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Abstract 

Visual surveillance in dynamic scenes has become a very important research area of 

image processing and computer vision techniques in recent years, which attempts to 

detect, recognize, and track certain objects from image sequences, and more generally 

to understand and describe target behaviors. Visual traffic surveillance system provides 

the most efficient traffic information for traffic control and management, and assistance 

for safe driving in Intelligent Transport Systems (ITS). Moving target detection and 

tracking methods are the most basic and important technologies in the area of intelligent 

visual surveillance, and are the key to realizing real time intelligent visual surveillance. 

However, due to the short history of development, some important problems are still 

unresolved, and new methods of techniques are needed. Thus, the research of moving 

target detection and tracking has great theoretical significance and practical value. This 

dissertation does the researches focused on the key technical problems about intelligent 

traffic surveillance, and the major works include as follows: 

A novel background subtraction method is proposed to detect the moving target. Due 

to the dynamic conditions and interference factors, the color statistical background 

model based on YCbCr color space is presented. We propose a multiple feature 

similarity fusion using Choquet integral to class the foreground and background, and 

provide a new idea for high precision target detection. By analyzing of the traditional 

blind and selective background maintenance process, an adaptive background 

maintenance method is proposed to adapt the complex condition.  

For single target tracking, we present a multiple feature fusion algorithm based on the 

Particle filter(PF). The proposed mechanism not only fuses multiple features to 

represent the tracking target, but dynamically balances the effect of feature similarity 

and feature discriminability among target model, candidate and adjacent background to 

obtain the adaptive feature weight. Bhattacharyya coefficient is adopted to represent the 

similarity, and the variance of the log-likelihood ratio is used to describe the 

discriminability between the target model and the adjacent background. 

For the tracking problems of complex conditions, such as large scale change, rotation 

and mutual osculation, etc. A robust vehicle tracking based on the Speeded-Up Robust 
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Features(SURF) in a particle filter framework is presented. What’s more, we propose 

the dynamic update mechanisms of target template to capture the appearance change. 

Specifically, adopting new feature points and discarding bad feature points. The size of 

tracking window is also modified dynamically by balancing the weights of three feature 

distributions. Furthermore, the weights of each particle are allocated by an improved 

distance kernel function method.  

In order to robustly track multiple target, we firstly analyze the traditional data 

association methods, and then propose a multiple target tracking method based on 

feature measurement Probability Hypothesis Density (PHD) filter. In this method, the 

feature measurement is used to approximate the posterior density. And, we adopt an 

adaptive weight to fuse the color and LBP features which are extracted by Monte Carlo 

technology, and implement the tracking method using Gaussian mixture. 

The experimental results corresponding to each method are presented and the 

effectiveness of the methods are evaluated and discussed under the criterion of accuracy. 

The researches of this thesis will make a contribution to the technology of moving target 

detection and tracking in intelligence visual surveillance.  

 

Key Words: Intelligent visual surveillance, Moving target detection, Moving target 

tracking, Background subtraction, Particle filter, Probability hypothesis density 
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Chapter 1. Introduction 

1.1. An overview of visual surveillance systems 

Vehicle traffic is one of the most important symbols of modern society, but, with the 

development of economy, the sharp increase in number of vehicles, serious traffic 

congestion, deteriorating traffic conditions, and frequent traffic accidents, these 

conditions greatly put the pressure on urban transport, and seriously affect the economic 

development and daily life. Although the building, expansion of highway can alleviate 

this problem, however, the growing population and rapid growth of the urban 

construction land result in a decrease of available land for road construction. And 

restricting the number of vehicles is infeasible. Therefore, only considering the road and 

vehicles is very difficult to solve the problem. In this context, it was envisaged using a 

variety of new technologies, considering the factor of road and vehicle, to 

systematically solve the traffic problems. Thus, Intelligent Transport Systems (ITS) 

have become a new research field. ITS is advanced applications which without 

embodying intelligence as such aim to provide innovative services relating to different 

modes of transport and traffic management and enable various users to be better 

informed and make safer, more coordinated and ‘smarter’ use of transport networks[1].  

ITS commonly includes the following nine research areas: advances in navigation 

systems, electronic toll collection systems, assistance for safe driving, optimization of 

traffic management, increasing efficiency in road management, support for public 

transport, increasing efficiency in commercial vehicle operations, support for 

pedestrians, support for emergency vehicles operations[2].  

Nowadays, there is an urgent need for the robust and reliable traffic surveillance 

system to improve traffic control and management and assist for safe driving. Vehicle 

detection technique appears to be the weakest link in traffic surveillance and control 

system [3]. Although many detect devices such as supersonic, radar, sonar and inductive 

loop are exist and widely used, the most important drawback of these equipment is their 
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limitation in measuring some important traffic parameters and accurately assessing 

traffic condition. The first reason is that blind type of detection technology is employed. 

They are expensive to install and maintain. These sensors cannot provide full traffic 

scene information. Intelligent visual surveillance is one of the most attractive alternative 

technologies as it offers opportunities for performing substantially more complex tasks 

and provides more information than other sensors. Intelligent visual surveillance 

techniques include the extraction of moving vehicle, description, tracking, identification 

and behavior analysis and other aspects. Intelligent visual surveillance provides most 

efficient traffic information for traffic control and management, assistance for safe 

driving in ITS. Comparing with other sensors, video sensors offer a relatively low 

installation cost with little traffic disruption during maintenance. Furthermore, they 

provide wide area monitoring for traffic control and management, and evaluate the 

traffic conditions by the following parameters: traffic flow rate, average traffic speed, 

the length of queue, traffic density and so on. Therefore, developing real-time traffic 

parameter surveillance systems based on video aiming to derive reliable and robust 

traffic state information has attracted a lot of attention during the past decade. As a 

result, vehicle detecting and tracking by a stationary video camera is one of the most 

promising new techniques for large scales traffic information data collection and 

analysis.  

In this thesis, we propose four methods for moving target detection and object 

tracking with application in visual surveillance and consider robustness and accuracy as 

the major design goals of our work. 

1.2. Target detection 

Moving target detection is the basic step for intelligent visual surveillance. It can 

provide the size of moving target, position and velocity, and other basic information. 

The performance of this step is particularly significant because subsequent processing 

of the video data is greatly dependent on this step. In addition, moving target detection 

is also one of the important research areas in computer vision. Moving target detection 

aims at extracting moving targets that are of interest in video sequences. Commonly 

used techniques for moving target detection are optical flow [4][5][6][7][8], temporal 

frame differencing[9], and background subtraction[10][11][12]. Background subtraction, 
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in particular, is a commonly used technique for foreground segmentation in static scenes 

because it has a very low computational cost. The goal of background subtraction is to 

remove the background in a scene by describing an adequate model of the background. 

The result is that only interesting targets are left in the scene for tracking.  

Detection target is usually the pedestrians and vehicles. Accurate detection of moving 

targets is the key to the analysis and understanding of video scenes. Due to the 

application of intelligent video surveillance system, the camera often is fixed, so the 

background of an image sequence captured is static, which provides the convenience for 

moving target detection. However, for moving target detection in the intelligent visual 

surveillance, there are many challenges, including the following two points: 

1). Influence of dynamic scene: In practice, background images are often very complex 

in natural scene. Background images, captured by a still camera, are not static in 

surveillance scene. For example, illumination changes, waving tree branches and 

flags, vibration of camera, and so on. The moving region of background will often 

be detected as moving targets, and thus a large area interfering targets will be 

produced, which seriously affect the accuracy of moving target detection. 

2). Influence of moving shadow: In a natural scene, shadow always accompanies with 

moving target. In other words, where there is target, there is shadow. Generally, the 

moving shadow is detected as a part of moving target in target detection methods, it 

will not only decrease the precision of moving target detection, and connect other 

moving targets, then seriously disturb the analysis of moving targets.  

1.3. Target tracking 

Visual target tracking is an important step in many applications such as intelligent 

transport, human-computer interaction, guidance, medical imaging, obstacle avoidance 

and gesture recognition and so on. Target tracking problems can be formulated as a 

hidden state estimation problem given available measurements. The measurements are 

taken at regular intervals and the task is to estimate the state of a target at each point in 

time, such as its position, velocity or other attributes. Successive estimates provide the 

tracks which describe the trajectory of a target. Over the last few decades, numerous 

techniques have been proposed for target tracking, such as Kalman filter[13], extended 

Kalman filter[24], unscented Kalman filter[14], Mean-shift [15], and Particle filter[16].  
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Object tracking methods can be classified into two categories [17]. The first one is a 

deterministic method that compares a target model with the current frame, searching for 

the most probable region, and selects it as the target, such as mean shift tracking. The 

second category is a probabilistic method which uses the state space to model the 

underlying dynamics of the tracking process, such as Kalman filter, particle filter, etc.  

In addition, multiple target tracking is an extension of single target tracking, and can 

be defined as the processing of multiple measurements obtained from multiple targets in 

order to maintain estimates of the target current states. Many techniques have been 

described for multiple target tracking, such as Nearest neighbor (NN)[18], Probabilistic 

Data Association (PDA) [19], joint probabilistic data association (JPDA) [20], Multiple 

hypothesis tracking(MHT)[21][22]. These traditional approaches require data 

association that operate in conjunction with filtering. The data association problem 

makes up the bulk of the computational load in multiple target tracking method. Recent 

works show that the probability hypothesis density (PHD) filter is a promising approach 

for multiple target tracking, which propagates the PHD or the first moment of the 

multiple target posterior density instead of the full multiple target posterior density, 

incorporating track initiation and termination without consideration of 

measurement-to-track association [23]. 

1.4. Original contributions 

This thesis proposes four methods for moving target detection, single target tracking, 

and multiple target tracking for applications in visual surveillance. We consider 

robustness and accuracy as the major design goals of our work. The main contributions 

of the thesis are as follows： 

Moving target detection 

In the area of moving object detection a technique robust to background dynamics 

using background subtraction with a color statistical background model method is 

described. A foreground-background pixel classification method using the Choquet 

Integral is presented. Another technique that is robust to sudden illumination changes 

using a novel adaptive background maintenance method is proposed.  
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Single target tracking 

Once a moving object is detected, the foreground object mask generated is used to 

initiate object tracking using particle filtering. We propose a method for robust tracking 

with dynamic parameter setting for likelihood model of particle filtering. We propose an 

adaptive multiple-feature fusion mechanism that not only improves the represent-ability 

of tracking target, but dynamically trades off the effects of feature similarity and 

discriminability.  

For the fast moving, mutual occlusion, scale change and clutter condition, we propose 

a novel tracking method based on SURF feature matching using particle filtering. In this 

method, we also propose an adaptive on-line feature point update mechanism, which 

includes the discarding bad feature points and adopting new feature points method. In 

addition, we propose a new updating method for weight of particle and tracking window 

modification method to improve the tracking performance. 

Multiple target tracking 

The likelihood function and feature measurement random set are applied for the PHD 

approximation. In the implementation parts, Gaussian Mixture for the probability 

hypothesis density filter is used. We propose the method for calculating the feature 

measurement random set by Monte Carlo technique. In addition, we propose the 

adaptive weight to fuse color measurement and texture measurement.  

1.5. Thesis outline 

This thesis is organized as follows: 

Chapter 1  Introduction 

Chapter 1 provides the overview and development of object detection and object 

tracking. In particular, it outlines the motivation for research considered in this thesis 

and summarizes the major contributions.  

Chapter 2  Moving target detection with background subtraction 

Chapter 2 provides an overview of target detection. In particular, summaries of 

background subtraction based on background model are included. In order to appreciate 

the problems associated with traditional background subtraction approaches, a brief 
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description of statistical background model and foreground classification is provided. In 

this thesis, fusion feature similarity measures based on the Choquet integral are used as 

foreground classification. In addition, an adaptive background maintenance method is 

proposed, which addresses the traditional problem, such as ghosts, etc. Furthermore, 

this chapter also presents the comparing experiments with conventional background 

subtraction, Gaussian mixture model, and other main background maintenance methods.  

Chapter 3  Single target tracking with particle filter and multiple features fusion 

Chapter 3 introduces the Particle filter (PF) technique to target tracking. It also  

contains a brief literature review of the developments and application of the particle 

filter technique. Moreover, it outlines some of the drawbacks of PF. It presents an 

adaptive multiple-feature fusing mechanism, and the make-off of feature similarity 

between target object and candidate with feature discriminability between target object 

and its adjacent background. In addition, it presents the comparing experiments with 

other state-and-art methods, such as single feature tracking, fixed weight tracking, and 

mean shift method. 

Chapter 4  Single target tracking with speeded up robust features (SURF) and PF 

Chapter 4 introduces the SURF method for detecting the scale and rotation invariant 

feature point. In particular, it presents the SURF feature point update mechanism, which 

includes the discarding bad feature points and adopting new feature points. In addition, 

it also presents the calculating method for likelihood function of color and texture 

feature. Moreover, preliminary results of these proposed methods have been presented 

in this chapter. 

Chapter 5  Multi-target tracking with the FM-PHD filter 

Chapter 5 introduces the classical data association methods for multi-target tracking. 

In particular, it provides a description of the random finite set approach to multi-target 

tracking. It presents the PHD filter that is a tractable suboptimal approximation to the 

full multi-target Bayes filter based on RFS. Furthermore, this chapter also presents the 

approximation for PHD using feature measurement, called the feature measurement 

probability hypothesis density (FM-PHD) filter that performs estimate-to-track 

association based on the implementation of PHD filter. It also presents the extracting 

method of feature measurement random set by Monte Carlo technique. Experimental 

results of these proposed methods in visual sequence are included in this chapter. 
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Chapter 6  Conclusion 

Finally, Chapter 6 includes the concluding remarks of this thesis. In particular, it 

summarizes its main contributions and outlines possible future research directions. 
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Chapter 2. Moving target detection with background 

subtraction 

2.1. Introduction 

   Moving vehicle detection means to extract from the video stream in real time 

vehicle target, location, area and color characteristics, and represent the foreground 

object model by the static characteristics. Test results can provide area of interest for 

subsequent intelligent monitoring tasks, such as target recognition, tracking, behavior 

analysis and so on. Target detection, first of all, needs to make a video segmentation, in 

other words, segmenting the change region from the video sequences, and then get the 

interesting target through recognition techniques. Fast and accurate segmentation of 

moving targets has very important significance for classification, vehicle tracking and 

behavior analysis in the traffic scene. However, because of the effects of weather 

change, illumination change, clutter background and shadows, moving target 

segmentation and detection face a challenge.  

This chapter is organized as follows: Firstly, several kinds of target detection 

algorithms are introduced in traffic surveillance scene, and then we propose a new 

background subtraction method based on the Choquet integral. It includes an improved 

statistical color background model based on the YCbCr color space, foreground 

detection using the Choquet integral, and adaptive background maintenance. Finally, 

experimental results and analysis are described. 

2.2. Detection methods  

Optical flow 

Optical flow is a dense field of displacement vectors which defines the translation of 

each pixel in a region. It is computed using the brightness constraint, which assumes 
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brightness constancy of corresponding pixels in consecutive frames. Flow vectors are 

used to divide the image in segments with equal motion. Background motion will be 

different from that of moving objects, so moving objects will be segmented from the 

background. Many methods for computing optical flow have been proposed [4][5][6] 

[7][8]. 

Let 𝐼(𝑥, 𝑦, 𝑡) denotes the gray value of pixel (𝑥, 𝑦) at time 𝑡. 𝑢 and 𝑣 represent 

the components of the optical flow vectors at the point 𝑥  and 𝑦  directions, 

respectively. 𝑢 = 𝑑𝑥 𝑑𝑡⁄ , 𝑣 = 𝑑𝑦 𝑑𝑡⁄ . Because 𝑑𝐼(𝑥, 𝑦, 𝑡) 𝑑𝑡⁄ =  , then we obtain the 

optical flow equation: 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 =                            (2.1) 

where 𝐼𝑥, 𝐼𝑦 and 𝐼𝑡 are the partial derivatives of the gray value of pixel point with 

respect to 𝑥, 𝑦 and 𝑡 directions.  = (𝑢, 𝑣) denotes the components of the image 

velocity field. The distribution of the velocity in each point of the image is known as the 

optical flow.  

The optical flow equation is not sufficient for computing two components, 𝑢 and 𝑣. 

In practice, it is necessary to consider additional restrictions on the problem to estimate 

the motion at every image location. For traffic video surveillance, the camera is 

generally fixed on the roadside poles. This problem can be greatly simplified. For the 

roads background, the optical flow is ideally zero, and the moving foreground only has 

the optical flow. 

The computational complexity of optical flow techniques is high. Real time 

implementation is therefore difficult or expensive. Once moving objects are segmented, 

only the flow of those pixels assigned to an object is necessary. But for the detection of 

new objects, always a global optical flow calculation is necessary, although this can be 

at a lower resolution or less frequent in time. Besides the computational complexity, 

another important disadvantage of optical flow in surveillance applications is that the 

flow is not always correct. It is undefined at object edges because of smoothing in the 

calculation of optical flow. This causes inaccurate object segmentation. The flow inside 

objects may also be wrong. For homogenous regions such as parts of a vehicle for 

example, flow will be zero. 
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Two frame difference 

Two frame difference method is to obtain the difference image between the previous 

frame and back frame at a small time interval, and then to get the moving target region 

by the threshold binary image. Because the operation is very simple, and the 

binaryzation of difference image corresponds to many efficient algorithms, it is very 

suitable for real-time detection of moving object. Let 𝑓1(𝑥, 𝑦) denotes the input frame 

at time 𝑡1, 𝑓2(𝑥, 𝑦) is the input frame at time 𝑡2. If there is the moving vehicle at this 

period, and then 𝑓2(𝑥, 𝑦) = 𝑓1(𝑥 − ∆𝑥, 𝑦 − ∆𝑦), assume  

∆𝑓(𝑥, 𝑦) = |𝑓2(𝑥, 𝑦) − 𝑓1(𝑥, 𝑦)|                    (2.2) 

For the static part of image, ∆𝑥 = ∆𝑦 =  , then ∆𝑓(𝑥, 𝑦) =  , yet, for the moving 

part of image, ∆𝑓(𝑥, 𝑦) ≠  , thus we can obtain the moving region. However, it is 

prone to generate cavity in the internal region. Because the segmented region is the 

combine area between the two positions of the objects, is larger than the actual area of 

object. Secondly, it is very sensitive to noise, and the detected position of the object is 

not accurate. Otherwise, the sampling frequency has greatly influence to the detection 

performance, if the time interval is set not suitable, for a fast moving vehicle, it is easy 

to mistakenly identified into two different objects, and for a slow moving vehicle, the 

fraction of detection object can only be detected. In general, the multiple frames 

difference method addresses this problem. 

Multiple frames difference 

Multiple frames difference is proposed to overcome the problem of two frame 

difference. Three or more consecutive image frames make the difference between any 

two frames. Assume the set of binary image sequence {𝐼𝑖}, the difference image 𝐷𝑖 is 

defined as 

𝐷𝑖(𝑥, 𝑦) = |𝐼𝑖+1(𝑥, 𝑦) − 𝐼𝑖(𝑥, 𝑦)|                   (2.3) 

 𝑖(𝑥, 𝑦) = {
1 𝐷𝑖(𝑥, 𝑦)   𝐻
 𝐷𝑖(𝑥, 𝑦)   𝐻

                     (2.4) 

where  𝐻 is a threshold value. Lastly, we can obtain the binary image of movement  
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region 𝐵𝑊 in Figure 2.1. 

𝐵𝑊 =  𝑖⋂ 𝑖−1                           (2.5) 

However, the actual traffic condition is very complex, and the speed of detection 

object is changed faster and dramatically, such as stop-and-go traffic flow, stopped 

vehicles (i.e. accident). The performance of multiple frames difference method is low 

stability, and low reliability. 

Background subtraction 

Background subtraction is a method typically used to segment moving regions in 

image sequences taken from a static camera by comparing each new frame to a model 

of scene background.  

Background subtraction identifies moving object from the portion of a video frame 

that differs significantly from a background model. There are many challenges in 

developing a good background subtraction algorithm. Firstly, it must be robust against 

changes in illumination. Secondly, it should avoid detecting non-stationary background 

objects such as swinging leaves, rain, snow, shadow cast by moving objects. Finally, its 

internal background model should react quickly to changes in background such as 

stop-and-go of vehicles. 

