセメント硬化体は H₂SO₄との反応により結晶性の良い CaSO₄·2H₂O を生成し、 組織が緻密化し圧縮強度も増加し耐硫酸性を示す.しかし CaCO₃ 置換量が多いほど内部への H₂SO₄の拡散が速く、中性化も速く なる.
- ③CaF2でセメントの質量の 50%以上を置換したセメント硬化体は、 従来常温では反応しないと考えられていた CaF2と H2SO4の反応 が生じ、供試体表面に結晶性の良い緻密な CaSO4・2H2O から成 る不動態層を生成する.さらに反応により発生する HF が C-S-H 中のシリカを溶解、コロイド状のシリカを生成するとともに HF は Ca 系化合物と反応し微細な CaF2を再生成し、セメント硬化 体中の細孔をコロイド状シリカと微細な CaF2が充填・緻密化し た「シリカ・CaF2 層」を形成する.この表面の結晶性の良い緻 密な「CaSO4・2H2O 層」による表面被覆と「シリカ・CaF2 層」 による相乗効果で H2SO4 の拡散速度が低下し、高い耐硫酸性を 示す.

以上まとめると、これから増大する老朽化社会資本を、効率的か つ戦略的に維持管理するためには、既存の老朽化した構造物を調査 し、データベース化することが重要である.

本論文で研究対象としたコンクリート下水道管においては,デー タベースの維持管理への利用はもとより,蓄積したデータの分析・ 解析により微生物腐食の予測式の構築も可能であり,予測式は危険 度が高い箇所を抽出するスクリーニング手法として有効である.す なわち,管路内調査を面的に全数調査を行うのではなく,危険度の 高い地域・箇所を絞り込んで局所的な調査が行えることから,維持 管理費用の抑制および適切な維持管理サイクルの実施につながり, 持続発展可能な社会の構築に寄与できると結論する.

なお予測を行うに当たっては、日本のように戦後の急速な復興に より都市への人口集中、工業化と言った社会的要因や、地形、気候 など自然的要因が複雑な国では、地域ごとにデータベースを整理す ることが重要であり、地域データの蓄積により地域特性に合った効 率的な維持管理が可能となる.

また老朽化したコンクリート下水道施設の更生・再構築には,長 寿命で低コストかつ施工性に優れた材料が望まれており,本論文で 研究を行った CaF2 混合セメント硬化体は,セメントの一部を比較 的安価な CaF2 で置換するという簡単かつ安全な方法で作製でき, しかも耐硫酸性に優れることから,微生物腐食を受けるコンクリー ト下水道施設のメンテナンス材料として有効であり,また新設構造 物の表面被覆材としても長寿命化に貢献できるといえる.

以上本研究成果は、今後増大する老朽化社会資本のうち、特に下 水道施設の維持管理と新設構造物の長寿命化の面から、持続発展可 能な社会の構築への貢献が期待できる.

148

謝 辞

本博士学位申請論文の審査委員である主査 日本大学教授 鵜 澤正美博士,副査 日本大学教授 伊藤義也博士,日本大学教授 澤 野利章博士,外部副査 日本大学教授 齋藤利晃博士,日本大学元 教授 大木宜章博士には終始懇切丁寧かつ的確な御指導を頂きまし た.ここに感謝の意を表すとともに,厚く御礼申し上げます.

また本論文第2章『既設コンクリート製下水道管における腐食の 現状』において,調査・分析に用いた管路内調査工報告書の閲覧また データの提供に御理解,御協力を頂きました東京都下水道局北部第 一管理事務所元所長 梶ヶ谷勝様をはじめ,多くの下水道局職員の 方々に感謝申し上げます.

第4章『フッ化物混合セメント硬化体の耐硫酸性に関する検討』, 第5章『CaF2混合による耐硫酸性向上の解明』の研究におきまして は日本大学元教授 町長治先生,日本大学教授 古川茂樹先生より, 分析から研究に関する助言,論文執筆まで懇切丁寧な御指導を頂き ました.このように学位申請論文としてまとめることが出来たのも, 両先生の御陰と深く感謝申し上げます.

また本学位申請論文は,環境安全工学科をはじめとする生産工学 部の教職員皆様のお力添えがあり完成することが出来ました.ここ に厚く御礼申し上げます.

最後に本研究の実験等にご協力頂いた保坂研究室の卒業生の 方々に深く感謝の意を表します.

平成26年10月吉日

保坂成司

149

付録

付表一1, 付表-2

デー	路線	一 44	管径	勾配	路線延	施工年	使用年	腐食	取付管	の種類	- 1		
γNo.	番号	糸統	(mm)	(%)	長(m)	(年)	数(年)	度合	活水	雨水	計	備考	地域
1	1	I 4(+2 +2)	350	6	49.5	1956	46	D	5	2	7		公山
	2	15	350	6	35	1056	40	D	0	0	0		公由
2	2	Π1	250	16	3.3	1062	20	0	11	0	11		
3	3	Π 2	250	16	27	1062	20		2	0	2		
4	4	<u>ш</u> 2 П 2	250	10	21	1062	20		2	1	1		
5	5	<u>ш</u> 3 ш1(1 a)	200	10	0	1903	39		0	1	1		
6	/	$\underline{\Pi}(+\alpha)$	700	0.10	40.9	1956	40	A	22	0	22		
7	8	Ш2	/00	307.3	6.85	1956	46	C	0	0	0		台里
8	20	$IV I(+\alpha)$	450	3	39.48	1936	66	A	15		16		合出
9	21	IV 2	450	3	5.45	1936	66	A	0	0	0		谷甲
10	13	$V7(+2,+2,+\alpha)$	450	3.5	18.47	1936	66	В	4	0	4		谷中
11	14	V 8(+2)	520	3.5	75.95	1936	66	Α	36	3	39		谷中
12	15	V 9	520	3.5	4.87	1936	66	В	0	2	2		谷中
13	76	VI1(+2,+ α)	530	73.2	45.89	不明	80	В	1	2	3		谷中
14	77	VI2	530	13.1	14.89	不明	80	В	1	0	1		谷中
15	78	VI3	530	51	14.9	不明	80	В	2	2	4		谷中
16	79	VI4	610	33.6	16.33	不明	80	В	9	0	9		谷中
17	80	VI5	610	41.5	28.57	不明	80	B	8	3	11		谷中
18	84	$VI6(+\alpha)$	700	546	39.47	不明	80	B	43	3	46		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
10	85	VIC UT7	700	5.4	16.25	不明	80	B	4	0	10		一一公古
20	01	$\overline{W}_{1}(+\alpha)$	460	/ 3	16.20	1036	66	Δ	11	4	15		公由
20	02		460	5.6	47.05	1026	00 66	~	0	2	10		
21	92		400	5.0	47.33	1026	00	A	5	5	10		
22	93	VII.3	400	1.61	40.00	1930	00	A	0		10		
23	54	ищо	400	24.3	45.2	<u> </u>	08	D D	29		30		
24	55	VIII 2	460	25.4	44.12	工明	80	В	33		34		
25	56		460	27.7	26.67	<u> </u>	80	В	5	0	5		
26	58	VШ5(+VШ ⁸)	460	50.2	29.8	<u> </u>	80	A	5	0	5		合甲
27	59	<u>VШ6</u>	460	50.7	32.15	一一門	80	B	4	1	5		谷中
28	60	VIII 7	530	37.5	30.1	不明	80	В	11	0	11		谷中
29	42	VIII'1	250	8.7	27.2	1977	25	В	3	2	5		谷中
30	43	₩12	250	10.3	27.05	1977	25	С	22	1	23		谷中
31	44	VIII'3	300	6.5	26.4	1977	25	D	13	0	13		谷中
32	45	₩14	300	6.8	30.05	1977	25	D	16	3	19		谷中
33	46	VIII'5	300	7.6	30	1977	25	D	5	2	7		谷中
34	47	Ⅷ'6	300	4.2	34.7	1956	46	В	9	2	11		谷中
35	48	VIII'7	350	6.1	34.45	1956	46	D	8	1	9		谷中
36	49	VTT '' 1	250	97	25.05	1977	25	D	6	1	7		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
27	50	VIII''2	250	11	20.00	1977	25	D	11	3	14		一员出
	51	VIII 2 VIII''3	300	50	31.05	1077	25		1/	2	16		公由
30	52	VIII 3 VIII "A	200	0.1	22.15	1077	25		5	2	0		
39	102	VIII 4 TV 5(±2)	520	9.1	60.04	- 13/7	20		J 1	2	7		
40	103	IXJ(1Z)	530	0.7	20.34	不明	00		4	3	/		
41	104	IX 0	530	5.5	38.39	<u> </u>	80	В	2	3	5		
42	105	IX /	530	0.4	36.97	个明	80	B	5	1	0		台里
43	11	/\4	460	1.8	62.08	1927	/5	なし	5	2	1		松か谷
44	12	115	460	1.8	6.79	1927	/5	なし	2	2	4		松か谷
45	23	=3(+2,+2)	460	1.9	29.1	1927	75	С	8	3	11		松が谷
46	29	=5(+2,+2)	530	1.5	49.06	1927	75	В	19	3	22		松が谷
47	35	二 7(+2,+2)	680	不明	19.09	1927	75	なし	3	2	5		松が谷
48	36	-8	680	不明	6.82	不明	80	なし	0	2	2		松が谷
49	52	<u></u> л1	250	5	23	1981	21	D	8	2	10		松が谷
50	53	木2	300	4	23	1981	21	D	12	2	14		松が谷
51	49	木3(+2)	460	2.7	30.75	不明	80	В	11	4	15		松が谷
52	46	木4(+2)	460	6.2	23.1	不明	80	В	8	2	10		松が谷
53	43	木5(+2)	610	0.2	45.35	不明	80	В	20	5	25		松が谷
54	40	木6(+2)	610	3.9	25.1	不明	80	В	14	4	18		松が谷
55	37	ホ 7(+2)	610	4.7	24.9	不明	80	В	5	2	7		松が谷
56	54	11	250	6	24	1964	38	D	5	4	9	路線長24.0m、7.21mで調査不能	松が谷
57	55	12	300	5	24	1964	38	D	11	2	13	路線長24.0m. 13.7mで調査不能	松が谷
58	59	13	450	4.5	34.1	1964	38	D	.1	5	. U R		松が谷
59	60	14	450	4.5	35.4	1964	38	D	1	3	4		松が谷
00	58	1'3	300	6	4 A A	不旧	20	D D	- ^	0 0	ب ۱		- 松が公
61	60	л с	250	7	0.0	1064	20		10	1	20		松が公
01	00	<u>п</u> 2	200	6	20	1064	20		10	4	22		
02	61	HZ D2	450	22	22 5	1064	20		21	4	31		- 仏が合
63	01		450	2.3	33.5	1004	30		0	3	9		14/1/台
64	02	H4	450	2.3	34	1904	<u></u>	D D	41	4	40		「ムか谷」
65	66	H Z	400	2.5	20.2	1964	38		2		3		仏か合
66	6/	<u>п.</u> 3	400	2.5	20	1964	38	D		0	1		松か谷
67	71	<u>н'2</u>	300	5	29.45	小明	80	C	11	4	15		松か谷
68	1	7	250	8	19.7	1935	67	D	0	0	0		一 元 浅 卓
69	21	12	250	8	28	1971	31	C	4	2	6		一 元 浅 卓
70	22	$\mu_{3}(+\alpha)$	610	2.1	45.7	1971	31	В	19	4	23		元浅草
71	27	$114(+\alpha, 11'4)$	610	0.5	28.9	1986	16	D	20	0	20		元浅草
72	28	N5	610	1	37.35	1971	31	В	13	4	17		元浅草
73	29	ll6(+1)	610	1.7	39.1	1971	31	В	25	4	29		元浅草
74	30	ル7	760	3.1	5.8	1971	31	В	0	0	0		元浅草
75	33	$118(+2,+\alpha)$	760	1.3	49	1971	31	С	33	2	35		元浅草
76	34	119	760	1.4	34.25	1971	31	D	56	2	58		元浅草
77	25	N'3	350	4.5	26	1986	16	D	17	2	19		元浅草
78	126	^1	250	10	27.8	不明	80	D	8	1	9		元浅草
79	130	^4(+2,+3)	450	3.7	35.3	1927	75	D	2	4	6		元浅草
80	131	^ 5	600	3	9.6	1988	14	D	0	0	0		元浅草
81	134	^6 (+ ^ ')	450	21	14 95	不明	80	D	0	0	0		元浅草
82	132	<u>^'1</u>	250	8	44.4	1988	14	D	7	3	10		元浅草

