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Preface 

This article is based on a main reference paper, “Forskolin Regulates Bone Sialoprotein 

Gene Expression in Human Breast Cancer Cells” in the International Journal of 

Oral-Medical Sciences, and a reference paper, “Fibroblast growth factor 2 and forskolin 

induce mineralization-associated genes in two kinds of osteoblast-like cells” in the 

Journal of Oral Science. 

 

Abstract 

BSP is a prominent mineral-associated protein in the extracellular matrix of bone that 

has been implicated in the metastatic activity of cancer cells. Fibroblast growth factor 2 

(FGF2) and cyclic AMP (cAMP) play critical roles in controlling the differentiation of 

osteoblasts and mineralization of bone. We have previously reported that each of FGF2 

and forskolin (FSK) alone increase transcription of the bone sialoprotein (BSP) gene, 

and that together (FGF/FSK) they upregulate BSP gene expression synergistically in rat 

osteoblast-like ROS 17/2.8 cells. However, other genes that are upregulated after 

stimulation by FGF2, FSK or FGF/FSK remain unclear. In the present study, we 

investigated candidate genes associated with mineralization after stimulation by FGF2, 

FSK and FGF/FSK in two kinds of osteoblast-like cells using DNA microarray, and how 

FSK regulates BSP gene transcription in human breast cancer MCF7 cells using reverse 

transcription PCR (RT-PCR), transient transfection assays and gel mobility shift 

analyses. 
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In ROS17/2.8 cells, FGF2 and FSK each increased the gene expression of c-FOS 

(7.2-fold and 10.7-fold, respectively). However, FGF/FSK did not induce c-FOS gene 

expression. FGF2 increased the expression of the dentin matrix protein 1 (DMP1, 

129.8-fold) gene. In contrast, FGF/FSK increased the expression of the amphiregulin 

(AREG, 73-fold) gene maximally. In human osteoblast-like Saos2 cells, FGF2 increased 

the expression of the osteopontin (SPP1, 16.7-fold), interleukin-8 (IL8, 6.4-fold) and 

IL11 (4.8-fold) genes. FSK induced the expression of the IL6 (2.6-fold), IL11 (4.0-fold), 

chemokine ligand 13 (CXCL13, 2.8-fold) and bone morphogenetic protein 2 (BMP2, 

2.5-fold) genes. 

FSK (1 µM) increased BSP, Runx2 and Osterix mRNA levels in MCF7 cells at 12 h. 

From transient transfection analyses using various BSP promoter-luciferase constructs, 

a cAMP response element (CRE), a runt homeodomain protein 2 (Runx2) and a FGF2 

response element (FRE) were identified as targets of transcriptional activation by FSK. 

Gel mobility shift analyses showed that FSK increased binding of CRE and FRE. These 

studies demonstrate that FSK stimulates BSP transcription in MCF7 cells by targeting 

the CRE and FRE in the BSP gene promoter, and suggest that FGF2 and FSK might be 

crucial regulators of mineralization and bone formation. 

 

Introduction 

Osteoblasts produce and secrete several kinds of growth factors that are also found in 

the extracellular matrix of bone, such as fibroblast growth factor 2 (FGF2), 
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transforming growth factor-β (TGF-β), and platelet-derived growth factor (PDGF). 

These growth factors may regulate the initiation and development of bone formation 

and fracture callus. A particularly close relationship between FGF2 and bone formation 

has been reported (1, 2). Overexpression of the FGF2 gene in transgenic mice causes 

premature mineralization, flattening and shortening of long bones (3). Moreover, 

disruption of the FGF2 gene leads to a decrease of both bone mass and bone formation 

(4). Therefore, FGF2 could be crucial for the regulation of osteoblast proliferation and 

proper bone development. Forskolin (FSK) is a labdane diterpene produced by the 

Indian Coleus plant. FSK is commonly used to raise cyclic AMP (cAMP) levels in 

studies of cell physiology. FSK activates the enzyme adenylyl cyclase and increasing 

the intracellular levels of cAMP. Neurotransmitters and parathyroid hormone (PTH), 

which stimulate cAMP production and activation of protein kinase A (PKA) (5), can 

promote (6) or inhibit (7) growth and proliferation in a cell-specific manner. FSK and 

8-Bromo-cAMP, which also elevate the intracellular level of cAMP, together with PTH, 

have been shown to increase the levels of both osteocalcin (OC) mRNA and protein (8). 