At present, numerous background subtraction methods have been proposed, no matter 

Figure 2.1  Multiple frames difference method. 
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what kind of algorithm, these methods have the same theory. Next, we introduce the 

basic principle of background subtraction in following section.  

The basic idea of the background subtraction is to match the current image frame and 

the reference image of background model, and to calculate the similar measurement of 

each point in the current frame and background model, and to class the foreground and 

background using the formula (2.6). 

𝐼𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦) = {
1, |𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦) − 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑥, 𝑦)|   𝐻

 , |𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦) − 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑥, 𝑦)|   𝐻
       (2.6) 

where (𝑥, 𝑦)  denotes an any point in the image frame. 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑥, 𝑦)  is the 

characteristic value of background model frame at point (𝑥, 𝑦) . 𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦) 

represents  the characteristic value of current frame.  𝐻 is a given threshold. If 

𝐼𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦) = 1 , the point (𝑥, 𝑦)  is adjudged as a moving foreground point, 

conversely, it is a background point.  

Because the background model often changes, the background model needs to be 

updated in real-time for the accuracy of subsequent calculations. Then, the updating 

method of background model is defined as: 

𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝑛 (𝑥, 𝑦) = {

(1 − 𝛼)𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝑛−1 (𝑥, 𝑦) + 𝛼𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦), 𝐼𝑜𝑏𝑗𝑒𝑐𝑡

𝑛 (𝑥, 𝑦) = 1

(1 − 𝛽)𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝑛−1 (𝑥, 𝑦) + 𝛽𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦), 𝐼𝑜𝑏𝑗𝑒𝑐𝑡

𝑛 (𝑥, 𝑦) =  
 

(2.7) 

Assume that the current image is the n th frame, 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝑛−1 (𝑥, 𝑦) denotes the 

before updating background model, 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
𝑛 (𝑥, 𝑦) represents the after updating one. 

We can see that this updating method adapts to the complex conditions, such as 

illumination change, stop-and-go moving foreground objects, and improves the 

classification accuracy of the foreground and background. And, learning rate 𝛼 

controls the fusion of stationary foreground objects, learning rate 𝛽 determines the rate 

of adapting change in illumination conditions, 𝛼 and 𝛽 determine the effective degree 

of the current frame on the background model and updating rate of the background 

frame.  

Even though there exist a lot of background subtraction algorithms in the literature, 

most of them follow a simple flow diagram shown in Figure 2.2. 
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The major steps in a background subtraction algorithm are preprocessing, background 

modeling, foreground detection, data validation and background maintaining (updating). 

Preprocessing consists of a collection of simple image processing tasks that change the 

raw input video into a format that can be processed by subsequence steps. Background 

modeling uses the new video frame to calculate and update a background model. 

Foreground detection then identifies pixels in the video frame that cannot be adequately 

explained by the background model, and outputs them as a binary candidate foreground 

mask. Data validation examines the candidate mask, eliminates those pixels that do not 

correspond to actual moving objects, and outputs the final foreground mask. Finally, 

background maintaining updates the current background model to meet the needs of 

change conditions.  

Background modeling is at the heart of any background subtraction algorithm. Recent 

research has been devoted to developing a background model that is robust against 

environmental changes in the background, but sensitive enough to identify all moving 

objects of interest. Next, we simply introduce the common background modeling 

methods. 

Video frames 

Preprocessing 

Background modeling 

Foreground detection 

Data validation 

Foreground masks 

Background maintaining 

Figure 2.2  Flow diagram of a generic background subtraction algorithm. 
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Time differentiation background modeling 

Time differentiation background modeling[10] takes the difference between the 

current image and the current background giving the difference image for each frame of 

the video sequence, and updates the background by taking a weighted average of the 

current background and the current frame of the video sequence. It classifies the pixels 

as foreground and background and then uses only the background pixels from the 

current image to modify the current background. Through a periodic update intervals, it 

can obtain the background model. This method requires an iteration process for a 

number of image sequences, speeds some time. When the number of training images is 

small, trained background image is affected by the first image seriously. 

Statistical background modeling 

The color value of static background pixel changes very little or almost constant in 

the image sequence. From the statistical point of view, the gray value of background 

pixel can be thought as a statistic result. In other words, we can statistic the occurrence 

frequency of each pixel corresponding to the image sequence. This is known as 

statistical background modeling method [11][25][26]. 

Let 𝐵𝑡(𝑥, 𝑦) denotes the background image at time 𝑡. 

𝐵𝑡(𝑥, 𝑦) = 𝑈(𝐼𝑡(𝑥, 𝑦), 𝐼𝑡−∆𝑡(𝑥, 𝑦),⋯ , 𝐼𝑡−(𝑛−1)∆𝑡(𝑥, 𝑦))        (2.8) 

where 𝑈(∙) denotes the update function, 𝐼𝑡(𝑥, 𝑦) is the image captured at the time 𝑡. 

𝑛 is the number of frame for estimating the background model. ∆𝑡 is a sampling 

interval, then the statistical time is 𝑛 ∙ ∆𝑡. For improving the update effect, the previous 

computed background 𝐵𝑡−1(𝑥, 𝑦) with an adequate weight 𝑤𝑏 will be combined into 

the formula (2.9).  

𝐵𝑡(𝑥, 𝑦) = 𝑈(𝐼𝑡(𝑥, 𝑦), 𝐼𝑡−∆𝑡(𝑥, 𝑦),⋯ , 𝐼𝑡−(𝑛−1)∆𝑡(𝑥, 𝑦), 𝑤𝑏𝐵𝑡−1(𝑥, 𝑦))    (2.9) 

In the statistical method, selecting different update functions, we can obtain different 

background update methods. If the average will be selected, the formula (2.10) should 

be defined as,  

𝐵𝑡(𝑥, 𝑦) =
1

𝑛+1
(𝐼𝑡(𝑥, 𝑦), 𝐼𝑡−∆𝑡(𝑥, 𝑦),⋯ , 𝐼𝑡−(𝑛−1)∆𝑡(𝑥, 𝑦),𝑤𝑏𝐵𝑡−1(𝑥, 𝑦)) (2.10) 
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Within a certain time interval, various colors vehicles run on the road, the vehicle’s 

brightness value is higher of lower than the ones of load surface, or with the road, so 

this method is simple to calculate the background model, but if the high brightness or 

low brightness vehicle run on the road, especially, slow moving case, this method will 

have a great error. In order to be more close to reality background, it should be used 

more than enough frames to make the deviation within the allowable range. 

In practice, when the frame number 𝑛 is limited, the median function is commonly 

adopted as the update function. In the case of vehicle flow smooth, the background 

pixel in the continuous multiple frames accounts for the major part. The median of 

background pixel may be used as the pixel values of the estimated background model 

(see the formula (2.11)). This method counts the gray change of individual pixel in the 

successive video frame, and sorts of the changing gray value, and then selects the 

median as gray value of corresponding pixel in background model.  

𝐵𝑡(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑡(𝑥, 𝑦), 𝐼𝑡−∆𝑡(𝑥, 𝑦),⋯ , 𝐼𝑡−(𝑛−1)∆𝑡(𝑥, 𝑦), 𝑤𝑏𝐵𝑡−1(𝑥, 𝑦))  (2.11) 

Non-parametric model 

Non-parametric model was proposed in literature [27]. It uses the entire history 

𝐼𝑡−𝐿, 𝐼𝑡−𝐿+1, ⋯ , 𝐼𝑡−1 to form a non-parametric estimate of the pixel density function 

𝑓(𝐼𝑡 = 𝑢): 

𝑓(𝐼𝑡 = 𝑢) =
1

𝐿
∑ 𝐾(𝑢 − 𝐼𝑖)
𝑡−1
𝑖=𝑡−𝐿                 (2.12) 

where 𝐾(∙) is the kernel estimator which was chosen to be Gaussian. The current pixel 

𝐼𝑡 is declared as foreground if it is unlikely to come from this distribution, i.e. 𝑓(𝐼𝑡) is 

smaller than some predefined threshold. The advantage of using the full density 

function over a single estimate is the ability to handle multi-modal background 

distribution. Examples of multi-modal background include pixels from a swinging tree 

or near high-contrast edges where they flicker under small camera movement. The 

implementation uses the median of the absolute differences between successive frames 

as the width of the kernel. Thus, the complexity of building the model is the same as 

median filtering. On the other hand, the foreground detection is more complex as it 

needs to compute the formula (2.12) for each pixel. 
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Mixture of Gaussian 

The MoG method tracks multiple Gaussian distributions simultaneously. MoG has 

enjoyed tremendous popularity since it was first proposed for background modeling in 

literature [12]. Similar to the non-parametric model, MoG maintains a density function 

for each pixel. Thus, it is capable of handling multi-modal background distributions. On 

the other hand, since MoG is parametric, the model parameters can be adaptively 

updated without keeping a large buffer of video frames. Our description of MoG is 

based on the scheme described in literature [28]. The pixel distribution 𝑓(𝐼𝑡 = 𝑢) is 

modeled as a mixture of 𝐾 Gaussians: 

𝑓(𝐼𝑡 = 𝑢) = ∑ 𝜔𝑖,𝑡 ∙ 𝜂(𝑢; 𝜇𝑖,𝑡, 𝜎𝑖,𝑡)
𝐾
𝑖=1                  (2.13) 

where 𝜂(𝑢; 𝜇𝑖,𝑡, 𝜎𝑖,𝑡) is the i-th Gaussian component with intensity mean 𝜇𝑖,𝑡  and 

standard deviation 𝜎𝑖,𝑡. 𝜔𝑖,𝑡 denotes the portion of the data accounted for by the i-th 

component. Typically, 𝐾 ranges from three to five, depending on the available storage. 

For each input pixel 𝐼𝑡, the first step is to identify the component  ̂ whose mean is 

closed to 𝐼𝑡. Component  ̂ is declared as the matched component if |𝐼𝑡 − 𝜇 ,̂𝑡−1|  𝐷 ∙

𝜎 ̂,𝑡−1, where 𝐷 defines a small positive deviation threshold. The parameters of the 

matched component are then updated as follows: 

𝜔 ̂,𝑡 = (1 − 𝛼)𝜔 ̂,𝑡−1 + 𝛼                      (2.14) 

𝜇 ̂,𝑡 = (1 − 𝜌)𝜇 ̂,𝑡−1 + 𝜌𝐼𝑡                      (2.15) 

𝜎 ̂,𝑡
2 = (1 − 𝜌)𝜎 ̂,𝑡−1

2 + 𝜌(𝐼𝑡 − 𝜇 ̂,𝑡)
2                  (2.16) 

where 𝛼 is a user-defined learning rate with   𝛼  1. 𝜌 is the learning rate for the 

parameters and can be approximated as follows: 

𝜌 ≈
𝛼

𝜔𝑖̂,𝑡
                              (2.17) 

If no matched component can be found, the component with the least weight is 

replaced by a new component with mean 𝐼𝑡, a large initial variance 𝜎𝑜 and a small 

weight 𝜔𝑜. The rest of the components maintain the same means and variances, but 



Research on Moving Target Detection and Tracking Methods for Intelligent Traffic Surveillance  

17 

lower their weights to achieve exponential decay: 

𝜔𝑖,𝑡 = (1 − 𝛼)𝜔𝑖,𝑡−1                       (2.18) 

Finally, all the weights are renormalized to sum up to one. To determine whether 𝐼𝑡 

is a foreground pixel, we first rank all components by their values of 𝜔𝑖,𝑡 𝜎𝑖,𝑡⁄ . 

Highter-rank components thus have low variances and high probabilities, which are 

typical characteristics of background. If 𝑖1, 𝑖2 , ⋯, 𝑖𝐾  is the component order after 

sorting, the first 𝑀 components that satisfy the following criterion are declared to be 

the background components: 

∑ 𝜔𝑘,𝑡
𝑖 
𝑘=𝑖 

 Γ                          (2.19) 

where 𝛤 is the weight threshold. 𝐼𝑡 is declared as a foreground pixel if 𝐼𝑡 is within 𝐷 

times the standard deviation from the mean of any one of the background components. 

Note that the above formulation can be easily extended to handle color data. The 

computational complexity and storage requirement of MoG is linear in terms of the 

number of components 𝐾.  

The above described algorithms only adopt gray image for moving object detection. 

For the targets of the larger differences in brightness and closer hue, these methods are 

easy to cause failure. Therefore, Kyungnam Kim et al.[29] proposed a new background 

subtraction based on the code book. It can make the more accurate background model 

using color video, but the modeling process is more complex, and the computing speed 

restricts its practical application. 

2.3. Color and texture feature 

2.3.1. Color feature 

RGB color space 
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The RGB color model is an additive color model in which red, green, and blue light 

are added together in various ways to reproduce a broad array of colors. RGB is a 

device-dependent color model: different devices detect or reproduce a given RGB value 

differently, since the color elements and their response to the individual R, G, and B 

levels vary from manufacturer to manufacturer, or even in the same device over time. 

Thus an RGB value does not define the same color across devices without some kind of 

color management. The RGB color model mapped to a cube as shown in Figure 2.3. 

The horizontal x-axis as red values increasing to the left, y-axis as blue increasing to the 

lower right and the vertical z-axis as green increasing towards the top. The origin, black, 

is the vertex hidden from view. In order to encode color, different binary digital 

representations are in use, commonly, 8 bits color depth is used for representing the 

possible values per component from 0 to 8 power of two minus one (2
8
-1). For example, 

within this range, assigning black to the origin at the vertex (0,0,0), and with increasing 

intensity values running along the three axes up to white at the vertex (255,255,255), 

diagonally opposite black.  

  

 

However, the RGB color space has an obvious drawback: These three color 

components are dependent reciprocally which increase its sensitivity to the illumination 

changes. These features will bring great difficulties to shadow suppression. So, the 

significant correlation among three components is not conductive to detect and track the 

moving object. 

Figure 2.3  RGB color space model 



Research on Moving Target Detection and Tracking Methods for Intelligent Traffic Surveillance  

19 

HSV color space 

HSV (hue, saturation, value) is one of several color systems used by people to select 

colors from a color wheel or palette. This color system is considerably closer than the 

RGB system in the way which people experience and describe color sensations. In 

artist’s terminology, hue, saturation, and value refer approximately to tint, shade, and 

tone. The hue parameter has the range [0,360
o
], and the saturation and value parameters 

values have the range [0,1]. The hue of a color refers to which pure color it resembles. 

All tints, tones and shades of red have the same hue. Hues are described by a degree that 

specifies the position of the corresponding pure color on the color wheel, as a degree 

between 0
o
 and 360

o
, 0

o
 refers to red, 60

o
 is yellow, 120

o
 is green, and so forth around 

the color wheel. The saturation of a color describes how white the color is. A pure red is 

fully saturated, with a saturation of 1, tints of red have saturations less than 1, and white 

has a saturation of 0. The value of a color, also called its lightness, describes how dark 

the color is. A value of 0 is black, with increasing lightness moving away from black. 

Figure 2.4 illustrates the HSV color space [103].  

 

 

Given the values of any point is (𝑅, 𝐺, 𝐵) , where (𝑅, 𝐺, 𝐵) ∈ [ ,255] . The 

transformation from RGB to HSV color space (𝐻, 𝑆,  ) is defined as : 

 = 𝑚𝑎𝑥(𝑅, 𝐺, 𝐵)                      (2.20) 

Figure 2.4  HSV color space model 
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𝑆 = {
( − min(𝑅, 𝐺, 𝐵)) ∗ 255  ⁄ ,  ! =  

 ,                                                           𝑒𝑙𝑠𝑒
           (2.21) 

𝐻 = {

(𝐺 − 𝐵) ∗ 6 𝑆⁄             = 𝑅
18 + (𝐵 − 𝑅) ∗ 6 𝑆⁄  = 𝐺

24 + (𝑅 − 𝐺) ∗ 6 𝑆⁄  = 𝐵
}            (2.22) 

YCbCr color space 

The YCbCr color space is used widely in digital video. In this format, luminance 

information is represented by a single component, Y, and color information is stored as 

two color-difference components, Cb and Cr. Component Cb is the difference between 

the blue component and a reference value, while component Cr is the difference 

between the red component and a reference value. The transformation used by Image 

Processing Toolbox to convert from RGB to YCbCr is 

[
𝑌
𝐶𝑏
𝐶𝑟
] = [

16
128
128

] + [
65.481 128.553 24.966
−37.797 −74.2 3 112.   
112.   −93.786 −18.214

] [
𝑅
𝐺
𝐵
]        (2.23) 

 

 

The selection of the color space is one of the key factors for moving vehicle detection. 

In the background reconstruction and foreground detection, the most commonly used 

one is the RGB color space which is directly available from the sensor or the camera. 

But the RGB color space has an obvious drawback: These three color components are 

Figure 2.5  YCbCr color space model 
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dependent reciprocally, which increase its sensitivity to the illumination changes. These 

features will bring great difficulties to shadow suppression. A number of color space 

comparisons are presented in the literature [30][31][32]. After experimental observation 

of the effect of different color spaces on the segmentation result, the YCbCr color space 

was selected as an appropriate color space which reduces the influence of shadows and 

illumination changes.  

2.3.2. Texture feature 

Texture feature is defined by using the gray distribution of the neighborhoods. 

Therefore, it can represent the pixel value and value of surrounding pixels. There are 

many ways to represent the texture characteristic, such as edges, gradient, histogram, 

probability distribution. These ways to define the image texture characteristic, such as 

spatial scale, contrast, roughness, orientation and correlation. The texture feature, unlike 

the color, is based on the block processing, rather than pixel. The part of the texture 

change is detected by the block matching, and considers the effect of other surrounding 

pixels. T. Ojala et al. [33][34][35] present a gray-scale and rotation invariant texture 

operator based on local binary patterns (LBP). Recently, LBP and robustness in terms of 

gray-scale variations and no effect by any monotonic transformation of the gray scale 

have become a research hotspot. In this chapter, we define the uniform rotation invariant 

texture operator ULBP based on LBP to represent texture feature. The ULBP operator 

improves the rotation invariance of LBP code, and quantifies the occurrence statistics of 

individual rotation invariant patterns corresponding to certain micro-features in the 

image. The operators are defined as follows: 

Original LBP operator 

LBP is a gray-scale invariant texture primitive statistic. The operator labels the pixels 

of an image region by thresholding the neighborhood of each pixel with the center value 

and considering the result as a binary pattern [33]. The basic version of the LBP 

operator considers only the eight neighbors of a pixel as showed in Figure 2.6.  

𝐿𝐵𝑃(𝑥𝑐, 𝑦𝑐) = ∑ 𝑠(𝑔𝑖 − 𝑔𝑐)2
𝑖𝑃−1

𝑖=0                  (2.24) 
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𝑠(𝑥) = {
1, 𝑥   
 , 𝑥   

                          (2.25) 

 

 

Extended local binary pattern 

The original LBP operator does not represent the large-scale structure of texture 

feature using the 3 × 3 neighborhood, so it can be easily extended to include all 

circular neighborhoods with any number of pixels. The gray values of the diagonal pixel 

are determined by interpolation. The extended LBP is showed in Figure 2.7. 

 

 

 

𝐿𝐵𝑃𝑃,𝑅(𝑥𝑐, 𝑦𝑐) = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑝𝑃−1

𝑝=0                   (2.26) 

𝑠(𝑥) = {
1, 𝑥  𝑡ℎ
 , 𝑥  𝑡ℎ

                          (2.27) 

where gc  corresponds to the gray value of the center pixel (xc, yc)  of a local 

Figure 2.6  Example for calculating the original LBP code 

Figure 2.7  Calculating the extended binary pattern 
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neighborhood and gp to the gray values of P equally spaced pixels on a circle of 

radius R. In order to make the LBP more robust against these negligible changes in 

pixel values, we adopt the threshold value th to replace the original scheme. Note that 

the bigger the value of th is, the bigger changes in pixel values are allowed without 

affecting the thresholding results. With the modified version, the proposed background 

subtraction method consistently behaves more robustly and thus should be preferred 

over the original one. 

Rotation invariance LBP operator 

The 𝐿𝐵𝑃𝑃,𝑅 operator produces 2𝑝 different output values, corresponding to the 2𝑝 

different binary patterns that can be formed by the 𝑃 pixels in the neighborhood set. 