付表一1 下水道管腐食度合いの調査および集計結果(1)

	付	表 - 1	下。	水道	1111	腐食	度合	い	の調	査ま	ふよ	び集計結果(2)
デー タNo	路線 番号	系統	管径 (mm)	勾 配 (‰)	路線延 長(m)	施工年 (年)	使用年 数(年)	腐食	取付管	の種類	計	備考	地域
83	4-1	<u>}2(+1)</u>	350	7	32.1	1986	16	D	8	2	10		元浅草
84	5	<u>k3</u>	400	7	32.1	1986	16	D	12	3	15		<u> 元浅草</u> 元浅草
86	36	R1	250	8	31	1971	31	D	17	4	21		元浅草
87	37	X2	300	7	30.3	1971	31	D	13	2	15		元浅草
88	38 56	x3 X'	300	6	40	1971	20	D	54	4	58		元浅草
90	57	ז״ז	250	8	37	1982	20	D	47	5	52		元浅草
91	59 60	x ² (+1) x ² 3	400	5	39	1982	20	D C	48	3	51		<u> 元浅</u> 早 元浅 草
93	67	גייז גיייז	250	10	37	1927	75	C	24	3	27		元浅草
94	68	x'''2	250	10	39.2	1927	75	B	17	3	20		元浅草
95 96	75	x 1 x''''2	400	4	33.2	1988	14	D	1	1	2		元浅草
97	85	7 1	300	5	25	1979	23	D	9	3	12		元浅草
98	86 87	72 7 3	300	5	26 58.8	1979	23	C	42	3	45 26		<u> 元浅早</u> 元浅草
100	90	70 74(+7')	450	4.1	42.9	不明	80	B	8	4	12		元浅草
101	93	75-1(+2)	450	4.8	44.1	不明	80	A	5	3	8		元浅草
102	111	75-2 7 6-2	450	3.1	42.15	1927	75	A	14	4	10		元浅草
104	88	7 '1	300	7	35	1982	20	D	10	4	14		元浅草
105	89	<u>7′2</u> ∓"1	300	16	36	1982	20		4	2	<u>6</u>		<u> 元 浅 卓 示 浅 首 </u>
100	98	ታ"2	250	10	36.9	1990	12	D	10	4	14		元浅草
108	100	7'''1	250	8	35.8	1988	14	D	2	1	3		元浅草
109	101	<u>+ 2</u> +""1	250	8	35	1988	14	D	23	2	25		元浅草
111	103	₹""2	250	8	28	1988	14	D	20	1	21		元浅草
112	104	チ""3 IIA	300	6	43.45	1988	14	D	44 0	2	46		<u>元浅草</u> 元浅草
113	114	リチ リ5(+チ6-2,リ")	610	1.93	40.72	1927	75	B	13	2	15		元浅草
115	115	IJ6	610	13.76	34.44	1927	75	В	8	2	10		元浅草
116	108	リ' リ''1	250	8	37	1982	20	D	27	2	29		<u> </u>
118	113	J"2	250	10	33	1980	22	C	8	4	12		元浅草
119	116	リ‴1	250	8	25.7	1978	24	D	2	2	4		元浅草
120	117	<u>1) 2</u> 1)'''3	250	8	24.2	1978	24	D	2	0	3		元浅草
122	1	$I \subset 1(+\alpha)$	350	0	7	1978	24	D	1	0	1		浅草通り
123	4	$\frac{ z_2(+ z') }{ z_3(+ z'') }$	400	0.3	28.7	1978	24	なした	0	0	0		<u> 浅草通り</u> 浅茸通り
124	, 85		250	4.2	24	1978	24	D	63	1	64		浅草通り
126	84	12'2	250	11.2	23.3	1978	24	C	3	1	4		浅草通り
127	83	1 <u></u> 1 <u></u> 2	250	4.8	24.9	1978	24	B	135	2	137		浅草通り
129	42	[こ "1	250	10.1	33.8	不明	80	С	6(?)	0	0	ホテルあり	浅草通り
130	10-1	<u>ス"(+3,+1)</u> え"(+2)	350	6	14	1974	28	なした	2	0	2		<u> 浅草通り</u> 浅草通り
132	10 2	え'(+3,+2)	450	4	56	1975	27	なし	1	1	2		浅草通り
133	15-1	しい1(+3,+6)	450	5	7.85	不明	80	A	1	2	3	製版	浅草通り
134	15-2	LV3(+2,+1)	450	4.8	11.35	不明	80	A	44	0	40		浅草通り
136	19	$\mathbf{\dot{5}}'(+2,+\alpha)$	350	6	39.5	不明	80	С	21	5	26		浅草通り
137	20 46	<u>つ"(+2,+α)</u> あ1	610 300	4.7	15.9 35.85	<u> </u>	80	B たし	0	0	0		<u> 浅草通り</u> 浅草通り
139	47		350	3	32.5	1985	17	なし	0	2	2		浅草通り
140	48	あ3 あ4	400	3	35.9	1985	17	なし	1	0	1		浅草通り
141	49 50	<u>あ</u> 5	400	2.8	35.54	- 1920	82	A A	8	1	<u> </u>		浅草通り
143	52	あ7 まっ	530	3.2	39.55	不明	80	В	9	2	11		浅草通り
144	53 54	め8 あ9	530 610	2.2	39.4	<u> </u>	80	B	9 30	1	10 31		<u> 浅早通り</u> 浅草诵り
146	55	あ10	610	1.2	46.25	不明	80	A	16(?)	4	4	ホテル118室	浅草通り
147	56	<u>あ11</u> ま12	610	1.1	45.05	不明	80	A	23	1	24		浅草通り
148	28	あ13(+2)	760	0.2	44.85	不明	80	C	8	3	11		<u>ステ囲り</u> 浅草通り
150	27	あ14 ま15	760	不明	45	不明	80	С	1	3	4		浅草通り
151	26	あ16	830	6 不明	59	<u> </u>	08 80	С В	93 0	3	96 0		<u> 浅早通り</u> 浅草诵り
152	23	あ17(+3)	830	不明	56.18	1927	75	D	14	4	18		浅草通り
154	32	$519(+\alpha)$	600	14.4	16.5	不明	80	B	0	0	0		浅草通り
155	37	$53(+\alpha)$	500	56.3	11.9	- 1928	80	B	0	0	0		浅草通り
157	36	こ'4(+2)	450	4.8	39.65	1927	75	С	20	5	25		浅草通り
158	50 49	$(+\alpha)$	700 900	1.9	20.75	1985	17	B	1	0	1		浅草通り 浅草通い
160	48	Ξ4 Ξ4	900	-21.6	1.85	1928	74	В	0	0	0		浅草通り
161	56	(2(+1,+1))	350	6.3	39.1	1985	17	D	68	2	70		浅草通り
162	57	<u>\</u> \'2	450	10.8	20.9	1985	17	C	72	1	73		浅早週り 浅草诵り
164	61	か1	250	3.4	35	1967	35	D	14	0	14		浅草通り

