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Chapter 1

Introduction

There are four interactions in nature; electromagnetic, weak, strong, and gravitational

interactions. Three of them except the gravitational one are described by a gauge theory

called the Standard Model. It is based on quantum mechanics and the special theory of

relativity, so it does not include gravitational effects. Nevertheless, it succeeds in the

explanation and prediction of various experimental facts of elementary particles. The

reason is that the gravitational interaction is much weaker than the other ones at the

energy scale which can be observed in present experiments.

When we study physics at higher energy scale beyond the Standard Model, such as

the early universe, it is expected that all interactions become of the same order. Then

we need to formulate a quantum theory of gravity and further construct a unified theory

including all four interactions. The gravitational interaction is described classically by

the general theory of relativity. However, when we attempt to quantize gravity with

a standard framework of the field theory, we face serious difficulties. A notable one is

the non-renormalizability ; infinite quantities appear, which can not be absorbed by any

redefinition of parameters in the theory.

String theory was originally proposed as a theory of hadrons in the beginning of

1970s. However, it was not regarded as realistic because its dimensionality is not 4 but

26 and it contains tachyons. In addition it was found that quantum chromodynamics

(QCD) explains behavior of hadrons well. Because of such reasons, string theory as a

theory of hadrons was abandoned. On the other hand, it was pointed out that spectra

of strings contain states which correspond to gauge particles and gravitons. Moreover, it

was found that certain string theories whose gauge symmetries are SO(32) or E8 × E8

have no gravitational anomaly. These gauge symmetries include SU(3)× SU(2)× U(1),
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the one of the Standard Model. Therefore, it indicates that string theory has a possibility

of being a consistent unified theory which includes all four interactions. Through these

studies, string theory was revived as a candidate for a quantum gravity theory and a

unified theory.

Fundamental objects in string theory are one-dimensional extended ones, strings.

There are two types of fundamental strings; open strings, which have their endpoints and

closed strings, which have no endpoints. We regard each string oscillation mode as each

elementary particle in quantum field theories. In particular, the lowest energy mode of

an open string corresponds to a gauge particle and the one of a closed string corresponds

to a graviton. Hence, all the fundamental interactions can be included in string theory.

String theory includes not only strings but also p-dimensional extended objects, Dp-

branes or shortly D-branes. It is known that endpoints of open strings are on the D-

branes as a consequence of the T-duality, a peculiar nature of string theory. Then the

open strings and the D-branes are closely connected. In the low-energy limit, dynamics

of the D-branes is described by a gauge theory, because the gauge particle which is the

lowest mode of the open string is dominant in the limit.

On the other hand, there is another description of the D-branes. Since the D-branes

have energy, they are sources of a gravitational field which originates from the closed

strings emitted from the D-branes. In the low-energy limit, their properties can be read

from a geometry given by a classical solution of a supergravity theory which is the low-

energy theory of string theory.

As we have seen so far, the low-energy D-branes can be described by two pictures,

open and closed string pictures. The former is the description by the gauge theory and

the latter is the description by the gravity theory. Since we see the same system by the

two different theories, it leads us to a conjecture: the gauge/gravity correspondence. It

asserts that there exists correspondence between gauge theories and gravity theories.

Moreover, as we will see later, one theory in a strong coupling regime corresponds to

the other theory in a weak coupling regime. It indicates that if this conjecture is correct,

we could analyze the theory in the strong coupling regime by studying the corresponding

theory in the weak coupling regime. This is an attractive feature of the gauge/gravity

correspondence. Exploiting this suggestion, some applications have been proposed; for

example, an analytic treatment for QCD.

A direct proof of the correspondence is difficult because we need to analyze theories
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in the strong coupling regime. However, it is known that certain observables can be

analyzed in the strong coupling regime because their quantum corrections are restricted

due to their high symmetries. Using such observables, we can give a support for the

correspondence. The main theme of this thesis is giving such a support by studying a

correlation function between a Wilson loop operator and a local operator defined in the

gauge theory side and its counterpart in the gravity theory side.

This thesis is organized as follows. In chapter 2, we review the best studied version

of the gauge/gravity correspondence, the AdS5/CFT4 correspondence. In chapter 3, we

discuss a support for the correspondence by studying a Wilson loop operator. In chapter

4, we first present an analysis of a correlation function between a Wilson loop and a

local operator in the gauge theory side. After that we evaluate a string amplitude which

corresponds to the correlation function in the gravity theory side. The last chapter is

devoted to a summary and discussions.
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Chapter 2

The gauge/gravity (AdS/CFT) correspondence

The term “gauge/gravity correspondence” indicates various conjectures which assert du-

alities or correspondences between gauge theories and gravity theories. Through this

thesis, we consider one which asserts the correspondence between four-dimensional U(N)

N = 4 super Yang-Mills (SYM) theory and type IIB superstring theory on AdS5×S5 ge-

ometry, a direct product of a five-dimensional anti de-Sitter space and a five-dimensional

sphere. It is the best studied version of the correspondences originally proposed by

Maldacena [1–3]1, which are generally called the AdS/CFT correspondences. “CFT” is

an abbreviation for a conformal field theory. In the present case, it is often called the

AdS5/CFT4 correspondence, where CFT4 indicates four-dimensional N = 4 SYM theory.

D3-branesN

closed string

string world-sheet

open string

Figure 2.1: The interaction between an open string and a closed string

In order to present a circumstancial evidence for the AdS5/CFT4 correspondence,

we consider a system of coincident N D3-branes, which are stable dynamical objects in

1Foundations, developments and applications of the AdS/CFT correspondence are discussed in [4,5],

for example.
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type IIB superstring theory. Endpoints of open strings are attached on the D3-branes,

while closed strings can propagate freely around them. Their interactions are expressed

by a smooth string world-sheet as depicted in Fig.2.1. The correspondence is found by

considering low-energy dynamics of the D3-branes from two different viewpoints, an open

sting picture and a closed string picture.

String theory has one dimensionful parameter α′, which is related to the string tension

T as

T =
1

2πα′ . (2.1)

Then the dimension of α′ is length squared and the square root of it corresponds to

a typical length scale of string fluctuations. If an energy scale E of a system which we

consider is much smaller than the typical energy scale of string oscillations 1/
√
α′, massive

modes will not be excited. Hence massless oscillation modes are dominant in describing

the low-energy dynamics of strings.

Now we focus on the open strings attached to the D3-branes. They interact with the

closed strings propagating in the bulk, the whole space-time surrounding the D3-branes.

In the low-energy limit, an effective theory on the D3-branes is a gauge theory while

one in the bulk is a supergravity theory. The interactions between fields of the gauge

theory and the supergravity theory vanish because a gravity coupling constant κ = gsα
′2

vanishes in the low-energy limit E � 1/
√
α′. Here gs denotes a dimensionless string

coupling constant. Hence the supergravity theory is decoupled from the gauge theory.

We specify the gauge theory which emerges on the D3-branes by the following discus-

sion. Each endpoint of the open string is on any one of the D3-branes. Hence degrees

of freedom for the one endpoint is N , and that for an open string with two endpoints is

N2, which correspond to an adjoint representation of the U(N) gauge symmetry on the

D3-branes. On the other hand, type IIB superstring theory has N = 2 supersymmetry

in ten-dimensions. Supercharges in this case are given by two sets of ten-dimensional

Majorana-Weyl spinors with a common chirality, so the total number of their degrees

of freedom is 32. The D3-brane is a 1/2 BPS object, which preserves one half of the

original supersymmetry. Then it has 16 degrees of freedom as preserved supersymmetry.

In four-dimensional supersymmetric theories, the number of supercharges is counted by

a four-dimensional Majorana spinor as a unit. Since a single Majorana spinor has 4 de-

grees of freedom, SYM theory on the D3-branes has N = 4 supersymmetry. Finally, we

conclude that the low-energy dynamics of the coincident N D3-branes is described by
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U(N) N = 4 SYM theory. The action is given by

SN=4 =
1

2g2YM

∫
Tr

[
−1

2
FμνF

μν−DμΦID
μΦI+

1

2
[ΦI ,ΦJ ]

2−iΨ̄γμDμΨ−Ψ̄γ3+I [ΦI ,Ψ]

]
d4x,

(2.2)

where Fμν = ∂μAν−∂νAμ−i[Aμ, Aν ] (μ, ν = 0, 1, 2, 3) is a four-dimensional field strength,

Dμ = ∂μ − i[Aμ, ] is a covariant derivative, and (γμ, γ3+I) are ten-dimensional gamma

matrices. This theory contains a gauge field Aμ, and six scalar fields ΦI (I = 1, 2, · · · , 6)
as bosonic fields, while four four-dimensional Majorana spinors are described as a ten-

dimensional Mojorana-Weyl spinor Ψ.

Next we consider the same system, the low-energy D3-branes, from the closed string

picture. As stated before, the D-branes have energy and their properties can be read

from the geometry generated by themselves. In the case of the coincident N D3-branes,

it is known that there is a classical solution of type IIB supergravity theory, which is the

low-energy effective theory of type IIB superstring theory:

ds2 = H− 1
2 (−dx2

0 + dx2
1 + dx2

2 + dx2
3) +H

1
2 (dr2 + r2dΩ2

5),

F5 = (1 + ∗)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ d(H−1),

H = 1 +
L4

r4
.

(2.3)

r denotes a radial coordinate of the six-dimensional space surrounding the D3-branes and

dΩ2
5 denotes a line element of a unit five-dimensional sphere. L is a typical length scale

of this space-time, defined by

L = (4πgsN)
1
4

√
α′. (2.4)

If we take the limit r � L, getting far away from the D3-branes, (2.3) becomes ten-

dimensional Minkowski space-time, R1,9. On the other hand, if we take the opposite

limit L � r, which is called the near horizon limit, it becomes

ds2 =
r2

L2
(−dx2

0 + dx2
1 + dx2

2 + dx2
3) +

L2

r2
dr2 + L2dΩ2

5,

F5 = (1 + ∗)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ d(H−1).

Performing a coordinate transformation u = L2/r, we finally obtain

ds2 = L2

(
u2 + (−dx2

0 + dx2
1 + dx2

2 + dx2
3)

u2
+ dΩ2

5

)
. (2.5)

This line element represents AdS5 × S5, a direct product of five-dimensional anti-de

Sitter space and a five-dimensional sphere. Therefore, the space-time which we consider
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approaches to flat space-time in the region far away from the D3-branes, while it becomes

AdS5 × S5 in the neighborhood of them. Since the AdS5 × S5 geometry is realized

deep inside of the gravity potential, the dynamics on AdS5 × S5 is decoupled from the

asymptotic region in the low-energy limit. We are interested in the counterpart of SYM

theory on the D3-branes, so we focus on the neighborhood of them. Therefore, the low-

energy dynamics of the coincident N D3-branes in the closed string picture is described

by type IIB supergravity theory on AdS5 × S5.

We have obtained two different pictures of the D3-branes system so far. The one is

U(N) N = 4 SYM theory and the other is type IIB supergravity theory on AdS5 × S5.

Since these two theories describe the same system, we are led to a conjecture which asserts

the correspondence between U(N) N = 4 SYM theory and type IIB supergravity theory

on AdS5 × S5. This is the AdS5/CFT4 correspondence.