When the image is rotated, the gray values 𝑔𝑝 will correspondingly move along the 

perimeter of the circle around 𝑔𝑐. Thus, the different 𝐿𝐵𝑃𝑃,𝑅 value will be obtained. 

To address the effect of rotation, the rotation invariant LBP is defined as: 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 = 𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑖)|𝑖 =  ,1,⋯ , 𝑃 − 1}            (2.28) 

where 𝑅𝑂𝑅(𝑥, 𝑖) performs a circular bit-wise right shift on the 𝑃-bit number 𝑥 and 𝑖 

times. So, the eight basic patterns, 00000001, 00000010, 00000100, 00001000, 

00010000, 00100000, 0100000, and 10000000, can be obtained by the rotation of 

uniform pattern 00000001. The 36 unique rotation invariant binary patterns of 𝐿𝐵𝑃8,𝑅
𝑟𝑖  

are showed in Figure 2.8. For example, pattern 0 detects bright spots, pattern 8 dark 

spots and flat areas, and pattern 4 edges.  

Uniform LBP operator 

However, the 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖  operator does not provide very good discrimination according 

to practical experience [34]. The main reason is that the occurrence frequencies of the 

36 individual patterns incorporated in 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖  vary greatly. Thus, it will cause the 

sparse histogram, and easily affected by noise. So, in our experiment, we adopt the 

following uniform rotation invariant operator to represent the texture feature.  

Definition 2.1  If local binary pattern operator 𝐿𝐵𝑃𝑃,𝑅  satisfies the following 

conditions, 

1). 𝐿𝐵𝑃𝑃,𝑅 is the rotation invariance operator 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 ; 



Chapter 2.  Moving target detection with background subtraction 

24 

 

 

2). 𝑈(𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 )  2                                                 (2.29) 

Then 𝐿𝐵𝑃𝑃,𝑅  is known as a uniform pattern 𝑈𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖  (referred as ULBP), 

corresponding to patterns are called as basic texture feature. 

Here, the function 𝑈(x) denotes the number of spatial transitions (bitwise 0/1 

changes) in the binary pattern. For example, pattern x=00000000 have 𝑈 value of 0,  

pattern x=00010000 have 𝑈 value of 2 as there are exactly two 0/1 transitions in the 

pattern. The 9 patterns in the first row of Figure 2.8, (x)  2 , are the ULBP pattern. 

The other 27 patterns have 𝑈 value of at least 4. Thus, the ULBP operator is defined as: 

𝑈𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 = {

∑ 𝑠(𝑔𝑖 − 𝑔𝑐)
𝑃−1
𝑖=0 𝑖𝑓   𝑈(𝐿𝐵𝑃𝑃,𝑅)  2

𝑃 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (2.30) 

where, 

 𝑈(𝐿𝐵𝑃𝑃,𝑅) = |𝑠(𝑔𝑃−1 − 𝑔𝑐) − 𝑠(𝑔0 − 𝑔𝑐)| + ∑ |𝑠(𝑔𝑖 − 𝑔𝑐) −  𝑠(𝑔𝑖−1 − 𝑔𝑐)|
𝑃−1
𝑖=1    

                 (2.31) 

By definition, exactly 𝑃 + 1 uniform binary patterns can occur in a circularly 

symmetric neighbor set of 𝑃 pixels. Corresponding to the number of “1” bits in the 

pattern, each of them will be assigned a unique label from 0 to 𝑃.  

The ULBP operator improves the rotation invariance of Local Binary Pattern (LBP) 

code, and quantifies the occurrence statistics of individual rotation invariant patterns 

Figure 2.8  The 36 unique rotation invariant binary patterns. 
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corresponding to certain micro-features in the image. Furthermore, the ULBP textures 

within the local area is not under the influence of  the monotonous change of 

brightness, between the shaded area and the corresponding location of background in a 

gray-scale image have a similar texture feature. So, when detecting moving target the 

shadow influence is very small, but the ULBP textures can effectively suppress shadows 

interference on motion detection. 

2.4. Background subtraction with Choquet integral  

2.4.1. Background reconstruction 

We propose a probabilistic algorithm to reconstruct the background of a traffic scene 

by eliminating the moving object information. According to it, the background color 

information of crowded scenes is dynamically retrieved by assessing color variation per 

pixel through a series of frames. The overall idea is based on the notion that a specific 

location is occupied by moving objects for a time period shorter than that for which it 

remains unoccupied.  

The implementation of the algorithm has been applied in the YCbCr color system. 

The selection of the color space is one of the key factors for moving vehicle detection. 

In the background reconstruction and foreground detection, the most commonly used 

one is the RGB color space that is directly available from the sensor or the camera. But 

the RGB color space has an obvious drawback: These three color components are 

dependent reciprocally which increase its sensitivity to the illumination changes. These 

features will bring great difficulties to shadow suppression. A number of color space 

comparisons are presented in the literature [30][31][32]. After experimental observation 

of the effect of different color spaces on the segmentation result, the YCbCr color space 

was selected as an appropriate color space which reduces the influence of shadows and 

illumination changes. The overall idea of background reconstruction is based on the 

notion that a specific location is occupied by moving objects for a time period shorter 

than that for which it remains unoccupied [31]. 

Suppose ∅ = {𝑌∗, 𝐶𝑏∗, 𝐶𝑟∗ ∈ 𝑅3} is continuous YCbCr color space, and let ∅̅ refer 

to the discrete color space. Then ∅̅ = {𝑌 = ⌊𝑌∗ ℎ⁄ ⌋, 𝐶𝑏 = ⌊𝐶𝑏∗ ℎ⁄ ⌋, 𝐶𝑟 = ⌊𝐶𝑟∗ ℎ⁄ ⌋} ∈

𝑍3, where ‘⌊ ⌋’ is the floor operator, and ℎ is the chromatic distance defined by the bin 

http://dict.bing.com.cn/#textures
http://dict.bing.com.cn/#within
http://dict.bing.com.cn/#the
http://dict.bing.com.cn/#local
http://dict.bing.com.cn/#area
http://dict.bing.com.cn/#not
http://dict.bing.com.cn/#under
http://dict.bing.com.cn/#the
http://dict.bing.com.cn/#influence
http://dict.bing.com.cn/#the
http://dict.bing.com.cn/#monotonous
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dimensions. Let 𝑏(𝑌,𝐶𝑏,𝐶𝑟){𝑌, 𝐶𝑏, 𝐶𝑟} ∈ 𝑁
3 correspond to cubic bins, whose edges have 

length ℎ, and each discretization element 𝑏(𝑌,𝐶𝑏,𝐶𝑟) denote a continuous chromatic 

range of colors. The discrete color parameters are 𝑌 = ⌊𝑌∗ ℎ⁄ ⌋, 𝐶𝑏 = ⌊𝐶𝑏∗ ℎ⁄ ⌋ and 

𝐶𝑟 = ⌊𝐶𝑟∗ ℎ⁄ ⌋, where 𝑌  𝑌∗ ℎ⁄  𝑌 + 1, 𝐶𝑏  𝐶𝑏∗ ℎ⁄  𝐶𝑏 + 1 and 𝐶𝑟  𝐶𝑟∗ ℎ⁄  

𝐶𝑟 + 1. Without loss of generality, we can assume that a video consists of sequential 

frames of resolution 𝑚 × 𝑛. Let 𝐵 = {𝐵(𝑥,𝑦)}  be a background color map. At time t, 

we will use 𝐼(𝑥,𝑦)(𝑡) = (𝐼(𝑥,𝑦)
𝑌∗ (𝑡), 𝐼(𝑥,𝑦)

𝐶𝑏∗ (𝑡) to denote the color vector at pixel (𝑥, 𝑦) of 

the frame, where 𝐼(𝑥,𝑦)
𝑌∗ (𝑡), 𝐼(𝑥,𝑦)

𝐶𝑏∗ (𝑡),  𝑎𝑛𝑑 𝐼(𝑥,𝑦)
𝐶𝑟∗ (𝑡) refer to 𝑌∗, 𝐶𝑏∗ and 𝐶𝑟∗ elements 

of 𝐼(𝑥,𝑦)(𝑡), respectively.  

The color components of pixel (𝑥, 𝑦) with respect to time t are estimated by a 

sampling procedure. Assume that 𝐼(𝑥,𝑦)(𝑡) is calculated for T consecutive frames, 

where the sample size T is based on the density of vehicles on the road; if the density is 

greater, the sample size is greater, and vice versa. Assume that sampling begins at time 

𝑡0. Thus, the temporal sample 𝑆(𝑥,𝑦)(𝑡0) = (𝐼(𝑥,𝑦)(𝑡0), 𝐼(𝑥,𝑦)(𝑡0 + 1),⋯ , 𝐼(𝑥,𝑦)(𝑡0 +  −

1)) of pixel (𝑥, 𝑦)  defines the frequency 𝑓(𝑥,𝑦)(𝑌, 𝐶𝑏, 𝐶𝑟) of the examined pixel 

having a color component belonging to the bin 𝑏(𝑌,𝐶𝑏,𝐶𝑟): 

 𝑓(𝑥,𝑦)(𝑌, 𝐶𝑏, 𝐶𝑟) = ∑ 𝛿(𝑌 − ⌊
𝐼(𝑥,𝑦)
𝑌∗ (𝑡)

ℎ
⌋)𝛿(𝐶𝑏 − ⌊

𝐼(𝑥,𝑦)
𝐶𝑏∗ (𝑡)

ℎ
⌋)𝛿(𝐶𝑟 − ⌊

𝐼(𝑥,𝑦)
𝐶𝑟∗ (𝑡)

ℎ
⌋)

𝑡0+𝑇−1
𝑡=𝑡0

  (2.32) 

where 𝑌, 𝐶𝑏, 𝐶𝑟 ∈ 𝑁, and 𝛿() is the Kronecker delta function. 

Because the frequency 𝑓(𝑥,𝑦)(𝑌, 𝐶𝑏, 𝐶𝑟) corresponds to the most persistent color 

value of pixel (𝑥, 𝑦) in the T consecutive frames, the most persistent color value is the 

one that is most likely to represent the actual background frame. Then, when the 

maximum frequency 𝑓(𝑥,𝑦)(𝑌, 𝐶𝑏, 𝐶𝑟)  is obtained, its three color components 

𝑌, 𝐶𝑏, and 𝐶𝑟  will compose a pixel 𝐵(𝑥,𝑦)  of the background model. Thus, the 

background model will be reconstructed simply: 

 𝐵(x,y) = 𝑎𝑟𝑔𝑚𝑎𝑥⌊𝑓(𝑥,𝑦)(𝑌, 𝐶𝑏, 𝐶𝑟)⌋  =  (𝑌𝑚𝑜𝑑𝑒𝑙, 𝐶𝑏𝑚𝑜𝑑𝑒𝑙, 𝐶𝑟𝑚𝑜𝑑𝑒𝑙)       (2.33) 

which represents the anticipated color values of the background model. 

In order to reduce the memory requirements and computational complexity, we 

calculate the three color-component values in Equation (2.32). Thus, Equation (2.33) 

will be simplified as follows: 
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𝐵(𝑥,𝑦) = (𝑎𝑟𝑔𝑚𝑎𝑥⌊𝑓(𝑥,𝑦)
(𝑌) (𝑌)⌋, 𝑎𝑟𝑔𝑚𝑎𝑥⌊𝑓(𝑥,𝑦)

(𝐶𝑏)(𝐶𝑏)⌋, 𝑎𝑟𝑔𝑚𝑎𝑥⌊𝑓(𝑥,𝑦)
(𝐶𝑟)(𝐶𝑟)⌋)  (2.34) 

From the histograms 𝐻(𝑥,𝑦)
𝑌∗ , 𝐻(𝑥,𝑦)

𝐶𝑏∗  and 𝐻(𝑥,𝑦)
𝐶𝑟∗  of pixel (x,y) in T consecutive frames, 

we obtain the maximum frequencies 𝑓(𝑥,𝑦)
(𝑌) (𝑌) , 𝑓(𝑥,𝑦)

(𝐶𝑏)(𝐶𝑏)  and 𝑓(𝑥,𝑦)
(𝐶𝑟)(𝐶𝑟)  and 

reconstruct the virtual background model. 

Background reconstruction is a statistical method, therefore, the identification of the 

sample size is important. In general, the sample size should be large enough to contain 

enough information for extracting the background color in each image pixel. To achieve 

this goal, the sample size, in terms of time, should exceed the average time that a 

passing vehicle occupies any pixel in the image. In our experiment, we chose a 600 

frames sample, translated in terms of time to a 20s exposure correspondingly. 

2.4.2. Color and texture similarity measures 

In this chapter, we define color and texture similar measures between pixels in 

current and background images. In this case, pixels corresponding to background should 

be similar in the two images while pixels corresponding to foreground should not be 

similar. And then we use the Choquet integral to fuse the color and texture similar 

measures to segment the foreground region by the predetermined threshold. The color 

and texture similar measures are defined in detail next section. 

Color feature similar measure 

About color space choices, as described above. The color similar measure 𝑆𝑘(𝑥, 𝑦) 

at the pixel (𝑥, 𝑦) is computed as in literature [36]. 

𝑆𝑘(𝑥, 𝑦) =

{
 
 

 
 

  

𝐶𝑘
𝐼(𝑥,𝑦)

𝐶𝑘
𝐵(𝑥,𝑦)

𝑖𝑓    𝐶𝑘
𝐼(𝑥, 𝑦)  𝐶𝑘

𝐵(𝑥, 𝑦)

1 𝑖𝑓    𝐶𝑘
𝐼(𝑥, 𝑦) = 𝐶𝑘

𝐵(𝑥, 𝑦)
𝐶𝑘
𝐵(𝑥,𝑦)

𝐶𝑘
𝐼(𝑥,𝑦)

𝑖𝑓   𝐶𝑘
𝐼(𝑥, 𝑦) > 𝐶𝑘

𝐵(𝑥, 𝑦)

                (2.35) 

where 𝑘 ∈ {1,2,3}  is one of the color components Y, Cb and Cr, 𝐶𝑘
𝐼(𝑥, 𝑦) 

and 𝐶𝑘
𝐵(𝑥, 𝑦) represent the color value of current frame and background frame at time t, 

respectively. Note that 𝑆𝑘(𝑥, 𝑦) between 0 and 1. Furthermore, 𝑆𝑘(𝑥, 𝑦) is close to 

one if 𝐶𝑘
𝐼(𝑥, 𝑦) and 𝐶𝑘

𝐵(𝑥, 𝑦) are very similar. 
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Texture feature similar measure 

The 𝑈𝐿𝐵𝑃𝐾,𝑅
𝑟𝑖  operator is an excellent measure of the spatial structure of local image 

texture. For each pixel texture in the current image and the background image, the 

𝑈𝐿𝐵𝑃𝐾,𝑅
𝑟𝑖  operator is less sensitive to illumination changes and can be used to derive an 

accurate local texture difference measure. To reduce the influence of illumination 

changes, the texture similarity measure 𝑆𝑇(𝑥, 𝑦) at the pixel (𝑥, 𝑦) is defined as 

follows:  

𝑆𝑇(𝑥, 𝑦) =

{
 
 

 
 
𝐼𝑇(𝑥,𝑦)

𝐵𝑇(𝑥,𝑦)
𝑖𝑓    𝐼𝑇(𝑥, 𝑦)   𝐵𝑇(𝑥, 𝑦)

1 𝑖𝑓    𝐼𝑇(𝑥, 𝑦) = 𝐵𝑇(𝑥, 𝑦)
𝐵𝑇(𝑥,𝑦)

𝐼𝑇(𝑥,𝑦)
𝑖𝑓    𝐼𝑇(𝑥, 𝑦) > 𝐵𝑇(𝑥, 𝑦)

                (2.36) 

where 𝐼𝑇(𝑥, 𝑦) and 𝐵𝑇(𝑥, 𝑦) denote the texture 𝑈𝐿𝐵𝑃 code of pixel (𝑥, 𝑦) in the 

current and background frames, respectively. Note that 𝑆𝑇(𝑥, 𝑦)  is close to 1 if 

𝐼𝑇(𝑥, 𝑦) and 𝐵𝑇(𝑥, 𝑦) are very similar.  

2.4.3. Fusion of feature similarity measures using Choquet Integral 

The Choquet integral[104] is adopted to fuse the similarity measure for foreground 

detection. 

Let ℎ be a fuzzy measure on a finite set X of criteria, and a non-additive measure 

on a subset of X is any function 𝜇:  X→ [0, 1]. 

Definition 1: The Choquet integral of 𝜇 with respect to h is defined by: 

𝐶ℎ = ∑ (𝜇(𝑥𝜎(𝑖)) − 𝜇(𝑥𝜎(𝑖−1)))ℎ
𝑛
𝑖=1 (𝐴𝜎(𝑖))           (2.37) 

where 𝜎 is a permutation of the indices such that   𝜇(𝑥𝜎(1))  𝜇(𝑥𝜎(2))  ⋯  

𝜇(𝑥𝜎(𝑛))  1, X = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} and  𝐴𝜎(𝑖) =  {𝜎(1), 𝜎(2),⋯ , 𝜎(𝑛)}. 

For each pixel, a similarity measure is computed in different dimensions from the 

background and current frame, as explained in Section 4. We define the set of criteria 

X = {𝑥1, 𝑥2, 𝑥3, 𝑥4} with {𝑥1, 𝑥2, 𝑥3} being the three color-component features of the 

chosen color space, and 𝑥4 being texture features obtained from the ULBP code. For 

every 𝑥𝑖, let ℎ(𝑥𝑖) be the importance that the feature 𝑥𝑖 takes in the decision of the 

foreground detection process. The fuzzy functions 𝜇(𝑥𝑖) are defined in [0,1], so 
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that  𝜇(𝑥𝑘)  = 𝑆𝑘(𝑥, 𝑦) (where 𝑘 ∈ {1,2,3} ) and   𝜇(𝑥4)  = 𝑆𝑇(𝑥, 𝑦) . To compute the 

value of the Choquet integral for each pixel, we first use permutation function σ to 

rearrange the features xi in the finite set X with respect to the order: 𝜇(𝑥1)  𝜇(𝑥2)  

𝜇(𝑥3)  𝜇(𝑥4). 

The pixel (𝑥, 𝑦) is considered as the foreground if its Choquet integral value is less 

than a predetermined threshold  𝐻, as follows: 

If 𝐶ℎ(𝑥, 𝑦)   𝐻 then (x, y) is foreground  

2.4.4. Background maintenance 

The movement and stopping of a vehicle can lead to changes in the foreground and 

background. For example, a moving vehicle stops at a certain time t, and then the next 

moment, the vehicle will change from the foreground to the background frame. 

Furthermore, the illumination of the entire video may change over time. Therefore, the 

background maintenance process is a critical step in moving target detection. 

Background maintenance determines how the background adapts itself to take into 

account the critical situations that can occur. 

In a traditional blind background maintenance method, a learning rate 𝛼 is defined. 

In the selective background maintenance method, based on a pixel that belongs to the 

foreground or background, two learning rates are defined: 𝛼 and  𝛽. In this chapter, we 

propose an adaptive background maintenance algorithm based on literature [10][37]. 

Our adaptive algorithm can solve the traditional problems in the blind and selective 

background maintenance, such as ghosts, etc. More specifically, the values of pixels 

classified as the foreground are taken into account in the computation of the new 

background and therefore pollute the background image [30]. 

The adaptive background maintenance algorithm is defined as follows: 

𝐶𝐵𝑛+1 = 𝑎𝑛 × 𝐼𝐵𝑛 + (1 − 𝑎𝑛) × 𝐶𝐵𝑛               (2.38) 

where 𝐶𝐵𝑛 is the current background, and  𝐼𝐵𝑛 is an instantaneous background that is 

computed as follows: 

𝐼𝐵𝑛(𝑥, 𝑦) = {
𝐹𝑛(𝑥, 𝑦)       𝑖𝑓 𝑀𝑃(𝑥, 𝑦) =  

CB𝑛(x, y)     𝑖𝑓 𝑀𝑃(𝑥, 𝑦) = 1
             (2.39) 
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where 𝑎𝑛 is a variable learning rate in the interval [0,1]. The value of 𝑎𝑛 is based on 

changes in the frame structure and illumination between the current frame and the 

background frame, and can be computed as follows: 

 𝑎𝑛 =  .9 × 𝑎𝑛−1 +  .1 × 𝑎_𝑖𝑛𝑠𝑡𝑛                (2.40) 

In theory, when there are rapid changes in illumination, the weight 𝑎𝑛 should be set 

to a higher value, and when the changes are slow, it should be set to a lower value, 

because a high weight allows adaptation to rapid changes in illumination, and a low 

weight reduces the effect of moving targets on background estimation.  