_*		1						v			5 0		,
7-	路線	系統	管径	勾配	路線延	施工年	使用年	腐食	取付管	の植類	計	備考	地域
ØNO.	留亏	4.0	(mm)	(%)	長(m)	(年)	<u> </u>	度合	方水	雨水			N ++ N 7 / I
165	60	か2	250	6.6	35	1967	35	C	2	1	3		<u> 浅早通り</u>
166	21	き2(+1,+1)	250	-2.1	4./5	<u> </u>	80	D	1	1	2		浅早通り
167	23	さ3(+1)	250	10.8	52.8	- 个明	80	C	9	2	11		浅早週り
168	68	さり(+1)	400	5	31.8	イワリン アロ	80		0	1	1		浅早通り
169	21	さり(+1) キャ(・キャ)	400	19.5	24.05	イワリア	80	В	0	0	0		浅早週り
170	66	さ/(+ざ)	450	5.3	35.6	ヘ 小 明	80	В	23	2	25		法草運り
171	65	さる	450	4.4	41.05	一个明	80	В	1	0			浅早週り
172	63	さ9(+1)	530	11./	10.25	<u> </u>	80		0	0	0		法草運り
173	62	さ10	600	-2.1	61.4	1985	1/	D	41	2	43		浅早週り
174	54	さい	800	-5.7	17.55	1985	1/	D	0	0	0		浅早週り
175	/0	さ4	450	44.4	1.8	个明	80	В	0	0	0		浅早週り
176	53	ざ"10(+1*6)	450	5.6	32	19/0	32	В	5	2	/		浅早週り
177	9	174(+1*2,+2))	460	0.3	35.2	イリ イリ	80	A	10	1	11		浅早通り
1/8	10	$\frac{1}{5}$	400	0.7	41.9	<u> </u>	80	A	30	1	31		及早週り
1/9	79	1/2 1(+ U)	610	1.0	01.90	7明 天明	80	A	60	2	0/		一番門
180	78	$\frac{1}{2}(+2)$	690	0.0	20.0	不明	08	В	16	1	17		一番门
181	74	123(+2,+1) t>4(+0)	080	-0.7	25.5	7明 天明	80	В	10	1	1/		一番门
182	20	/よ4(+Z) オンF	080	-0.3	9.0	7明 天明	80	В	1	0	1		一番門
183	21	120 t>0(1011)	080	7.9	11.30	<u> </u>	80	В	4	1	00		一番門
184	31	1210(+2,+1)	680	0	46.7	イワリア	80	В	21	1	22		<u> </u>
185	32	121(+3) t>0(+0)	680	3.8	10.05	イワリ エロ	80	В	0	0	0		<u> </u>
186	35	128(+2)	680	5.9	10.25	イリ イリ アロ	80	В	0	0	0		<u> </u>
187	30	129	680	2.4	51.05	イワリン アロ	80	В	14	0	14		<u> </u>
188	38	ん10 たい1	680	-21.7	2.3	イワリン アロ	80	В	0	0	0		<u> </u>
189	39	411	680	3.5	45.75	イワリン アロ	80	В	54	0	54		<u> </u>
190	16	72(+3,+2,+1)	680	7.3	8.6	一个明	80	В	0	0	0		
191	1/	1213	/60	2.2	11	<u> </u>	80	В	82	2	84		ー 歯門 帯開
192	18	/よ14(+/よう) ナン1	/60	6.3	59.65	- 个明	80	В	9	2			直門
193	46	1よ 1	250	/.9	30.5	- 小明	80	U	32	3	35		重門 黒門
194	4/	12 Z	250	/.3	1/	- 个明	80	U C	3	5	8		<u> </u>
195	48	ん 3 ゆ 4	300	8.0	29.2	个明	80	- U	1/	5	22		<u> </u>
196	4	821 150	250	6.4	31.35	19/3	29	40	5	5	10		
197	6	892 14 0	350	6.9	34.6	19/3	29	D	8	5	13	そは、トンカツ、すし谷一	<u> 雷門</u>
198	/	893	400	6.1	34.25	19/3	29	D	11	2	13	そは:1	<u> 雷門</u>
199	9	ØQ4(+1)	500	2.7	41	19/3	29	C	21	2	23	そは: 1	<u> 雷門</u>
200	10	825	600	5.1	48.6	19/3	29	B	20	4	24		
201	5	60 I	250	6.2	4/	1992	10	40	0(0)	6	17	<u>+= u + U</u>	<u> </u>
202	12		300	0.0	31./5	1969	33		9(?)	3	3	ホテルめり	<u> </u>
203	13	(2 TH	300	0.7	34.45	1969	33	D	8	4	12	ホナルめり	<u> </u>
204	18	(T"0	250	8	35	1924	/8		10	3	19		<u> </u>
205	19	(2 T 111	250	8	33	1924	/8		5	5	10		
206	21		250	8.1	34.45	19/3	29		10	3	19		<u> </u>
207	22	C 2	300	0.8	30.30	19/3	29		10	1	12	+= 1 + 1	一番門
208	24	C 7''''0	250	1.2	33.35	1968	34		10	2	20	ホナルめり	<u> </u>
209	25	C Z	300	0.0	30.9	1908	34		12	5	17		一面门
210	3	C 7'''''0	250	8.2	29.30	1980	22		4	1	5		一番門
211	4	C Z	250	14.4	29.2	1980	22	121 121	2	<u> </u>	/		一番門
212	1	C 7''''''0	250	7.9	29.2	1980	22	40	3	1	4		一番門
213	11		250	8.9	24.0	1980	22	<u>ふし</u>	<u> </u>	0			一番门
214	14	72	250	0	21.3	1060	22		5	1	59		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
215	20	(2 74	300	4.0	25.0	1909	33		0	1	11		一曲口
216	20	75	40U 500	1.4	30.8 25.0F	1924	/ð	D	9	Z	11		<u>由门</u> 帝阳
217	23		530	20	30.00	1024	/ 0	P	10	4	10		由门 重田
218	20	て7(+上')	530	3.Z	24.8 60 0	1924	18	D /	10	3	13		<u>由门</u> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
219	3/		530	2.0	52.0	- 17円 - 不明	00	A A	/	0	/ /		 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
220	<u></u>	70	530	21	50.0	<u> </u>	00	A 	4	0	4		<u>由门</u> 帝阳
221	39	τ ₁₀	530	3.1	J0.0 61 5	「小明」	00	~	0	0	0		田 」 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
222	40	T11	520	07	01.0 // 5	1 小明 太田	00		4	0	4		 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
223	41	T12	530	3.7		不明	20	R	0	0	0		一曲口
224	+Z 50	T13	530	2.3	21.6	不明	20	Δ	0	0	0		重用
225	30	というという(+つれ)	520	142.0	21.0	10/6	56	R	0	0	0		重用
220	30	<u> しい リキ</u>)	520	21	4.1 50 7	10/6	50	Δ	9	0	<u>م</u>		重用
22/	30	<u>と</u>	530	3.4	50.65	1050	50	R	0	0	0		<u> 一</u> 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
228	44	<u>_</u> , と2(+と")	530	-51 5	22.15	1052	50		2	0	2		重用
229	40		250	50	26.05	1024	70		0	2	11		重用
230	21	±1	250	1.9	20.00	1024	70	ס	<u>о</u> 5	3	0		重用
231	10	ビビ 廿5(+3*9 ±3*9)	7200	10.1	20.4	1000	10		0	4	10		<u></u> 一田口 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
232	42	<u>こし(・3~2,*2*2)</u> 廿6	400	1.01	4/ 25	1000	22	11	9	3	01		 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
233	40	±7(+1)	500	Q 1	18 55	1000	22		14	7	<u>اک</u>		重用
234	40	±8(+1)	000	1.0	10.00	1000	22	ס	10	E E	10		重用
235	4/ 51	± 0(+1)	610	1.0	49.0 26.2	不明	00	R	12	0 2	18		一直口
236	10	<u> こういし, デモ)</u> サ1	010	4.Z	20.3	10年7	80 25		14	3	10		
237	48	년 ++''1	200	<u>ر</u> ۲ ۸	40.25	1070	30	C	14	4	10		<u>由门</u> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
238	49	<u>に</u> 世"2	200	1.4	2/ 0	1070	20	0	01 A	4	14		重用
239	50	ビ ム そ5(+チ' +1 ±0)	160	4.0	34.0 22.0	7370	00	R	0	4	10		一直口
240	60	くυ(・ζ,・1,⊤ζ) ズ "1	250	0.0	00.Z	1075	00		4	2	0	ゲートャンター	 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
241	61	く 子"2	250	1.9	31.0	1075	27		4	2	0		 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
242	60	ζ <u>ζ</u> 76	610	-07	4.J	不明	2/	Δ	9	0	0		重用
243	62	<u>く</u> <i>そ</i> 7	610	0.7	40.0	「明	00	R	0	2	0		 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
244	64	<u>く</u> / そ8(+++)	760		4.00	「小明」	00	P	0	0	0		田 」 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
245	65	<u>ていいに</u> そ9	700	て 二 3	30 75	不明	00	0	0 7	2	0		重用
240	1 00		,00	1 97	JZ./J	1.1.62	00		J	, J	, 0		