OC and bone sialoprotein (BSP) are non-collagenous proteins expressed specifically 

in mineralized connective tissues (9). OC is expressed in bone matrix at the late stage of 

mineralization, whereas BSP is expressed in the early stage. The temporo-spatial 

deposition of BSP in the extracellular matrix of bone (10) and its ability to nucleate 

hydroxyapatite crystal formation (11) indicate a potential role of BSP in the initial 

mineralization of bone. Several studies have shown that FGF2 and FSK (cAMP) induce 

http://en.wikipedia.org/wiki/Labdane
http://en.wikipedia.org/wiki/Diterpene
http://en.wikipedia.org/wiki/Indian_Coleus
http://en.wikipedia.org/wiki/Cyclic_AMP
http://en.wikipedia.org/wiki/Cell_(biology)
http://en.wikipedia.org/wiki/Adenylyl_cyclase
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expression of the OC gene (12,13), and that Msx2, Dlx5 and Runx2 are important 

transcription factors for OC gene expression (13-17). A low concentration of FSK 

induces differentiation of osteoprogenitor cells, possibly through a 

non-cAMP-dependent process, and intermittent elevation of intracellular cAMP has an 

inhibitory effect on bone formation (18). Moreover, FSK inhibits DNA synthesis, blocks 

protein kinase C (PKC)-stimulated tyrosine phosphorylation of p44MAPK (ERK1) and 

p42MAPK (ERK2), and also inhibits PKC-stimulated MAPK and Raf-1 activities in 

MC3T3-E1 osteoblast-like cells (19). Phorbol-12-myristate-13-acetate (PMA) activates 

the intermediate MKK step of the Raf-1/MKK/MAPK cascade in the presence of FSK 

(20). Inducible cAMP early repressor (ICER) expression in osteoblasts also requires 

activation of the cAMP-protein kinase A (PKA) signaling pathway (20).  

Breast cancer cells are among the few human cancer cell types that exhibit the highest 

affinity for bone. The majority of patients with advanced breast cancer have evidence of 

skeletal metastases (21). Little is known about the molecular mechanisms responsible 

for breast cancer cells osteotropism, the phenomenon that defines the strong affinity of 

these cells for bone. A possible explanation could be provided by recent finding that 

breast cancer cells express high amounts of bone sialoprotein (BSP) (22). BSP is a 

highly phosphorylated and sulfated glycoprotein which is a major component of the 

mineralized bone and cementum matrix (23, 24). BSP mediates the attachment and 

activation of osteoclasts through the RGD motif (25, 26) and can facilitate attachment of 

normal bone or cancer cells to mineralized tissue surfaces (23-26). BSP and osteopontin 
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(OPN) can bind to factor H and protect cells from complement-mediated cell lysis, 

which may be important for cancer cell survival (27). BSP is expressed by mature 

osteoblasts, osteoclasts and hypertrophic chondrocytes (10, 28), and is also detectable in 

breast (21, 22), lung (29) and prostate cancers (30, 31), which could metastasized to 

bone, suggesting that BSP may play a role in the pathogenesis of bone metastases (32). 

The BSP gene promoters have been cloned and partially characterized (33-36). Rat BSP 

gene promoter have an inverted TATA box (-24 to -19) (37), an inverted CCAAT box 

(-50 to -46) which is required for basal transcription (38, 39). In addition, a cAMP 

response element (CRE; -75 to -68) (40-42), a fibroblast growth factor 2 (FGF2) 

response element (FRE; -92 to -85) (40, 43-45), a runt-related transcription factor 2 

(Runx2) binding site (-84 to -79) (46), a pituitary-specific transcription factor-1 (Pit-1) 

motif (-111 to -105) (47), a homeodomain protein binding site (HOX; -199 to -192) (44, 

48), a transforming growth factor-β (TGF-β) activation element (-499 to -485) (49) and 

a glucocorticoid response element (-931 to -906) overlapping an AP-1 site (-921 to -915) 

(50, 51) have also been characterized. We have previously reported FGF2 and cyclic 

AMP (cAMP) synergistically regulate BSP gene expression (46). The goal of the 

present study was to use microarray to investigate the candidate genes associated with 

mineralization after stimulation by FGF2, FSK and FGF/FSK in osteoblast-like cells 

and to elucidate the molecular mechanism of the FSK regulate BSP gene transcription in 

human breast cancer MCF7 cells. 
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Materials and Methods 