Here, 𝑎_𝑖𝑛𝑠𝑡𝑛 is defined as an adaptive weight on illumination normalization 

between frame 𝐹𝑛 and frame 𝐹𝑛−1, as follows: 

𝑎_𝑖𝑛𝑠𝑡𝑛 =
𝑠𝑢𝑚_𝑢𝑛𝑚𝑜𝑣𝑛,𝑛− 

𝑎𝑟𝑒𝑎_𝑢𝑛𝑚𝑜𝑣𝑛,𝑛− 
                     (2.41) 

Because the moving objects' coverage areas in this scene do not reflect illumination 

changes, the weight on illumination normalization is only calculated in non-moving 

target areas:   

𝑎𝑟𝑒𝑎_𝑢𝑛𝑚𝑜𝑣𝑛,𝑛−1 = ∑ (1 −(𝑥,𝑦) 𝑀𝑃(𝑥, 𝑦))            (2.42) 

where 𝑀𝑃(𝑥, 𝑦) ∈ 𝑀𝑃𝑛 ∪𝑀𝑃𝑛−1. 

Here, 𝑎𝑟𝑒𝑎_𝑢𝑛𝑚𝑜𝑣𝑛,𝑛−1 represents the number of pixels of the non-moving area in 

the current frame. In other words, it is the area defined by the current frame minus the 

union of 𝑀𝑃𝑛 and 𝑀𝑃𝑛−1, and 𝑀𝑃𝑛 and 𝑀𝑃𝑛−1 are the moving pixels in the frame 

𝐹𝑛 and the frame 𝐹𝑛−1, respectively. They are binary map, where a target pixel value is 

1, and a non-target pixel value is 0.  

Here, 𝑠𝑢𝑚_𝑢𝑛𝑚𝑜𝑣𝑛,𝑛−1  corresponds to a change in color or gray-scale between 

two consecutive frames 𝐹𝑛 and 𝐹𝑛−1: 

𝑠𝑢𝑚_𝑢𝑛𝑚𝑜𝑣𝑛,𝑛−1 = ∑
|𝐹𝑛(𝑥,𝑦)−𝐹𝑛− (𝑥,𝑦)|

256(𝑥,𝑦)              (2.43) 

http://dict.bing.com.cn/#represents
http://dict.bing.com.cn/#the
http://dict.bing.com.cn/#pixels
http://dict.bing.com.cn/#the
http://dict.bing.com.cn/#frame
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2.5. Experimental results 

In order to verify the effectiveness of the proposed algorithms, we analyzed the 

experimental results obtained from the three phases, namely, background initialization, 

foreground detection, and background maintenance.  

In the background initialization phase, we created a test process involving in 

capturing videos of four scenes, as shown in Figure.2.9, to validate whether a color that 

is more frequent at a specific pixel in a series of frames is more likely to belong to the 

background rather than the foreground. Scene I and Scene II are actual traffic scenes 

from a static camera. Scene III is from the PETS2001 dataset [38] widely used in video 

surveillance evaluation, and Scene IV is from test data in the ATON project [39]. 

In each scene, with different illumination and traffic conditions, two pixel positions 

(point A and point B) were selected. In 200 consecutive frames, we calculated the mean 

and standard deviation of the selected pixels, and we compare our experimental results 

to verify the process. The results are shown in Table 2.1. From a comparison of the 

results for the mean and standard deviation of actual consecutive frames and a virtual 

background model created with our proposed method, we found that the background 

model results were more stable. 

In the foreground detection phase, we conducted an experiment to compare three 

different methods for the same video. Experimental results are showed in Figure 2.10.  

Quantitative evaluation was based on the similarity measure derived in literature [40]. 

Let A be a detected region and B be the corresponding ground truth. The similarity 

between A and B can be defined as: 

𝑆(𝐴, 𝐵) =
𝐴⋂𝐵

𝐴⋃𝐵
                        (2.44) 

This quantity approaches 1 when A and B are similar, and 0 otherwise. The results are 

showed in Table 2.2.  

In the background maintenance phase, because different background maintenance 

methods will produce different background model frames which are segmented by the 

same segmentation methods, the moving object is not the same. Therefore, we take the 

average ratio of the moving object image and the ground truth, with the aim of 

reflecting the effect of different background maintenance methods. Experimental results 
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(a1) current frame (a2) background model (a3) moving object 

Scene I 

   

(b1) current frame (b2) background model (b3) moving object 

Scene II 

 

 

 

 

 

 
 

 

 

 

 

 

(c1) current frame (c2) background model (c3) moving object 

Scene III [20] 

 

 

 

 

 

  

(d1) current frame (d2) background model (d3) moving object 

Scene IV [21] 

Figure 2.9  Snapshots taken from the four captured scenes, and experimental results. 

In each scene, two pixels, point A and point B, were selected. Evaluation results are 

presented in Table 2.1. 
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Table 2.1  Results for background model, showing comparison of other experiment 

[26] in which mean and standard deviation were obtained from 200 frames and by 

employing our proposed method. 

 
Y Cb Cr 

Experimental Our method Experimental Our method Experimental Our method 

Scene 

I 

Point A 

Mean 129.50 132.60 128.70 128.70 127.99 127.99 

SD 4.46 0.90 0.49 0.49 0.26 0.26 

Point B 
Mean 117.02 111.78 129.78 129.66 127.88 128.12 

SD 31.07 0.75 1.04 0.69 1.38 0.39 

Scene 

II 

Point A 
Mean 104.50 106.58 128.89 128.92 129.14 129.77 

SD 31.63 0.83 3.65 0.57 3.54 0.91 

Point B 

Mean 128.75 122.84 128.83 128.91 129.78 130.09 

SD 27.79 1.13 1.16 0.48 1.10 0.51 

Scene 

III 

Point A 
Mean 145.20 145.00 131.82 131.72 127.25 127.26 

SD 1.62 1.12 0.87 0.72 0.37 0.31 

Point B 
Mean 132.17 132.04 133.92 133.92 127.41 127.41 

SD 1.31 0.99 0.22 0.22 0.09 0.09 

Scene 

IV 

Point A 

Mean 127.52 126.89 131.19 131.66 128.50 128.50 

SD 1.86 1.14 1.18 0.90 0.54 0.54 

Point B 
Mean 116.70 116.20 131.05 130.81 128.77 128.80 

SD 1.47 1.00 1.31 1.10 0.57 0.50 

 

for different background maintenance methods are showed in Figure 2.11. The 

quantitative evaluation is showed in Table 2.3. 

Note that the effects of different background updating methods on the experimental 

results are significant. 

Table 2.2  Quantitative evaluation of object detection. 

Method S(A,B) % 

Conventional background 

subtraction 

66.00 

MoG[12] 50.72 

Proposed method 81.20 
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(a) (b) 

 

 

 

 

 

 

 

 

 

(c) (d) 

 

 

 

 

 

(e) 

Figure 2.10  Results of vehicle detection, showing (a) the current frame, (b) the 

ground truth, and the results obtained with (c) conventional background subtraction, (d) 

MoG[12], and (e) the proposed method. 

 

Table 2.3  Evaluation of background maintenance methods. 

Maintenance method S(A,B) % 

Blind Maintenance 76.65 

Selective Maintenance 77.74 

Adaptive Maintenance 81.20 

 

2.6. Summary 

In this chapter, a novel background subtraction approach for detecting moving 
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vehicles from video frames is proposed. For background initialization, an algorithm 

based on statistical color sampling per pixel over time was presented. The algorithm 

 

  

(a) (b) 

 

 

 

 

 

 

 

 

 

(c) (d) 

 

 

 

 

 

(e) 

Figure 2.11  Comparison of maintenance methods, showing (a) the current frame, (b) 

the ground truth, and results obtained with (c) blind maintenance, (d) selective 

maintenance, and (e) adaptive maintenance. 

 

was robust in reconstructing the actual background. For foreground detection, we 

presented a novel fuzzy background model. This method uses the Choquet integral for 

fusing color features and texture features in YCbCr color space. This color space was 

chosen instead of RGB, which removes most of the shadows, and aggregates ULBP 

texture features, which have better descriptive abilities than LBP textures, allowing 

more effective distinction of textures and adapting to illumination changes. For 

background maintenance, we proposed a novel adaptive background maintenance 
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method that is more adaptive to scene and illumination changes. The proposed 

algorithm was tested against multiple media and several standard video surveillance 

datasets containing different illuminations and moving object scenes. The experimental 

results showed that the proposed method was more robust and efficient in a quantitative 

evaluation. 
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Chapter 3. Single target tracking with PF and multiple 

feature fusion 

In this chapter, firstly, we introduce the overview of target tracking techniques, and 

survey the particle filter techniques. Secondly, multiple feature fusion algorithm for 

single target tracking based on particle filter is proposed, especially multiple feature 

fusion mechanism which improves the represent-ability of tracking target and 

dynamically balances the effect of feature similarity and feature discriminability among 

target object, candidate and adjacent background. Lastly, we compare the state-and-art 

methods to demonstrate the effectiveness of this proposed method. 

3.1. Introduction 

Visual target tracking is an important step in many applications such as intelligent 

transport, human-computer interaction, guidance, obstacle avoidance and gesture 

recognition. Target tracking problems can be formulated as a hidden state estimation 

problem given available measurements. The measurements are taken at regular intervals 

and the task is to estimate the state of a target at each point in time, such as its position, 

velocity or other attribute. 

Many different techniques have been proposed for tracking object in literatures. For 

example, in which Mean shift algorithm was proposed [15][41], the feature histograms 

based on target representations are regularized by spatial masking with an isotropic 

kernel. The template of target is achieved via detection and a cost function is established 

to describe the similarity between target candidate and template. According to the 

maximum of the cost function, target location is determined. Mean shift is quick and 

effective in some scenes. However, it cannot be adopted in targets with large scale 

variation. 

A number of Bayesian stochastic filters have been used with success in object tracking 

applications. The most commonly used are Linear Kalman Filter (LKF)[13][42][43], 

Extended Kalman Filter (EKF)[24][44], and Unscented Kalman Filter (UKF)[14][ 45]. 
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These filters have been utilized to relax the linearity assumption of the system model 

and thus to improve the tracking capabilities. However, these methods are limited to 

linear or Gaussian systems, and single modal probability distribution. In more complex 

scenes, the detectability of moving object will significantly reduce or track failure. 

The particle filter methods [16] have been introduced for object tracking in nonlinear, 

non-Gaussian, multi-modal situations. These algorithms are based on sequential Monte 

Carlo sampling methods and represent the required posterior density function by a set of 

random samples with associated weights and to compute an estimation based on these 

samples and weights [46]. 

To represent target objects, a common solution is to use various features, such as color, 

edges, texture and motion etc. Color histograms have been widely used in the particle 

filter for likelihood estimation [47][48][49]. Color histograms are robust to partial 

occlusions, unrestrictive about the type of objects being tracked and can be computed 

efficiently. However, the main problem in tracking objects with a single color feature is 

ambiguous in scene with objects or regions with similar color properties to those of target 

objects. To improve the target model representation, a combination of features is 

commonly used. For instance, spatial information based on multiple color histograms 

computed on semi-overlapping image areas can be introduced [50]. The combination of 

shape and color is used [51]. The likelihood of each feature is calculated and weighted 

before Bayes’ rule is applied to obtain the resultant posterior. Multiple multimodal 

features such as color, motion and sound can be fused non-adaptively assuming 

conditional independence of the features given the state [52]. A consistent histogram for 

the analysis of color, edges, and texture features was proposed [53]. The features’ noise 

parameters are changed adaptively and the features are adaptively weighted. Combining 

color and the local scale invariant feature transform (SIFT), Harris and SIFT methods 

were proposed in recent year [54][55]. In the literature [54], the particle weight is 

calculated firstly by color similarity measurement and then is updated according to the 

distribution of SIFT matches. However, only use the average values of the matches points 

of SIFT features to approximate the object center. In the literature [55], Harris and SIFT 

feature are adopted to establish the object model, and Harris corner is applied to generate 

the SIFT feature vector which has significantly reduced the time complexity, and 

effectively tracked the object under the simple scene. 
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3.2. Particle filter techniques 

Bayesian theory was originally discovered by the British researcher Thomas Bayes in 

a posthumous publication in 1763 [56]. However, Bayes theory has not gained a lot of 

attention in the early days until Bayesian inference was developed by the French 

mathematician Laplace [57]. Bayesian inference, which applies Bayesian statistics to 

statistical inference, has become one of the most important branches in statistics and has 

been successfully applied in statistical decision, detection and estimation, pattern 

recognition, and machine learning. The early idea of Monte Carlo was designed to 

estimate the number π, but the modern formulation of Monte Carlo methods started 

from physics in the 1940s and came to statistics later in the 1950s. Roughly speaking, 

Monte Carlo technique is a kind of stochastic sampling approach aiming to tackle the 

complex systems which are analytically intractable. In recent years, sequential Monte 

Carlo (SMC) approaches have attracted more and more attention to the researchers from 

different areas with many successful applications in signal processing, machine learning, 

tracking and many others.  

It is a technique for implementing a recursive Bayesian filter by MC simulations. The 

key idea is to represent the required posterior density function by a set of random 

samples with associated weights and to compute estimates based on these samples and 

weights. As the number of samples becomes very large, this MC characterization 

becomes an equivalent representation to the usual functional description of the posterior 

probability density function (pdf), and the sequential importance sampling (SIS) filter 

approaches the optimal Bayesian estimate. 

A number of techniques for this type of filtering have been proposed and successfully 

applied, but our main focus is the SMC estimation, collectively referred to as particle 

filter (PF). 

The following sections present a general review of particle filter theory from a 

Bayesian perspective. To our interest, we present the Bayesian estimation. After the 

Bayesian estimation, we show the mathematical formulations of a recursive Bayesian 

filter using the Monte Carlo method. 
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3.2.1. Bayesian estimation  

To define the problem of tracking, the state space equations of targets are defined by: 

𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1, 𝑤𝑘−1)                       (3.1) 

𝑦𝑘 = ℎ𝑘(𝑥𝑘 , 𝑣𝑘)                          (3.2) 

where  𝑓𝑘: ℜ
𝑛𝑥 × ℜ𝑛𝑤 → ℜ𝑛𝑥  and ℎ𝑘: ℜ

𝑛𝑥 × ℜ𝑛𝑣 → ℜ𝑛𝑦 are two possibly nonlinear 

function. {𝑤𝑘−1, 𝑘 ∈ ℕ} is an independent and identically distributed (iid) process 

noise sequence. {𝑣𝑘 , 𝑘 ∈ ℕ}  is an iid measurement noise sequence. 𝑛𝑥 ,  𝑛𝑤  are 

dimensions of the state and process noise vectors, respectively; 𝑛𝑦,𝑛𝑣 are dimensions 

of the measurement and measurement noise vectors, respectively. In particular, we seek 

filtered estimates of 𝑥𝑘  based on the set of all available measurements 𝑦1:𝑘 =

{𝑦𝑖, 𝑖 = 1,⋯ , 𝑘} up to time 𝑘. 

From a Bayesian perspective, the tracking problem is to recursively calculate some 

degree of belief in the state 𝑥𝑘 at time 𝑘, taking different values, given the data 𝑦1:𝑘 

up to time 𝑘. Thus, it is required to construct the pdf 𝑝(𝑥𝑘|𝑦1:𝑘). It is assumed that the 

initial pdf 𝑝(𝑥0|𝑦0) ≡ 𝑝(𝑥0) of the state vector, which is also known as the prior. Then, 

the pdf 𝑝(𝑥𝑘|𝑦1:𝑘) may be recursively obtained in following two stages: prediction and 

update. 

𝑝(𝑥𝑘|𝑦1:𝑘−1) = ∫𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑦1:𝑘−1)𝑑𝑥𝑘−1         (3.3) 

𝑝(𝑥𝑘|𝑦1:𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦 :𝑘− )

𝑝(𝑦𝑘|𝑦 :𝑘− )
                  (3.4) 

where 𝑝(𝑥𝑘|𝑥𝑘−1) is defined by the system equation of target (3.1), 𝑝(𝑦𝑘|𝑥𝑘) is 

defined by the measurement equation of target (3.2). The normalizing constant 

𝑝(𝑦𝑘|𝑦1:𝑘−1) = ∫𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)𝑑𝑥𝑘            (3.5) 

depends on the likelihood function 𝑝(𝑦𝑘|𝑥𝑘). Thus, starting from the initial density 

𝑝(𝑥0) one can, at least in principle, recursively arrive at the desired density 𝑝(𝑥𝑘|𝑦1:𝑘). 

After getting 𝑝(𝑋𝑘|𝑍1:𝑘), we can calculate the optimal estimation of a minimum mean 

square error sense 
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𝑥̂𝑘 = ∫𝑥𝑘𝑝( 𝑥𝑘|𝑦1:𝑘)𝑑𝑥𝑘                     (3.6) 

3.2.2.   Monte Carlo simulation 

From the previous section, in solving prediction equation (3.3) and update equation 

(3.4), the integral operation is required, generally very difficult to solve for 

high-dimensional variable integral operation. In addition to linear, Gaussian 

assumptions, an analytical solution can be obtained, namely the Kalman filter algorithm, 

the other must be solved by the numerical approximation method. Monte Carlo method 

for solving the problem of high dimensional variable integral provides a simple and 

effective method. 

The recursive estimation given above, leads to expressions that are impossible to 

evaluate analytically unless strong assumptions are made. In a more general framework, 

we use the Monte Carlo methods to overcome this problem. 

Suppose we are able to sample 𝑁  iid random variables, 𝑥0:𝑘
(𝑖)
~𝑝(𝑥0:𝑘|𝑦1:𝑘) for 

𝑖 = 1,⋯ ,𝑁.  Then the Monte Carlo method approximates 𝑝(𝑥0:𝑘|𝑦1:𝑘)  by the 

empirical measure [46]. 

𝑃𝑁(𝑑𝑥0:𝑘|𝑦1:𝑘) =
1

𝑁
∑ 𝛿

𝑥0:𝑘
(𝑖) (𝑑𝑥0:𝑘)

𝑁
𝑖=1                (3.7) 

where 𝛿
𝑥0:𝑘
(𝑖) (𝑑𝑥0:𝑘) denotes the Dirac-delta mass located in 𝑥0:𝑘

(𝑖)
. Subsequently one can 

approximate the marginal 𝑝(𝑥𝑘|𝑦1:𝑘) as 

𝑃𝑁(𝑑𝑥𝑘|𝑦1:𝑘) =
1

𝑁
∑ 𝛿

𝑥𝑘
(𝑖)(𝑑𝑥𝑘)

𝑁
𝑖=1                 (3.8) 

And expectations of the form 

𝐼(𝑔𝑘) = ∫𝑔𝑘(𝑥0:𝑘)𝑝(𝑥0:𝑘|𝑦1:𝑘)𝑑𝑥0:𝑘               (3.9) 

𝐼𝑁(𝑔𝑘) = ∫𝑔𝑘(𝑥0:𝑘)𝑃𝑁(𝑑𝑥0:𝑘|𝑦1:𝑘) =
1

𝑁
∑ 𝑔𝑘(𝑥0:𝑘

(𝑖)
)𝑁

𝑖=1        (3.10) 

This estimate is unbiased and according to the law of large numbers, 𝐼𝑁 will almost 

surely converge to 𝐼 [58]. Moreover, if the variance of 𝑔𝑘(𝑥0:𝑘), 
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𝜎2 = ∫(𝑔𝑘(𝑥0:𝑘) − 𝐼)
2𝑝(𝑥0:𝑘|𝑦1:𝑘)𝑑𝑥0:𝑘            (3.11) 

is finite, the central limit theorem will hold and the estimation error will converge in 

distribution as 

lim
𝑁→∞

√𝑁(𝐼𝑁 − 𝐼)~𝒩( , 𝜎
2)                  (3.12) 

The error of the estimate of the stochastic integration, 𝑒 = (𝐼𝑁 − 𝐼), is of the order 

𝑂(𝑁−
 

2), thus the rate of convergence of this estimate is independent of the dimension 

of the integrand. In contrast, any deterministic integration method has a rate of 

convergence that decreases as the dimension of the integrand increase. This is one of the 

mina advantages of Monte Carlo integration methods, although the rate of convergence 

is very slow. 