付表一1	下水道管腐食度合いの調査および集計結果	(3)
		$\langle \mathbf{O} \rangle$

	付	表 - 1	下。	水道	1111	腐食	度合	い	の調	査ま	っよ	び集計結果(4))
データNo	路線	系統	管径 (mm)	勾 配	路線延 長(m)	施工年	使用年 数(年)	腐食	取付管	の種類	計	備考	地域
247	<u>ш</u> - 56	そ10	760	-0.2	38.75	不明	80	B	·5水 17	5	22		雷門
248	58	そ	250	8	16	不明	80	С	1	2	3		雷門
249	72	<u>7=1</u> t-2	250	8./	36./	1970	32	D D	12(?) 3(?)	2	2	不明	雷門
251	73	た3	300	8.2	27.9	1970	32	D	11	3	14		雷門
252	75	<u>t=4(+1)</u>	350	7.9	32.9	1970	32	D	116	4	120		雷門
253	76	<u>7:5</u> t-6	400	65	32.75	1970	32	D	9(2)	2	18	カレー:1	雷門
255	79	120 127	450	7	34.15	1969	33	D	23	5	28		雷門
256	70	た'	250	6.4	23.4	1970	32	D	6	1	7		雷門
257	86	<u>75</u> <u></u> 	250	13.3	27.1	1969	33	ט ס	7	2	13		雷門
259	87	す2	300	5.5	32.65	1970	32	D	7	3	10	デパート	雷門
260	89	さ1	250	9.8	28.6	1985	17	C	4	1	5	デパート	雷門
261	90	<u>22</u>	250	52	24.35	1985	32	C C	2 15	2	22	7//	<u> </u>
263	100	L2	300	1.1	18.9	1970	32	D	5	2	7		雷門
264	99		250	7.3	17.75	1970	32	C	4	1	5		雷門
265	5	51 52	300	10.5	34.75	1980	22	B	50	3	53		<u> </u>
267	7	53	350	4.7	36.3	1980	22	D	3	1	4		雷門
268	8	54	400	11.9	27.8	1980	22	D	3	2	5		雷門
269	9	50	450	0.3	3.8	1980	22	C	23(?)	3	3		
271	49	57	500	-11.4	18.4	1980	22	D	0	0	0		雷門
272	21	$\mathcal{D}_{1}(+\alpha)$	700	-15.3	20.85	1980	22	D	0	0	0		雷門
273	22	- <u>52</u> 	700	-2.7	18.35	1984	18	D	0	0	0		<u> </u>
275	24	74	700	1.3	15.75	1984	18	D	0	0	0		雷門
276	31	つ5 0	700	3.4	67.65	1978	24	D	0	0	0		雷門
277	32	- 56 つ7	700	3.7	69.7	1978	24	D	0	0	0		<u> </u>
279	34	<u>つ8</u>	700	1.4	69	1978	24	D	0	0	0		雷門
280	35	ဂိ	700	0.9	67.2	1978	24	D	2	0	2		雷門
281	4	$Y_2(71 + \alpha)$	250	/.6	31.3	1970	32	C C	15	2	20		上野
283	21	$Y3(AA2,+\alpha)$	500	8.5	42	1970	32	C	13	4	17		上野
284	22	$Y4(+\alpha)$	600	1.4	20.2	1970	32	D	4	1	5		上野
285	23	$Y_5(+\alpha)$ 71	250	22.9	34	1970	32	B	3	2	5		上野
287	9	AA2	250	10.1	34.55	1970	32	B	32	2	34		上野
288	28	$X1(+\alpha)$	460	2	23.6	1927	75	A	15	2	17		上野
289	29	X2 X3	460	4.4	6.I 41.35	1927	75	A A	21	4	25	ラーメン・1	上野
291	31	X4	460	-3.1	22.8	1927	75	A	23	2	25		上野
292	32	$X5(+\alpha)$	460	-0.1	8.85	1927	75	A	1	2	3		上野
293 294	33	X0 $X7(+\alpha)$	530	3.5	19.5	1927	75	B	9	2	5		上野
295	27	X8(AK)	610	4.6	38.15	1927	75	B	13	3	16		上野
296	26	X9 X10(+ qr)	680	3.5	17.5	1927	75	A	9	2	11		上野
297	24	X10(+ <i>u</i>) X11	680	-3.3	55.6	1970	32	A	21	3	24		上野
299	53	S1+α	450	3.9	34.5	1926	76	C	22	7	29		上野
300	54	S2+α	600	2.4	46.6	1926	76	B	4	4	8	駐車場	上野
301	50	S4+α(+1)	600	6.3	50.05	1920	76	C	11	<u> </u>	0 14	<u>⊶千物</u> 中華:1	<u>上野</u> 上野
303	61	R3	460	7.4	20.4	1926	76	A	4	4	8	駐車場	上野
304	58	R5(+1*2)	460	9.4	18.85	1926	76	A A	4	4	8		上野
305	60	R6	460	8.6	20.6	1926	76	B	7	3	10		上野
307	57	R7	610	8.5	11.3	1926	76	В	3	2	5		上野
308	66 	11 T3(+1)	300	1.3	36 46 6	1926	76		7	4	11		上野
310	48	T4(+1)	460	6	37.6	1926	76	A	24	4	28	駐車場:1	上野
311	47	T5	460	-1.8	37.45	1974	28	В	16	4	20	·····································	上野
312	45	T7(+1)	530	-04	39.7 23.8	1974	28	A C	35 8	4	39	· 突余店∶ I	上野
313	50	T8(+1)	530	8.3	7	1974	28	B	0	0	0		上野
315	51	T9(+1)	610	1.8	75	1974	28	A	45	6	51	計声但.1	上野
316	52 41	U1	300	34	04.6 31.85	1974	28	A C	23	2	25	◎±半场:	上野
318	42	U2	300	-0.6	32.6	1926	76	D	6	2	.0		上野
319	44	U3(+1)	300	2.8	25.5	1926	76	D	32	2	34	ラーメン:1	上野
320	/5	W1	250	7.7	34./ 27.1	1926	28	C	23	5 4	28		<u> 上野</u> 上野
322	85	W2(+2,+1)	300	10.8	13.3	1974	28	D	8	0	.3		上野
323	97	$V1+\alpha$	530	1.7	76.2	1926	76	В	40	6	46	ラーメン:1	上野
324	98	$V_{2+\alpha}$ V _{3+\alpha} (+1)	680	-0.5	35.3	1974	28	B	5	2	10		上野
326	100	V4+α(W3)	680	4.2	50.65	1974	28	B	12	5	17	ラーメン:1	上野
327	101	$V5+\alpha$ (+3)	760	-1.3	29	1974	28	В	6	2	8		上野
328	102	v 0+ U	1 /00	-2.5	27.9	1926	/6	в	J 3	2	5	1	「上町

	17	衣 一 1	r,	小洭	「日」	肉艮	反口	5.0	ノ詞	国の	5	の未可加未(り)	
デー	路線	灭体	管径	勾配	路線延	施工年	使用年	腐食	取付管	の種類	÷⊥	唐 書	teh tat
タNo.	番号	术机	(mm)	(‰)	長(m)	(年)	数(年)	度合	汚水	雨水	āΤ	1. 加方	吧哟
220	4	F1	250	7	30.75	不明	80	D	16	2	18		上野
320	5	E1	400	26	46 15	不明	80	D	4	2	6		上野
221	6	E2 E3	400	1.0	46.10	不明	80		10	2	12		上野
331	7	$D_1(\pm 2E_2 \pm \alpha_1)$	00	1.2	25.45	1076	26	0	10	1	7		노파
332	/	D1(13,L3,1 &)	000	1.5	20.40	1077	20	0	0	1			ᆂᆧ
333	0		000	0.9	/.1	1977	20	0	0	0	0		느퍼
334	19	B4,D2,F4	900	-0.1	28.0	1976	26	0	5	3	8		上野
335	9	AI	250	3	26.25	1977	25	D	8	0	8	<u> </u>	上野
336	10	A2	250	8	10.8	19//	25	C	2	0	2		上野
337	11	B1	250	13.3	24.8	1977	25	С	17	2	19		上野
338	12	B2	250	6.3	25.1	1977	25	С	8	4	12		上野
339	13	B3	300	8	24.9	1977	25	С	9	3	12		上野
340	14	B4	300	-1.6	7.3	1977	25	С	0	1	1		上野
341	15	F1	250	7.9	20	1977	25	С	5	1	6		上野
342	16	F2	250	10.7	23	1977	25	С	10	3	13		上野
343	17	F3	300	4.5	23.6	1977	25	С	8	2	10		上野
344	18	F4	300	8.5	6.55	1977	25	С	0	0	0		上野
345	20	C1	250	8.3	23.1	1974	28	Ċ	10	2	12		<u></u> 上野
246	21	C2	250	8.8	25.15	1974	28	D	22	1	23		上野
247	22	C3	350	63	20.10	1074	20	C	13	2	15		上野
347	22	03	250	0.0	20	1074	20	0	10	2	20		노파
348	23	04	350	0.0	27.4	1077	20	0	10	2	20		ᅣᄧ
349	24		250	3	20	1977	25		19	3			上野
350	25	42	250	3.8	20.75	19//	25	В	12	2	14		
351	28	HI	250	/.8	25.85	1985	17	C	17	4	21		上野
352	29	HZ	450	-1	28./5	1985	17	C	10	4	14		上野
353	30	11	250	22.3	13.4	1987	15	D	1	1	2		上野
354	31	12	350	6.1	33.85	1987	15	С	10	1	11		上野
355	32	13	350	3.2	31.9	1987	15	D	13	2	15		上野
356	33	I4	350	3.9	36.9	1987	15	D	16	2	18		上野
357	35	J1	250	9.1	24.95	1977	25	В	16	1	17		上野
358	36	J2	250	7.6	27.05	1977	25	С	7	2	9		上野
359	37	J3	300	6	26	1977	25	B	10	3	13		上野
260	38	. 14	350	2	28 15	1977	25	C	14	2	16		上野
300	30	15	350	-05	6 35	1077	25		0	2	10		上野
301	47	M2(1.2)	460	0.5	55.1	不明	20		46	6	52		노파
362	4/	M2(L3)	400	0.0	00.1	<u>가 맹</u>	00		40	0	<u>JZ</u>		느패
363	48	M3	500	9.2	0	イリ イク イク イク イク イク イク イン	80	D	0	0	0		上野
364	49	16(M3,J5)	610	0.9	25.1	<u> </u>	80	C	2	3	5		上野
365	55	17(K3,N2)	610	5.9	38.2	小明	80	В	10	3	13		上野
366	50	K1	250	4.1	35.7	不明	80	D	33	3	36		上野
367	51	K2	250	1.8	34.75	不明	80	D	19	2	21		上野
368	52	K3	300	2.2	35.25	不明	80	D	11	3	14		上野
369	40	L1	250	6.5	28.5	不明	80	С	16	1	17		上野
370	61	N3	250	-0.6	32.9	不明	80	D	26	4	30		上野
371	62	0	250	7.3	38.6	不明	80	С	97	4	101		上野
372	63	Р	250	8.4	31.1	1977	25	D	6	3	9		上野
373	72	Q1(N3)	530	15	44 1	不明	80	D	1	1	2		上野
274	74	02	530	5.7	10.6	1983	19	D	0	0	0		上野
375	75	03	680	112	10.0	1983	19	C	0	1	1		上野
276	75	QU	700	11.2	12.6	1083	10	Ċ	0	0			上野
3/0	75	04	600	71.2	12.0	7903	19		0	0	0		ᆂᆧ
3//	70	Q4	000	<u> </u>	13	1075	00		0	0	0		느퍼
378	80	ACT+W	300	5.9	32.2	1975	27	D +1	5	0	5		
379	81	A02+ 0	000	6	32.95	19/5	2/	- ひし - オント	2	Z	4	<u> </u>	
380	82	AUJ+Q	600	5	35.55	19/5	27	140	3	U	3	7/ - r	上野
381	83	ADI	250	8	38	<u> </u>	80	A	13	2	15		上野
382	84	AD2	250	8	11.15	不明	80	D	0	0	0		上野
383	85	AD3+α	350	8	40.45	「不明	80	なし	0	0	0		上野
384	87	AE1+α	700	不明	9.25	1940	62	なし	0	0	0		上野
385	88	AE2+α	760	不明	5.18	1940	62	なし	0	0	0		上野
386	89	AF1	250	9	29.5	1968	34	なし	2	1	3	デパート	上野
387	90	AF2	250	9	29.5	1968	34	なし	0	0	0		上野
388	91	AF3	350	7	40.45	1979	23	D	18	2	20		上野
389	92	AF4	400	5.5	44.6	1979	23	D	15	2	17		上野
390	93	AF5	450	5	54.3	1979	23	D	25	3	28		上野
391	95	AH2(+1)	300	8	35 55	1979	23	なし.	4	.3			上野
302	94	AG1	250	10	31	不明	80	D.	1	2	3		上野
202	96	AG2(AH)	400	5	417	1970	23	た	16	0	16		上野
393	07	AG3	400	<u>л</u> г	16.0	1070	23	7:1	10	1	<u>۵۱</u>		ト野
394	37	AG4	450	-+.J	10.0	1070	20	・みし ナミレ	- J	1	0		上町
395	98	AG5	400	4.0	2.9	19/9	23	<u>、よし</u> ト	10	U	14		上野
396	39	AG5	450	4.0	14.0	19/0	2/		13	1	14		上野
397	100	AG0	450	4.5	27.85	19/5	2/	U #>1	3	0	3		上野
398	101	AG/	450	4.5	11.3	19/5	2/	40		0	0		上野
399	102	AG8(AF)	450	4	4.95	1975	27	D	0	0	0		上野
400	103	$AI1(+\alpha)$	760	0.9	33.4	不明	80	A	14	3	17		上野
401	104	AI2	760	1.6	43.9	不明	80	A	4	3	7		上野
402	108	AI4(AJ)	830	不明	9.15	不明	80	С	0	0	0		上野
403	109	AJ6	350	11.1	8	1954	48	D	4	2	6		上野
404	110	AJ7	400	4.6	28	1976	26	D	0	0	0		上野
405	111	AJ8	400	3.6	25.5	1976	26	D	2	1	3	デパート	上野
406	105	AJ1(+α)	400	3.3	41.1	1970	32	С	23	2	25		上野
407	120	AK1(+α)	460	5.1	51.15	不明	80	Α	7	0	7		上野
408	128	A01	250	212	31.4	不明	80	C	11	2	13		上野
400	130	AO2(AM)	300	71	35.9	不明	20	C.	A .	2	, j g		上野
409	120	AM1	250	0.5	30.0	不明	20	R	0	2	11		上町
410	123	AN1	300	5.7	37 / 5	不明	20	C.	9	3	0		上野
411	1 101	/ W N I	1 000	JU./	07.40	1 1 1 1 1	00		0		9	1	= 1