In fact it is easy to see that the global symmetries in both theories correspond to each

other. N = 4 SYM theory has the conformal symmetry SO(4, 2) and the R-symmetry

SO(6). The latter symmetry exchanges the six scalar fields. On the other hand, AdS5×S5

has the isometry group SO(4, 2) in AdS5 and the rotational symmetry SO(6) in S5. In

addition the degrees of freedom of the supersymmetry in both theories agree. N = 4

SYM theory has the Poincaré supersymmetry and the conformal supersymmetry. Each of

them has 16 degrees of freedom, so the total amount is 32. On the other hand, a Killing

spinor of AdS5 × S5 is constructed by a pair of ten-dimensional Majorana-Weyl spinors.

Since a ten-dimensional Majorana-Weyl spinor has 16 components, the total number of

degrees of freedom is also 32.

Let us discuss the parameter range in which the above proposal is expected to be

valid. String theory has two parameters, α′ and gs. Since the above arguments are based

on weak coupling string theory, we are restricted to the regime,

gs � 1. (2.6)

We also described the properties of the D3-branes approximately with the classical solu-

tion of type IIB supergravity theory, which is valid only if all the stringy excited modes

are suppressed. This requires that the scale of string fluctuations
√
α′ must be much

smaller than L, which is the typical scale of the geometry defined by (2.4),

√
α′ � L. (2.7)
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This can be rewritten as

1 � 4πgsN. (2.8)

Combining (2.6) and (2.7), we find the following condition for the closed string picture

to be valid:

1 � 4πgsN � N. (2.9)

On the other hand, U(N) N = 4 SYM theory has also two parameters, the gauge

coupling constant gYM and the rank of the gauge group N . By definition, N is equivalent

to the number of the D3-branes. It is known that gYM and gs are related to each other as

4πgs = g2YM. (2.10)

Using this relation, (2.9) can be translated into

1 � λ � N, (2.11)

where λ := g2YMN . λ is called the ’t Hooft coupling constant. This condition indicates

that, in the gauge theory side, we take the ’t Hooft limit, which is defined by

1 � N, λ = fixed. (2.12)

From (2.11) and (2.12), we find that N = 4 SYM theory needs to be in the strong ’t

Hooft coupling limit in the present case. As explained in Appendix A, calculations of

gauge theory simplify in the ’t Hooft limit.

Now we reach a more precise statement of the AdS/CFT correspondence; it is a

conjecture which asserts a correspondence between U(N) N = 4 SYM theory in the

strong ’t Hooft coupling limit and type IIB supergravity theory on AdS5 × S5. This is

a weaker version of the AdS5/CFT4 correspondence. The stronger one asserts that the

correspondence between U(N) N = 4 SYM theory and type IIB superstring theory on

AdS5 × S5 holds in all corresponding parameter region.

If this conjecture is correct, we could analyze one theory in the strong coupling regime

using the dual theory in the weak coupling regime. Generally, physics in the strong

coupling regime is difficult to analyze, so this suggestion is attractive. However, we need

to investigate in detail whether the correspondence is correct because the complete proof

has not been given yet. We will present a support for the correspondence in the next

chapter.
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Chapter 3

Wilson loop operators in the AdS/CFT

correspondence

As stated in Chapter 1, we can give a support for the gauge/gravity correspondence by

using special observables which can be analyzed in the strong coupling regime. In the rest

of this thesis, we mainly deal with a Wilson loop operator, an observable defined in gauge

theories. In this chapter, first we see how the Wilson loop operator and its counterpart are

read from the context of the AdS5/CFT4 correspondence. Next we present a nontrivial

support for the correspondence by studying a circular BPS Wilson loop operator.

3.1 Wilson loop operators in QCD

The Wilson loop operator was originally introduced in order to explain the quark con-

finement in QCD and it is defined by

WC =
1

N
TrP exp

[∫
C

iAμẋ
μdσ

]

=
1

N
Tr

[
1 +

∫ 2π

0

dσ1(iAμẋ
μ
1 ) +

∫ 2π

0

dσ1

∫ σ1

0

dσ2(iAμẋ
μ
1)(iAν ẋ

ν
2)

+

∫ 2π

0

dσ1

∫ σ1

0

dσ2

∫ σ2

0

dσ3(iAμẋ
μ
1)(iAν ẋ

ν
2)(iAρẋ

ρ
3) + · · ·

]
.

(3.1)

Here Aμ is a gauge field and xμ = xμ(σ) (xμ
1 := xμ(σ1), etc.) denotes coordinates of the

path C along which a quark and an anti-quark propagate.1 The symbol P in the first line

1The signature is taken to be Euclidean in this chapter.
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represents a path ordering, which is defined by the second and the third line. We assume

that the quark and the anti-quark are heavy and non dynamical, i.e., their paths are not

affected by interactions with the gauge field. An expectation value of the Wilson loop

operator 〈WC〉 corresponds to contributions of the gauge field to a transition amplitude

for the propagation of the quark and the anti-quark in a gauge field background, see

Fig.3.1.

qq̄

C

interaction with the gauge field

Figure 3.1: Wilson loop in QCD

In the next section, we explain that the Wilson loop operator and its counterpart are

read from some D3-brane system in the context of the AdS5/CFT4 correspondence [6,7].

3.2 Wilson loop operators in the AdS/CFT corre-

spondence

Let us introduce a Wilson loop operator in four-dimensional N = 4 SYM theory. Fields

of quarks in QCD belong to the fundamental representation of the gauge group. However,

in N = 4 SYM theory, all fields are in the adjoint representation and there are no fields

which belong to the fundamental one. In order to introduce such fields, we start from

U(N +1) gauge symmetry and break it to U(N)×U(1) [8]. By this symmetry breaking,

the U(N + 1) fields Âμ and Φ̂I are decomposed as follows:

Âμ =

(
Aμ wμ

w†
μ aμ

)
, Φ̂I =

(
ΦI wI

w†
I mΘI + φI

)
(μ = 1, 2, 3, 4; I = 1, 2, · · · , 6). (3.2)

Here mΘI (Θ
2
I = 1) are vacuum expectation values for the U(1) part of the scalar fields,

which break the symmetry.
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Applying the U(N) (⊂ U(N +1)) gauge transformation to (3.2), we find that Aμ and

ΦI belong to the adjoint representation of U(N), while wμ and wI are the fundamentals:

Û(∂μ + iÂμ)Û
† =

(
U(∂μ + iAμ)U

† Uwμ

w†
μU

† aμ

)
, ÛΦ̂IÛ

† =

(
UΦIU

† UwI

w†
IU

† mΘI + φI

)
.

Here the unitary matrix Û is assumed to have the following from:

Û =

(
U 0

0 1

)
.

The fundamentals wμ and wI acquire large mass of order m in the process. Since they

are coupled to not only the gauge filed Aμ but also the scalar fields ΦI , the Wilson loop

operator which arises from the propagation of these fields is given by

WC =
1

N
TrP exp

[∫
C

(iAμẋ
μ +ΘIΦI |ẋ|)dσ

]
. (3.3)

Note that the scalar fields ΦI appear in the operator.

D3-branes

interaction with open strings

N

C

the heavy open string

Figure 3.2: The interaction as open strings

Let us interpret the above discussion from the string theory viewpoint. U(N + 1)

N = 4 SYM theory emerges on the coincidentN+1 D3-branes and the symmetry breaking

U(N + 1) → U(N) × U(1) corresponds to a procedure to separate a single D3-brane

from the coincident N D3-branes at an infinite distance. Then an open string stretched

between the N D3-branes and the separated D3-brane acquire large mass because the

mass of the string is proportional to its length. We call it the heavy open string. Its one

endpoint is attached on the N D3-branes, so it belongs to the fundamental representation
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of U(N). On the other hand, the open strings whose two endpoints are attached on the

N D3-branes belong to the adjoint representation of U(N). Therefore, the heavy open

string corresponds to wμ and wI while the open strings attached on the N D3-branes

correspond to Aμ and ΦI . Finally, when the heavy open string moves along an arbitrary

path C on the N D3-branes, it interacts with open strings attached on them, namely,

Aμ and ΦI , see Fig.3.2. The expectation value of the Wilson loop operator (3.3), 〈WC〉,
arises from the interactions.

Next we consider the same system in the closed string picture. As discussed in the

previous chapter, interactions with the gauge fields and the scalar fields are now replaced

by the interactions with the gravity fields in the neighborhood of the N D3-branes. Hence

we focus on the propagation of a part of the heavy open string inside the AdS5 × S5

geometry. Then the path C is regarded to be on the boundary of the neighborhood,

namely the boundary of the AdS5 (Fig.3.3). The contribution to the heavy open string

transition amplitude is given by the path integral∫
DXe−Sstring . (3.4)

Here Sstring denotes the type IIB superstring action on AdS5 × S5 and the boundary

conditions for the path integral are specified by the loop C.

boundary of AdS5

interaction with closed strings

C

the heavy open string

Figure 3.3: The interaction as closed strings (the neighborhood of N D3-branes)

Therefore, we obtain the two different pictures of the heavy open string propagation.

In the open string picture, the heavy open string interacts with gauge fields and we

obtain the factor 〈WC〉. In the closed string picture, it interacts with gravity fields and

the factor is given by the string amplitude in AdS5×S5. These two pictures describe the
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same system, so we expect that there exist the following correspondence:

〈WC〉 =
∫

DXe−Sstring . (3.5)

3.3 A circular BPS Wilson loop operator : a support

for the AdS/CFT correspondence

In this section, we present a support for the AdS/CFT correspondence by comparing

both sides of (3.5) for a circular BPS Wilson loop operator.

We start with calculation in the gauge theory side [9, 10]. We set the Wilson loop

operator (3.3) as follows:

C : xμ = (r cos σ, r sin σ, 0, 0),

ΘI = (0, 0, 1, 0, 0, 0).
(3.6)

Then C represents a circle with radius r and only a single scalar field Φ3 is taken into

account. This is a circular 1/2 BPS Wilson loop operator, which preserves half of the

original supersymmetry of N = 4 SYM theory. To perform perturbative calculation, we

recall that WC is defined by path ordering,

WC =
1

N
Tr

[
1 +

∫ 2π

0

dσ1(iAμẋ
μ
1 + rΦ3) +

∫ 2π

0

dσ1

∫ σ1

0

dσ2(iAμẋ
μ
1 + rΦ3)(iAν ẋ

ν
2 + rΦ3)

+

∫ 2π

0

dσ1

∫ σ1

0

dσ2

∫ σ2

0

dσ3(iAμẋ
μ
1 + rΦ3)(iAν ẋ

ν
2 + rΦ3)(iAρẋ

ρ
3 + rΦ3) + · · ·

]
.