Unfortunately, it is usually impossible to sample effectively from the posterior pdf 

𝑝(𝑥0:𝑘|𝑦1:𝑘), which is typically multivariate, nonstandard, and only known up to a 

proportionality constant. An effective solution is to introduce a known probability 

density distribution 𝑞(𝑥0:𝑘|𝑦1:𝑘), usually referred as importance density or proposal 

density.  

3.2.3. Bayesian importance sampling 

Suppose we cannot generate samples directly from 𝑝(𝑥0:𝑘|𝑦1:𝑘) to estimate 𝐼𝑁 

using equation (3.10). One can introduce an arbitrary distribution 𝑞(𝑥0:𝑘|𝑦1:𝑘) of 

importance probability density, from which it is easy to sample and whose support 

covers the support of 𝑝(𝑥0:𝑘|𝑦1:𝑘) . This distribution is known as importance 

distribution (also often referred to as proposal distribution) and the integration in 

equation (3.9) can be rewritten as 

𝐼(𝑔𝑘) = ∫𝑔𝑘(𝑥0:𝑘)
𝑝(𝑥0:𝑘|𝑦 :𝑘)

𝑞(𝑥0:𝑘|𝑦 :𝑘)
𝑞(𝑥0:𝑘|𝑦1:𝑘)𝑑𝑥0:𝑘                    

= ∫𝑔𝑘(𝑥0:𝑘)
𝑝(𝑦 :𝑘|𝑥0:𝑘)𝑝(𝑥0:𝑘)

𝑝(𝑦 :𝑘)𝑞(𝑥0:𝑘|𝑦 :𝑘)
𝑞(𝑥0:𝑘|𝑦1:𝑘)𝑑𝑥0:𝑘               

= ∫𝑔𝑘(𝑥0:𝑘)
𝑤𝑘
∗(𝑥0:𝑘)

𝑝(𝑦 :𝑘)
𝑞(𝑥0:𝑘|𝑦1:𝑘)𝑑𝑥0:𝑘                (3.13) 
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where 𝑤𝑘
∗(𝑥0:𝑘) is known as the importance weight, which is given by 

𝑤𝑘
∗(𝑥0:𝑘) =

𝑝(𝑦 :𝑘|𝑥0:𝑘)𝑝(𝑥0:𝑘)

𝑞(𝑥0:𝑘|𝑦 :𝑘)
                    (3.14) 

The equation (3.13) is the integral of 𝑥0:𝑘, so 𝑦1:𝑘 can be treated as a constant. Thus, 

𝐼(𝑔𝑘) can now be written as 

𝐼(𝑔𝑘) =
∫𝑔𝑘(𝑥0:𝑘)𝑤𝑘

∗(𝑥0:𝑘)𝑞(𝑥0:𝑘|𝑦 :𝑘)𝑑𝑥0:𝑘

𝑝(𝑦 :𝑘)
              (3.15) 

And because  

𝑝(𝑦1:𝑘) = ∫𝑝(𝑦1:𝑘, 𝑥0:𝑘) 𝑑𝑥0:𝑘                            

= ∫
𝑝(𝑦 :𝑘|𝑥0:𝑘)𝑝(𝑥0:𝑘)𝑞(𝑥0:𝑘|𝑦 :𝑘)

𝑞(𝑥0:𝑘|𝑦 :𝑘)
𝑑𝑥0:𝑘                 

= ∫𝑤𝑘
∗(𝑥0:𝑘) 𝑞(𝑥0:𝑘|𝑦1:𝑘)𝑑𝑥0:𝑘              (3.16) 

Replace formula (3.16) to formula (3.15) 

𝐼(𝑔𝑘) =
∫𝑔𝑘(𝑥0:𝑘)𝑤𝑘

∗(𝑥0:𝑘)𝑞(𝑥0:𝑘|𝑦 :𝑘)𝑑𝑥0:𝑘

∫𝑤𝑘
∗(𝑥0:𝑘)𝑞(𝑥0:𝑘|𝑦 :𝑘)𝑑𝑥0:𝑘

              (3.17) 

Accordingly, one can simulate 𝑁 independent and identically distributed samples 

(also known as particles), 𝑥0:𝑘
(𝑖)
~𝑞(𝑥0:𝑘|𝑦1:𝑘), for 𝑖 = 1,⋯ ,𝑁 and the Monte Carlo 

approximation of the integration in equation (3.17) can be given by 

𝐼(𝑔𝑘) ≈ 𝐼𝑁(𝑔𝑘) =
 

𝑁
∑ 𝑔𝑘(𝑥0:𝑘

(𝑖)
)𝑤𝑘

∗(𝑥0:𝑘
(𝑖)
)𝑁

𝑖= 

 

𝑁
∑ 𝑤𝑘

∗(𝑥0:𝑘
(𝑖)
)𝑁

𝑖= 

= ∑ 𝑔𝑘(𝑥0:𝑘
(𝑖) )𝑤𝑘(𝑥0:𝑘

(𝑖) )𝑁
𝑖=1       (3.18) 

where 𝑤𝑘(𝑥0:𝑘
(𝑖) ) is the normalized importance weight, it is given by 

𝑤𝑘(𝑥0:𝑘
(𝑖) ) =

𝑤𝑘
∗(𝑥0:𝑘

(𝑖)
)

∑ 𝑤𝑘
∗(𝑥0:𝑘

(𝑖)
)𝑁

𝑖= 

                     (3.19) 

Bayesian importance sampling is to use a series of random samples and their weights 

to approximate the posterior probability density, and then to get an estimate of the 

required statistics. The posterior probability density of random variable can be 

approximated by a series of discrete samples and the weights, and the degree of 
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approximation depends on the number of samples 𝑁 . Typically, the posterior 

probability density of the random variable can not be directly obtained, but Bayesian 

importance sampling provides an effective solution to this problem. 

3.2.4. Sequential importance sampling 

The Bayesian importance sampling method as described above, has the following 

defects. As with the arrival of new measurement 𝑦𝑘, we need to re-draw samples 

{𝑥0:𝑘
(𝑖)
, 𝑖 = 1,⋯ ,𝑁} from the importance probability density 𝑞(𝑥0:𝑘|𝑦1:𝑘), and have to 

re-compute the importance weights 𝑤𝑘(𝑥0:𝑘
(𝑖) ) over the entire state sequence (3.14). As 

a result, the computational complexity increases with time. It is not conductive to the 

practical application. Sequential importance sampling (SIS) addresses this problem in 

the context of sequential estimation. SIS rewrites the posterior density using Bayesian 

theorem, and the weights are also recursively updated. This leads to a particle filter that 

is often referred to as SIS.  

To recursively estimate the probability density, the importance density is chosen to 

factorize such that  

𝑞(𝑥0:𝑘|𝑦1:𝑘) = 𝑞(𝑥𝑘|𝑥0:𝑘−1,𝑦1:𝑘)𝑞(𝑥0:𝑘−1|𝑦1:𝑘−1)         (3.20) 

Then one can obtain samples 𝑥0:𝑘
(𝑖)~𝑞(𝑥0:𝑘|𝑦1:𝑘) by augmenting each of the existing 

samples 𝑥0:𝑘−1
(𝑖) ~𝑞(𝑥0:𝑘−1|𝑦1:𝑘−1) with the new state 𝑥𝑘

(𝑖)~𝑞(𝑥𝑘|𝑥0:𝑘−1,𝑦1:𝑘). Replace 

the formula (3.21) to the formula (3.14) 

𝑤𝑘
∗(𝑥0:𝑘) =

𝑝(𝑦 :𝑘|𝑥0:𝑘)𝑝(𝑥0:𝑘)

𝑞(𝑥𝑘|𝑥0:𝑘− ,𝑦 :𝑘)𝑞(𝑥0:𝑘− |𝑦 :𝑘− )
               (3.21) 

And according to the formula (3.14), we can obtain  

𝑤𝑘−1
∗ (𝑥0:𝑘−1) =

𝑝(𝑦 :𝑘− |𝑥0:𝑘− )𝑝(𝑥0:𝑘− )

𝑞(𝑥0:𝑘− |𝑦 :𝑘− )
               (3.22) 

Last, according to the formula (3.21) and the formula (3.22), we can obtain 

𝑤𝑘
∗(𝑥0:𝑘) = 𝑤𝑘−1

∗ (𝑥0:𝑘−1)
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘− )

𝑞(𝑥𝑘|𝑥0:𝑘− ,𝑦 :𝑘)
            (3.23) 

The SIS algorithm thus consists of recursive propagation of the weights and support 
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points as each measurement is received sequentially. A pseudo-code description of this 

algorithm is given in the following section. 

SIS Particle Filter algorithm 

For times 𝑘 =  ,1,2,⋯ 

1). Prediction 

For 𝑖 = 1,⋯ ,𝑁, sample 𝑥𝑘
(𝑖)~𝑞 (𝑥𝑘|𝑥0:𝑘−1

(𝑖)

,
𝑦1:𝑘),  and set  𝑥0:𝑘

(𝑖)
= {𝑥𝑘

(𝑖), 𝑥0:𝑘−1
(𝑖)

}; 

2). Update 

For  i = 1,⋯ , N , use the formula (3.23) to evaluate the importance weights of 

each new sample wk
∗(x0:k

(i)
)  up to a normalizing constant: 

wk
∗(x0:k

(i)
) = wk−1

∗ (x0:k−1
(i)

)
p(yk|xk

(i)
)p(xk

(i)
|xk− 
(i)

)

q(xk
(i)
|x0:k− 
(i)

,y :k)
              (3.24) 

The importance weights are normalized, given by 

wk(x0:k
(i) ) =

wk
∗ (x0:k

(i)
)

∑ wk
∗ (x0:k

(i)
)N

i= 

                          (3.25) 

End time goes to 𝑘 + 1, and algorithm goes to importance sampling step. 

Last, we can obtain the samples with the weights {(𝑥0:𝑘
(𝑖) , 𝑤𝑘(𝑥0:𝑘

(𝑖)
)) , 𝑖 = 1,⋯ ,𝑁 }, 

thus the probability density can be approximated as 

𝑝(𝑥0:𝑘|𝑦1:𝑘) ≅ ∑ 𝑤𝑘(𝑥0:𝑘
(𝑖) )𝛿(𝑥0:𝑘 − 𝑥0:𝑘

(𝑖)
)𝑁

𝑖=1             (3.26) 

For facilitating description, we will simplify 𝑤𝑘
∗(𝑥0:𝑘

(𝑖)
) to 𝑤𝑘

∗(𝑖), 𝑤𝑘(𝑥0:𝑘
(𝑖) ) to 

𝑤𝑘(𝑖) in the following thesis. 

According the above description, the probability density of 𝑥𝑘 is approximated by  

𝑝(𝑥𝑘|𝑦1:𝑘) ≅ ∑ 𝑤𝑘(𝑖)𝛿(𝑥𝑘 − 𝑥𝑘
(𝑖)
)𝑁

𝑖=1               (3.27) 

And the optimal estimation of minimum mean square error of 𝑥𝑘 is given as 

𝑥̂𝑘 = ∑ 𝑤𝑘(𝑖)𝑥𝑘
(𝑖)𝑁

𝑖=1                       (3.28) 

Sequential importance sampling is a recursive Bayesian importance sampling 
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algorithm. So far, a variety of particle filtering algorithms are based on the sequential 

importance sampling method. 

With sequential importance sampling, we are able to avoid the difficulty of sampling 

directly from the posterior density by sampling from an importance or proposal 

distribution. In this section, we find that the posterior density function can be 

approximated well by drawing samples from a proposal distribution. However, this 

algorithm has a problem which prevents from using it. Another algorithm, sequential 

importance re-sampling, still needs to be introduced to solve the existing problem. 

3.2.5. Particle degeneracy and resampling 

The problem of the updating process is that the variance of the weights increases 

exponentially over time, which means that after a few iterations, the distribution of 

importance weights becomes more and more skewed. As time increases, all but one 

particle has negligible weights. This is known as degeneracy phenomenon. This 

degeneracy implies that a large computational effort is devoted to updating particles 

whose contribution to the approximation to the probability density is almost zero. The 

effective methods for reducing its effect are the following two methods: good choice of 

importance density and use of resampling. These are described next. 

Good choice of importance density 

The optimal importance function was introduced in the literature [16].  

𝑞(𝑥𝑘|𝑥0:𝑘−1
(𝑖) , 𝑦1:𝑘)𝑜𝑝𝑡 = 𝑝(𝑥𝑘|𝑥𝑘−1

(𝑖) , 𝑦𝑘)             (3.29) 

And proof the variance of the importance weight 𝑣𝑎𝑟(𝑤𝑘
∗(𝑖)) =   conditional upon 

𝑥𝑘−1
(𝑖)

 and 𝑦𝑘. This choice of importance density is optimal since for a given 𝑥𝑘−1
(𝑖)

, 

𝑤𝑘(𝑖) take the same value, whatever sample is drawn from 𝑞(𝑥𝑘|𝑥0:𝑘−1
(𝑖) , 𝑦1:𝑘)𝑜𝑝𝑡 . 

Hence, conditional on 𝑥𝑘−1
(𝑖)

, 𝑣𝑎𝑟(𝑤𝑘
∗(𝑖)) =  . This is the variance of the different 

𝑤𝑘(𝑖) resulting from different sampled 𝑥𝑘
(𝑖)

. This optimal importance density suffers 

from two major drawbacks. It requires the ability to sample from 𝑝 (𝑥𝑘|𝑥𝑘−1
(𝑖)

,
𝑦𝑘) and 

to evaluate the integral over the new state. In the general case, it may not be 

straightforward to do either of these things. 
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A simple and widely used method is to choose the prior system state transition 

probability density as the importance density, such as 

𝑞(𝑥𝑘|𝑥0:𝑘−1
(𝑖) , 𝑦1:𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1

(𝑖) )                 (3.30) 

Substitution of formula (3.30) into the formula (3.24) then yields 

𝑤𝑘
∗(𝑖) = 𝑤𝑘−1

∗ (𝑖) 𝑝(𝑦𝑘|𝑥𝑘
(𝑖))                   (3.31) 

The method is often inefficient in simulations as the state space is explored without 

any knowledge of the observations. It is especially sensitive to outliers. However, it 

does have the advantage that the importance weights are easily evaluated. This would 

seem to be the most common choice of importance density in the several particles filter 

methods. 

Resampling 

The second method by which the effects of degeneracy can be reduced is to use 

resampling whenever a significant degeneracy is observed. The basic idea of resampling 

is to eliminate particles that have small weights and to concentrate on particles with 

large weights. In formal term, resampling step replaces the weighted empirical measure  

by the un-weighted measure 

𝑃̃𝑁(𝑑𝑥0:𝑘|𝑦1:𝑘) =
1

𝑁
∑ 𝑁𝑘

(𝑖)
𝛿
𝑥0:𝑘
(𝑖) (𝑑𝑥0:𝑘)

𝑁
𝑖=1                 (3.32) 

where 𝑁𝑘
(𝑖)

 is the number of offspring associated to particle𝑥0:𝑘
(𝑖)

; 𝑁𝑘
(𝑖)

 is an integer 

number such that ∑ 𝑁𝑁
𝑖=1 𝑘

(𝑖)
= 𝑁 . If 𝑁𝑘

(𝑗)
=   then the particles 𝑥0:𝑘

(𝑗)
 dies. The 

surviving particles 𝑥0:𝑘
(𝑖)

, i.e. those particles, for which 𝑁𝑘
(𝑖)
>  , are approximately 

distributed according to 𝑃(𝑥0:𝑘|𝑦1:𝑘). Different unbiased resampling schemes have 

been proposed in the literature, such as multinomial resampling, stratified resampling, 

residual resampling and systematic resampling. For a review on their comparative 

performances please refer to the article by Hol et al [59]. Considering resampling 

quality and computational complexity, the systematic resampling is favourable. 

Having discussed about all the necessary ingredients, we are now describing a 

generic particle filter algorithm. This is explained below. 
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Generic SMC algorithm 

Recursively over time 𝑘 =  ,1,2,⋯ 

For 𝑖 = 1,⋯ ,𝑁, where 𝑁 is the total number of particles. 

1). Sample 𝑥𝑘
(𝑖)
~ 𝑞 (𝑥𝑘|𝑥0:𝑘−1

(𝑖)

,
𝑦1:𝑘) and set 𝑥0:𝑘

(𝑖)
≜ (𝑥0:𝑘−1

(𝑖) , 𝑥𝑘
(𝑖)
) 

2). Evaluate the corresponding importance weights 𝑤𝑘
∗(𝑖) according to formula 

(3.23), 

3). Normalize the importance weights 𝑤𝑘(𝑖) according to formula (3.25). 

4). If 𝑁𝑒𝑓𝑓  𝑁𝑇ℎ  ， resample from {𝑥𝑘
(𝑖)}

𝑖=1

𝑁

 with probabilities {𝑤𝑘(𝑖)}𝑖=1
𝑁  

keeping the sample size still to be 𝑁 and assign equal weights 1 𝑁⁄ . 

where  𝑁𝑒𝑓𝑓 = 1 ∑ (𝑤𝑘(𝑖))
2𝑁

𝑖=1⁄ , 𝑁𝑇ℎ is a fixed threshold. To avoid carrying the 

trajectories with small normalized importance weights and to concentrate upon the 

ones with large weights, the effective sample size 𝑁𝑒𝑓𝑓 is used to decide resampling. 

3.3. Target tracking with multiple feature fusion and PF 

3.3.1. Dynamic model 

The model considered for the moving object provides invariance under different 

motions, such as translation, rotation, and scale changes. This can cover the different 

types of motion of the object, as well as the case where the object size varies considerably, 

and hence ensures reliable performance of the particle filter [53]. 

The moving object is modeled by a rectangular bounding box defined in terms of the 

dynamic state X = {𝑥, 𝑥̇, 𝑦, 𝑦̇, ℎ𝑥 , ℎ𝑥̇, ℎ𝑦 , ℎ𝑦̇}
𝑇

, where x and y represent the center 

coordinates of the rectangular box for tracking an object, 𝑥̇ and 𝑦̇  represent the 

respective velocity components, ℎ𝑥, ℎ𝑦 denote the height and width of half axes, and 

ℎ𝑥̇, ℎ𝑦̇ represent the scale changes of ℎ𝑥 and ℎ𝑦, respectively. 

The sample set is propagated through the application of a dynamic model 

X𝑡 = 𝐴X𝑡−1 + 𝐵𝑤𝑡−1,                          (3.33) 

where 𝐴 and 𝐵 are the deterministic components of the model, and  𝑤𝑡−1 is a Gaussian 
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distribution of zero mean with covariance matrix 𝑄 = 𝑑𝑖𝑎𝑔 { 𝜎𝑥
2, 𝜎𝑦

2, 𝜎ℎ𝑥
2 , 𝜎ℎ𝑦

2 } , 

describing the uncertainty in the state vector. 

This model has the ability to adapt to transitions of the motion, which helps to estimate 

the distribution area and size variations of the tracking object more accurately. 

3.3.2. Feature likelihood models 

This section describes how we model the separate features of the rectangular region 

surrounding the moving objects and the likelihood models of the features in detail. All of 

the models are based on histograms. Histograms have the useful property that allow some 

change in the object appearance without changing the histogram [53].  

Color distribution model 

Color distributions are used as target models since they achieve robustness against 

non-rigidity, rotation, and partial occlusion. In the RGB color space, because these three 

color components are reciprocally dependent, illumination changes have a great influence 

on the histogram, and the RGB space is not suitable for discrimination under all 

circumstances. Thus, the HSV color space is selected to represent color information. In 

the experiments, typical 8×8×4 bins were used to make the histograms less sensitive to 

intensity variations, and we assumed that the distributions are discretized into m bins. 