Materials 

Alpha minimal essential medium (α-MEM), fetal calf serum (FCS), Lipofectamine, 

penicillin, SuperScript one step RT-PCR with Platinum Taq, Penicillin-Streptomycin 

and TrypLETM Express were obtained from Invitrogen (Carlsbad, CA). Forskolin (FSK) 

was from Sigma-Aldrich Japan (Tokyo, Japan). Recombinant human FGF2 was from 

Genzyme, Techne (Minneapolis, MN). GeneChip (Human Genome U133A 2.0 Array 

and Rat Genome 230 2.0 Array) was purchased from Affymetrix (Santa Clara, CA). The 

pGL3-basic, pSVβ-galactosidase (β-Gal) control vector were purchased from Promega 

(Madison, WI). All chemicals used were of an analytical grade. 

 

Cell culture 

Human and rat osteoblast-like Saos2 and ROS17/2.8 cells (44, 46, 50), and human 

breast cancer cell line MCF7 (52) were cultured at 37 oC in 5% CO2 air in α-MEM 

supplemented with 10% FCS. Cells were first grown to confluence in 60 mm tissue 

culture dishes in α-MEM medium containing 10% FCS, then Saos2 and ROS17/2.8 

cells cultured in α−MEM without serum for 12 h, and stimulated by FGF2 (10 ng/ml), 

FSK (1 µM) or FGF2/FSK for 6 h. MCF7 cells were cultured in α-MEM without serum 

and incubated with FSK (1 µM) for time periods of 3-24 h. Total RNA was isolated 

from triplicate cultures and analyzed for the gene expressions. Nuclear proteins were 

extracted by the method of Dignam et al. (53) with the addition of extra proteinase 
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inhibitors (the extraction buffer was 0.42 M NaCl, 1.5 mM MaCl2, 0.2 mM EDTA, 1 

mM dithiothreitol (DTT), 25% (v/v) glycerol, 0.5 mM phenylmethyl-sulfonyl fluoride, 

2 μg/ml leupeptin, 2 μg/ml pepstatin A, 1 μg/ml aprotin, pH 7.9). 

 

Microarray analysis 

Three RNA samples were mixed together for gene expression profiling. Gene 

expression profiling was performed separately for each pooled RNA sample using a 

GeneChip (Human Genome U133A 2.0 Array, spotted 22,000 genes of human genes, 

and Rat Genome 230 2.0 Array, spotted 28,000 genes of rat genes). Hybridization and 

scanning of Gene Chip were done according to the Affymetrix manual. 20 µg of the 

fragmented biotinylated sample cRNA was hybridized to GeneChip, and washed and 

stained with streptavidin-phycoerythrin (Molecular Probes, Eugene, OR, USA) using 

the EukGE-WS1 protocol by an Affymetrix GeneArray Scanner. The expressions of 

human and rat genes were monitored, and the data was imported into GeneSpring GX 

software (Agilent Technologies, Inc, Santa Clara, CA) 

 

Reverse transcription polymerase chain reaction (RT-PCR) 

Total RNA (1 µg) was extracted with the guanidium thiocyanate described previously 

(49) and used as a template for cDNA synthesis. The cDNA was prepared by use of a 

SuperScript one step RT-PCR kit according to the supplier's protocol. Primers were 

synthesized on the basis of the reported human cDNA sequence for BSP, Runx2, Osterix 



9 
 

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Sequences of the primers used 

for PCR were as follow: human BSP forward, 5’-TGCTCAGCATTTTGGGAAT-3’; 

human BSP reverse, 5’-TGCATTGGCTCCAGTGACACT-3’ (627 bp), human Runx2 

forward, 5′-CAGTTCCCAAGCATTTCATCC -3′; human Runx2 reverse, 5′- 

TCAATATGGTCGCCAAACAG –3’ (443 bp), human Osterix forward, 5′- 

GCAGCTAGAAGGGAGTGGTG -3′; human Osterix reverse, 5′- 

GCAGGCAGGTGAACTTCTTC -3′ (359 bp), human GAPDH forward, 5′- 

CCACCCA-TGGCAAATTCCATGGCA -3′; human GAPDH reverse, 5′- 

TCTAGACGGCAGGTCAGGTCCACC -3′ (598 bp). Amplification was carried out for 30 

(GAPDH) cycles and 35 (BSP, Runx2 and Osterix) cycles under saturation, each at 94°C, 

for 30 sec; 55°C, for 30 sec; 72°C, for 30 sec in a 50 µl reaction mixture. After 

amplification, 10 µl of each reaction mixture was analyzed by a 2% agarose gel 

electrophoresis, and the bands were then visualized by ethidium bromide staining. 