付表-2	外れ値およて	「量的データ	不明路線を	除外し	た集計表	(1)
------	--------	--------	-------	-----	------	-----

デー タNo.	路線 番号	系統	管径 (mm)	勾配 (‰)	路線延 長(m)	施工年 (年)	使用年 数(年)	腐食 度合	<u>取付管</u> 汚水	<u>の種類</u> 雨水	計	備考	地域
1	1	I 4(+2,+2)	350	6	49.5	1956	46	D	5	2	7	腐食小	谷中
2	2	I 5	350	6	3.5	1956	46	D	0	0	0	腐食小	谷中
3	3	<u>Ш1</u> П2	250	16	2/	1963	39		11	0	11	腐食小	公田
- 4	- 5	Π3	250	16	6	1963	39	C	0	1	1	腐食小	
6	7	$III 1(+\alpha)$	700	6.16	40.9	1956	46	A	22	0	22	腐食大	谷中
7	20	$\mathbb{N}^{1(+\alpha)}$	450	3	39.48	1936	66	Α	15	1	16	腐食大	谷中
8	21	1V2	450	3	5.45	1936	66	A	0	0	0	<u> </u>	
9	13	$V_{1}(+2,+2,+\alpha)$ $V_{2}(+2)$	400 520	3.0	18.47	1930	00 66	<u>Б</u>	4	0	4	<u> </u>	<u>谷中</u> 公由
11	15	V 9	520	3.5	4.87	1936	66	В	0	2	2	腐食大	谷中
12	76	$VI1(+2,+\alpha)$	530	73.2	45.89	不明	80	В	1	2	3	腐食大	谷中
13	77	VI2	530	13.1	14.89	不明	80	В	1	0	1	腐食大	谷中
14	78	V13	530	51	14.9	<u> </u>	80	В	2	2	4	<u> </u>	<u>谷中</u> ※由
15	79 80	V14 V15	610	41.5	28.57	不明	80	B	9	3	11	腐食大	谷中谷中
17	84	$VI6(+\alpha)$	700	5.46	39.47	不明	80	B	43	3	46	腐食大	谷中
18	85	VI7	700	5.4	16.25	不明	80	В	4	0	4	腐食大	谷中
19	91	$VII1(+\alpha)$	460	4.3	46.9	1936	66	A	11	4	15	腐食大	谷中
20	92	VII2 VIII 1	460	24.2	47.95	1936	66 90	A	20	3	20	腐良大 府合士	公山
21	55	VIII 2	460	24.3	44.12	不明	80	B	33	1	34	腐食大	
23	56	VIII 3	460	27.7	26.67	不明	80	B	5	0	5	腐食大	谷中
24	58	VIII5(+VIII'8)	460	50.2	29.8	不明	80	Α	5	0	5	腐食大	谷中
25	59	VⅢ6	460	50.7	32.15	不明	80	B	4	1	5	腐食大	谷中
26	60 42	<u>vш/</u> VШ'1	250	37.5 ৪ 7	30.1 27.2	<u> </u>	80 25	R	3	2	5	<u> </u>	<u>谷</u> 中 谷田
28	43	VII.2	250	10.3	27.05	1977	25	Č	22	1	23	腐食小	谷中
29	44	VIII'3	300	6.5	26.4	1977	25	D	13	0	13	腐食小	谷中
30	45	VIII'4	300	6.8	30.05	1977	25	D	16	3	19	腐食小	谷中
31	46	VШ'5 VШ'6	300	7.6	30	1977	25	D	5	2	11	<u> </u>	<u>谷中</u> ※由
32	47	VIII 0 VIII '7	350	4.2 6.1	34.7	1956	40	D	9	2 1	9	腐食小	谷中谷中
34	49	VIII''1	250	9.7	25.05	1977	25	D	6	1	7	腐食小	谷中
35	50	Ⅷ"2	250	11	25	1977	25	D	11	3	14	腐食小	谷中
36	51	VIII''3	300	5.9	31.95	1977	25	D	14	2	16	腐食小	<u>谷中</u>
37	102	VIII ² 4 IX 5(+2)	520	9.1	33.15	19//	25		5	3	8	腐良小	<u>谷田</u>
38	103	IX6	530	5.5	38.39	不明	80	B	2	3	5	腐食大	
40	105	IX7	530	6.4	36.97	不明	80	B	5	1	6	腐食大	谷中
41	11	1\4	460	1.8	62.08	1927	75	なし	5	2	7	腐食小	松が谷
42	12	/\5	460	1.8	6.79	1927	75	なし	2	2	4	腐食小	松が谷
43	23	-3(+2,+2) -5(+2,+2)	460	1.9	29.1	1927	/5	C B	10	3	22	<u>腐良小</u>	<u> 松か谷</u> - 松が公
44	52	= <u>5(+2,+2)</u> ±1	250	1.5	49.00	1927	21	D	8	2	10	腐食小	松が谷
46	53	木2	300	4	23	1981	21	D	12	2	14	腐食小	松が谷
47	49	木3(+2)	460	2.7	30.75	不明	80	В	11	4	15	腐食大	松が谷
48	46	<u>赤4(+2)</u> また(+2)	460	6.2	23.1	不明	80	B	8	2	10	腐食大	松が谷
49	43	小5(+2) 木6(+2)	610	3.9	45.35	<u> </u>	80	B	20	5	20	腐食大	松が谷
51	37	木7(+2)	610	4.7	24.9	不明	80	B	5	2	7	腐食大	松が谷
52	54	<u> 1</u>	250	6	24	1964	38	D	5	4	9	腐食小	松が谷
53	55	12	300	5	24	1964	38	D	11	2	13	腐食小	松が谷
54	59	13	450	4.5	34.1	1964	38		3	5	8	<u> </u>	松が谷
56	58	1'3	300	6	6.8	不明	80	D	0	0	0	腐食小	松が谷
57	68	P1	250	7	25	1964	38	D	18	4	22	腐食小	松が谷
58	69	D2	300	6	30	1964	38	D	27	4	31	腐食小	松が谷
59	61	H3	450	2.3	33.5	1964	38	B	6	3	9	<u> </u>	松が谷
60	66	¤ 4 □"2	400	2.3	20.2	1964	38	D	41	4	40	腐食小	松が谷
62	67	D"3	400	2.5	20	1964	38	D	1	0	1	腐食小	松が谷
63	71	D '2	300	5	29.45	不明	80	С	11	4	15	腐食小	松が谷
64	1	7	250	8	19.7	1935	67	D	0	0	0	腐食小	元浅草
65	21	$\frac{1}{2}$	250	21	28	1971	31	C	4	2	6	<u> </u>	<u>元</u> 浅草
66 67	22	$1/2(+\alpha)$	610	2.1	40.7 28 Q	1986	31	D	20	4 0	23	腐食小	<u>ル戊早</u> 元浅草
68	28	μ5	610	1	37.35	1971	31	В	13	4	17	腐食大	元浅草
69	29	ル6(+1)	610	1.7	39.1	1971	31	В	25	4	29	腐食大	元浅草
70	30	μ7	760	3.1	5.8	1971	31	В	0	0	0	腐食大	元浅草
71	33	$\mu_{8}(+2,+\alpha)$	760	1.3	24.25	1971	31		33	2	35	<u> </u>	<u> 元浅草</u> 元津苔
72	34 25	123 123	350	4.5	34.20 26	1971	16	ם	17	2	19	腐食小	<u>ル戊早</u> 元浅苜
74	126	^1	250	10	27.8	不明	80	D	8	1	9	腐食小	元浅草
75	130	^ 4(+2,+3)	450	3.7	35.3	1927	75	D	2	4	6	腐食小	元浅草
76	131	^5	600	3	9.6	1988	14	D	0	0	0	腐食小	元浅草
77	134	<u>^0(+^`)</u> <u>^'1</u>	250	2.1	14.95	<u>个明</u> 1000	80	ם	<u>0</u> ד	0	10	<u> </u>	<u> 元浅早</u>
78	4-1	h2(+1)	350	7	32.1	1986	16	D	8	2	10	腐食小	元浅草
80	5	F3	400	7	32.1	1986	16	D	12	3	15	腐食小	元浅草