Similar color distributions are also described by Comaniciu [60]. The histograms are 

produced with a function 𝑏(𝑥𝑖)  that assigns the color of location  𝑥𝑖  to the 

corresponding bin. We calculate the color distribution inside a rectangular region with 

half axes ℎ𝑥 , ℎ𝑦.  

Now, the color distribution of a target object 𝑞𝑐 = {𝑞𝑐
(𝑢)}

𝑢=1,⋯,𝑚
 at point (𝑥𝑖, 𝑦𝑖) is 

defined as 

𝑞𝑐
(𝑢) =

1

𝑛
∑ 𝛿[𝑏(𝑥𝑖) − 𝑢]
𝑛
𝑖=1                        (3.34) 

where 𝑖 is the number of pixels in the object region, and 𝛿  is the Kronecker delta 

function. The normalization factor 1 𝑛⁄  ensures that ∑ 𝑞𝑐
(𝑢)𝑚

𝑢=1 = 1, where u is the index 

of the histogram bin. 
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In the update step, we use similarity measures to calculate color distributions 

𝑝𝑐(𝑥𝑡) = {𝑝𝑐
(𝑢)(𝑥𝑡)}

𝑢=1,⋯,𝑚
 of the candidate at time t. According to the color 

distributions of the target object and candidate, the similarity measure between these two 

distributions is then given by the Hellinger distance [61][62]. 

𝑑𝑐[𝑞𝑐, 𝑝𝑐(𝑥𝑡)] = √1 − 𝜌[𝑞𝑐, 𝑝𝑐(𝑥𝑡)],                    (3.35) 

where 𝜌[𝑞𝑐, 𝑝𝑐(𝑥𝑡)] is the Bhattacharyya coefficient that is defined as 

𝜌[𝑞𝑐, 𝑝𝑐(𝑥𝑡)] = ∑ √𝑞𝑐
(𝑢) ∙ 𝑝𝑐

(𝑢)(𝑥𝑡)
𝑚
𝑢=1                    (3.36) 

The larger the measure 𝜌 is, the more similar these distributions are. Conversely, for 

the distance 𝑑𝑐, the smaller the value is, the more similar these distributions are. For two 

identical normalized histograms, if we obtain 𝑑𝑐 =   (𝜌 = 1), this indicates a perfect 

match. 

The likelihood function for the color feature can be defined as 

𝑝𝑐(𝑦𝑡|𝑥𝑡) ∝ 𝑒𝑥𝑝 (−
𝑑𝑐
2[𝑞𝑐,𝑝𝑐(𝑥𝑡)]

2𝜎𝑐
2 )                      (3.37) 

where the standard deviation σc specifies the Gaussian noise in the measurements. Note 

that small Hellinger distances correspond to large weights in the particle filter. The 

adaptive value σc will be updated online. 

Edge distribution model 

We adopt the local edge orientation histogram (EOH) [63][64][65], which employs 

gradient orientation information for feature extraction. The EOH is largely invariant to 

global illumination changes and is capable of capturing geometric properties of a moving 

object, which is difficult to capture with linear edge filters [64].   

The gradients at point 𝐼(𝑥𝑖, 𝑦𝑖) in the target region can be calculated by convolving 

Sobel masks with the image as follows: 

𝐺𝑥(𝑥𝑖, 𝑦𝑖) = 𝑆𝑜𝑏𝑒𝑙𝑥 ∗ 𝐼(𝑥𝑖 , 𝑦𝑖)                     (3.38) 

and 
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𝐺𝑦(𝑥𝑖, 𝑦𝑖) = 𝑆𝑜𝑏𝑒𝑙𝑦 ∗ 𝐼(𝑥𝑖, 𝑦𝑖)                    (3.39) 

where 𝑆𝑜𝑏𝑒𝑙𝑥  and 𝑆𝑜𝑏𝑒𝑙𝑦  are the Sobel masks of  𝑥  and 𝑦 , respectively. The edge 

strength at the point (𝑥𝑖, 𝑦𝑖) is defined as 

𝐺(𝑥𝑖 , 𝑦𝑖) = √𝐺𝑥(𝑥𝑖, 𝑦𝑖)2 + 𝐺𝑦(𝑥𝑖, 𝑦𝑖)2                (3.40) 

The orientation of the edge is defined as 

𝜃(𝑥𝑖, 𝑦𝑖) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑥(𝑥𝑖,𝑦𝑖)

𝐺𝑦(𝑥𝑖,𝑦𝑖)
)                     (3.41) 

We then divide the edges into 𝑚 bins according to 𝜃 in the anticlockwise direction; in 

other words, the value of each interval is binu , 𝑢 = 1,⋯ ,𝑚 . If m=16, 𝜃(𝑥𝑖, 𝑦𝑖) ∈

[−𝜋 2⁄ + (𝑢 − 1) 𝜋 16⁄ ,−𝜋 2⁄ + 𝑢 𝜋 16⁄ ]. Then, the edge strength that belongs to the 

u-th interval at point (xi, yi) is 

𝜑𝑢(𝑥𝑖, 𝑦𝑖) = {
𝐺(𝑥𝑖, 𝑦𝑖), 𝑖𝑓 𝜃(𝑥𝑖, 𝑦𝑖) ∈ 𝑏𝑖𝑛𝑢

 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
              (3.42) 

Thus, the edge orientation histogram can be defined as 

𝑞𝑒
(𝑢) = ∑ 𝜑𝑢(𝑥𝑖, 𝑦𝑖)

𝑛
𝑖=1 ,                          (3.43) 

where 𝑛 is the number of pixels in the target region. Suppose the edge distribution of the 

target object is 𝑞𝑒 = {𝑞𝑒
(𝑢)}

𝑢=1,⋯,𝑚
, and the edge distribution of candidate regions is 

𝑝𝑒(𝑥𝑡) = {𝑝𝑒
(𝑢)(𝑥𝑡)}

𝑢=1,⋯,𝑚
 at time 𝑡. As described above, we use the Bhattacharyya 

coefficient to describe the similarity measure between these two distributions: 

𝑑𝑒[𝑞𝑒 , 𝑝𝑒(𝑥𝑡)] = √1 − 𝜌[𝑞𝑒 , 𝑝𝑒(𝑥𝑡)].                    (3.44) 

Here, the Bhattacharyya coefficient is 

𝜌[𝑞𝑒 , 𝑝𝑒(𝑥𝑡)] = ∑ √𝑞𝑒
(𝑢) ∙ 𝑝𝑒

(𝑢)(𝑥𝑡)
𝑚
𝑢=1 .                  (3.45) 

The likelihood function for an edge feature can be defined as 
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𝑝𝑒(𝑦𝑡|𝑥𝑡) ∝ 𝑒𝑥𝑝 (−
𝑑𝑒
2[𝑞𝑒,𝑝𝑒(𝑥𝑡)]

2𝜎𝑒
2 ),                     (3.46) 

where the standard deviation 𝜎𝑒 specifies the Gaussian noise in the measurements. 

Texture distribution model 

Texture is an important characteristic for describing the target. We adopt the extended 

LBP texture operator [66], which has recently shown excellent performance in many 

applications. LBP is a gray-scale invariant texture primitive statistic. It is a powerful 

means of texture description. The operator labels the pixels of an image region by 

thresholding the neighborhood of each pixel with the center value and considering the 

result as a binary pattern (see Figure 2.7). The LBP is described in the section 2.3.2 

texture feature in Chapter 2. In our experiments, we set 𝑃 = 6, 𝑅 = 3 and th =3.  

Thus, the texture histogram of the image 𝐼(𝑥𝑖, 𝑦𝑖) can be defined as 

𝑞𝑡
(𝑢)
= ∑ 𝐹{𝐿𝐵𝑃(𝑥𝑖, 𝑦𝑖) = 𝑢}

𝑛
𝑖=1 ,                   (3.47) 

where 𝑢 =  ,⋯ ,𝑚 − 1. As described above, the LBP operator set is separated into 

𝑚 = 64 bins. The function 𝐹{∙} is defined as 

𝐹{𝐴} = {
1, 𝐴   𝑖𝑠  𝑟𝑢𝑒
 , 𝐴   𝑖𝑠 𝐹𝑎𝑙𝑠𝑒

                            (3.48) 

Suppose that the texture distribution of the target object is 𝑞𝑡 = {𝑞𝑡
(𝑢)}

𝑢=1,⋯,𝑚
, and the 

texture distribution of the candidate is 𝑝𝑡(𝑥𝑡) = {𝑝𝑡
(𝑢)(𝑥𝑡)}

𝑢=1,⋯,𝑚
 at time 𝑡 . The 

similarity measure between these two distributions is described as 

𝑑𝑡[𝑞𝑡, 𝑝𝑡(𝑥𝑡)] = 1 − ∑ 𝑚𝑖𝑛[𝑞𝑡
(𝑢), 𝑝𝑡

(𝑢)(𝑥𝑡)]
𝑚
𝑢=1              (3.49) 

This measure has an intuitive motivation in that it calculates the common part of two 

histograms. Its advantage is that it explicitly neglects features that only occur in one of 

the histograms. The complexity is very low as it requires very simple operations [66].  

Thus, the likelihood function for the texture feature can be defined as 
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𝑝𝑡(𝑦𝑡|𝑥𝑡) ∝ 𝑒𝑥𝑝 (−
𝑑𝑡
2[𝑞𝑡,𝑝𝑡(𝑥𝑡)]

2𝜎𝑡
2 )                       (3.50) 

where the standard deviation 𝜎𝑡 represents the Gaussian noise in the measurements. 

The values of  𝜎𝑡 ,  𝜎𝑐 , and  𝜎𝑒  will be updated on-line. The update method was 

proposed by Brasnett [53]. 

3.3.3. Multiple feature fusion 

In the tracking process, there are complex conditions, such as illumination changes, 

partial occlusion, and similar backgrounds. Only using a single feature is inadequate for 

meeting the tracking needs, although the computational complexity of the weighted 

algorithm is low. Multiple feature fusion can better utilize information provided by the 

features supplementing each other and can improve the robustness of the algorithm. The 

relationship between different features has been treated differently by different authors. 

In this paper, we assume that the relationships among color, edges, and texture are 

independent. A similar assumption was described in literatures [52][53][67]. 

With this assumption, the overall likelihood function of the target object is represented 

as a product of the likelihoods of the separate features. 

𝑝(𝑦𝑡|𝑥𝑡) = ∏ 𝑝𝑓(𝑦𝑡|𝑥𝑡)
𝑤𝑓

𝑓                        (3.51) 

where 𝑤𝑓  is the adaptive weight value of a single feature ∑ 𝑤𝑓𝑓 = 1,   𝑤𝑓  1, 

𝑓 ∈ {𝑐, 𝑒, 𝑡}, where 𝑐, 𝑒 and 𝑡 represent color, edge, and texture, respectively. 

In multiple feature fusion algorithms, there are various features fusion, and fixed 

weights are commonly adopted. However, in the tracking process, if the tracking feature 

changes but the corresponding weight value remains unchanged, this will inevitably lead 

to poor performance or tracking failure. Thus, in successful tracking, different feature 

weights should instantaneously change in response to the changing tracking conditions. 

In other words, the weight value of the corresponding feature will be calculated using the 

similarity between the object model and the tracking result. As the similarity becomes 

higher, the weight value becomes larger. However, for the multiple selected features, if a 

particular feature is unable to effectively distinguish the object and the background, even 

if that feature gives a higher model similarity, due to the interference of the background, 
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the tracking performance will also be affected by this feature. Therefore, for a particular 

feature, in addition to considering the similarity between the target model and the 

candidate, we also consider the discriminability between the target object and the 

adjacent background.  

Based on this, we propose a method that dynamically balances the effects of the 

similarity and the discriminability, and calculates adaptive weights of the three features. 

For convenience of description, we introduce a feature called the similarity coefficient 

(SC) to represent the similarity between the object model and the candidate, and a feature 

called the discriminant coefficient (DC) to describe the discriminability between the 

object model and the adjacent background. In the tracking process, these two coefficients 

are used to dynamically calculate the weight value of the selected feature, in order to 

achieve dynamic multiple feature fusion tracking according to Equation (3.51).  

As described above, we use the Bhattacharyya coefficient to represent the similarity of 

the distributions of color, edge, and texture: 

𝑆𝐶𝑓[𝑞𝑓, 𝑝𝑓] = 𝜌[𝑞𝑓, 𝑝𝑓] = ∑ √𝑞𝑓
(𝑢)
∙ 𝑝𝑓
(𝑢)𝑚

𝑢=1                    (3.52) 

where 𝑞𝑓  is the feature distribution of the target model, and 𝑝𝑓  is the feature 

distribution of the candidate model, where 𝑓 ∈ {𝑐, 𝑒, 𝑡}. 

We use the variance of the log-likelihood ratio to represent the discriminability 

between the object model and the adjacent background. The likelihood ratio produces a 

function that maps feature values associated with the target to positive values and those 

associated with the background to negative values [68][69]. The frequency of the pixels 

that appear in a histogram bin is defined as 𝜉𝑓
(𝑢) = 𝑞𝑓

(𝑢)
𝑛𝑓𝑔⁄  and 𝜉𝑓(𝑏)

(𝑢) = 𝑝𝑓(𝑏)
(𝑢)

𝑛𝑓𝑔(𝑏)⁄ , 

where 𝑞𝑓 and 𝑝𝑓(𝑏) are histograms, 𝑛𝑓𝑔 is the number of pixels in the target object, 

and 𝑛𝑓𝑔(𝑏) is the number of pixels in the adjacent background. 

 The log-likelihood ratio of a feature value is given by  

𝐿𝑓
(𝑢)
= max (−1,min (1, 𝑙𝑜𝑔

max(𝜉𝑓
(𝑢)
,𝛿𝐿)

max(𝜉𝑓(𝑏)
(𝑢)

,𝛿𝐿)
))                (3.53) 

where 𝛿𝐿 is a very small number (𝛿𝐿 is set to 0.00001 in this work), and we have 

 𝐷𝐶𝑓[𝐿; 𝑞𝑓 , 𝑝𝑓(𝑏)] = 𝑣𝑎𝑟(𝐿; 𝑞𝑓 , 𝑝𝑓(𝑏))                             
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            = 𝐸 [(𝐿𝑓
(𝑢))

2

] − (𝐸[𝐿𝑓
(𝑢)
])2.                (3.54) 

In our experiment, the adjacent background is the outer ring area of the target, the area 

width is ℎ(𝑏𝑔) =  .75 ∙ 𝑚𝑎𝑥(ℎ𝑥, ℎ𝑦), where ℎ𝑥 , ℎ𝑦 denote the height and width of the 

half axes of the target region, respectively. 

We present a multiplication rule to balance the effect of similarity and discriminability. 

Then, the optimization weight of the particle is defined as 

𝑊𝑓 = 𝐶 ∙ 𝑆𝐶𝑓[𝑞𝑓, 𝑝𝑓] ∙ 𝐷𝐶𝑓[𝐿, 𝑞𝑓 , 𝑝𝑓],                     (3.55) 

where 𝐶 is a normalization factor that ensures that ∑ 𝑤𝑓𝑓 = 1 and it is given by 

𝐶 =
1

∑ 𝑆𝐶𝑓[𝑞𝑓,𝑝𝑓]∙𝐷𝐶𝑓[𝐿,𝑞𝑓,𝑝𝑓]𝑓={𝑐,𝑒,𝑡}
.                        (3.56) 

3.4. Experiment results 

In order to evaluate the performance of the proposed algorithm, we test the proposed 

algorithm on several challenging video sequences and compare the tracking 

performance with some related state-of-the-art approaches. 

Test conditions 

The results presented in this section were obtained on a dataset of targets extracted 

from different test sequences (see Figure 3.1). A first vehicle (V1) was extracted from 

the PETS 2001 dataset [38], and another vehicle target (V2) was extracted from a traffic 

surveillance video. The challenging factors include clutter, translation, rotation, and 

scale changes.  

 

 

 

 

Figure 3.1  Targets of the evaluation data sets. 
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The parameters of the tracker were set experimentally and were different for different 

datasets. Two hundred particles were used per frame. The results presented were 

obtained from a MATLAB implementation running on a computer with a Core 3.40GHz 

CPU. In the case of no optimization code, the proposed algorithm can handle about 5 

frames per second. 

Performance evaluation 

The performance evaluation was based on a metric using the true positive pixels Tp 

in each frame. The number of true positives is the number of pixels belonging both to 

the ground truth and the estimated target, as well as to the tracker output. The metric P 

is defined as  

 P = 1 −
2Tp

|Ae|+|Ag|
,                         (3.57) 

where |𝐴𝑒| and |𝐴𝑔| are the ground truth and the estimated target area, respectively. 

This performance measure rewards candidates with a high percentage of true positive 

pixels, and with few false positives and false negatives, avoiding the asymmetry problem 

seen with other area-based measures [72]. In our experiment, we obtained evaluation 

curves of the tracking results of 80 frames in the four sequences described above. We 

also used the average tracking error as a second criterion to evaluate the tracking 

performance. The average tracking error was manually calculated from the distance 

between the position of the tracking result and that of the ground truth. 

Tracker comparison 

For comparison, we implemented some single-feature trackers, including color, edge, 

and texture trackers, a fixed weight (FW) multiple feature tracker using a particle filter 

framework, and an adaptive multiple feature Mean shift tracker [68] (referred to as 

AMF-MS). 

We conducted four experiments to demonstrate the validity of our proposed tracker. 

In the first experiment using the V1 sequence, the tracked target was a fast-moving 

vehicle undergoing a large scale change in outdoor cluttered environment. The tracking 

results are illustrated in Figure 3.2, in which four representative frames (310, 345, 360, 

and 382) are shown, where rows 1, 2, 3 and 4 correspond to Texture, FW, AMF-MS, and 
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our tracker, respectively. We can see that our proposed tracker performed well from beg- 

 

 

 

 

 

 

 

 

  

 

 

 

 

   

 

 

 

 

   

 

 

 

 

   

 

 

Figure 3.2  Tracking results of V1 sequence. 

 

inning to end. The evaluation results of these methods are shown in Figure 3.6 (d). 

The second sequence, V2, was extracted from a traffic surveillance video. We used it 

to test the performance of our tracker in handling significant scale changes in an outdoor 

cluttered environment. Some tracking results are shown in Figure 3.3, in which four 

representative frames (271, 283, 291, and 304) are shown, where rows 1, 2, 3 and 4 

correspond to Color, AMF-MS, FW, and our tracker, respectively. The evaluation results 

clearly reflect the performance of the different methods in Figure 3.6(b). In particular, 

the AMF-MS method could not provide accurate state information for the vehicle under 

these conditions. From the evaluation curves, it is clear that our tracker was capable of 

tracking the target object successfully in the case of large scale changes. 

From these experimental results, the average tracking errors of the six trackers are 

listed in Table 3.1. We can see that our tracker had lower tracking errors in all of the test 
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sequences. The AMF-MS method had a much larger tracking error in the sequence with 

 

 

 

 

 

   

 

 

 

 

 

 

 

  

 

 

 

 

   

 

 

 

 

 

 

 

  

Figure 3.3  Tracking results of V2 sequence. 

 

a large scale change. The single edge tracker had the highest average tracking error in 

all test sequences. 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 3.4  Evaluation results. (a) V1 (from frame 310 to frame 390); (b) V2 (from 

frame 245 to frame 325). 
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Table 3.1  The average tracking errors (in pixels) of the compared methods 

 Color-PF Edge-PF Texture-PF FW-PF AMF-MS Ours 

V1 8.9 11.3 9.2 6.3 15.1 5.0 

V2 6.2 16.3 7.9 4.8 8.4 4.4 

 

3.5. Summary 

In this chapter, firstly, a review of particle filter techniques is introduced. Secondly, 

we propose an adaptive multiple feature fusion mechanism using a particle filter to track 

moving target. The proposed mechanism not only improves the represent-ability of 

tracking targets, but also dynamically balances the effects of feature similarity and feature 

discriminability among target object, candidate and adjacent background. It can 

calculate dynamically the weight value of individual feature and improve the 

performance of tracking. Moreover, comparing with other state-and-art algorithms using 

four different datasets, the experimental results clearly demonstrate the effectiveness of 

our proposed method. 
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Chapter 4. Single target tracking with SURF and PF 

4.1. Introduction 

In the previous chapter, we introduced a multiple feature fusion method based on 

color, edge and texture feature for visual target tracking. These low level visual features 

meet the needs of an ordinary scene. However, for the complex conditions, such as large 

scale change, fast moving, rotation, we should adopt other more complex visual features 

to represent the tracking target. Nowadays, the Speeded-Up Robust Features (SURF) is 

a promising approach for extracting scale and rotation invariant feature points, 

especially, outperforms previously proposed methods, and computes much faster.  