 

Transient transfection assays 

Exponentially growing MCF7 cells were used for transfection assays. Twenty-four 

hours after plating, cells at 60–70% confluence were transfected using a Lipofectamine 

reagent. The transfection mixture included 1 μg of a luciferase (LUC) construct (49, 50) 

and 2 μg of β-Gal vector as an internal control. After two days of post-transfection, cells 

were deprived of serum for 12 h, and 1 µM FSK was added 12 h prior to harvesting. 

The luciferase assay was performed according to the supplier's protocol (PicaGene; 
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Toyo Inki, Tokyo) using a Luminescence reader (Acuu FLEX Lumi 400; Aloka) to 

measure the luciferase activity. 

 

Gel mobility shift assays 

Confluent MCF7 cells in T-75 flasks incubated for 3, 6 and 12 h with 1 µM FSK in 

α-MEM without serum were used to prepare the nuclear extracts. Double-standard 

oligonucleotides encompassing the inverted CCAAT, CRE, FRE and Pit-1 in the rat 

BSP promoter were prepared. For the gel shift analysis, the double-standard 

oligonucleotides were end-labeled with [γ-32P] ATP and T4 polynucleotide kinase. 

Nuclear protein extracts (3 µg) were incubated for 20 min at room temperature with 0.1 

pM of radiolabeled double-standard oligonucleotide. Following incubation, the 

protein-DNA complexes were resolved by electrophoresis in 5% non-denaturing 

acrylamide gels (38:2 acrylamide/bis acrylamide) ran at 200 V at RT. After 

electrophoresis, the gels were dried and autoradiograms were prepared and analyzed 

using an image analyzer. Double-standard oligonucleotides encompassing the inverted 

CCAAT (-61 to -37, 5’-CCGTGACCGTGATTGGCTGCTGAGA), CRE (-84 to -59, 

5’-CCCACAGCCTGACGTCGCACCGGCCG), FRE (-98 to –79, 

5’-TTTTCTGGTGAGAACCCACA) and Pit-1 (-115 to -96, 

5’-CGTGTTGTAGTTACGGATTT) in the rat BSP promoter were prepared. 

 

Statistical analysis 
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Quadruplicate or triplicate samples were analyzed for each experiment, and 

experiments were replicated to ensure the consistency of the responses to the drugs. 

Significant differences between control and treatment groups were determined using the 

one-way ANOVA. 

 

Results 

Analyses of gene expression profile of osteoblast-like cells by DNA microarray 

To study the regulation of human and rat genes by FGF2, FSK or FGF2/FSK, we 

performed DNA microarray analyses of total RNA extracted from Saos2 and ROS17/2.8 

osteoblast-like cells. In human Saos2 cells, 418, 68 and 345 genes were upregulated 

more than two-fold by FGF2 (10 ng/ml), FSK (1 µM) and FGF/FSK in Saos2 cells (Fig. 

1A, B, C). FGF2 increased synaptotagmin XII (SYT12) (60.2-fold), osteopontin 

(SPP1(OPN), 16.7-fold), colony stimulating factor 2 (CSF2, 15.6-fold), early growth 

response 1 (EGR1, 6.6-fold), interleukin 8 (IL8 6.4-fold), interleukin 11 (IL11, 4.8-fold), 

Wnt5B (WNT5A, 4.0-fold), histone deacetylase 4 (HDAC4, 3.5-fold), and bone 

morphogenetic protein 2 (BMP2, 3.3-fold), for mRNA levels (Fig. 1A). FSK stimulated 

sialophorin (LSN, 45.2-fold), synaptotagmin-like 3 (SYTL3, 6.1-fold), IL11 (4.0-fold), 

prostaglandin E synthase (PTGES, 2.9-fold), chemokine ligand 13 (CXCL13, 2.8-fold), 

IL6 (2.6-fold), and BMP2 (2.5-fold), for gene expressions (Fig.1B). FGF/FSK induced 

SYTL3 (33.9-fold), IL11 (13.6-fold), SPP1 (12.4-fold), CSF2 (10.3-fold), HDAC4 

(7.5-fold), EGR1 (6.8-fold), IL8 (5.6-fold), BMP2 (4.4-fold), and WNT5A (4.1-fold), 
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for mRNA levels (Fig. 1C). 