付表-2	外れ値および量的データ不明路線を除外した集計表 (2)	2)
		•

デー タNo.	路線 番号	系統	管径 (mm)	勾 配 (‰)	路線延 長(m)	施工年 (年)	使用年 数(年)	腐食 度合	<u>取付管</u> 汚水	<u>の種類</u> 雨水	計	備考	地域
81	14	<u>ال</u>	300	8	13.9	1987	15	С	0	0	0	腐食小	元浅草
82	36	<u>71</u>	250	8	31	1971	31	D	17	4	21	腐食小	元浅草
83	37	x2 X3	300	7	7.55	1971	31	C	13	2	15	<u> </u>	<u> 元浅早</u> 元浅草
85	56	ג'	300	6	40	1982	20	D	54	4	58	腐食小	元浅草
86	57	ג״ו	250	8	37	1982	20	D	47	5	52	腐食小	元浅草
87	59	x"2(+1)	400	5	39	1982	20	D	48	3	51	腐食小	元浅草
88	67	x 3 7‴1	250	5 10	0.7	<u> </u>	80	C	24	0	27	<u> </u>	<u> 元浅早</u> 元浅苜
90	68	x'''2	250	10	39.2	1927	75	В	17	3	20	腐食大	元浅草
91	75	זיייז	400	4	5.4	1988	14	D	1	0	1	腐食小	元浅草
92	76	x''''2	400	4	33.2	1988	14	D	1	1	2	腐食小	元浅草
93	85	+1 +2	300	5	25	1979	23	D C	42	3	12	腐良小 庭合小	<u> 元 浅 早</u> 売 達 首
95	87	72 7 3	400	4	58.8	1979	23	c	22	4	26	腐食小	元浅草
96	90	. 1 4(+ 1 ')	450	4.1	42.9	不明	80	В	8	4	12	腐食大	元浅草
97	93	75-1(+2)	450	4.8	44.1	不明	80	A	5	3	8	腐食大	元浅草
98	111	70-2 46-2	450	3.1	42.15	1927	/5	A 	14	4	10	<u> </u>	<u> </u>
100	88	F'1	300	7	35	1982	20	D	10	4	14	腐食小	元浅草
101	89	f'2	300	7	36	1982	20	С	4	2	6	腐食小	元浅草
102	97	<u>7"1</u>	250	16	35.9	1990	12	D	5	4	9	腐食小	元浅草
103	98	ナ 2 チ‴1	250	10 9	36.9	1990	12	ם	10	4	14 2	<u> </u>	<u> 元浅早</u> 元浅甘
104	101	, チ'''2	250	8	35	1988	14	D	39	2	41	腐食小	元浅草
106	102	f""1	250	8	27	1988	14	D	23	2	25	腐食小	元浅草
107	103	f''''2	250	8	28	1988	14	D	20	1	21	腐食小	元浅草
108	104	+ ³	300	10	43.45	1988	14	D	44	2	46	<u> </u>	<u> 元浅草</u>
110	114	IJ4 IJ5(+ 1 6−2.IJ'')	610	1.93	44.72	1927	75	B	13	2	15	腐食大	元浅草
111	115	IJ6	610	13.76	34.44	1927	75	B	8	2	10	腐食大	元浅草
112	108	<u> </u>	250	8	37	1982	20	D	27	2	29	腐食小	元浅草
113	112	リ″1 リ″2	250	10	33	1980	22		8	3	11	腐食小	<u> 元 浅 早</u> 売 浅 甘
114	116	<u>リン</u> リ"1	250	8	25.7	1980	24	D	2	2	4	腐食小	元浅草
116	117	IJ‴2	250	8	24.2	1978	24	D	2	1	3	腐食小	元浅草
117	118	IJ""3	250	8	11.9	1978	24	D	8	0	8	腐食小	元浅草
118	1	$\frac{ z_1(+\alpha) }{ z_2(+ z_1') }$	350	0	7	1978	24	D	1	0	1	腐食小	<u>浅草通り</u> 浅草通り
120	7	1=2(+1=)	400	12.1	14	1978	24	なし	0	0	0	腐食小	浅草通り
121	85	12'1	250	4.2	24	1978	24	D	63	1	64	腐食小	浅草通り
122	84	1こ'2	250	11.2	23.3	1978	24	С	3	1	4	腐食小	浅草通り
123	83	15"1	250	13.3	24.9	1978	24	D	125	1	127	腐食小	浅草通り
124	42	1 <u>2</u> 12"1	250	4.8	33.8	1978	24 80	C	6(2)	2	137	腐食小	<u>浅早通り</u> 浅草诵り
126	10-1	え"(+3,+1)	350	6	14	1974	28	なし	2	0	2	腐食小	浅草通り
127	10-2	え"(+2)	350	9	15.1	1974	28	なし	0	0	0	腐食小	浅草通り
128	12	$\frac{\chi'(+3,+2)}{\chi'(+3,+2)}$	450	4	56 795	19/5	27	なし	1	1	2	腐食小	<u>浅早通り</u> 浅甘通し
129	15-2	L12	450	4.8	30	不明	80	Ā	44	1	45	腐食大	浅草通り
131	15-3	LV3(+2,+1)	450	4.8	11.35	不明	80	Α	1	0	1	腐食大	浅草通り
132	19	$\overline{\mathbf{j}}'(+2,+\alpha)$	350	6	39.5	不明	80	С	21	5	26	腐食小	浅草通り
133	20	<u>つ"(+2,+α)</u> あ1	610	4.7	15.9	<u>个明</u> 1095	80	B לנו	0	0	0	<u> </u>	<u> 法早通り</u> 注首 通い
134	40	b2	350	3.5	32.5	1985	17	なし	0	2	2	腐食小	浅草通り
136	48	あ3	400	3	35.9	1985	17	なし	1	0	1	腐食小	浅草通り
137	49	あ4 まら	460	4	34.15	1920	82	なし	2	1	3	腐食小	浅草通り
138	50	<u>のっ</u> あ7	400	2.8	39.54	<u> </u>	08 80	A R	<u>8</u>	2	9	<u> </u>	<u>浅早</u> 週り 浅草通い
140	53	あ8	530	2.2	39.4	不明	80	B	9	1	10	腐食大	浅草通り
141	54	あ 9	610	2.8	46.5	不明	80	В	30	1	31	腐食大	浅草通り
142	55	あ10	610	1.2	46.25	不明	80	A	16(?)	4	4	腐食大	浅草通り
143	56	め11 あ12	760	. 0 ?	45.05	<u> </u>	80	R	23	3	24	<u> </u>	<u>浅早</u> 囲り 浅草通い
145	26	あ15	830	6	59	不明	80	B	93	3	96	腐食大	浅草通り
146	32	b 19(+α)	600	14.4	16.5	不明	80	В	0	0	0	腐食大	浅草通り
147	37	$\frac{1}{1}$	600	5.2	23.3	1928	74	В	0	0	0	腐食大	浅草通り
148	34	$53(+\alpha)$	200	20.3 4.8	39.65	<u> </u>	80	С. В	20	0	<u> </u>	<u> </u>	<u> 戌早週り</u> 浅草逼い
149	50	$\Xi_1(+\alpha)$	700	1.9	20.75	1985	17	В	1	0	1	腐食大	浅草通り
151	49	C3(+α)	900	0.5	73.7	1985	17	В	5	2	7	腐食大	浅草通り
152	48	<u>こ</u> 4	900	-21.6	1.85	1928	74	В	0	0	0	腐食大	浅草通り
153	55	(+(+),+(+))	350	6.3 6.8	39.1 26 0	1985	17	ם	68 0	2	/U 0	<u> </u>	<u>浅早</u> 週り 浅草通い
154	57	<u><'2</u>	300	10.8	31.6	1985	17	C	72	1	73	腐食小	浅草通り
156	61	か1	250	3.4	35	1967	35	D	14	0	14	腐食小	浅草通り
157	60	か2	250	6.6	35	1967	35	C	2	1	3	腐食小	浅草通り
158	21	さ2(+1,+1) き3(+1)	250	-2.1	4.75	一 个 明	80		1	1	11	<u> </u>	<u> 浅早通り</u> 注首涌11
159	68	き5(+1)	400	5	31.8	不明	80	D	9	<u> </u>	1	腐食小	浅草通り