In this chapter, SURF method is firstly surveyed, including interest point detection 

and description. Then we propose a robust vehicle tracking method based on SURF 

feature. Combining the color and LBP feature improves the representation ability of 

tracking target. The proposed method mainly includes the dynamic update mechanism 

of target template, tracking window modification and particle weight allocation. Lastly, 

the experimental result and analysis are presented. 

4.2. SURF  

SURF method was proposed by Herbert Bay et al. in literatures [73][74]. SURF 

approximates or even outperforms previously proposed schemes with respect to 

repeatability, distinctiveness, and robustness, yet can be computed and compared much 

faster. For a traffic image, SURF algorithm has excellent matching characteristics and 

robustness in the target mutual occlusion, scale changes and noise condition, so it can be 

used to track the moving vehicle. SURF is achieved by relying on integral images for 

image convolutions; by building on the strengths of the leading existing detectors and 

descriptors; by simplifying these methods to the essential. SURF mainly includes the 

following three steps: Interest point detection, interest point description, and matching.  
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4.2.1. Interest point detection 

Under interest points, we understand small image regions with high changes of the 

local gradient in two distinctive directions. Such points can be reliably extracted and 

provide a high amount of information. Furthermore, interest points are often robust to 

various transformations, e.g. rotation, scale and partially affine transformations.  

 SURF approach for interest point detection uses a very basic Hessian matrix 

approximation. This lends itself to the use of integral images which reduces the 

computation time drastically. 

Integral images 

The entry of an integral image 𝐼Σ(Χ) at a location Χ = (𝑥, 𝑦)𝑇 represents the sum 

of all pixels in the input image 𝐼 within a rectangular region formed by the origin and 

Χ.  

𝐼Σ(Χ) = ∑ ∑ 𝐼(𝑖, 𝑗)
𝑗≤𝑦
𝑗=0 .𝑖≤𝑥

𝑖=0                     (4.1) 

Once the integral image has been computed, it takes four additions to calculate the 

sum of the intensities over any upright, rectangular area (see Figure 4.1). Hence, the 

calculation time is independent of its size. For using big filter sizes, this is important. 

 

. 

Figure 4.1  Integral image to calculate the area of a rectangular region 

of any size using four operations. 
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Hessian matrix based interest points 

Because of the good performance of the Hessian matrix in computation speed and 

accuracy, it detects blob-like structures at locations where its determinant is maximum. 

SURF relies on the determinant of the Hessian also for the scale selection.  

Given a point Χ = (𝑥, 𝑦) in an image 𝐼, the Hessian matrix ℋ(X, σ) in Χ at scale 

σ id defined as follows  

ℋ(X, σ) = [
𝐿𝑥𝑥(X, σ) 𝐿𝑥𝑦(X, σ)

𝐿𝑥𝑦(X, σ) 𝐿𝑦𝑦(X, σ)
]                 (4.2) 

where 𝐿𝑥𝑥(X, σ)  is the convolution of the Gaussian second order derivative 

𝜕2

𝜕𝑥2
𝑔(𝜎) with the image 𝐼 in point Χ, and similarly for 𝐿𝑥𝑦(X, σ) and 𝐿𝑦𝑦(X, σ). 

Gaussians are optimal for scale space analysis [75], but in practice they have to be 

discretized and cropped (Figure 4.2 left half, the Gaussian second order partial 

derivative in 𝑦-(𝐿𝑦𝑦) and xy-direction (𝐿𝑥𝑦), respectively). This leads to a loss in 

repeatability under image rotations around odd multiples of 𝜋 4⁄ . This weakness seems 

to hold for Hessian-based detectors in general. SURF method pushes the approximation 

for the Hessian matrix even further with box filter (in the right half of Figure 4.2, the 

approximation for the second order Gaussian partial derivative in 𝑦 - (𝐷𝑦𝑦)  and 

xy-direction (𝐷𝑥𝑦). The grey regions are equal to zero). These approximate second 

order Gaussian derivatives and can be evaluated at a very low computational cost using 

integral images. The performance is comparable or better than with the discretized and 

cropped Gaussians. 

 

 

 

 

 

   

Figure 4.2  Gaussian second order partial derivative and approximation of the 

Hessian matrix with box filter. 

 

The 9×9 box filters in Figure 4.2 are approximations of a Gaussian with 𝜎 = 1.2 and 

represent the lowest scale, which are denoted by 𝐷𝑥𝑥, 𝐷𝑦𝑦, and 𝐷𝑥𝑦. The weights 
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applied to the rectangular regions are kept simple for computational efficiency. The 

relative weights of the filter responses are further balanced in the expression for the 

Hessian’s determinant. This is required for the energy conservation between the 

Gaussian kernels and the approximated Gaussian kernels, 

|𝐿𝑥𝑦(1.2)|𝐹
|𝐷𝑦𝑦(9)|𝐹

|𝐿𝑦𝑦(1.2)|𝐹
|𝐷𝑥𝑦(9)|𝐹

=  .912⋯ ≅  .9                (4.3) 

where |𝑥|𝐹 is the Frobenius norm. This yields 

det(ℋ𝑎𝑝𝑝𝑟𝑜𝑥) = 𝐷𝑥𝑥𝐷𝑦𝑦 − ( .9𝐷𝑥𝑦)
2
              (4.4) 

Furthermore, the filter responses are normalized with respect to their size. This 

guarantees a constant Frobenius norm for any filter size. 

The approximated determinant of the Hessian represents the blob response in the 

image at location Χ. These responses are stored in a blob response map over different 

scales, and local maxima are detected. 

Scale space representation 

Interest points need to be found at different scales, not least because the search of 

correspondences often requires their comparison in images where they are seen at 

different scales. Scale spaces are usually implemented as an image pyramid. The images 

are repeatedly smoothed with a Gaussian and subsequently sub-sampled in order to 

achieve a higher level of the pyramid.  

Due to the use of box filters and integral images, SURF method does not iteratively 

apply the same filter to the output of a previously filtered layer, but instead can apply 

such filters of any size at exactly the same speed directly on the original image and even 

in parallel. Therefore, the scale space is analyzed by up-scaling the filter size rather than 

iteratively reducing the image size. The output of the 9 × 9  filter is considered as the 

initial scale layer, and set the scale 𝑠 = 1.2 (corresponding to Gaussian derivatives 

with 𝜎 = 1.2). The following layers are obtained by filtering the image with gradually 

bigger masks, taking into account the discrete nature of integral images and the specific 

structure of the filters. Specifically, this results in filters of size 9 × 9, 15 × 15, 

21 × 21, 27 × 27, etc. At larger scales, the step between consecutive filter sizes should 
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also scale accordingly. The scale space is divided into octaves, for each new octave, the 

filter size increase is doubled (going from 6 to 12 to 24). Simultaneously, the sampling 

intervals for the extraction of the interest points can be doubled as well. In order to 

localize interest points in the image and over scales, a non-maximum suppression in a  

3 × 3 × 3 neighbourhood is applied. The maxima of the determinant of the Hessian 

matrix are then interpolated in scale and image space with the method proposed by 

Brown et al.[76]. 

4.2.2. Interest point description  

SURF descriptor is based on features with a complexity stripped down even further. 

It includes the following three steps, such as fixing a reproducible orientation based on 

information from a circular region around the interest point, constructing a square 

region aligned to the selected orientation and searching for correspondences in a second 

image. These three steps are explained in this section. 

Orientation assignment 

In order to be invariant to image rotation, Bay identifies a reproducible orientation for 

the interest points. He first calculates the Haar wavelet responses in 𝑥 and 𝑦 direction 

within a circular neighbourhood of radius 6𝑠 around the interest point, with 𝑠 the scale 

at which the interest point was detected. Also, the sampling step is scale dependent and 

chosen to be 𝑠. In keeping with the rest, also the wavelet responses are computed at the 

current scale 𝑠. Accordingly, at high scales the size of the wavelets is big. Therefore, 

for fast filtering, the again integral images are used. The used filters are shown in Figure 

4.3. The dark parts have the weight-1 and the light part+1. Only six operations are 

needed to compute the response in 𝑥 or 𝑦 direction at any scale. The side length of 

the wavelets is 4𝑠.  

Once the wavelet responses are calculated and weighted with a Gaussian (σ = 2 ) 

centred at the interest point, the responses are represented as points in a space with the 

horizontal response strength along the abscissa and the vertical response strength along 

the ordinate. The dominant orientation is estimated by calculating the sum of all respon- 

ses within a sliding orientation window of size 𝜋 3⁄ (see Figure 4.4). A sliding 

orientation window of size 𝜋 3⁄  detects the dominant orientation of the Gaussian 
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Figure 4.3  Haar wavelet filters to compute the responses in x(left) and y direction 

(right).  

 

weighted Haar wavelet responses at every sample point within a circular neighborhood 

around the interest point. The horizontal responses within the window are summed, and 

also the vertical responses. The two, summed responses then yield a local orientation 

vector. The longest such vector lends its orientation to the interest point.  

 

 

 

Descriptor based on sum of Haar wavelet responses  

For the extraction of the descriptor, the first step consists of constructing a square 

region centred around the interest point and oriented along the orientation. The region is 

split up regularly into smaller 4 × 4 square sub-regions. For each sub-region, we 

compute Haar wavelet responses at 5 × 5 regularly spaced sample points. 𝑑𝑥 and 𝑑𝑦 

denote the Haar wavelet response in horizontal and vertical direction, respectively.    

“Horizontal” and“vertical”here is defined in relation to the selected interest point 

Figure 4.4  Orientation assignment. 
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orientation (see Figure 4.5). To build the descriptor, a quadratic grid with 4 × 4 square 

sub-regions is laid over the interest point (left). For each sample, the wavelet responses 

are computed. For this figure 2 × 2 vectors per sub-region for reasons of illustration, 

each sub-region (right), the sums of 𝑑𝑥, |𝑑𝑥|, 𝑑𝑦, and |𝑑𝑦| relative to the orientation 

of the grid, are computed. The responses 𝑑𝑥  and 𝑑𝑦  are first weighted with a 

Gaussian (σ = 3.3 ) centred at the interest point. Then, the wavelet responses 𝑑𝑥 and 

𝑑𝑦 are summed up over each sub-region and form a first set of entries in the feature 

vector, and extracted the sum of absolute values of the responses, |𝑑𝑥| and |𝑑𝑦|. 

Hence, each sub-region has a four-dimensional descriptor vector 𝑣 for its underlying 

intensity structure 𝑣 = (∑𝑑𝑥, ∑ 𝑑𝑦, ∑|𝑑𝑥| , ∑|𝑑𝑦|). This results in a descriptor vector 

for all 4 × 4 sub-region of length 64. 

 

 

 

4.3. Target tracking based on SURF and PF 

SURF algorithm, which is a novel scale and rotation invariant interest point detector 

and descriptor. It approximates or even outperforms previously proposed schemes with 

respect to repeatability, distinctiveness, and robustness, yet can be computed and 

compared much faster [73][74]. In interest point detection, it uses a very basic Hessian 

matrix approximation with box filters. These approximate second order Gaussian 

derivatives and can be evaluated at a very low computational cost using integral images. 

Also, for scale space representation, SURF algorithm applies box filters of any size at 

Figure 4.5  Calculate the orientation of the grid. 
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exactly the same speed directly on the original image and even in parallel to achieve a 

higher level of the image pyramid. In interest point description, its descriptor is built on 

the distribution of the first order Haar wavelet responses in x and y direction rather than 

the gradient, exploit integral images for speed, and use only 64D. This reduces the time 

for feature computation, and has proven to simultaneously increase the robustness of the 

descriptor.  

The SURF feature descriptor is represented as 𝑆 = {𝑥, 𝑦, 𝑠, 𝑜, ℎ𝑖𝑠𝑡}. Where x  and y 

are the position of the feature in terms of the image coordinate,   is the feature scale, o is 

the feature vector direction, and hi t is the gradient orientation distribution quantized 

into 64 or 128 bins. The SURF points of target vehicle are illustrated in Figure 4.6 with 

the size of the oriented descriptor window at different scales. 

 

 

 

 

4.3.1. PF framework and dynamic model 

Particle filter is an efficient statistical simulation method based on the idea of recursive 

Bayesian estimation. It uses a set of weighted particles sampled randomly to approximate 

the posterior possibility density function. In this chapter, we adopt the PF framework to 

track moving target. The PF framework is described in section 3.2 particle filter 

techniques in Chapter 3. And we use the random walk model to represent the tracking 

target ( referring to section 3.3.1 dynamic model in Chapter 3). 

Figure 4.6  Detail of the vehicle showing the size of the oriented descriptor 

window at different scales. 
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4.3.2. Color and texture feature 

Color feature distribution 

Color distributions are used as target models as they achieve robustness against 

non-rigidity, rotation and partial occlusion. In this experiment, the HSV space is 

selected to represent color information. Typical 8 × 8 × 4 bins were used to make the 

histograms less sensitive to intensity variations. Suppose the distributions are 

discretized into m bins. The similar color distributions are also described by Comaniciu 

[60]. The histograms are produced with a function 𝑏(𝑥𝑖) that assigns the color of 

location  𝑥𝑖 to the corresponding bin. We calculate the color distribution in a rectangle 

region with height and width half axis ℎ𝑥, ℎ𝑦. To increase the reliability of the color 

distribution when boundary pixels belong to the background or get occluded, smaller 

weights are assigned to the pixels that are further away from the region center by 

employing a weighting function. 

𝑘(‖𝑟‖) = {
1 − ‖𝑟‖2, ‖𝑟‖  1
 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                      (4.5) 

where 𝑘(∙) is the Epanechnikov kernel, 𝑟 is the distance from the region center. Thus, 

the color distribution of target object 𝑞𝑐 = {𝑞𝑐
(𝑢)}

𝑢=1,⋯,𝑚
 at location (𝑥𝑖, 𝑦𝑖) is 

defined as 

𝑞𝑐
(𝑢) = C∑ 𝑘 (

‖𝑥−𝑥𝑖‖

𝑙
) 𝛿[𝑏(𝑥𝑖) − 𝑢]

𝑛
𝑖=1                  (4.6) 

where 𝑖 is the number of pixels in the object region, 𝛿 is the Kronecker delta function, 

the parameter 𝑙 = √ℎ𝑥2 + ℎ𝑦2  is used to adapt the size of the region, and the 

normalization factor C ensures that ∑ 𝑞𝑐
(𝑢)𝑚

𝑢=1 = 1. 

In update step, we use similarity measures to calculate color distributions 

𝑝𝑐(𝑥𝑡) = {𝑝𝑐
(𝑢)(𝑥𝑡)}

𝑢=1,⋯,𝑚
 of the candidate at time t. According to the color 

distributions of target object and candidate, the similarity measure between these two 

distributions is then given by the Bhattacharyya coefficient [61][62]. The calculation 

methods are described in detail in section 3.3.2 dynamic model in Chapter 3. The 

likelihood function for the color feature can refer to formula (3.37). 
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Texture feature distribution 

In this chapter, we adopt the LBP texture operator, which has recently shown 

excellent performance in many applications. LBP is described in detail in section 3.3.2 

texture distribution model in Chapter 3. Suppose the texture histogram of the image 

I(𝑥𝑖, 𝑦𝑖) can be defined as 𝑞𝐿
(𝑢)

, then, the texture distribution of target object is 

𝑞𝐿 = {𝑞𝐿
(𝑢)}

𝑢=1,⋯,𝑚
, the texture distribution of candidate is 𝑝𝐿(𝑥𝑡) = {𝑝𝐿

(𝑢)(𝑥𝑡)}
𝑢=1,⋯,𝑚

  

at time t. The similarity measure between these two distributions and the likelihood 

function for the texture feature can be calculated with the same method. Thus, we 

calculate the each particle’s similarity measure and normalize to gain the weight 𝑤𝑡
𝐿. 

Suppose the relationships among color, texture and SURF feature are independent. So 

we can obtain the fusion weighting by:  

𝑤𝑡
𝐹 = γ𝑤𝑡

𝐶 + (1 − 𝛾)𝑤𝑡
𝐿                     (4.7) 

where  γ ∈ [ ,1] is an adaptive control parameter. And γ denotes the proportion of the 

number of larger weight color particle to the total number of color and texture particles. 

Note that the larger the value, the more similar color feature distributions. 

4.3.3. SURF feature point matching 

In the matching strategy, several matching methods are defined, such as fast indexing 

matching, nearest neighbor matching, and nearest neighbor distance ratio (NNDR) [77]. 

We use the NNDR approach to match the feature points. This approach is similar to the 

nearest neighbor matching, except that the thresholding is applied to the distance ratio 

between the first and the second nearest neighbor. For two regions A and B, the regions 

are matched if ‖𝐷𝐴 − 𝐷𝐵‖ ‖𝐷𝐴 − 𝐷𝐶‖  𝑡⁄ , where DB  is the first and 𝐷𝐶  is the 

second nearest neighbor to 𝐷𝐴, 𝑡 is experimental threshold and is set to be 0.5 in our 

work. Because the precision of each SURF feature matching point may affect the 

tracking in our experiment, especially when the mismatched feature points are far away 

from the object center. So, before matching, we firstly discard the outliers of feature 

points using the random sample consensus (RANSAC) algorithm [78][79](see Figure 

4.7). 
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Figure 4.7  Experimental result of vehicle using RANSAC algorithm. 

4.3.4. SURF feature point update mechanism 

In the tracking stage, due to the deformation of moving target, we must update the 

feature points of the target template over time. Therefore we propose the adaptive 

on-line update mechanism. It includes two stages, discarding bad feature points and 

adopting new feature points. 

Discarding bad feature points 

Our hypothesis is that the repeated occurrences of a feature point within the target 

template in the past period of time is rare, then the probability of re-emergence of this 

feature point in the next period of time is almost zero. Based on this assumption, we 

examine the repeated occurrences of every point in target template for a while, to 

measure whether we want to discard or adopt this point. This similar method was 

introduced in references [80][81]. The mechanism is defined as 

   𝑃𝑖,𝑡+1 = (1 − 𝜃) ∙ 𝑃𝑖,𝑡 + 𝜃 ∙ 𝛿𝑖                    (4.8) 

where 𝑃𝑖,𝑡+1 is the probability of 𝑖th feature point in target template at time 𝑡 + 1 , 

 𝜃 ∈ [ ,1] indicates the degree of object change. The larger 𝜃 is, the faster the change 

of object will be, and 𝛿𝑖 ∈ { ,1} is a factor of matching determination. If the current 

𝑖th feature point in target template match any one of candidate feature points, 𝛿𝑖 = 1, 

else 𝛿𝑖 =  . If the probability 𝑃𝑖,𝑡+1 is greater than an experimental threshold 𝑡ℎ2, 

show that the feature point is a stable feature point. In other words, the frequency of its 

occurrence in consecutive frames is large. Otherwise, we will discard this point from the 

template. In our work, 𝑡ℎ2 is set to be 0.0001. As shown in Figure 4.8, at time t4, we 

will discard the upper left point of the target template according to this mechanism. The 

advantage of this mechanism is that it can quickly adapt to the appearance changes of 
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the tracking object, and instantly deletes the inappropriate feature points. 

 

 

Figure 4.8  Discarding the upper left point of the target. 

 

Adopting new feature points 

In order to adapt to the quick appearance changes of target, the tracker should not 

only delete inappropriate old features points, but also promptly adopt new feature points 

reflecting the current situation of target. In the existing algorithms presented in 

references [80][81], with the advent of new frame, the feature points randomly selected 

from the new frame are added to the target template. The random selection method 

brings uncertainty to the object template and is not conducive to the stability of the 

tracking. Therefore, we present our hypothesis. The adopted new feature points should 

be selected from a stable non-matching set of the candidate objects with the target 

template for a while. 