  In rat ROS17/2.8 cells, 591, 127 and 390 genes were upregulated more than two-fold 

by FGF2 (10 ng/ml), FSK (1 µM) and FGF/FSK. (Fig. 2A, B, C). FGF2 stimulated 

dentin matrix protein 1 (DMP1, 129.8-fold), EGR1 (33.4-fold), c-FOS (7.2-fold), 

AXIN2 (4.6-fold), JUNB (4.1-fold), MYC (3.8-fold), and connective tissue growth 

factor (CTGF, 2.8-fold), for gene expressions (Fig.2A). FSK increased c-FOS 

(10.7-fold), EGR1 (5.6-fold), HDAC4 (3.6-fold), AXIN2 (2.8-fold), WNT4 (2.4-fold), 

CTGF(2.1-fold) and IL6 (2.1-fold) (Fig. 2B). Furthermore, FGF/FSK upregulated 

amphiregulin (AREG, 73.0-fold), EGR1 (22.6-fold), DMP1 (13.4-fold), PTGES 

(6.4-fold), CTGF (4.5-fold), cAMP response element modulator (CREM, 4.1-fold), 

JUNB (3.8-fold), MYC (3.8-fold), and AXIN2 (3.5-fold), for gene expressions (Fig. 

2C). 

 

Stimulation of BSP, Runx2 and Osterix mRNA levels in MCF7 Cells 

To study the regulation of BSP expression by FSK in breast cancer cells, we 

performed RT-PCR using total RNA extracted from MCF7 cells. Since Runx2 and 

Osterix are considered master genes for osteogenesis, the effects of FSK on their 

expression were also analyzed by RT-PCR. Results of RT-PCR showed that FSK (1 µM) 

increased BSP mRNA level at 12 h and reached a maximum at 24 h. The Runx2 mRNA 

level was increased at 3 h, decreased at 6 h, and increased again at 12 and 24 h. The 

Osterix mRNA level increased at 6 h and reached maximal at 12 h (Fig. 3). 
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Transient transcription analysis 

Transient transfection of chimeric constructs encompassing different regions of the 

rat BSP gene promoter that ligated to a luciferase reporter gene (pLUC3~6) were 

performed in MCF7 cells (Fig. 4). The results of the transfection assays indicated an 

increase in transcription after 12 h with constructs pLUC3 (-116~+60), pLUC4 

(-425~+60), pLUC5 (-801~+60) and pLUC6 (-938~+60) following treatment with 1 µM 

of FSK (Fig. 2). Within the pLUC3 luciferase construct, an inverted TATA and CCAAT 

box, a CRE, a Runx2, a FRE and a Pit-1 motif are present (Fig. 5). To confirm the 

functional elements, we performed double mutation analyses. Two base pair mutation in 

CRE, Runx2 and FRE in pLUC3 abolished the FSK induced BSP promoter activities, 

whereas mutation in CCAAT had no effect (Fig. 6). The results suggested that CRE, 

Runx2 and FRE are functional response elements for FSK. 

 

Gel mobility shift assays 

To identify nuclear proteins which bind to CRE, Runx2 and FRE elements might be 

modulated by FSK, double-stranded oligonucleotides were end-labeled and incubated 

with equal amounts (3 µg) of nuclear proteins extracted from confluent MCF7 cells that 

were either not treated (control) or treated with FSK (1 µM) for 3, 6 and 12 h. When the 

inverted CCAAT, CRE and FRE sequence were used as probes, the CCAAT-nuclear 
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factor-Y (NF-Y) protein complex did not change after FSK stimulation. NF-Y is a 

principal transcription factor that bound to the inverted CCAAT (39). In comparison, 

with nuclear extracts from confluent control cultures of MCF7 cells, CRE- and 

FRE-protein complexes were increased after stimulation by FSK (Fig. 7). 

 

Discussion 

In this study, we reported on candidate genes associated with mineralization induced 

by FGF2, FSK and FGF/FSK in two kinds of osteoblast-like cell lines (Fig. 1 and 2). 

These genes were classified into various fields depending on cell type, such as regulator 

of gene expressions (c-FOS, JUNB, MYC, WNT5 and HDAC4), extracellular matrix 

proteins (OC, OPN and DMP1), and inflammatory cytokines (IL6, IL8, IL1 and 

PTGES). 