(3.7)

(a) (b) (c)

Figure 3.4: Diagrams for the Wilson loop operator, (a) planar ladder, (b) nonplanar, (c)

a vertex involved (black double lines represent the propagation of gauge and scalar fields

and blue single lines represent the one of “quarks”)

15



In (3.7) when we contract each field, planar diagrams such as Fig.3.4 (a) and (c) give

leading contributions, while nonplanar ones such as Fig.3.4 (b) are suppressed because we

take the ’t Hooft limit.2 Moreover, we assume that the diagrams which involve vertices

such as Fig.3.4 (c) cancel out due to the supersymmetry. Then we consider only the

planar ladder diagrams such as Fig.3.4 (a). Since odd power terms vanish, we pick up

and calculate only even power ones. Each calculation of the first three terms is as follows:

quadratic:
1

N

∫ 2π

0

dσ1

∫ σ1

0

dσ2Tr〈(iAμ1ẋ
μ1

1 + rΦ3)(iAμ2ẋ
μ2

2 + rΦ3)〉 = λ

4
· 1

(2 · 1)! · 1,

quartic:
1

N

∫ 2π

0

dσ1

∫ σ1

0

dσ2

∫ σ2

0

dσ3

∫ σ3

0

dσ4×

× Tr〈(iAμ1 ẋ
μ1

1 + rΦ3) · · · (iAμ4ẋ
μ4

4 + rΦ3)〉 =
(
λ

4

)2

· 1

(2 · 2)! · 2,

sextic:
1

N

∫ 2π

0

dσ1

∫ σ1

0

dσ2

∫ σ2

0

dσ3

∫ σ3

0

dσ4

∫ σ4

0

dσ5

∫ σ5

0

dσ6×

× Tr〈(iAμ1 ẋ
μ1

1 + rΦ3) · · · (iAμ6ẋ
μ6

6 + rΦ3)〉 =
(
λ

4

)3

· 1

(2 · 3)! · 5,

where λ is the ’t Hooft coupling constant. Here the gauge and scalar field propagators

are given by

〈Aμ(x1)Aν(x2)〉 = λ

4π2

δμν
(x1 − x2)2

· I
2
, 〈ΦI(x1)ΦJ(x2)〉 = λ

4π2

δIJ
(x1 − x2)2

· I
2
,

respectively, where I is an N × N unit matrix. A U(N) gauge group generator T a is

normalized as tr(T aT b) = (1/2) · δab. Repeating similar calculations, we find that the

2n-th order term is given by (
λ

4

)n

· 1

(2n)!
· An.

An is a number of planar ladder diagrams in 2n-th order term and it satisfies

An+1 =
n∑

k=0

An−kAk. (3.8)

The first term A0, the number of diagrams with no gauge and scalar fields propagation is

1. To confirm this relation, we consider the 2(n+1)-th order diagram depicted in Fig.3.5.

2For the explanation of ’t Hooft limit, see Appendix A.
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There are 2(n+1) field operators on the circle C and we number them as 1, 2, · · · , 2(n+1).

An operator at the point 1 needs to be contracted with another operator at the point with

any even number, 2(k+1) (k = 0, 1, · · · , n) so that the diagram becomes a planar ladder

diagram. By this contraction, the 2(n+1)-th order diagram is divided into two segments.

The left side one has 2k operators while the right side one has 2(n− k) operators. There

are no contraction between left and right in the planar diagram. Then, the number of

planar diagrams for each segment is equal to Ak and An−k, respectively. Finally An+1

can be calculated by summing up An−kAk for all possible values of k and we obtain (3.8).

1
2(n+ 1)

contraction of two operators

2

2(k + 1)

Figure 3.5: The 2(n+ 1)-th order diagram

To obtain explicit form of An, we introduce a generating function

f(z) =
∞∑
n=0

Anz
n. (3.9)

This satisfies the following relation:

zf 2(z) =
∞∑

N=0

N∑
m=0

AN−mAmz
N+1 =

∞∑
N=0

AN+1z
N+1 = f(z)− 1.

Here we used A0 = 1 in the last step. Solving this equation for f(z), we find

f(z) =
1−√

1− 4z

2z
=

∞∑
n=0

(2n)!

(n+ 1)!n!
zn

and obtain

An =
(2n)!

(n+ 1)!n!
.
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We take the sign in front of the square root in f(z) so that the value of f(0) is finite.

Therefore, 〈WC〉 is evaluated as

〈WC〉 =
∞∑
n=0

1

n!(n+ 1)!

(√
λ

2

)2n

. (3.10)

On the other hand, the infinite series representation of the modified Bessel function I1(x)

is given by

I1(x) =
∞∑
n=0

1

n!(n+ 1)!

(
x

2

)2n

· x
2
,

so we obtain

〈WC〉 = 2√
λ
I1(

√
λ). (3.11)

z

πi

−πi
O

: saddle point

contour

z = 0 → e
√
λ

Figure 3.6: The method of steepest descent for I1(
√
λ)

As explained in section 2.1, we need to take the limit λ → ∞ to compare with the

gravity theory side.3 In this limit, the behavior of I1(
√
λ) is evaluated by the method of

steepest descent using the integral representation [12]

I1(
√
λ) =

1

2πi

∫ ∞+πi

∞−πi

exp(
√
λ cosh z − z)dz. (3.12)

3Although the perturbative expression (3.10) is valid only for a small λ, we may assume that, after

summing up all order contribution, the modified Bessel function allows analytic continuation to strong

coupling regime. In fact the computation here can be mapped to a simple Gaussian matrix model, which

can be solved exactly. Furthermore, the matrix model can be derived by using the localization theorem

by Pestun [11].
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Fig.3.6 depicts the contour of (3.12) and its saddle point which gives dominant contribu-

tions to the evaluation, i.e. under the limit λ → ∞, the integrand of (3.12) has a sharp

peak at z = 0 and the integral is evaluated locally at this point:

I1(
√
λ) ∼ e

√
λ.

Finally, the result in the gauge theory side is

〈WC〉 ∼ e
√
λ (λ → ∞). (3.13)

Supergravity approximation of string theory enables us to evaluate the string path

integral (3.4) with a classical string solution because stringy effects are suppressed. In

the present case, we take Sstring to be the Nambu-Goto action with Euclidean signature,

Sstring =
1

2πα′

∫ √
detGMN∂aXM∂bXNdτEdσ, (3.14)

where GMN is the metric of AdS5 × S5 and τE and σ are the Euclidean world-sheet

coordinates. We take the Poincaré coordinates for AdS5,

ds2 = L2dY
2 + dX2

1 + dX2
2 + dX2

3 + dX2
4

Y 2
. (3.15)

The path of the Wilson loop operator C is regarded as the boundary condition of the

string path integral. Now we consider the case of a circle with radius r. Such a classical

solution is given by

X1 =
√
r2 − Y 2 cos τE, X2 =

√
r2 − Y 2 sin τE, Y = σ, (3.16)

where the range of Y is 0 ≤ Y ≤ r [13]. Fig.3.7 depicts the world-sheet of (3.16).

Substituting (3.16) into (3.14), it becomes

Sstring =
L2

2πα′

∫ 2π

0

dτE

∫ r

ε

dY
r

Y 2
=

√
λ

(
r

ε
− 1

)
.

Here we introduced the cutoff ε because the metric diverges on the boundary of AdS5

which is located at Y = 0. Subtracting the divergent term, we obtain∫
DXe−Sstring ∼ e−Sstring

∣∣∣∣
classical

= e
√
λ. (3.17)

Therefore, this result reproduces the large λ behavior of (3.13).
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WC

r

Y

X1

X2

the boundary of AdS5 (Y = 0)

Figure 3.7: The world-sheet of (3.16)
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Chapter 4

Correlation function as a support for the AdS/CFT

correspondence

Our purpose of this thesis is giving a support for the AdS5/CFT4 correspondence study-

ing a correlation function between a 1/4 BPS Wilson loop and a local operator. The

correlation function is calculated in [14, 15], and its counterpart in the gravity theory

side, i.e, the string path integral is calculated in [16].

In this chapter, we present a result of calculation of the correlation function in the

first section and then explain a semi-classical evaluation of the string path integral in the

remaining sections.

4.1 The correlation function between a circular Wil-

son loop and a local operator

First we present the operators. The circular 1/4 BPS Wilson loop is given by setting

C : xμ = (r cos σ, r sin σ, 0, 0),

ΘI = (sin θ0 cos σ, sin θ0 sin σ, cos θ0, 0, 0, 0)
(4.1)

in (3.3) [17]. The local operator in the present case is given by

OJ = Tr(Φ3 − iΦ4)
J , (4.2)

where Φ3 and Φ4 are the scalar fields. This operator carries an R-charge J , which corre-

sponds to a string angular momentum J in S5 [18]. Fig.4.1 depicts the configuration of

these operators.
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WC r
�

OJ

Figure 4.1: The configuration of the operators

Summing up planar ladder diagrams, the correlation function is given by

〈WCOJ〉 ∼
(

r

r2 + �2

)J

IJ(
√
λ′), (4.3)

where IJ(
√
λ′) is the modified Bessel function and λ′ = λ cos2 θ0 [15].1

We need to take the limit λ → ∞ in order to compare with the gravity theory side.

In addition we take the limit J → ∞ with keeping j = J/
√
λ fixed. The behavior

of (4.3) under this limit is studied by the method of steepest descent with the integral

representation [12]

IJ(
√
λ′) =

1

2πi

∫ ∞+πi

∞−πi

exp(
√
λ′ cosh z − Jz)dz. (4.4)

The result is

IJ(
√
λ′) ∼ exp[

√
λ′(
√

j′2 + 1 + j′ ln(
√

j′2 + 1− j′))], (4.5)

where j′ = j/ cos θ0. The contour for (4.4), the steepest descent path P and the saddle

point giving (4.5) are shown in Fig.4.2.

z

πi

−πi
O

: saddle point

contour

P

z = ln(
√
j′2 + 1 + j′)

→ exp[
√
λ′(
√
j′2 + 1 + j′ ln(

√
j′2 + 1− j′))]

Figure 4.2: The method of steepest descent for IJ(
√
λ′)

1Exact calculation of 〈WCOJ 〉 applying the localization theorem was studied in [19].
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Finally, the correlation function becomes

〈WCOJ〉 ∼
(

r

r2 + �2

)J

exp[
√
λ′(
√
j′2 + 1 + j′ ln(

√
j′2 + 1− j′))]. (4.6)

If we set cos θ0 = 1, (4.6) reproduces large λ behavior of a correlation function between

a 1/2 BPS Wilson loop operator and a local operator (4.2) [14].

4.2 A classical solution

In the rest of this chapter, we evaluate the path integral for the transition amplitude of

the string, which is expected to reproduce the correlation function given in the previous

section. As stated repeatedly, we consider the case in which SYM theory in the strong

’t Hooft coupling regime corresponds to type IIB supergravity theory, so we can evalu-

ate the path integral by a classical string solution. Then we first look for the solution

which satisfies boundary conditions coming from the gauge theory operators. Next we

investigate whether preserved supersymmetries of the solution agrees with the ones of

the gauge theory operators in the previous section. Finally, we evaluate the path integral

and discuss the result.

Since our discussion in the gauge theory side is done by taking the Euclidean signature,

we want to deal with the Euclidean AdS space represented by the Poincaré coordinates.

However, we start with the Lorentzian AdS represented by the global coordinates and

obtain a solution in the Euclidean global AdS . The reasons are as follows. First, the

Lorentzian signature is more useful to investigate the preserved supersymmetries of the

classical string solution. Second, a counterpart of the local operator (4.2) in the global

AdS is well known. Third, if we obtain the solution in the Euclidean global AdS, the one

in the Euclidean Poincaré AdS can be easily constructed by coordinate transformations.

We take the line element of the Lorentzian AdS5 × S5 space as

ds2 = GMNdX
MdXN

= L2[− cosh2 ρdt2 + dρ2 + sinh2 ρ(dϕ2
1 + sin2 ϕ1dϕ

2
2 + cos2 ϕ1dϕ

2
3)

+ dθ2 + sin2 θdφ2 + cos2 θ(dχ2
1 + sin2 χ1dχ

2
2 + cos2 χ1dχ

2
3)].

(4.7)

In the present case, the type IIB superstring action on AdS5 × S5 becomes

S = − 1

4πα′

∫
habGMN∂aX

M∂bX
N
√−hdτdσ. (4.8)
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By the information of the gauge theory operators, the expected string motion is as follows.