付表-2	外れ値お	よび量的デー	タ不明路線を除め	した集計表(3)
------	------	--------	----------	----------

デー タNo.	路線 番号	系統	管径 (mm)	勾配 (‰)	路線延 長(m)	施工年 (年)	使用年 数(年)	腐食 度合	取付管 汚水	の種類 雨水	計	備考	地域
161	21	き6(+1)	400	19.5	24.05	不明	80	В	0	0	0	腐食大	浅草通り
162	66	き7(+き') キo	450	5.3	35.6	不明	80	B	23	2	25	腐食大	<u>浅草通り</u> 浅草通り
164	63	こ0 き9(+1)	530	11.7	10.25	不明	80	B	0	0	0	腐食大	浅草通り
165	62	き10	600	-2.1	61.4	1985	17	D	41	2	43	腐食小	浅草通り
166	54 70	き11 き'A	800	-5.7	17.55	1985	17	D	0	0	0	<u>腐食小</u>	<u>浅草通り</u> 注首通し
168	53	さず き"10(+1*6)	450	5.6	32	1970	32	B	5	2	7	腐食大	浅草通り
169	9	(†4(+1*2,+2))	460	6.3	35.2	不明	80	Α	10	1	11	腐食大	浅草通り
170	10	$\frac{1}{5}$	460	6.7	<u>41.9</u>	不明	80	A	30	1	31	腐食大	浅草通り
171	78	な2(+2)	610	0.6	25.5	不明	80	B	2	0	2	腐食大	雷門
173	74	な3(+2,+1)	680	-6.7	25.5	不明	80	В	16	1	17	腐食大	雷門
174	26	な4(+2)	680	-6.3	9.6	不明	80	B	1	0	1	腐食大	<u>雷門</u> 重用
175	31	な6(+2,+1)	680	0	46.7	不明	80	B	21	1	22	腐食大	雷門
177	32	な7(+3)	680	3.8	8	不明	80	В	0	0	0	腐食大	雷門
178	35	な8(+2) た9	680 680	5.9 2.4	10.25	<u>小明</u> 不明	80	B	14	0	14	腐食大	雪門
1/9	38	な10	680	-21.7	2.3	不明	80	B	0	0	0	腐食大	雷門
181	39		680	3.5	45.75	不明	80	В	54	0	54	腐食大	雷門
182	16	な12(+3,+2,+1) な13	680 760	/.3	8.6	<u>小明</u> 不明	80	B	82	0	84	腐食大	雷門
184	18	な14(+な'5)	760	6.3	59.65	不明	80	B	9	2	11	腐食大	雷門
185	46	な1	250	7.9	30.5	不明	80	C	32	3	35	腐食小	雷門
186	47	な2	300	7.3	29.2	<u> </u>	80	C	17	5	22	腐食小	<u> </u>
188	4	&1	250	6.4	31.35	1973	29	なし	5	5	10	腐食小	雷門
189	6	\$ <u>\$</u> 2	350	6.9	34.6	1973	29	D	8	5	13	腐食小	雷門
190	9	&23 &24(+1)	400 500	2.7	<u>34.25</u> 41	1973	29	C	21	2	23	腐食小	雷門
192	10	\$25	600	5.1	48.6	1973	29	В	20	4	24	腐食大	雷門
193	12	ぬ'1 T'1	250	6.2	21 75	1992	10	なし	11	6	17	腐食小	雷門
194	12	て'2	300	6.7	34.45	1969	33	D	9(?)	4	12	腐食小	雷門
196	18	τ"1	250	8	35	1924	78	D	16	3	19	腐食小	雷門
197	19	て"2	250	8	33	1924	78	D	5	5	10	腐食小	雷門
198	21	て"2	300	6.8	35.35	1973	29	D	11	3	12	腐食小	雷門
200	24	て""1	250	7.2	33.35	1968	34	D	18	2	20	腐食小	雷門
201	25	て""2	300 250	6.8	29 35.9	1968	34	D	12	5	17	腐食小	<u>雷門</u> 重用
202	4	て""2	250	14.4	29.2	1980	22	D	5	2	7	腐食小	雷門
204	1	て"""1	250	7.9	29.2	1980	22	なし	3	1	4	腐食小	雷門
205	11	<u>71</u>	250	8.9	24.6	1980	22	なし	2 54	0	<u>2</u> 59	腐食小	雪門
200	14	τ ₂	350	4.8	31.1	1969	33	D	5	1	6	腐食小	雷門
208	20	て4 	460	1.4	35.8	1924	78	В	9	2	11	腐食大	雷門
209	23	<u>τ</u> 6	530	3.2	24.8	1924	78	B	10	4	13	腐食大	<u> 市</u> 市 市
211	37	て7(+と')	530	2.5	68.9	不明	80	Ā	7	0	7	腐食大	雷門
212	38	て8 て8	530	3	53.8	不明	80	A	4	0	4	腐食大	雷門
213	39 40	<u>τ10</u>	530	3.1	<u>58.0</u> 61.5	<u>不明</u> 不明	80	A	4	0	4	腐食大	雷門
215	41	711	530	0.7	44.5	不明	80	D	0	0	0	腐食小	雷門
216	42	て12 て13	530	3.3	21.6	不明	80	B ^	0	0	0	腐食大 座合+	雷門
217	36	<u>と</u>	530	2.3	50.7	1946	56	A	6	0	6	腐食大	雷門
219	44	<u>لا</u>	530	3.4	50.65	1952	50	В	0	0	0	腐食大	雷門
220	45	と2(+と") サ1	530 250	-51.5 5 a	22.15	1952	50 78	A	2	0	11	腐食大 腐食小	雷門 雷門
222	31	セ2	250	4.9	28.4	1924	78	D	5	4	9	腐食小	雷門
223	42	せ5(+3*2,+2*2)	450	10.1	30.1	1980	22	D	9	3	12	腐食小	雷門
224	43 45	でで せ7(+1)	450 500	8.6 8.1	44.25	1980	22	なし	14	7	21	<u> </u>	雷門
226	47	せ8(+1)	600	1.6	49.6	1980	22	D	12	6	18	腐食小	雷門
227	51	せ9(+せ',+せ")	610	4.2	26.3	不明	80	В	1	3	4	腐食大	雷門
228	48 49	년 1	250	5	40.25	1967	35	C	14	4	18	<u> </u>	<u> </u>
230	50	 せ"2	300	4.6	34.8	1970	32	C	6	4	10	腐食小	雷門
231	59	そ5(+そ',+1,+2)	460	6.6	33.2	不明	80	В	4	2	6	腐食大	雷門
232	6U 61	て そ"2	250	/.9	31.6	1975	2/	ם ק	4 0	2	6 0	<u> </u>	<u> </u>
234	62	そ6	610	-0.7	43.5	不明	80	A	6	2	8	腐食大	雷門
235	63	そ7 そ9(+++)	610	33	4.55	不明	80	B	0	0	0	腐食大	雷門
236	66	そ10	760	-2.9	38.75	不明不明	80	B	17	5	22	腐食大	雷門
238	58	そ'	250	8	16	不明	80	С	1	2	3	腐食小	雷門
239	71	<u>t=1</u>	250	8.7	36.7	1970	32	D	12(?)	2	2	腐食小	雷門
240	12	1-4	300	U.4	17.0	13/0	<u>ა</u> ა2	U	J J(!)	Ζ	2	周皮小	目二

付表-2	外れ値および量的デ	「ータ不明路線を除外した集計表(4)
------	-----------	------------------	----

デー タNo.	路線 番号	系統	管径 (mm)	勾 配 (‰)	路線延 長(m)	施工年 (年)	使用年 数(年)	腐食 度合	<u>取付管</u> 汚水	の種類 雨水	計	備考	地域
241	73	た3	300	8.2	27.9	1970	32	D	11	3	14	腐食小	雷門
242	75	<i>t</i> =4(+1)	350	7.9	32.9	1970	32	D	116	4	120	腐食小	雷門
243	76	た5 ま 0	400	4	32.75	1970	32	D	16	2	18	腐食小	雷門
244	78	1 <u>20</u> t-7	450	0.5	34 15	1969	33	D	9(?)	5	28	腐食小	雷門
246	70	た'	250	6.4	23.4	1970	32	D	6	1	7	腐食小	雷門
247	77	た"	250	13.3	27.1	1969	33	D	11	2	13	腐食小	雷門
248	86	す1	250	2.6	27.8	1970	32	D	7	2	9	腐食小	<u>雷門</u>
249	87	92 \$1	300	5.5 0.8	32.65	1970	32		/	3	10	腐良小	雷門
250	90	22	250	3.0	24.35	1985	17	C	2	2	4	腐食小	雷門
252	98	L1	250	5.2	40.25	1970	32	C	15	7	22	腐食小	雷門
253	100	L2	300	1.1	18.9	1970	32	D	5	2	7	腐食小	雷門
254	99	L'1	250	7.3	17.75	1970	32	C	4	1	5	腐食小	雷門
255	5	51 52	300	10.5	34.75	1980	22	B	50	3	53 11	<u> </u>	<u> </u>
257	7	53	350	4.7	36.3	1980	22	D	3	1	4	腐食小	雷門
258	8	54	400	11.9	27.8	1980	22	D	3	2	5	腐食小	雷門
259	9	55	530	6.3	72.9	1980	22	C	23(?)	3	3	腐食小	雪門
260	10	<u>56</u> た7	450	-11.4	3.8	1980	22		0	0	0	腐食小	重門
201	21	$\mathcal{D}^{1}(+\alpha)$	700	-15.3	20.85	1980	22	D	0	0	0	腐食小	雷門
263	22	つ2	700	-2.7	18.35	1984	18	D	0	0	0	腐食小	雷門
264	23	7 3	700	7.4	43	1984	18	D	0	0	0	腐食小	雷門
265	24	つ4 つ5	700	1.3	15.75	1984	18	D	0	0	0	腐食小	雷門
266	31	つ6	700	3.4	07.05 69.7	1978	24	ם	0	0	0	腐食小	<u> 市</u> 門 雷門
268	33	<u>つ</u> 7	700	4.5	64.6	1978	24	D	0	0	0	腐食小	雷門
269	34	つ8	700	1.4	69	1978	24	D	0	0	0	腐食小	雷門
270	35	<u>つ9</u>	700	0.9	67.2	1978	24	D	2	0	2	腐食小	雷門
271	1	Y_1	250	7.6	31.3	1970	32	C	15	2	17	腐食小	上野
272	21	$Y_3(AA2 + \alpha)$	500	4.9	40	1970	32	C	13	4	17	腐食小	上野
274	22	$Y4(+\alpha)$	600	1.4	20.2	1970	32	D	4	1	5	腐食小	上野
275	23	Y5(+α)	600	0.8	17.7	1970	32	D	3	2	5	腐食小	上野
276	2	Z1	250	22.9	34	1970	32	B	8	1	9	腐食大	上野
277	28	AA2 $X1(+\alpha)$	250	10.1	34.55	1970	32	B	32	2	34	腐良大	上野
278	20	X1(+ u)	460	4.4	6.1	1927	75	Ā	1	0	1	腐食大	上野
280	30	X3	460	0.9	41.35	1927	75	Α	21	4	25	腐食大	上野
281	31	X4	460	-3.1	22.8	1927	75	Α	23	2	25	腐食大	上野
282	32	$X5(+\alpha)$	460	-0.1	8.85	1927	75	A	1	2	3	腐食大	上野
283	34	$\chi_{7}(+\alpha)$	530	3.5	19.5	1927	75	B	3	2	5	腐食大	上野
285	27	X8(AK)	610	4.6	38.15	1927	75	B	13	3	16	腐食大	上野
286	26	Х9	680	3.5	17.5	1927	75	Α	9	2	11	腐食大	上野
287	24	$X10(+\alpha)$	680	-3.3	16.8	1970	32	B	14	1	15	腐食大	上野
288	20	XII S1+α	450	3.9	55.0 34.5	1970	32	A	21	3	24	<u> </u>	上野
209	54	S1+α S2+α	600	2.4	46.6	1926	76	В	4	4	8	腐食大	<u></u> 上野
291	55	S3+α	600	1.4	35.8	1926	76	В	1	5	6	腐食大	上野
292	56	$S4+\alpha(+1)$	600	6.3	50.05	1926	76	C	11	3	14	腐食小	上野
293	61	K3	460	7.4	20.4	1926	76	A	4	4	8	<u> </u>	上野
294	50 50	R5(+1*2)	460	9.4	10.05	1926	76	A	4 0	4 0	8 0	<u> 歯良</u> 人 腐食 ナ	上野
296	60	R6	460	8.6	20.6	1926	76	B	7	3	10	腐食大	上野
297	57	R7	610	8.5	11.3	1926	76	В	3	2	5	腐食大	上野
298	66	T1	300	7.3	36	1926	76	C	7	4	11	腐食小	上野
299	49	13(+1) TA(+1)	400	1.5	46.6	1926	76	A	48	7	55	<u> </u>	上野
300	48	T5	460	-18	37 45	1920	28	B	24	4	28	腐食大	上野
302	45	T6(U3)	530	5	39.7	1974	28	Ā	35	4	39	腐食大	上野
303	46	T7(+1)	530	-0.4	23.8	1974	28	С	8	4	12	腐食小	上野
304	50	T8(+1)	530	8.3	7	1974	28	B	0	0	0	腐食大	上野
305	51	19(+1) T10(+3+1)	610	1.8	/5 5/ 6	19/4	28	A A	45	- 6 - 2	51	<u> </u>	上野
306	41	U1	300	3.4	31,85	1926	76	ĉ	17	2	19	腐食小	<u></u> 上野
308	42	U2	300	-0.6	32.6	1926	76	D	6	2	8	腐食小	上野
309	44	U3(+1)	300	2.8	25.5	1926	76	D	32	2	34	腐食小	上野
310	75	AB1	300	6	34.7	1926	76	C	23	5	28	腐食小	上野
311	81 85	W2(+2 +1)	250	10.8	2/.l	19/4	28		וו פ	4 0	15 g	<u> </u>	上野
312	97	V1+ <i>a</i>	530	1.7	76.2	1926	76	В	40	6	46	腐食大	<u>- 上野</u>
314	98	V2+α	680	0.2	35.3	1974	28	В	7	3	10	腐食大	上野
315	99	V3+ α (+1)	680	-0.5	31.35	1974	28	В	5	2	7	腐食大	上野
316	100	$v_{4+\alpha}$ (W3) $v_{5+\alpha}$ (+2)	680	4.2	50.65	1974	28	В	12	5	17	<u> </u>	上野
317	102	$V6+\alpha$	760	-25	29	1974	28	B	3	2	5 5	腐食大	
319	4	E1	250	7	30.75	不明	80	D	16	2	18	腐食小	上野
320	5	E2	400	2.6	46.15	不明	80	D	4	2	6	腐食小	上野