WNT5A and HDAC4 mRNA levels were increased by FGF2, FSK and FGF/FSK in 

human osteoblast-like Saos2 cells, respectively. While FGF2 induced WNT5B gene 

expression, FSK decreased WNT5B gene expression. WNT5A and WNT5B belong to 

the WNT family, and it is well known that the Wnt signaling pathway also plays a 

pivotal role in the regulation of bone mass (54). The Wnt signaling pathway is activated 

during postnatal bone regenerative events, such as ectopic endochondral bone formation 

and fracture repair. It has been reported that FGF signaling could control many aspects 

of osteoblasts differentiation through induction of SOX2 and regulation of the 
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Wnt-beta-catenin pathway (55). Ambrosetti et al. showed that ERK1/2 and Akt have 

distinct effects on FGF-induced osteoblasts proliferation and differentiation (56). The 

Wnt signaling pathway, which promotes osteoblast differentiation, also induces Akt 

phosphorylation. The cells expressing active Akt increase the levels of the stabilized 

beta-catenin and a central molecule in Wnt signaling (57). Takada et al. reported that 

histonelysine methyltransferase activated by non-canonical Wnt signaling suppresses 

PPAR-gamma transactivation, induces Runx2 expression, and promotes 

osteoblastogenesis (58). These results suggest a close relationship between FGF2, Wnt 

and osteoblastogenesis.  

HDAC4 is one of the histone deacetylases (HDACs) (59), and is known to regulate 

osteoblast differentiation. HDAC4 or HDAC5 is required for TGF-beta-mediated 

inhibition of Runx2 function and is involved in osteoblasts differentiation (60). HDAC4 

deacetylates Runx2, allowing the protein to undergo Smurf-mediated degradation. The 

inhibition of HDAC4 increases Runx2 acetylation and potentiates BMP-2-stimulated 

osteoblast differentiation and increases bone formation (61). PTH regulates HDAC4 in 

osteoblast-like cells through a PKA-dependent pathway, leading to removal of HDAC4 

from the MMP13 gene promoter and enhancing gene transcription (62). These data 

suggest that HDAC4 could be related to the transcription factors induced by FGF and 

FSK in osteoblasts. 

The WNT4 mRNA level was increased by FSK but not by FGF2. AXIN2 gene 

expression was induced FGF2, FSK and FGF/FSK. Also, the c-MYC mRNA level was 
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increased by FGF2 and FGF/FSK in ROS17/2.8 cells. AXIN2/conductin/Axil is a 

negative regulator of the canonical Wnt pathway that suppresses signal transduction by 

promoting degradation of beta-catenin. AXIN2 has a role in calvarial morphogenesis 

and craniosynostosis (63). The function of AXIN2 and beta-catenin have demonstrated 

that canonical signaling modulates most aspects of osteoblasts physiology including 

proliferation, differentiation, bone matrix formation/mineralization and apoptosis, as 

well as coupling to osteoclastogenesis and bone resorption. 

Activator protein 1 (AP1) transcription factor was formed by c-FOS and c-JUN 

heterodimer. c-FOS is a key regulator of osteoblasts differentiation, whereas, c-JUN, 

JUNB and FRA1 are essential in embryonic and/or postnatal development (64). We 

have previously reported that FGF2 stimulates BSP gene transcription by targeting the 

FGF2 response element (FRE) and AP1/glucocorticoid response element (GRE) in rat 

BSP gene promoter (65). In this study, c-FOS was induced by FGF2 and FSK. Results 

of DNA microarray analyses showed that the JUNB mRNA levels were increased by 

FGF2 and FGF/FSK in ROS 17/2.8 cells (Fig. 2), whereas real-time PCR data indicated 

FGF2 and FGF/FSK could not induce JUNB gene expression, and FSK induced JUNB 

mRNA level maximally (data not shown). Further study to resolve the discrepancy is 

required. Osteoblast specific extracellular matrix proteins such as OC and BSP were 

strongly reduced in JUNB deficient mice (66). 

Glucocorticoid increased mRNA levels of alkaline phosphatase (ALP), c-MYC, 

c-FOS and c-JUN mRNAs in human osteoblast-like cells (67). c-MYC induces 
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differentiation and apoptosis of human ES cells (68). In contrast, c-MYC has a positive 

role in mouse ES cells (69). Takahashi et al. demonstrated the generation of induced 

pluripotent stem cells (iPS cells) from adult human dermal fibroblasts using the four 

transcription factors of OCT3/4, SOX2, KLF4 and c-MYC (70). Thus, c-MYC has a 

close connection to cell differentiation and proliferation and c-MYC may have a role in 

osteoblasts differentiation and proliferation by FGF2 stimulation.  