The counterpart of the local operator (4.2) is a localized closed string motion which is

located at ρ = 0 while rotating along a great circle of S5 with an angular momentum

J [18]. On the other hand, as for the boundary condition coming from the Wilson loop

operator, we assume that the string world-sheet is attached to a circle on the boundary

ρ = ∞ at t = 0 for example. This is because it can be mapped to a circle with radius

r on the boundary of the Poincaré AdS by coordinate transformations as we will see in

section 4.4. We set WC at t|τ=0 = 0 and OJ at t|τ=∞ = ∞ as initial and final state,

respectively. Therefore, we assume an ansatz, in which a smooth world-sheet connects

between WC and OJ . Fig.4.3 depicts the ansatz for the string motion in the AdS5.

the boundary of AdS5

OJ

WCt = 0

t =∞
(ρ =∞)

ρ = 0

Figure 4.3: Ansatz for string motion in AdS5 represented by the global coordinates

Since WC contains several scalar fields, the string motion in S5 is a little complicated.

To explain it, we introduce the embedding coordinates:

Z1 + iZ2 = sin θeiφ, Z3 + iZ4 = cos θ sinχ1e
iχ2 , Z5 + iZ6 = cos θ cosχ1e

iχ3 ,

where Z1, Z2, · · · , Z6 denote the flat six-dimensional coordinates in which S5 is embedded.

On the Z1-Z2 plane, we assume that the string forms a circle with a radius sin θ0 at

τ = 0, and then it shrinks to the origin at τ = ∞. On the other hand, on the Z3-Z4 plane,

we assume that the string is localized at a point cos θ0 at τ = 0, while it goes on rotating

along a great circle with an angular momentum J at τ = ∞. The initial condition of

the string is determined by ΘI contained in the Wilson loop operator shown in (4.1) and

the final state, rotating with an angular momentum J , is determined by OJ . Figure 4.4

depicts the assumed string motion in S5.
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initial position

shrink

rotate

initial position 

final state (rotating with angular momentum   )

O O
Z1

Z2

Z3

Z4

J

final state

sin θ0

cos θ

cos θ0

Figure 4.4: The assumed string motion in S5

Hence we take the following ansatz,2

t = t(τ), ρ = ρ(τ), ϕ1 =
π

2
, ϕ2 = σ,

θ = θ(τ), φ = σ, χ1 =
π

2
, χ2 = χ2(τ)

(4.9)

and impose the boundary conditions for t, ρ, θ, and χ2 which is summarized in Table 4.1.

Here the conditions for Z1 + iZ2 and Z3 + iZ4 should be regarded the ones for θ and χ2.

Table 4.1: The initial and final condition for the string motion

τ = 0 τ = ∞
ρ = ∞ ρ = 0

t = 0 t = ∞
Z1 + iZ2 = sin θ0e

iσ Z1 + iZ2 = 0

Z3 + iZ4 = cos θ0 Z3 + iZ4 = cos θ(τ)eiχ2(τ) (rotating)

Finally, (4.8) becomes

S =

√
λ

2

∫ (− cosh2 ρṫ2 + ρ̇2 − sinh2 ρ+ θ̇2 − sin2 θ + cos2 θχ̇2
2)dτ, (4.10)

2This ansatz is classified into the AdS3 × S3 one which was studied in [20].
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where we used the relation L4/α′2 = λ. Since λ is the overall factor of (4.10), we can deal

with a string path integral semi-classically in the λ → ∞ limit.

The equations of motion for the string are

d

dτ
(cosh2 ρṫ) = 0, (4.11)

d

dτ
(cos2 θχ̇2) = 0, (4.12)

ρ̈+ sinh ρ cosh ρ(ṫ2 + 1) = 0, (4.13)

θ̈ + sin θ cos θ(χ̇2
2 + 1) = 0. (4.14)

On the other hand, by variation of (4.8), the equation of motion for the world-sheet

metric gives the Virasoro constraints

GMN∂aX
M∂bX

N − 1

2
hcdGMN∂cX

M∂dX
Nhab = 0.

Using the ansatz (4.9) and taking the conformal gauge, we obtain

ρ̇2 + sinh2 ρ− cosh2 ρṫ2 + θ̇2 + sin2 θ + cos2 θχ̇2
2 = 0. (4.15)

From the equations of motion for the string, we obtain four constants of motion

cosh2 ρṫ = C1, (4.16)

cos2 θχ̇2 = C2, (4.17)

ρ̇2 + sinh2 ρ− cosh2 ρṫ2 = C3, (4.18)

θ̇2 + sin2 θ + cos2 θχ̇2
2 = C4. (4.19)

We notice here that the Virasoro constraint (4.15) imposes the condition, C3 + C4 = 0.

Although (4.16) and (4.17) are trivial, it needs some steps to derive (4.18) and (4.19).

To derive (4.18), we multiply 2ρ̇ on both sides of (4.13), then it becomes

d

dτ
(ρ̇2 + sinh2 ρ) +

(
d

dτ
sinh2 ρ

)
ṫ2 = 0. (4.20)

Next, from (4.16), we obtain the following equation:

d

dτ
(cosh2 ρṫ) = 0 ⇐⇒ ṫ

d

dτ
[(sinh2 ρ+ 1)ṫ] = 0

⇐⇒
(

d

dτ
sinh2 ρ

)
ṫ2 + cosh2 ρṫ

d

dτ
ṫ = 0

⇐⇒
(

d

dτ
sinh2 ρ

)
ṫ2 = − d

dτ
(cosh2 ρṫ2).
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Therefore, (4.13) is rewritten as

d

dτ
(ρ̇2 + sinh2 ρ− cosh2 ρṫ2) = 0,

and then this leads to (4.18). In a similar way, we can derive (4.19) from (4.12) and

(4.14).

C1 is an energy and C2 is an angular momentum of the string. In terms of the

AdS/CFT correspondence, they correspond to the conformal weight and the R-charge of

the local operator OJ , respectively [18]. Then it is natural to set C1 = C2 = j := J/
√
λ

and from the assumption ρ → 0, sin θ → 0 (τ → ∞), we can set C3 = −j2, C4 = j2.

Therefore, (4.16), (4.17), (4.18) and (4.19) are

cosh2 ρṫ = j, (4.21)

cos2 θχ̇2 = j, (4.22)

ρ̇2 + sinh2 ρ− cosh2 ρṫ2 = −j2, (4.23)

θ̇2 + sin2 θ + cos2 θχ̇2
2 = j2. (4.24)

Substituting (4.21) into (4.23) and (4.22) into (4.24), we obtain two equations(
dρ

dτ

)2

= − sinh2 ρ− j2 tanh2 ρ,(
dθ

dτ

)2

= − sin2 θ − j2 tan2 θ.

These equations indicate that there are no real solutions in the Lorentzian signature.

Therefore, we perform the Wick rotation τ → −iτE, t → −itE and look for Euclidian

solutions. After the Wick rotation, equations for ρ and θ become(
dρ

dτE

)2

= sinh2 ρ+ j2 tanh2 ρ, (4.25)(
dθ

dτE

)2

= sin2 θ + j2 tan2 θ. (4.26)

The solutions for these equations which satisfy the boundary conditions are given by

sinh ρ =

√
j2 + 1

sinh
√

j2 + 1τE
, (4.27)

sin θ =

√
j2 + 1

cosh
√

j2 + 1(τE + τ0)
. (4.28)
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Substituting (4.27) and (4.28) into Wick rotated versions of (4.21) and (4.22), we obtain

tE = jτE − 1

2
ln

(
cosh(

√
j2 + 1τE + ξ)

cosh(
√

j2 + 1τE − ξ)

)
, (4.29)

χ2 = −ijτE +
i

2
ln

(
sinh(

√
j2 + 1(τE + τ0) + ξ) sinh(

√
j2 + 1τ0 − ξ)

sinh(
√
j2 + 1(τE + τ0)− ξ) sinh(

√
j2 + 1τ0 + ξ)

)
, (4.30)

where ξ := ln(j +
√
j2 + 1). Here we introduce a constant τ0 which is related to θ0 as

sin θ0 =

√
j2 + 1

cosh
√

j2 + 1τ0
(4.31)

so that sin θ satisfies the boundary condition sin θ|τE=0 = sin θ0. The calculation to obtain

these solutions is shown in Appendix B.

4.3 The BPS condition

If the AdS/CFT correspondence is correct, the supersymmetries in both sides need to

agree. In this section, we investigate the preserved supersymmetries of the string solution

which we derived in the previous section and check whether they agree with the ones in

the gauge theory operators.

First we present notations. We take vielbeins on the AdS5 × S5, eaM (a = 0, 1, · · · , 9)
as follows:

e00 = L cosh ρ, e11 = L, e22 = L sinh ρ, e33 = L sinh ρ sinϕ1, e44 = L sinh ρ cosϕ1,

e55 = L, e66 = L sin θ, e77 = L cos θ, e88 = L cos θ sinχ1, e99 = L cos θ cosχ1.

Γ̂M is defined by Γ̂M = eaMΓa with 10-dimensional gamma matrices Γa. ε1 and ε2 denote

ten-dimensional Majorana-Weyl spinors. We combine them into a column vector ε,

ε :=

(
ε1

ε2

)
.

σ3 and ε = iσ2 denote 2× 2 matrix which acts on ε as

σ3ε =

(
ε1

−ε2

)
, εε =

(
ε2

−ε1

)
,

respectively.

28



The BPS condition, which determines the preserved supersymmetries of a string so-

lution is given by
1√−g

∂τX
M∂σX

N Γ̂M Γ̂Nσ3ε = ε, (4.32)

where g is the induced metric on the world-sheet [21]. ε is the Killing spinor on AdS5×S5

and it represents total degrees of the supersymmetry of AdS5 × S5 and satisfies(
DM − ε

2L
Γ�Γ̂M

)
ε = ε.

Here DM is a covariant derivative on AdS5 × S5, Γ� is defined by Γ� = Γ01234. In

the present analysis, we can assume the following form by considering only the relevant

coordinates

ε = e
ρ
2
εΓ�Γ1e

t
2
εΓ�Γ0e

ϕ2
2
Γ13e

θ
2
εΓ�Γ5e

φ
2
Γ56e

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
, (4.33)

where ε̄1 and ε̄2 are constant ten-dimensional Majorana-Weyl spinors [22]. Using the

ansatz (4.9) and the Virasoro constraint (4.15), the BPS condition (4.32) becomes

1

sinh2 ρ+ sin2 θ
(ṫ cosh ρΓ0 + ρ̇Γ1 + θ̇Γ5 + χ̇2 cos θΓ8)(sinh ρΓ3 + sin θΓ6)σ3ε = ε,

and then performing the Wick rotation, we obtain

i

sinh2 ρ+ sin2 θ
(ṫE cosh ρΓE + ρ̇Γ1 + θ̇Γ5 + χ̇2 cos θΓ8)(sinh ρΓ3 + sin θΓ6)σ3ε = ε. (4.34)

Here ΓE = −iΓ0 and dots represent derivatives with respect to τE. After the Wick

rotation, ε̄1 and ε̄2 are no longer Majorana spinors, but they are complex. However, we

do not consider that their degrees of freedom are doubled. We regard this procedure as

an analytic continuation corresponding to the one for bosonic coordinates.