付表-2	外れ値および量的デ-	-タ不明路線を除外した集計表	(5)
------	------------	----------------	-----

デー タNo.	路線 番号	系統	管径 (mm)	勾配 (‰)	路線延 長(m)	施工年 (年)	使用年 数(年)	腐食 度合	取付管 汚水	<u>の種類</u> 雨水	計	備考	地域
321	6	E3	400	1.2	46.25	不明	80	D	10	2	12	腐食小	上野
322	7	D1(+3,E3,+α)	800	1.9	25.45	1976	26	С	6	1	7	腐食小	上野
323	8	D2	800	6.9	7.1	1977	25	C	0	0	0	腐食小	
324	19	B4,D2,F4	900	-0.1	28.6	1976	26	C	5	3	8	腐食小	上野
325	10	A1 A2	250	3 8	20.25	1977	25	C	8	0	8	腐食小	<u></u> 上野
327	11	B1	250	13.3	24.8	1977	25	C	17	2	19	腐食小	<u></u> 上野
328	12	B2	250	6.3	25.1	1977	25	С	8	4	12	腐食小	上野
329	13	B3	300	8	24.9	1977	25	С	9	3	12	腐食小	上野
330	14	B4	300	-1.6	7.3	1977	25	C	0	1	1	腐食小	上野
331	10	F 1 F 2	250	10.7	20	1977	25	C	5 10	3	13	<u> </u>	上野
332	17	F3	300	4.5	23.6	1977	25	C	8	2	10	腐食小	<u></u> 上野
334	18	F4	300	8.5	6.55	1977	25	C	0	0	0	腐食小	<u></u> 上野
335	20	C1	250	8.3	23.1	1974	28	С	10	2	12	腐食小	上野
336	21	C2	250	8.8	25.15	1974	28	D	22	1	23	腐食小	
337	22	C3	350	6.3	26	19/4	28	C	13	2	15	腐食小	上野
338	23	C4 G1	250	8.3	27.4	1974	28	C	18	2	20	<u> </u>	<u></u> 上野
340	25	G2	250	3.8	20.75	1977	25	В	12	2	14	腐食大	 上野
341	28	H1	250	7.8	25.85	1985	17	С	17	4	21	腐食小	上野
342	29	H2	450	-1	28.75	1985	17	С	10	4	14	腐食小	
343	30	11	250	22.3	13.4	1987	15	D	1	1	2	腐食小	上野
344	31	12	350	0.1 २०	33.85	1987	15		10	1	11	<u> </u>	上野
345	33	I4	350	3.9	36.9	1987	15	D	16	2	18	腐食小	<u></u> 上野
347	35	J1	250	9.1	24.95	1977	25	В	16	1	17	腐食大	上野
348	36	J2	250	7.6	27.05	1977	25	С	7	2	9	腐食小	上野
349	37	J3	300	6	26	1977	25	B	10	3	13	腐食大	<u></u>
350	38	J4	350	-0.5	28.15	1977	25		14	2	16	腐良小	上野
351	39	J5 M2(L3)	460	-0.5	<u> </u>	- 1977	20	B	46	0	52	腐食大	<u></u> 上野
353	48	M3	500	9.2	6	不明	80	D	0	0	0	腐食小	
354	49	I6(M3,J5)	610	0.9	25.1	不明	80	С	2	3	5	腐食小	上野
355	55	I7(K3,N2)	610	5.9	38.2	不明	80	В	10	3	13	腐食大	上野
356	50	K1	250	4.1	35.7	不明	80	D	33	3	36	腐食小	
357	52	K2	200	1.8	34.75	不明	80		19	2	21	<u> </u>	上野
358	40	11	250	6.5	28.5	不明	80	C	16	1	14	腐食小	 上野
360	61	N3	250	-0.6	32.9	不明	80	D	26	4	30	腐食小	 上野
361	62	0	250	7.3	38.6	不明	80	С	97	4	101	腐食小	上野
362	63	P	250	8.4	31.1	1977	25	D	6	3	9	腐食小	<u>上野</u>
363	72	Q1(N3)	530	1.5	44.1	<u> </u>	80	D	1	1	2	腐食小	
364	74	Q2 Q3	530 680	5./ 11.2	10.6	1983	19	C	0	1	1	<u> </u>	<u>上野</u> 上野
366	75	8	700	11.2	12.6	1983	19	c	0	0	0	腐食小	 上野
367	80	AC1+α	300	5.9	32.2	1975	27	D	5	0	5	腐食小	上野
368	81	AC2+α	600	6	32.95	1975	27	なし	2	2	4	腐食小	上野
369	82	AC3+α	600	5	35.55	1975	27	なし	3	0	3	腐食小	<u></u>
370	83		250	8	38 11 15	<u> </u>	08		13	2	15	<u> </u>	上野
3/1	85	AD3+ α	350	8	40.45	不明不明	80	なし.	0	0	0	腐食小	上野
373	89	AF1	250	9	29.5	1968	34	なし	2	1	3	腐食小	上野
374	90	AF2	250	9	29.5	1968	34	なし	0	0	0	腐食小	上野
375	91	AF3	350	7	40.45	1979	23	D	18	2	20	腐食小	上野
376	92		400	5.5	44.6	1979	23		15	2	17	<u> </u>	上野
3/7	93	AH2(+1)	300	D Q	35 55	1979	23	た	20 1	3	28	腐食小	<u>上</u> 玎 卜野
379	94	AG1	250	10	31	不明	80	D	1	2	3	腐食小	上野
380	96	AG2(AH)	400	5	41.7	1979	23	なし	16	0	16	腐食小	上野
381	97	AG3	450	4.5	16.8	1979	23	なし	5	1	6	腐食小	上野
382	98	AG4	450	4.5	2.9	1979	23	なし	0	0	0	腐食小	<u>上野</u>
383	100	AG5	450	4.5	14.5	19/5	27		13	1	14	<u> </u>	上野
384	100	AG7	450	4.0	27.80	1975	21	なし	3 0	0	- 3 - 0	腐食小	<u></u> 上野
386	102	AG8(AF)	450	4	4.95	1975	27	D	0	0	0	腐食小	上野
387	103	AI1(+ α)	760	0.9	33.4	不明	80	Α	14	3	17	腐食大	上野
388	104	AI2	760	1.6	43.9	不明	80	Α	4	3	7	腐食大	上野
389	109	AJ6	350	11.1	8	1954	48	D	4	2	6	腐食小	上野
390	111	AJ7 4.18	400	4.0	28	19/6	26		2	1	0	<u> </u>	<u></u> 上野
391	105	$AJ1(+\alpha)$	400	3.3	41.1	1970	32	c	23	2	25	腐食小	<u></u> 上野
393	120	AK1(+α)	460	5.1	51.15	不明	80	A	7	0	7	腐食大	上野
394	128	AO1	250	21.2	31.4	不明	80	С	11	2	13	腐食小	上野
395	130	AO2(AM)	300	7.1	35.8	不明	80	C	6	2	8	腐食小	<u>上野</u>
396	129	AMI ANI	250	9.5	39.4	<u> </u>	80	B	8	3	11	脳 良大 府合小	上野
397	131		300	J./	ა/.4ე	17明	80	U	0	კ	9	肉良小	上玎