BSP has been characterized as a unique marker of osteogenic differentiation that can 

regulate the formation of mineral crystals (23, 24). Our studies have identified CRE, 

Runx2 and FRE elements in the proximal promoter of the BSP gene that mediates 

FSK-stimulated transcription of BSP gene in MCF7 human breast cancer cells. 

From our previous research, we have observed that FSK and FGF2 regulated BSP 

expressions in DU145 prostate cancer cells and ROS17/2.8 osteoblast-like cells (31, 46). 

The presence of BSP in human breast cancers has been associated with an increased risk 

for subsequent bone metastases and poor survival rates (32, 71). The ability of BSP to 

bind to hydroxyapatite crystals and to mediate cell attachment through cell-surface 

integrins may be involved in the osteotropism of the metastatic cells (22-24). Various 

tumors express BSP (22, 29-32, 72), and FSK increased BSP and Runx2 mRNA and 

protein levels in prostate cancer cells (31). OC and BSP expression is coordinated and 

regulated through cAMP-dependent PKA signaling, which may define the molecular 

basis of the osteomimicry exhibited by prostate cancer cells (73). 

RT-PCR results showed that FSK treatment of MCF7 breast cancer cells increased the 
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steady-state levels of BSP, Runx2 and Osterix mRNA (Fig. 3). From transient 

transfection assays, BSP promoter activities (pLUC3 (-116~+60), pLUC4 (-425~+60), 

pLUC5 (-801~+60), pLUC6 (-938~+60)) were increased by FSK (Fig. 4). Insertion of 

two base pair mutations in CRE, Runx2 or FRE sites in pLUC3 constructs abolished the 

FSK induced BSP promoter activities (Fig. 6). The results suggest that CRE, Runx2 and 

FRE are functional response elements for FSK. Results of gel shift assays showed that 

proteins from nuclear extracts that formed complexes with the CRE and FRE were 

increased by FSK (Fig. 7). Previously, a FRE (GGTGAGAA) was identified in the rat 

BSP proximal gene promoter that was juxtaposed to a putative Runx2 binding site 

(CCCACA) (Fig. 5) (46). FRE oligonucleotide which was used for the gel shift assay 

included both FRE and Runx2 sites. Therefore, FRE-protein complexes could contain 

FRE binding transcription factors and Runx2. Further study is necessary to investigate 

the FSK signal pathway in MCF7 human breast cancer cells and transcription factors 

that bind to CRE, Runx2 and FRE, and the functional interactions of these elements. 

Breast cancer has become a serious health concern for women. It most commonly 

metastasizes to the lymph nodes and bone and causes significant morbidity in women 

with an advanced disease (21, 22, 32). Although there is little understanding of the 

molecular mechanisms responsible for bone metastasis in breast cancer, previous 

research found that noncollageous bone matrix proteins, such as OC, OPN and BSP, are 

expressed at high levels in advanced bone metastatic breast and prostate cancer cells. 

However, normal breasts and prostates do not express bone matrix proteins (30, 32). 
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These observations led us to focus specifically on the regulation of BSP expressions in 

breast cancer cells. BSP and OC expressions in prostate cancer cells are regulated by 

PKA signaling (73). Therefore, in this study, we used FSK, an activator of adenylate 

cyclase, which has been extensively used to stimulate the cAMP-PKA signaling pathway 

in order to elucidate how BSP gene transcriptions are regulated in breast cancer cells.  

CREB1, ATF/CREB and AP1 family transcription factors can bind to CRE as 

homodimers or heterodimers (74). In addition, it was previously found that AP1 family 

transcription factors (c-Fos, c-Jun, JunD and Fra2) interacted with CRE1 and CRE2 

elements in the human BSP gene promoter (31). Osteoblast-related transcription factors 

Runx2 and Msx2 mediate the expression of BSP in human metastatic breast cancer cells 

(75). We previously reported that FRE binding proteins in Saos2 osteoblast-like cells 

were Runx2, Dlx5 and Smad1, and that anti-Smad1 antibody co-precipitated Smad1 and 

Runx2 (44). It is possible that Runx2 may interact with CRE, because CRE is located 

adjacent to FRE in the proximal promoter of the rat BSP gene. CREB1 and AP1 

transcription factors JunD and Fra2 regulated BSP gene expression in human breast 

cancer cells (76). Osterix is a C2H2-type zinc finger transcription factor from the SP 

gene family and a putative master regulator of bone cell differentiation. 