We obtain three projection conditions from (4.34):

(Γ13 + Γ56)

(
ε̄1

ε̄2

)
= 0, (4.35)

(ΓE − iΓ8)

(
ε̄1

ε̄2

)
= 0, (4.36)

−i(sin θ0Γ16 + cos θ0Γ13)σ3

(
ε̄1

ε̄2

)
=

(
ε̄1

ε̄2

)
, (4.37)

which commute with each other. Therefore, the solution which we found in the previous

section preserve 1/8 of the original supersymmetry. This agrees with the number of the

supersymmetry preserved by the gauge theory operators. The calculation to obtain the

conditions (4.35), (4.36) and (4.37) is shown in Appendix B.
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4.4 AdS5 solution with the Poincaré coordinates

We used the global AdS space to derive the classical string solution and investigated

its preserved supersymmetry. As stated at the beginning of this chapter, we perform

the coordinate transformation from the global AdS space to the Poincaré AdS space to

compare with the gauge theory side.

In the Euclidean signature, the global coordinates and the Poincaré coordinates are

related through the following coordinate redefinition:

Y =
retE

cosh ρ
, R = retE tanh ρ = Y sinh ρ, (4.38)

where r is a constant parameter. Because of the relation

dY 2 + dR2

Y 2
= cosh2 ρdt2E + dρ2,

the AdS5 part of the (Euclidean) line element (4.7) is changed to

ds2 = L2dY
2 + dR2 +R2(dϕ2

1 + sin2 ϕ2
1dϕ

2
2 + cos2 ϕ2

1dϕ
2
3)

Y 2

= L2dY
2 + dX2

Y 2
.

(4.39)

Here we introduce the flat four-dimensional vector defined by

X = R(sinϕ1 cosϕ2, sinϕ1 sinϕ2, cosϕ1 cosϕ3, cosϕ1 sinϕ3). (4.40)

Substituting the AdS5 part of the solution (4.27) and (4.29) into (4.38), the solution

in the Poincaré coordinate is given by3

Y0(τE) = rejτE [
√
j2 + 1 tanh(

√
j2 + 1τE + ξ)− j], (4.41)

X0 = R0(cosσ, sin σ, 0, 0)

(
R0(τE) = rejτE

√
j2 + 1

cosh(
√
j2 + 1τE + ξ)

)
. (4.42)

Behavior of the solution at its boundaries are shown in Table 4.2.

Table 4.2: The behavior of Y0 and R0

τE → 0 τE → ∞
Y0 0 ∞
R0 r 0

3This form of the solution was derived in [23] to study the case of the 1/2 BPS Wilson loop operator.
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Although we have transferred the solution from the global to the Poincaré coordinates,

the position of OJ is still at infinity, Y0 = ∞. Then using the isometry of AdS5, we bring

it to a finite distance from the position of WC . The isometry transformation is given by

XI =
X + c(X2 + Y 2)

1 + 2c ·X + c2(X2 + Y 2)
,

YI =
1

1 + 2c ·X + c2(X2 + Y 2)
,

(4.43)

where c is a constant vector. Now we consider the case in which OJ is on a line which

passes the centre of WC . For this purpose, we take c = (0, 0, 0, 1/�). After the transfor-

mation (4.43), we further perform the translation into the X4
I direction,

XT = XI +

(
0, 0, 0,− �r2

�2 + r2

)
(4.44)

and the scale transformation,

X̃ =
�2 + r2

�2
XT, Ỹ =

�2 + r2

�2
YI, (4.45)

so that the centre of WC is located on the origin and its radius becomes r. Applying

these transformations to X and Y , they become

X̃ i =
(�2 + r2)X i

(X + x)2 + Y 2
(i = 1, 2, 3),

X̃4 = − (�2 + r2)X4

(X + x)2 + Y 2
+ �,

Ỹ =
(�2 + r2)Y

(X + x)2 + Y 2
,

where x = (0, 0, 0, �). Using these relations, the solution (4.41) and (4.42) is mapped to

X̃0 :=
(�2 + r2)

�2 +R2
0 + Y 2

0

(R0 cosσ,R0 sin σ, 0,−�) + (0, 0, 0, �), (4.46)

Ỹ0 :=
(�2 + r2)Y0

�2 +R2
0 + Y 2

0

. (4.47)

Table 4.3 shows the behavior of the X̃0 and Ỹ0 and Fig.4.5 depicts the world-sheet in the

Poincaré coordinates.
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Table 4.3: The behavior of X̃0 and Ỹ0

τE → 0 τE → ∞
X̃0 (r cos σ, r sin σ, 0, 0) (0, 0, 0, �)

Ỹ0 0 0

 the boundary of AdS5

r

�

WC

rOJ

WC

X̃1

X̃2

X̃4

Figure 4.5: String world-sheet in the Poincaré coordinates

4.5 Evaluation of the path integral

We finally reach the step of evaluating the path integral. Since we consider supergravity

approximation of strings, the path integral can be evaluated by the classical solution:∫
DXe−Sstring ∼ e−(Sbulk+Sboundary)

∣∣∣∣
classical

. (4.48)

where Sbulk is the type IIB superstring action. Sboundary is a term which comes from the

boundary conditions. We introduce cutoffs τ− at τE = 0 and τ+ at τE = ∞ because

divergences emerge at these points.

First we calculate Sbulk. For convenience, we use the global coordinates here. Using
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(4.10), (4.27) and (4.29),

Sbulk =
√
λ

∫ ∞

τ−
(sinh2 ρ+ sin2 θ)dτE

=
√
λ

∫ ∞

τ−

d

dτE

(
− 1

sin θ0
sinh ρ sin θ

)
dτE

=
√
λ

[
1

sin θ0
·

√
j2 + 1√

j2 + 1τ− + · · ·×

×
√
j2 + 1

cosh
√
j2 + 1τ0(1 + · · · ) + sinh

√
j2 + 1τ0(

√
j2 + 1τ− + · · · )

]

∼
√
λ · 1

sin θ0
·
√
j2 + 1

(
1

cosh
√
j2 + 1τ0

· 1

τ−
−
√

j2 + 1 sinh
√
j2 + 1τ0

cosh2
√

j2 + 1τ0

)

=
√
λ

[
1

τ−
−
√

j2 + cos2 θ0

]
. (4.49)

Here we used the equation

d

dτE
(sinh ρ sin θ) = − sin θ0(sinh

2 ρ+ sin2 θ)

in the second line. Its proof is given in Appendix C.

From the references [8, 23–25], we find that the appropriate boundary term is given

by

Sboundary =
∂L

∂u̇
u

∣∣∣∣
τE=τ−

− J

[
ln

Ỹ

Ỹ 2 + (X̃ − x)2
+ ln cos θ sinχ1e

−iχ2

]
τE=τ+

, (4.50)

where L is the string Lagrangian

L =

√
λ

2

( ˙̃Y 2 + ˙̃X2

Ỹ 2
+ (S5part)

)
,

and u = 1/Ỹ . The first term in (4.50) originates from the initial boundary condition

coming from the Wilson loop operator WC , while the second term originates from the

final boundary condition coming from the local operator OJ .
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The calculation of the first term in Sboundary is

∂L

∂u̇
u

∣∣∣∣
τE=τ−

= −
√
λ
˙̃Y

Ỹ

∣∣∣∣
τE=τ−

= −
√
λ

(
Ẏ

Y
− 1

�2 +R2 + Y 2
· d

dτE
(R2 + Y 2)

)∣∣∣∣
τE=τ−

∼ −
√
λ
Ẏ

Y

∣∣∣∣
τE=τ−

= −
√
λ

(
j +

j2 + 1

[
√

j2 + 1 tanh(
√

j2 + 1τE + ξ)− j] cosh2(
√
j2 + 1τE + ξ)

)∣∣∣∣
τE=τ−

∼ −
√
λ

τ−
. (4.51)

The one of the second term is

− J

[
ln

Ỹ

Ỹ 2 + (X̃ − x)2
+ ln cos θ sinχ1e

−iχ2

]
τE=τ+

= −J

[
ln

Ỹ

Ỹ 2 + (X̃ − x)2
+ ln cos θe−iχ2

]
τE=τ+

= −J

[
ln

Y

�2 + r2
+ ln

((
1− j2 + 1

cosh2(
√

j2 + 1(τE + τ0))

) 1
2

× e−jτE

×
(
sinh(

√
j2 + 1(τE + τ0) + ξ) sinh(

√
j2 + 1τ0 − ξ)

sinh(
√

j2 + 1(τE + τ0)− ξ) sinh(
√

j2 + 1τ0 + ξ)

) 1
2

)]
τE=τ+

∼ −J

[
ln

r

�2 + r2
+ ln

(√
j2

cos2 θ0
+ 1− j2

cos θ0

)]
. (4.52)

Combinig (4.49), (4.51), and (4.52), the evaluation of the path integral is

e−(Sbulk+Sboundary)

∣∣∣∣
classical

=

(
r

�2 + r2

)J

exp[
√
λ′(
√
j′2 + 1 + j′ ln(

√
j′2 + 1− j′))], (4.53)

where λ′ = λ cos2 θ0 and j′ = j/ cos θ0. This result reproduces the behavior of the

correlation function (4.6) in the limit λ → ∞ and J → ∞ with j′ fixed.4

4(4.53) was also derived in [19] to be compared with the exact calculation of 〈WCOJ〉 applying the

localization theorem.
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4.6 A second solution

There exist a second solution, for which sin θ and χ2 are given by

sin θ =

√
j2 + 1

cosh
√

j2 + 1(−τE + τ0)
,

χ2 = −ijτE +
i

2
ln

(
sinh(

√
j2 + 1(−τE + τ0)− ξ) sinh(

√
j2 + 1τ0 + ξ)

sinh(
√

j2 + 1(−τE + τ0) + ξ) sinh(
√

j2 + 1τ0 − ξ)

)
.

(4.54)

We evaluate the action with this solution:

Sbulk =
√
λ

∫ ∞

τ−
(sinh2 ρ+ sin2 θ)dτE ∼

√
λ

[
1

τ−
+
√

j2 + cos θ20

]
. (4.55)

The boundary terms are evaluated as

∂L

∂u̇
u

∣∣∣∣
τE=τ−

∼ −
√
λ

τ−
,

− J

[
ln

Y ′

Y ′2 + ( �X ′ − �x)2
+ ln cos θe−iχ2

]
τE=τ+

∼ −J

[
ln

r

�2 + r2
− ln

(√
j2

cos2 θ0
+ 1− j2

cos θ0

)
+ πi

]
.

(4.56)

Then combing these terms, we obtain

e−(Sbulk+Sboundary) =

(
r

�2 + r2

)J

(−1)J exp[−
√
λ′(
√

j′2 + 1− j′ ln(
√
j′2 + 1− j′))]. (4.57)

To interpret this result, we recall that the behavior of the correlation function 〈WCOJ〉
in the gauge theory side is determined by the method of steepest descent. The saddle

points of (4.4) are classified into two categories depending on whether it is on the steepest

descent path P or not, see Fig.4.6.5 The evaluation of the action including the boundary

terms for the second solution reproduces the saddle point value which is not on P , so it

does not contribute to IJ(
√
λ′) in contrast to (4.53).

The semi-classical evaluation of the string path integral would correspond to applying

the method of steepest descent to the functional integral. If the AdS/CFT correspon-

dence is correct, the complete calculation of the string path integral would reproduce the

5The saddle points which belong to each category are located at z = − ln(
√

j′2 + 1+ j′)+ 2(n+1)πi

and z = ln(
√

j′2 + 1 + j′) + 2nπi (n ∈ Z), respectively and there are 2πi periodicity.
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modified Bessel function in the present case. Hence our result seems to be natural, i.e.

we found that both of the saddle points for the integrand of the modified Bessel function

are reproduced from the semi-classical analysis of the string path integral.

z

πi

−πi
O

: saddle points

contour

P

z = − ln(
√

j′2 + 1 + j′)± πi

→ (−1)J exp[
√
λ′(−

√
j′2 + 1− j′ ln(

√
j′2 + 1− j′))]

z = ln(
√
j′2 + 1 + j′)

→ exp[
√
λ′(
√
j′2 + 1 + j′ ln(

√
j′2 + 1− j′))]

Figure 4.6: The saddle points of IJ(
√
λ′)
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Chapter 5

Summary and future directions

The main theme of this thesis is giving a support for the AdS/CFT correspondence.

In chapter 2, we reviewed the AdS5/CFT4 correspondence. It was led by considering

the two different pictures of the coincident N D3-branes at low-energy; one is N = 4

SYM theory as the open string picture and the other is type IIB supergravity theory on

the AdS5 × S5 as the closed string picture. We found that SYM theory in the strong

’t Hooft coupling regime corresponds to type IIB supergravity theory in the parameter

range which is valid for the low-energy approximation. In chapter 3, we discussed how to

introduce the Wilson loop operator in N = 4 SYM theory and its interpretation in the

AdS/CFT correspondence. We also calculated the expectation value of a single 1/2 BPS

Wilson loop operator, evaluated the string path integral semi-classically, and shown that

they agree. In chapter 4, we first presented that the correlation function of a 1/4 BPS

Wilson loop and a local operator is given by the modified Bessel function and studied

its behavior in the large λ and J limit with keeping j′ = J/
√
λ′ fixed. Next, we found

the classical string solution which reflects the information of the gauge theory operators

and studied its preserved supersymmetry. Finally we evaluated the string path integral

semi-classically and shown that the result reproduces the large λ and J behavior of the

correlation function. We also studied the second string solution and the result reproduced

the saddle point value which does not contribute the modified Bessel function.

As for future directions, one possibility is to obtain more precise supports of the

correspondence. In our analysis in the gravity theory side, we do not consider fluctuation

around the classical solution. The supergravity approximation corresponds to taking the

leading order of α′ expansion of superstring theory. If we calculate the higher order

terms, involving stringy corrections, we would obtain a more precise support. However,
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it is difficult to perform calculation, so we would need some tools, such as integrability.

The other possibility is to change the gauge theory operators. For example, since we

consider Wilson loop operators in the fundamental representation in this thesis, we would

change them to ones in larger representations. In this situation, we deal with a bundle

of heavy open strings in the gravity theory side and it is known that such an object is

described by a D-brane [26, 27]. Applying such studies, we may obtain new supports for

the correspondence or new knowledge about D-brane dynamics.
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Appendix A

Some ingredients for the AdS/CFT correspondence

A.1 The ’t Hooft limit

In order to explain the concept of the ’t Hooft limit, we deal with the matrix model as a

toy model of gauge theories in this section [28–30]. We consider the system whose action

is given by

S =
1

g2YM

Tr

[
1

2
M2 +M3

]
, (A.1)

where M is an N ×N hermitian matrix. TrM2 and TrM3 corresponds to the kinetic and

the interaction term in usual quantum field theory, respectively. Introducing “fatted”

Feynman diagram notation, a free propagator is given by

a

b c

d
〈MabMcd〉 = = g2YMδadδbc,

and it contributes a factor g2YM. On the other hand, the term TrM3 is represented as

TrM3 =

and contributes a factor 1/g2YM.

When we connect vertices by propagators and make a Feynman diagram in perturba-

tive calculation, some closed lines appear which are called closed index lines, see examples
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shown below. They represent taking trace of products of several Kronecker deltas. Then

each closed index line contributes a factor N .

Fig.A.1 depicts two examples of diagrams appearing in the perturbative expansion of

the partition function which are called planar diagrams. The left one has three propaga-

tors, two vertices, and three closed index lines, then it contributes a factor

(g2YM)
3 · (g−2

YM)
2 ·N3 = g2YMN

3 = λN2.

The right one has six propagators, four vertices, and four closed index lines, and then it

contributes a factor

(g2YM)
6 · (g−2

YM)
4 ·N4 = g4YMN

4 = λ2N2.

g2YMN3 = λN2 g4YMN4 = λ2N2

〈TrM3TrM3〉 〈TrM3TrM3TrM3TrM3〉

Figure A.1: Planar diagrams

On the other hand, Fig.A.2 depicts an example of the diagrams, which are called

non-planar diagrams. This diagram has six propagators, four vertices and two closed

index lines, and then it contributes a factor

(g2YM)
6 · (g−2

YM)
4 ·N2 = g4YMN

2 = λ2N0.

g4YMN2 = λ2N0

〈TrM3TrM3TrM3TrM3〉

Figure A.2: A non-planar diagram
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Generally, a diagram which has p propagators, q vertices, and r closed index lines

contributes a factor

(g2YM)
p · (g−2

YM)
q ·N r = λp−qN r−p+q = λr−2+2gN2−2g,

where g denotes a genus of a surface corresponding to the diagram. The sum of all the

diagrams are given by a power series of N−2:

Z =
∞∑
g=0

Fg(λ)N
2−2g,

where Fg(λ) are functions of λ which are given by calculations of diagrams. In the ’t

Hooft limit (2.12), a summation of all planar diagrams gives the leading contribution

while the ones with higher genera are suppressed.

A.2 Coordinate systems for anti-de Sitter (AdS) space

The five-dimensional anti-de Sitter space, AdS5 can be defined as a hyperboloid embedded

in flat six-dimensional space with a signature (−,−,+,+,+,+),

−X2
1 − X2

2 +X2
1 +X2

2 +X2
3 +X2

4 = −L2, (A.2)

where L is a constant.

In this thesis we use mainly two coordinate systems. The first one is given by setting

each coordinate as

X1 =
1

2y
(1 + y2(L2 + x2

i − x2
0)), X2 = Lyx0,

X4 =
1

2y
(1− y2(L2 − x2

i + x2
0)), Xi = Lyxi (i = 1, 2, 3),

where y > 0. Hence the line element of the hyperboloid becomes

ds2 = −dX2
1 − dX2

2 +
4∑

I=1

dX2
I

= L2

(
dy2

y2
+ y2(−dx2

0 + dx2
i )

)

= L2

(
du2 + (−dx2

0 + dx2
i )

u2

)
(A.3)
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We performed the coordinate transformation y = 1/u in the last line. This coordinate

system is called the Poincaré coordinates.

The second coordinate system for AdS5 is given by

X1 = R cosh ρ cos t, X2 = R cosh ρ sin t,

XI = R sinh ρΩI

( 4∑
I=1

Ω2
I = 1

)
.

In this case, the line element becomes

ds2 = −dX2
1 − dX2

2 +
4∑

I=1

dX2
I

= R2

(
− cosh2 ρdt2 + dρ2 + sinh2 ρ

4∑
I=1

dΩ2
I

)
.

(A.4)

This coordinate system is called the global coordinates.
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Appendix B

The solution of the equation of motion

In this appendix, we show calculation to obtain the solution of the equations of motion

for the string.

B.1 ρ and θ

The equation of motion for ρ is given by (4.25)(
dρ

dτE

)2

= sinh2 ρ+ j2 tanh2 ρ. (B.1)

The solution is given formally by∫
dρ√

sinh2 ρ+ j2 tanh2 ρ
= ±τE + A (A: arbitrary constant). (B.2)

The integral on the left hand side is calculated as follows:∫
dρ√

sinh2 ρ+ j2 tanh2 ρ
=

∫
cosh ρdρ

sinh ρ
√

cosh2 ρ+ j2

=

∫
udu

u2
√

u2 + (j2 + 1)
(sinh ρ = u)

=

∫
dr

r2 − (j2 + 1)

(
r =

√
u2 + (j2 + 1)

)

=
1

2
√

j2 + 1
ln

∣∣∣∣r −
√

j2 + 1

r +
√
j2 + 1

∣∣∣∣

=
1√

j2 + 1
ln

√
sinh2 ρ+ (j2 + 1)−√j2 + 1

sinh ρ
.
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Hence the solution which satisfies ρ → 0 at τE → ∞ is√
j2 + 1

sinh ρ
=

1

2
(Ã−1e

√
j2+1τE − Ãe−

√
j2+1τE) (Ã = e

√
j2+1A).

Moreover, we set Ã = 1 so that the solution satisfies ρ → ∞ at τE → 0. Then we obtain

sinh ρ =

√
j2 + 1

sinh
√

j2 + 1τE
. (B.3)

Since the equation of motion for θ, (4.26)(
dθ

dτE

)2

= sin2 θ + j2 tan2 θ, (B.4)

is analogous to (4.25), its calculation is done by a similar way as in the case of ρ. The

solution which satisfies the final state condition sin θ → 0 (τE → ∞) is√
j2 + 1

sin θ
=

1

2
(Be

√
j2+1τE +B−1e−

√
j2+1τE). (B: arbitrary constant)

We introduce a non negative constant τ0 which is related to the parameter θ0 by

sin θ0 =

√
j2 + 1

cosh
√
j2 + 1τ0

. (B.5)

Here θ0 is the parameter in the scalar field coefficients ΘI of the Wilson loop and it

determines the boundary condition in S5, which is sin θ|τE=0 = sin θ0. Finally we obtain

the solution

sin θ =

√
j2 + 1

cosh
√

j2 + 1(τE + τ0)
. (B.6)

B.2 tE

The Wick rotated version of (4.21) is given by

cosh2 ρ
dtE
dτE

= j. (B.7)

The solution is given formally by

tE = j

∫
dτE

cosh2 ρ
+ C

= jτE − j

∫
tanh2 ρdτE + C. (C: arbitrary constant)

(B.8)
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Using (B.3), the integral on the right hand side can be calculated as follows (The factor

−j is omitted.):∫
tanh2 ρdτE =

∫
j2 + 1

(j2 + 1) + sinh2
√
j2 + 1τE

dτE

=

∫
dv

(1 + v2)
√
1 + a2v2

(
v =

sinh
√
j2 + 1τE√
j2 + 1

, a =
√
j2 + 1

)

=
1

2
√
a2 − 1

ln

∣∣∣∣∣v
√
a2 − 1 +

√
a2v2 + 1

v
√
a2 − 1−√

a2v2 + 1

∣∣∣∣∣
=

1

2j
ln

∣∣∣∣∣j sinh
√

j2 + 1τE +
√
j2 + 1 cosh

√
j2 + 1τE

j sinh
√
j2 + 1τE −√j2 + 1 cosh

√
j2 + 1τE

∣∣∣∣∣
=

1

2j
ln

(
cosh(

√
j2 + 1τE + ξ)

cosh(
√
j2 + 1τE − ξ)

)
. ( ξ = ln(j +

√
j2 + 1) )

Finally, we obtain

tE = jτE − 1

2
ln

(
cosh(

√
j2 + 1τE + ξ)

cosh(
√

j2 + 1τE − ξ)

)
. (B.9)

Here we choose the arbitrary constant C so that the boundary condition tE|τE=0 = 0 is

satisfied.