Osterix-deficient mice display an absence of bone due to arrested osteoblast 

differentiation (77). In this study, we showed that FSK induced Osterix mRNA levels in 

MCF7 human breast cancer cells (Fig. 3). The putative Osterix response element is a 

G/C-rich sequence; although, we could not identify the Osterix binding site yet. Further 
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study is necessary to elucidate the regulatory element in the rat and human BSP gene 

promoter 

In conclusion, our study has suggested that FGF2, FSK and FGF/FSK induce many 

mineralization-associated genes. Therefore, the induced genes may interact with each 

other and regulate bone mineralization and formation. FSK-induced BSP transcription 

in human breast cancer cells was under the control of transcription factors interacted 

with CRE, Runx2 and FRE elements, and suggests that the cAMP-PKA signaling 

pathway inhibitor may have a potential to be a therapeutic agent for breast cancer. 
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Fig. 1C                                               Saos2 
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Fig. 1 Representative genes increased by FGF2 (A), FSK (B) and FGF2 plus FSK 

(FGF/FSK) (C) in human osteoblast-like Saos2 cells. The indicated genes were 

upregulated more than two-fold compared with the control. Genes in bold print were 

described in the Results. 
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Fig. 2A                                           ROS17/2.8 
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Fig. 2B                                           ROS17/2.8 
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Fig. 2C                                          ROS17/2.8 
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Fig. 2 Representative genes induced by FGF2 (A), FSK (B) and FGF2 plus FSK 

(FGF/FSK) (C) in ROS17/2.8 cells. The indicated genes were upregulated more than 

two-fold compared with the control. Genes in bold print were described in the Results. 
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Fig. 3. Effects of FSK on BSP, Runx2 and Osterix mRNA levels in MCF7 cells. Results 

of time-course of RT-PCR for BSP, Runx2, Osterix and GAPDH mRNA levels in MCF7 

cells after stimulation by FSK (1 µM) for 24 h. Total RNA was extracted, and the 

expression of BSP, Runx2, Osterix and GAPDH mRNA in these cells were analyzed by 

RT-PCR. 
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Fig. 4. FSK up-regulates BSP promoter activities. The transcriptional activities of 

pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to 

+60) were increased after 12 h of treatment with 1 µM of FSK in MCF7 cells. The 

results of transcriptional activities obtained from three separate transfections with 

constructs, pLUC basic (pLUCB) and pLUC1 to pLUC6, have been combined and 

values expressed with standard errors. *(P<0.01). 
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Fig. 5. Regulatory elements in the proximal promoter of rat BSP gene. Upper: The 

nucleotide sequence of the rat BSP gene proximal promoter is shown from -159 to -35. 

An inverted CCAAT box, CRE, Runx2, FRE, Pit-1 and AP-1 are present. Lower: The 

positions of inverted TATA and CCAAT boxes, vitamin D response element (VDRE) 

that overlaps the inverted TATA box, a CRE, a FRE, Pit-1, homeodomain 

protein-binding site (HOX), TAE (TGF-β activation element) overlaps AP-2, and GRE 

overlapping AP1 are shown. 

 

 

 



41 
 

 

 

Fig. 6. Site-specific mutation analysis of luciferase activities. After introducing 2 bp 

mutations, transcriptional induction by FSK (1 µM) was partially inhibited in the 

M-CRE, M-Runx2 and M-FRE (pLUC3) constructs. The results of transcriptional 

activities obtained from four separate transfections with constructs were combined and 

the values expressed with standard errors. Significant differences from control: 

*(P<0.01). 
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Fig. 7. Gel mobility shift assays using inverted CCAAT, CRE, FRE and Pit-1. After 

stimulation by 1 µM of FSK (3, 6 and 12 h), CRE-protein complexes increased at 3 h 

(lanes 5-8), and FRE-protein complexes increased at 6 h and reached a maximum at 12 

h (lanes 9-12). CCAAT- and Pit-1-protein complexes did not change after stimulation 

by FSK (lanes 1-4, 13-16). DNA-protein complexes were separated on a 5% 

polyacrylamide gel in a low-ionic-strength Tris-borate buffer, dried under a vacuum, 

and exposed to an imaging plate for quantitation using an imaging analyzer. 