B.3 χ2

The Wick rotated version of (4.22) is given by

cos2 θ
dχ2

dτE
= −ij. (B.10)

The solution is given formally by

χ2 = −ij

∫
dτE
cos2 θ

+D

= −ijτE − ij

∫
tan2 θdτE +D. (D: arbitrary constant)

(B.11)
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Using (B.6), the integral on the right hand side is calculated as follows (The factor −ij

is omitted.):∫
tan2 θdτE =

∫
j2 + 1

cosh2
√
j2 + 1(τE + τ0)− (j2 + 1)

dτE

=
1

2

∫ (
1

cosh k − a
− 1

cosh k + a

)
dk (k =

√
j2 + 1(τE + τ0), a =

√
j2 + 1)

= −1

2

1√
a2 − 1

ln

∣∣∣∣∣
tanh k

2
+
√

a−1
a+1

tanh k
2
−
√

a−1
a+1

·
tanh k

2
+
√

a+1
a−1

tanh k
2
−
√

a+1
a−1

∣∣∣∣∣
= − 1

2j
ln

∣∣∣∣∣j cosh k +
√
j2 + 1 sinh k

j cosh k −√j2 + 1 sinh k

∣∣∣∣∣
= − 1

2j
ln

(
sinh(

√
j2 + 1(τE + τ0) + ξ)

sinh(
√

j2 + 1(τE + τ0)− ξ)

)
. ( ξ = ln(j +

√
j2 + 1) )

Therefore, the solution is

χ2 = −ijτE +
i

2
ln

(
sinh(

√
j2 + 1(τE + τ0) + ξ)

sinh(
√

j2 + 1(τE + τ0)− ξ)

)
+D.

Here we choose the arbitrary constant D so that the boundary condition χ2|τE=0 = 0 is

satisfied, which is determined by the scalar field coefficient ΘI . Finally, we obtain the

solution

χ2 = −ijτE +
i

2
ln

(
sinh(

√
j2 + 1(τE + τ0) + ξ) sinh(

√
j2 + 1τ0 − ξ)

sinh(
√

j2 + 1(τE + τ0)− ξ) sinh(
√

j2 + 1τ0 + ξ)

)
. (B.12)
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Appendix C

The BPS condition

In this appendix, we show calculation to obtain the conditions (4.35), (4.36) and (4.37).

We show again the BPS condition (4.34) here:

i

sinh2 ρ+ sin2 θ
(ṫE cosh ρΓE + ρ̇Γ1 + θ̇Γ5 + χ̇2 cos θΓ8)(sinh ρΓ3 + sin θΓ6)σ3ε = ε. (C.1)

After the Wick rotation and some calculation, (4.33) are rewritten as

ε = e
ρ
2
εΓ�Γ1e

tE
2
εΓ�ΓEe

θ
2
εΓ�Γ5e

χ2
2
εΓ�Γ8e

σ
2
(Γ13+Γ56)

(
ε̄1

ε̄2

)
. (C.2)

Since no σ-dependence appears in (C.1), we impose the first condition

(Γ13 + Γ56)

(
ε̄1

ε̄2

)
= 0, (C.3)

so we obtain (4.35). Then the Killing spinor (C.2) is reduced to

ε = e
ρ
2
εΓ�Γ1e

tE
2
εΓ�ΓEe

θ
2
εΓ�Γ5e

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
. (C.4)

Since our purpose is to obtain constant projection conditions imposed on the spinors ε̄1

and ε̄2, we multiply the inverse of the factor of (C.4) on each side of (C.1).

First we multiply e−
ρ
2
εΓ�Γ1e−

θ
2
εΓ�Γ5 . The calculation of the left hand side of (C.1) is

as follows (The factor i/(sinh2 ρ+ sin2 θ) is omitted):
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e−
ρ
2
εΓ�Γ1e−

θ
2
εΓ�Γ5(ṫE cosh ρΓE + ρ̇Γ1 + θ̇Γ5 + χ̇2 cos θΓ8)(sinh ρΓ3 + sin θΓ6)σ3ε

= e−
ρ
2
εΓ�Γ1(ṫE cosh ρ sinh ρΓE3 + ρ̇ sinh ρΓ13 + θ̇ sinh ρΓ53 + χ̇2 cos θ sin θΓ86)σ3e

θ
2
εΓ�Γ5ε+

+ e−
ρ
2
εΓ�Γ1(ṫE cosh ρ sin θΓE6 + ρ̇ sin θΓ16 + θ̇ sin θΓ56 + χ̇2 cos θ sinh ρΓ83)σ3e

− θ
2
εΓ�Γ5ε

= e−
ρ
2
εΓ�Γ1(ṫE cosh ρ sinh ρΓE3 + ρ̇ sinh ρΓ13 + θ̇ sinh ρΓ53 + χ̇2 cos θ sin θΓ86)σ3×

× e
ρ
2
εΓ�Γ1e

tE
2
εΓ�ΓEeθεΓ�Γ5e

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
+

+ e−
ρ
2
εΓ�Γ1(ṫE cosh ρ sin θΓE6 + ρ̇ sin θΓ16 + θ̇ sin θΓ56 + χ̇2 cos θ sinh ρΓ83)×

× σ3e
ρ
2
εΓ�Γ1e

tE
2
εΓ�ΓEe

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)

= (ṫE cosh ρ sinh ρΓE3 + χ̇2 cos θ sin θΓ86)σ3e
ρεΓ�Γ1e

tE
2
εΓ�ΓEeθεΓ�Γ5e

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
+

+ (ρ̇ sinh ρΓ13 + θ̇ sinh ρΓ53)σ3e
tE
2
εΓ�ΓEeθεΓ�Γ5e

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
+

+ (ρ̇ sin θΓ16 + θ̇ sin θΓ56)σ3e
ρεΓ�Γ1e

tE
2
εΓ�ΓEe

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
+

+ (ṫE cosh ρ sin θΓE6 + χ̇2 cos θ sinh ρΓ83)σ3e
tE
2
εΓ�ΓEe

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
.

Then (C.1) becomes

i

sinh2 ρ+ sin2 θ
[(ṫE cosh ρ sin θΓE6 + χ̇2 cos θ sinh ρΓ83)+

+ e−ρεΓ�Γ1 sin θ(ρ̇Γ16 + θ̇Γ56)+

+ e−θεΓ�Γ5 sinh ρ(ρ̇Γ13 + θ̇Γ53)+

+ e−ρεΓ�Γ1−θεΓ�Γ5(ṫE cosh ρ sinh ρΓE3 + χ̇2 cos θ sin θΓ86)]σ3ε̃ = ε̃,

(C.5)

where ε̃ is defined by

ε̃ = e
tE
2
εΓ�ΓEe

χ2
2
εΓ�Γ8

(
ε̄1

ε̄2

)
.

Using (C.3), the second and the third terms in the square bracket of (C.5) are calculated
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as

e−ρεΓ�Γ1 sin θ(ρ̇Γ16 + θ̇Γ56) + e−θεΓ�Γ5 sinh ρ(ρ̇Γ13 + θ̇Γ53)

= sin θ cosh ρ(ρ̇Γ16 + θ̇Γ56) + cos θ sinh ρ(ρ̇Γ13 + θ̇Γ53)

=
d

dτE
(sinh ρ sin θΓ16 + cosh ρ cos θΓ13) + cosh ρ sin θ · θ̇(Γ13 + Γ56)+

+ sinh ρ cos θ · θ̇Γ51(Γ13 + Γ56)

=
d

dτE
(sinh ρ sin θΓ16 + cosh ρ cos θΓ13).

On the other hand, the first and the fourth terms are calculated as

(ṫE cosh ρ sin θΓE6 + χ̇2 cos θ sinh ρΓ83)+

+ e−ρεΓ�Γ1−θεΓ�Γ5(ṫE cosh ρ sinh ρΓE3 + χ̇2 cos θ sin θΓ86)

= ṫE cosh ρ(e
−θεΓ�Γ5 − cos θ)εΓ�Γ5ΓE6 + χ̇2 cos θ(cosh ρ− e−ρεΓ�Γ1)εΓ�Γ1Γ83

+ e−ρεΓ�Γ1−θεΓ�Γ5 [ṫE cosh ρ(e
ρεΓ�Γ1 − cosh ρ)εΓ�Γ1ΓE3+

+ χ̇2 cos θ(cos θ − eθεΓ�Γ5)εΓ�Γ5Γ86]

= − cosh ρ cos θΓ13(ṫEεΓ�ΓE + χ̇2εΓ�Γ8) + Γ13e
ρεΓ�Γ1−θεΓ�Γ5×

× (ṫE cosh
2 ρεΓ�ΓE + χ̇2 cos

2 θεΓ�Γ8).

Then (C.5) becomes

i

sinh2 ρ+ sin2 θ

[
Γ13e

ρεΓ�Γ1−θεΓ�Γ5(ṫE cosh
2 ρεΓ�ΓE + χ̇2 cos

2 θεΓ�Γ8)+

+
d

dτE
(sinh ρ sin θΓ16 + cosh ρ cos θΓ13)−

− cosh ρ cos θΓ13(ṫEεΓ�ΓE + χ̇2εΓ�Γ8)

]
σ3ε̃ = ε̃.

(C.6)

Using the equations (4.21) and (4.22), the first term in the square bracket of (C.6) can

be rewritten as

Γ13e
ρεΓ�Γ1−θεΓ�Γ5jεΓ�(ΓE − iΓ8).

Here we impose the second condition (4.36),

(ΓE − iΓ8)

(
ε̄1

ε̄2

)
= 0, (C.7)

49



which corresponds to the BPS condition for the counterpart of OJ . Hence (C.6) is reduced

to

i

sinh2 ρ+ sin2 θ

[
d

dτE
(sinh ρ sin θΓ16 + cosh ρ cos θΓ13)

− cosh ρ cos θΓ13(ṫEεΓ�ΓE + χ̇2εΓ�Γ8)

]
σ3ε̃ = ε̃.

(C.8)

Next we multiply e−
tE
2
εΓ�ΓE−χ2

2
εΓ�Γ8 on each side of (C.8). The left hand side is cal-

culated as

i

sinh2 ρ+ sin2 θ

[
e−

tE
2
εΓ�ΓE−χ2

2
εΓ�Γ8

d

dτE
(sinh ρ sin θΓ16 + cosh ρ cos θΓ13)−

− e−
tE
2
εΓ�ΓE−χ2

2
εΓ�Γ8 cosh ρ cos θΓ13(ṫEεΓ�ΓE + χ̇2εΓ�Γ8)

]
σ3ε̃

=
i

sinh2 ρ+ sin2 θ

[
d

dτE
(sinh ρ sin θ)Γ16e

tE
2
εΓ�ΓE+

χ2
2
εΓ�Γ8

+
d

dτE
(cosh ρ cos θ)Γ13e

− tE
2
εΓ�ΓE−χ2

2
εΓ�Γ8

− cosh ρ cos θΓ13(ṫEεΓ�ΓE + χ̇2εΓ�Γ8)e
− tE

2
εΓ�ΓE−χ2

2
εΓ�Γ8

]
σ3ε̃

=
i

sinh2 ρ+ sin2 θ

[
d

dτE
(sinh ρ sin θΓ16 + cosh ρ cos θΓ13e

−(tE−iχ2)εΓ�ΓE)

]
σ3

(
ε̄1

ε̄2

)
. (C.9)

In (C.9), we further use the following two equations which we prove shortly:

cosh ρ cos θe−(tE−iχ2)εΓ�ΓE =
cos θ0
sin θ0

sinh ρ sin θ +

√
1 +

j2

cos2 θ0
+

j

cos θ0
εΓ�ΓE, (C.10)

d

dτE
(sinh ρ sin θ) = − sin θ0(sinh

2 ρ+ sin2 θ). (C.11)

Then we obtain the third condition (4.37),

−i(sin θ0Γ16 + cos θ0Γ13)σ3

(
ε̄1

ε̄2

)
=

(
ε̄1

ε̄2

)
. (C.12)

To show (C.10), we first calculate the exponential part of the left hand side:

e−(tE−iχ2)εΓ�ΓE = [cosh(tE − iχ2)− sinh(tE − iχ2)εΓ�ΓE].
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The calculation of cosh(tE − iχ2) is done by the following steps:

cosh(tE − iχ2)

=
1

2

[(
cosh(

√
j2 + 1τE − ξ)

cosh(
√

j2 + 1τE + ξ)
· sinh(

√
j2 + 1(τE + τ0) + ξ) sinh(

√
j2 + 1τ0 − ξ)

sinh(
√
j2 + 1(τE + τ0)− ξ) sinh(

√
j2 + 1τ0 + ξ)

) 1
2

+

+

(
cosh(

√
j2 + 1τE + ξ)

cosh(
√

j2 + 1τE − ξ)
· sinh(

√
j2 + 1(τE + τ0)− ξ) sinh(

√
j2 + 1τ0 + ξ)

sinh(
√
j2 + 1(τE + τ0) + ξ) sinh(

√
j2 + 1τ0 − ξ)

) 1
2
]

=
1

2
· 1

D
[cosh(

√
j2 + 1τE − ξ) · sinh(

√
j2 + 1(τE + τ0) + ξ) sinh(

√
j2 + 1τ0 − ξ)+

+ cosh(
√
j2 + 1τE + ξ) · sinh(

√
j2 + 1(τE + τ0)− ξ) sinh(

√
j2 + 1τ0 + ξ)]

=
1

2
· 1

D
· 1
2
[(sinh

√
j2 + 1(2τE + τ0) + sinh(

√
j2 + 1τ0 + 2ξ)) · sinh(

√
j2 + 1τ0 − ξ)+

+ (sinh
√

j2 + 1(2τE + τ0) + sinh(
√

j2 + 1τ0 − 2ξ)) · sinh(
√
j2 + 1τ0 + ξ)]

=
1

2
· 1

D
[
√

j2 + 1 sinh
√
j2 + 1(2τE + τ0) sinh

√
j2 + 1τ0

+
√
j2 + 1 sinh2

√
j2 + 1τ0 − 2j2

√
j2 + 1]

=
1

D

[
(j2 + 1)

3
2

sinh ρ sin θ
sinh

√
j2 + 1τ0 + (j2 + 1)

3
2
cos2 θ0
sin2 θ0

]
.

Here we used the relation

1

sinh ρ sin θ
=

1

j2 + 1
· 1
2
(sinh

√
j2 + 1(2τE + τ0)− sinh

√
j2 + 1τ0) (C.13)

and
cos2 θ

sin2 θ
· (j2 + 1) = sinh2

√
j2 + 1(τE + τ0)− j2 (C.14)

to obtain the last line. Using the equations (C.13), (C.14) and

cosh2 ρ

sinh2 ρ
· (j2 + 1) = cosh2

√
j2 + 1τE + j2, (C.15)

the calculation of the common denominator D is

D = [cosh(
√

j2 + 1τE + ξ) cosh(
√
j2 + 1τE − ξ) sinh((

√
j2 + 1(τE + τ0)− ξ)×

× sinh((
√

j2 + 1(τE + τ0) + ξ) sinh(
√
j2 + 1τ0 + ξ) sinh(

√
j2 + 1τ0 − ξ)]

1
2

= [(cosh2
√
j2 + 1τE · (j2 + 1)− sinh2

√
j2 + 1τE · j2)×
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× (sinh2
√

j2 + 1(τE + τ0) · (j2 + 1)− cosh2
√
j2 + 1(τE + τ0) · j2)×

× (sinh2
√
j2 + 1τ0 · (j2 + 1)− cosh2

√
j2 + 1τ0 · j2)] 12

= [(cosh2
√
j2 + 1τE + j2)(sinh2

√
j2 + 1(τE + τ0)− j2)(sinh2

√
j2 + 1τ0 − j2)]

1
2

= (j2 + 1)
3
2
cosh ρ

sinh ρ
· cos θ
sin θ

· cos θ0
sin θ0

.

Therefore, cosh(tE − iχ2) becomes

cosh(tE − iχ2) =
1

cosh ρ cos θ

[
cos θ0
sin θ0

sinh ρ sin θ +
sin θ0
cos θ0

sinh
√
j2 + 1τ0

]

=
1

cosh ρ cos θ

[
cos θ0
sin θ0

sinh ρ sin θ +

√
1 +

j2

cos2 θ0

]
, (C.16)

because sinh2
√

j2 + 1τ0 is rewritten as

sinh2
√
j2 + 1τ0 =

j2 + cos2 θ0
sin2 θ0

.

Similarly, the calculation of sinh(tE − iχ2) is given by

sinh(tE − iχ2)

=
1

2

[(
cosh(

√
j2 + 1τE − ξ)

cosh(
√
j2 + 1τE + ξ)

· sinh(
√

j2 + 1(τE + τ0) + ξ) sinh(
√
j2 + 1τ0 − ξ)

sinh(
√

j2 + 1(τE + τ0)− ξ) sinh(
√

j2 + 1τ0 + ξ)

) 1
2

−

−
(
cosh(

√
j2 + 1τE + ξ)

cosh(
√

j2 + 1τE − ξ)
· sinh(

√
j2 + 1(τE + τ0)− ξ) sinh(

√
j2 + 1τ0 + ξ)

sinh(
√
j2 + 1(τE + τ0) + ξ) sinh(

√
j2 + 1τ0 − ξ)

) 1
2
]

=
1

2
· 1

D
[−j cosh

√
j2 + 1τ0(sinh

√
j2 + 1(2τE + τ0)− sinh

√
j2 + 1τ0)]

= − 1

D
· j(j2 + 1) cosh

√
j2 + 1τ0 · 1

sinh ρ sin θ

= − 1

cosh ρ cos θ
· j

cos θ0
, (C.17)

where D is the same common denominator in the case of cosh(tE − iχ2). Therefore,

substituting (C.16) and (C.17) into the left hand side, (C.10) is shown.
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Next we show the relation (C.11). It is done by straightforward calculation:

d

dτE
(sinh ρ sin θ) = − sinh2 ρ sin θ cosh

√
j2 + 1τE − sin2 θ sinh ρ sinh

√
j2 + 1(τE + τ0)

= − sinh2 ρ sin θ0
cosh

√
j2 + 1τ0

cosh
√

j2 + 1(τE + τ0)
cosh

√
j2 + 1τE−

− sin2 θ sin θ0
cosh

√
j2 + 1τ0

sinh
√

j2 + 1τE
sinh

√
j2 + 1(τE + τ0)

= − sin θ0(sinh
2 ρ+ sin2 θ)+

+ sin θ0 sinh
2 ρ

(
1− cosh

√
j2 + 1τ0 cosh

√
j2 + 1τE

cosh
√

j2 + 1(τE + τ0)

)
+

+ sin θ0 sin
2 θ

(
1− cosh

√
j2 + 1τ0 sinh

√
j2 + 1(τE + τ0)

sinh
√
j2 + 1τE

)

= − sin θ0(sinh
2 ρ+ sin2 θ).

53



Bibliography

[1] J. M. Maldacena, “The Large N limit of superconformal field theories and supergrav-

ity,” Adv. Theor. Math. Phys. 2 (1998) 231.

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from

noncritical string theory,” Phys. Lett. B 428 (1998) 105.

[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998)

253.

[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field

theories, string theory and gravity,” Phys. Rept. 323 (2000) 183.

[5] J. M. Maldacena, “TASI 2003 lectures on AdS / CFT,” hep-th/0309246.

[6] J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett. 80 (1998)

4859.

[7] S. -J. Rey and J. -T. Yee, “Macroscopic strings as heavy quarks in large N gauge

theory and anti-de Sitter supergravity,” Eur. Phys. J. C 22 (2001) 379.

[8] N. Drukker, D. J. Gross and H. Ooguri, “Wilson loops and minimal surfaces,” Phys.

Rev. D 60 (1999) 125006.

[9] J. K. Erickson, G. W. Semenoff and K. Zarembo, “Wilson loops in N=4 supersym-

metric Yang-Mills theory,” Nucl. Phys. B 582 (2000) 155.

[10] N. Drukker and D. J. Gross, “An Exact prediction of N=4 SUSYM theory for string

theory,” J. Math. Phys. 42 (2001) 2896.

[11] V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson

loops,” Commun. Math. Phys. 313 (2012) 71.

54



[12] G. N. Watson, “A Treatise on the Theory of Bessel Functions” (Cambridge Univer-

sity Press, London, England, 1944).

[13] D. E. Berenstein, R. Corrado, W. Fischler and J. M. Maldacena, “The Operator

product expansion for Wilson loops and surfaces in the large N limit,” Phys. Rev. D

59 (1999) 105023.

[14] G. W. Semenoff and K. Zarembo, “More exact predictions of SUSYM for string

theory,” Nucl. Phys. B 616 (2001) 34.

[15] G. W. Semenoff and D. Young, “Exact 1/4 BPS Loop: Chiral primary correlator,”

Phys. Lett. B 643 (2006) 195.

[16] T. Enari and A. Miwa, “Semi-classical correlator for a 1/4 BPS Wilson loop and a

chiral primary operator with a large R-charge,” Phys. Rev. D 86 (2012) 106004.

[17] N. Drukker, “1/4 BPS circular loops, unstable world-sheet instantons and the matrix

model,” JHEP 0609 (2006) 004.

[18] D. E. Berenstein, J. M. Maldacena, and H. S. Nastase, “Strings in flat space and pp

waves from N=4 super Yang-Mills,” JHEP 0204 (2002) 013.

[19] S. Giombi and V. Pestun, “Correlators of Wilson loops and Local Operators from

Multi-Matrix Models and Strings in AdS,” JHEP 1301 (2013) 101.

[20] N. Drukker and B. Fiol, “On the integrability of Wilson loops in AdS(5) x S**5:

some periodic ansatze,” JHEP 0601 (2006) 056.

[21] M. B. Green, S. H. Schwarz and E .Witten, “Superstring Theory, Volume 1: Intro-

duction” (Cambridge University Press, 1987).

[22] H. Lu, C. N. Pope and J. Rahmfeld, “A Construction of Killing spinors on S**n,”

J. Math. Phys. 40 (1999) 4518.

[23] K. Zarembo, “Open string fluctuations in AdS(5) x S**5 and operators with large R

charge,” Phys. Rev. D 66 (2002) 105021.

[24] A. A. Tseytlin, “On semiclassical approximation and spinning string vertex operators

in AdS(5) x S**5,” Nucl. Phys. B 664 (2003) 247.

55



[25] E. I. Buchbinder and A. A. Tseytlin, “On semiclassical approximation for correlators

of closed string vertex operators in AdS/CFT,” JHEP 1008 (2010) 057.

[26] N. Drukker and B. Fiol, “All-genus calculation of Wilson loops using D-branes,”

JHEP 0502 (2005) 010.

[27] S. Yamaguchi, “Wilson loops of anti-symmetric representation and D5-branes,”

JHEP 0605 (2006) 037.

[28] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B 72

(1974) 461.

[29] E. Brezin, C. Itzykson, G. Parisi and J. B. Zuber, “Planar Diagrams,” Commun.

Math. Phys. 59 (1978) 35.

[30] Y. Makeenko, “Methods of Contemporary Gauge Theory” (Cambridge University

Press, 2002).

56