In our experiment, we need to define the object template. Given a feature point of 

object template set 𝑆𝑡0 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑛}, as mentioned above, the weight corresponding 

to each feature point is 𝑃𝑖,𝑡  at time𝑡 . Now assuming the target object has been 

successfully tracked in frame 𝐼𝑡−1. When frame 𝐼𝑡 arrives, we detect the candidate 

feature point set 𝐶𝑡 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑞} using the SURF detector and descriptor and get 

the matching candidate set 𝑀𝑡 = {𝑚1, 𝑚2, ⋯ ,𝑚𝑝}  and un-matching set 𝑈𝑡 =

{𝑢1, 𝑢2, ⋯ , 𝑢𝑙} with the template set 𝑆𝑡 by the NNDR method，where 𝑀𝑡⋃𝑈𝑡 = 𝐶𝑡, 

𝑀𝑡⋂𝑈𝑡 = ∅, 𝑝 + 𝑙 = 𝑞.  i, ci, mi and ui denote the state of the i-th feature point 
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from the corresponding feature points sets St, Ct, Mt and Ut at time t respectively. 

Next, when new frame 𝐼𝑡+1 arrives, we can get the new candidate feature point set 

𝐶𝑡+1 according to the prediction step of particle filter, and, after matching the object 

template 𝑆𝑡+1, also get the matching candidate set 𝑀𝑡+1 and un-matching set 𝑈𝑡+1. For 

the two consecutive un-matching sets 𝑈𝑡 and 𝑈𝑡+1, in order to detect the stability of 

each point of these two sets, we define a new matching set 𝑈𝑀𝑡+1 which contains the 

matching points of the two consecutive un-matching sets 𝑈𝑡 and 𝑈𝑡+1. If the two sets 

do not match, we use the set 𝑈𝑡+1 to represent the set 𝑈𝑀𝑡+1, and compute the each 

point probability by 

𝑈𝑃𝑖,𝑡+1 = {
𝑈𝑃𝑖,𝑡 + 1, if matching i  true

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (4.9) 

where 𝑈𝑃𝑖,𝑡 represents the weight of the point in matching set 𝑈𝑀𝑡 which match the 

𝑖th point in the un-matching set 𝑈𝑡+1. If the probability 𝑈𝑃𝑖,𝑡+1 exceeds a threshold 

𝑡ℎ3，it represents that this point is a stable non-matching point. Thus we will adopt this 

point to the object template. In this experiment, 𝑡ℎ3 = 4, if the feature point exists in 

more than three consecutive frames, we will adopt this point. As shown in Figure 4.9, 

we will adopt the two stable center points from the non-matching set UM at time t4 

according to this mechanism. This mechanism of adopting new feature point overcomes 

the shortcomings of randomly selected new points, and experiments show that it has a 

strong adaptability for tracking condition changes. 

4.3.5. Tracking window modification 

The tracking window is described as a rectangle region with height and width half 

axis ℎ = (ℎ𝑥, ℎ𝑦) to cover the tracked object. In the practical tracking, the object may 

change its size with motion of object itself, and distance between the object and camera. 

To keep precise tracking, the size of tracking window should be modified automatically 

with the state of the object. Considering the size of color region, texture region and 

SURF matches distribution region in current frame, and the tracking window size in the 

former frame, we calculate the size of tracking windows in current frame at time 𝑡 by 

ℎ𝑡 = 𝜆ℎ𝑡−1 + (1 − 𝜆)((𝛼 + 𝛽)ℎ𝑆𝑈𝑅𝐹 + (1 − 𝛼)ℎ𝑐𝑜𝑙𝑜𝑟 + (1 − 𝛽)ℎ𝑡𝑒𝑥𝑡𝑢𝑟𝑒)  (4. 10) 

where ℎ𝑆𝑈𝑅𝐹  represents the window covering the region of SURF matches distribution, 

ℎ𝑐𝑜𝑙𝑜𝑟 and ℎ𝑡𝑒𝑥𝑡𝑢𝑟𝑒 denote the window region that cover the color and texture region 

of object, respectively. 𝛼, 𝛽 are the harmonizing factor that balance the effect of  
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SURF cue, color cue and texture cue, 𝜆 is a forgetting factor that balances the window 

in frames at time 𝑡 and time 𝑡 − 1 to avoid over-sensitive scale adaption. The similar 

approach is proposed in references [54][82]. 

4.3.6. Particle weight updating 

In the tracking process, there are complex conditions such as illumination change, 

partial occlusion, and similar background. Single feature is unable to meet tracking 

needs, although the computational complexity of weighted algorithm is low. So, we 

combine the color feature, texture feature and the SURF feature distributions, and 

present an improved distance kernel function to update the weights of particles to 

achieve adaptive tracking. 

Suppose the state of particles at time 𝑡 is defined as 𝑋𝑡 = {𝑥𝑖 , 𝑥̇𝑖, 𝑦𝑖, 𝑦̇𝑖 , ℎ𝑥𝑖, ℎ𝑦𝑖} 

𝑖 = 1,⋯ ,𝑁, where 𝑁 represents the total number of particles, 𝑥 and 𝑦 represent the 

center coordinates of the rectangular box for tracking an  object, 𝑥̇ and 𝑦̇ represent the 

respective velocity components, ℎ𝑥 and ℎ𝑦 denote the height and width half axis of 

rectangle region, respectively. 𝑤𝑡 = {𝑤𝑖
(𝑡)}  represents the weight in which 𝑤𝑡  is 

computed by 𝑤𝑡
𝐹. The SURF feature matching candidate set is 𝑀𝑡 = {𝑚1, 𝑚2, ⋯ ,𝑚𝑝}. 

Thus, the weight of each particle is allocated as follows: 

Figure 4.9  Adopting the two stable center points from the non-matching set 

UM at time t_4. 



Chapter 4.  Single target tracking with SURF and PF 

74 

Step 1.  Approximate the object center C(x, y) by 

𝑥 = 𝜀(∑ 𝑥𝑖𝑤𝑖
𝐹𝑁

𝑖=1 ) + (1 − 𝜀) (
1

𝑃
∑ 𝑥𝑖

𝑆𝑃
𝑖=1 )               (4.11) 

𝑦 = 𝜀(∑ 𝑦𝑖𝑤𝑖
𝐹𝑁

𝑖=1 ) + (1 − 𝜀) (
1

𝑃
∑ 𝑦𝑖

𝑆𝑃
𝑖=1 )               (4.12) 

Step 2.  For 𝑖 = 1,⋯ ,𝑁 

1). Calculate the Euclidean distance 𝑑𝑖 from each particle to center point C. 

2). Get the factors using exponential kernel function. 

𝑘𝑆(𝑑𝑖) = {

1                                   , d𝑖  T𝑑

exp((−1) (𝑑𝑖 −
𝑇𝑑

𝑚𝑎𝑥{𝑑𝑖−𝑇𝑑}𝑖= 
𝑁 )) , d𝑖 > T𝑑

     (4.13) 

3). Update the weight 𝑤𝑖 using 

𝑤𝑖
(𝑡) = 𝑘𝑆(𝑑𝑖) ∙ 𝑤𝑖

(𝑡)
                             (4.14) 

Step 3.  Normalize the weights 

𝑤̃𝑖
(𝑡) = 𝑤𝑖

(𝑡) ∑ 𝑤𝑖
(𝑡)𝑁

𝑖=1⁄                            (4.15) 

where, 𝑥𝑖
𝑆 and 𝑦𝑖

𝑆 are the coordinates of SURF feature points, 𝜀 is a weight of fusion 

three feature and is set to be 0.4. T𝑑 is set as the half of the minimum of height and 

width of object rectangular region, 𝑃 is the number of the SURF feature points. 

Algorithm flow   

To facilitate understanding, we give the description and flow chart of our method as 

shown in Figure 4.10. The whole process of our proposed tracking algorithm is 

described as follows: 

Input: Video frames 𝐹1, 𝐹2, ⋯,𝐹𝑛.  

Output: Target regions according to target states in every frame.  

Algorithm: 

(1) Select the target object in the initializing frame manually, and calculate the 

appearance model for the first frame. 

(2) Select and propagate samples at frame Ft  from the samples at Ft−1 

according to their weights. 

(3) Predict the state of particles according to the dynamic model. 
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(4) Compute the weight of each feature using the formula (4.6) and formula (3.47) 

according to the likelihood using formula (3.37) and formula (3.50). 

(5) Extract SURF points, and compute the number of matching points. 

If the number of matching points is larger than threshold, approximate the object 

center using formula (4.11) and (4.12), and update the weights of particles using 

the improved distance kernel function, else, only fuse the color and texture feature 

using formula (4.7). 

(6) Update SURF feature points of object target using the formula (4.8) and 

formula (4.9). 

(7) Modify size of tracking window using the formula (4.10). 

(8) Output target’s location, and go to step 2. 

4.4. Experiment results 

Test Conditions 

In order to verify the effectiveness of the proposed algorithms, we demonstrate the 

proposed tracker on a data set from three different tracking sequences (Table 4.1). The 

vehicles (V1 and V2) are extracted from the PETS2001
 
[38] and PETS2000

 
[83] data set, 

respectively. Finally, the vehicle (V3) is extracted from a traffic surveillance video. 

Because of the different characteristics of target motion, such as significant deformation 

and target rotation under curvilinear motion, these characteristics bring larger challenges 

to track tasks. 

The parameters of the tracker are set experimentally, the forgetting factor λ and θ 

are set to be 0.9. α, β and γ are set to be 0.5. Note that the SURF based weight 

updating could be applied only when there are many enough SURF matching points, we 

set the least threshold as 5. The 200 particles are used for per frame. The results 

presented were obtained from MATLAB implementation with a Core 3.40GHz PC 

under Windows. 

Performance evaluation and comparison 

In order to highlight the difference of tracking results with different features and 

different tracking algorithms, we implement some state-of-the-art trackers including the  
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End 

Calculate and output the object center 

Update the SURF feature points 

Allocate the new weight of particles with SURF feature 

Predict the object center of candidate region 

Calculate and fuse the particle weights of color and texture model 

Extract SURF feature points and matching 

 

Calculate the number of matching points 

Input an initial frame 

Select the tracking target 

Calculate the color and texture model 

Select and propagate the samples 

Initialize the target model 

Extract SURF feature points 

Capture the next frame 

Y 

 n>TH 

 

N 

Start 

Figure 4.10  The flow chart of our proposed method. 
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Table 4.1  The description of the tracking data set. 

Targets Frame size 
Frame 

rate 

Target 

trajectory 
Characteristics 

V1 768*576 25fps slash 
Scale changes, 

clutter, fast motion 

V2 768*576 25fps curve 
Scale changes, 

rotation 

V3 800*600 30fps 
Straight 

line 

Scale changes, 

illumination changes 

 

combining color and SIFT feature particle filter-based tracker
 
[54](referred to as 

SIFT-PF), the standard Mean shift tracker[41] and single color feature (referred to as 

Color-PF) tracker. SIFT-PF is a multiple feature tracker, but, which only uses the color 

histogram for object representation, uses SIFT points to approximate the object center. 

The Mean shift tracker based on histogram analysis is a classical tracking algorithm. It 

is a mode-finding technique that locates the local minimum of the posterior density 

function. Note that, in addition to the Mean shift method, the other trackers (including 

ours) utilize the same particle filtering framework for tracking and use the same 

dynamic model in the experiments. The implementations are all parameterized 

according to the original paper with some tuning. Therefore, the comparison is valid 

because only the observation model changes between our tracker and the other two 

trackers. And everything else keeps consistent. We present some representative frames 

to show the tracking results and also give some statistical analysis to quantify the 

performance of the proposed tracker.  

The first evaluation criteria of the tracking error are based on the relative position 

errors (in pixel) between the center of the tracking result and that of the ground truth. 

Ideally, the position differences should be around zero. 

The first sequence undergoes a significant scale changes, fast motion and clutter 

environment. Some samples of the final tracking results are demonstrated in Figure 4.11, 

where rows 1, 2, 3 and 4 correspond to mean shift, Color-PF, SIFT-PF and our tracker, 

respectively, in which three representative frames (313, 352, 375 ) are shown. It shows a 

blue color vehicle moving from the left top corner of the image to the right bottom. Note 

that the vehicle is small in the image and undergoes scale changes and fast motion.  
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The number of SURF feature point is smaller, thus the performances of our proposed 

tracker are slightly better than the other three trackers. Since the background undergoes 

clutter environment, the position error of these three methods is larger between 340th 

and 360th frame, but all three methods can locate the vehicle position. The quantitative 

comparison of the tracker in terms of position errors is shown in Figure 4.12. 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 Figure 4.11  Tracking results of sequence V1 as it undergoes scale changes and 

clutter. Rows 1, 2, 3 and 4 correspond to Mean shift, Color-PF, SIFT-PF, and our tracker, 

respectively. 
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For second sequence V2, the tracking results are illustrated in Figure 4.13, where rows 

1, 2, 3 and 4 correspond to mean shift, Color-PF, SIFT-PF and our tracker, respectively, 

in which three representative frames (140, 175, 189) are shown. The characteristics of 

target motion are significant deformation and target rotation under curvilinear motion. 

The rotation invariant detectors and descriptors of SURF algorithm offer a good 

compromise between feature complexity and robustness to commonly occurring 

photometric deformations. The tracking results show the mean shift tracker (rows 1) and 

PF-color tracker (rows 2) have large position errors in this challenging situation. And the 

PF-color tracker even occur tracking failure. While SIFT-PF drifts gradually, because it 

only approximates the center point of tracking object using the SIFT feature points. The 

evaluation results of these four algorithms are shown in Figure 4.14. 

The last sequence V3 is a traffic surveillance video which undergoes scale changes and 

illumination changes. Some samples of the tracking results are shown in Figure 4.15, 

where rows 1, 2, 3 and 4 correspond to Mean shift, Color-PF, SIFT-PF and our tracker, 

respectively, in which three representative frames (50, 85, 103) are shown. The 

significant deformation of the moving vehicle leads to poor performance of the mean shift 

tracker (rows 1). Moreover, the PF-color tracker cannot provide accurate state 

information for the moving vehicle. Note that the vehicle is becoming larger, more and 

more the SURF feature points are captured, and the performances of our proposed  
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Figure 4.12  Evaluation results of V1. 
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Figure 4.13  Tracking results of sequence V2 as it undergoes scale changes and 

rotation. Rows 1, 2, 3 and 4 correspond to Mean shift, Color-PF, SIFT-PF, and our tracker, 

respectively. 

 

method are significantly improved. SIFT-PF also succeeds in tracking the target but has 

a larger tracking error compared to our method, and we can see obviously that SIFT-PF 

changes the position of target drastically because of the approximate method of the 

center point of object. SIFT-PF only uses the SIFT feature points. On the contrary, when 

the vehicle starts pulling away, it becomes smaller and smaller since the number of 

feature point is small. The performances of our method are similar to the classical particle 

filter. Figure 4.16 shows the evaluation results of comparison. 

The second evaluation method is this performance measure rewards candidates with a  
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high percentage of true positive pixels, and with few false positives and false negatives 

avoiding the asymmetry problem of other area based measures, which was described in 

section 3.4 experiment results in the Chapter 3. 

In our experiment, the quality measure of a whole track is obtained by averaging P 

value over the frames where the target is visible. Since particle filter is a probabilistic 

algorithm, each tracker is run 50 times for each sequence. The comparison results of these 

four algorithms are shown in Table 4.2. We can see obviously that the target estimation of 

our tracker is more precise than other trackers. 

For the efficiency of algorithm, the computational complexity of proposed method is 

mainly focused on the extracting and matching of local feature points. Under the 

non-optimal condition, comparing the efficiency of the proposed method and SIFT-PF, 

our approach of applying the incremental SURF detection takes 128.5 ms on average, 

the latter takes 168.3 ms. Obviously, our algorithm is superior to contrast method about 

the computational cost, but, the improving of efficiency will be still considered in our 

future work. 

Table 4.2  The evaluation P-value of the tracking data set. 

Target Mean shift Color-PF SIFT-PF Ours 

V1 0.378 0.433 0.556 0.352 

V2 0.404 0.426 0.351 0.193 

V3 0.565 0.280 0.503 0.194 
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Figure 4.14  Evaluation results of V2. 
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Figure 4.15  Tracking results of sequence V3 as it undergoes scale changes and 

illumination changes. Rows 1, 2, 3 and 4 correspond to Mean shift, Color-PF, SIFT-PF, 

and our tracker, respectively. 

 

4.5. Summary 

In this chapter, for the tracking problem of complex conditions, we propose a multiple 

features matching method based on SURF feature for robust vehicle tracking. Firstly, we 

introduce a review of SURF method. Secondly, for further robustness, we propose an 

adaptive update mechanism of feature point including discarding bad feature points and 

adopting the new feature points, and improved the distance kernel function method to  
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allocate the weight of particle. In thorough experiments involving in challenging 

sequences and other state-of-the-art trackers, our approach demonstrates very promising 

performance. The experimental results clearly demonstrate the effectiveness of our 

proposed method. 
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Figure 4.16  Evaluation results of V3. 
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Chapter 5. Multiple target tracking with FM-PHD filter 

In the previous chapter, we introduced two single target tracking methods based on 

PF, however, multiple target tracking can provide more, useful information for decision 

making in the actual visual surveillance systems. In this chapter, we firstly introduce an 

overview of multiple target tracking. Secondly, classical data association methods are 

presented. Lastly, we propose a novel multiple target tracking method with feature 

measurement probability hypothesis density (FM-PHD), and conclude the experimental 

result. 

5.1. Multiple target tracking 

Multiple target tracking (MTT) techniques are fundamentally different from single 

target tracking techniques. The difference lies in the state-space model used. In a single 

target tracking algorithm, the state of only one target is modeled; detections from other 

targets are assumed to be false alarms and problems result when tracking closely-spaced 

or crossing targets. MTT algorithms, however, take the existence of more than one 

target into account simultaneously in their measurement association processes. Figure 

5.1 shows the basic elements of a conventional MTT system. In theory, MTT algorithms 

are capable of tracking closely-spaced and crossing targets. Usually, only one 

measurement is assumed to be produced by each target at a given time and the targets 

are assumed to have independent dynamics. While these assumptions can be relaxed, it 

comes at a high price in terms of computational requirements. 

 

Figure 5.1  Basic elements of a conventional MTT system[22]. 
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The multiple targets tracking problem extends the scenario to a situation where the 

number of targets may not be known and varies with time. The measurements which 

have originated from targets are not known since some of them may be due to false 

alarms. We are now required to estimate the positions of an unknown number of targets, 

based on observations of the targets corrupted by noise, with the possibilities that there 

may be missed detections and that observations may be false alarms due to clutter. In 

addition, the identities of the targets may need to be known to determine their 

trajectories. The usual method for solving this problem is to assign a single-target 

stochastic filter, such as a Kalman filter or an Extended Kalman filter, to each target and 

use a data association technique to assign the correct measurement to each filter. 

The data association problem in multiple targets tracking usually involves in ensuring 

that the correct measurement is given to each stochastic filter so that the trajectories of 

each target can be accurately estimated, which is referred to as measurement-to-track 

association. The three classical approaches to it are the nearest neighbour standard filter 

(NNSF)[20], the joint probabilistic data association filter (JPDAF)[19], and the multiple 

hypothesis tracking (MHT) filter [21][22]. 

The NNSF simply takes the nearest validated measurement to the predicted 

measurement to update each of the target states. This can result in problems since the 

nearest validated measurement may be the same for two different targets. The JPDAF 

computes the joint probabilities for all the pairings between the predicted measurements 

and estimated target states. This technique also has to consider the false alarms from 

spurious measurements but is restricted to a known, fixed number of targets. The ideal 

MHT filter maintains probabilities of all possible associations at each time step. Unlike 

the NNSF and JPDAF, it does not just consider the probabilities from the previous time 

step, which allows for backtracking and also tracks initiation. In practice, it is not 

feasible to keep track of all possible hypotheses, as the computational complexity grows 

exponentially. Techniques for reducing the complexity include gating, to ignore 

irrelevant observations, pruning, to eliminate low probability hypotheses, and merging, 

to combine hypotheses into a single track. Some extensions of these techniques include 

the probabilistic MHT (PMHT)[84] that uses a soft-gating procedure and Monte Carlo 

(MC)-JPDA[85], which uses a sample based on the JPDA algorithm.  

An alternative solution to the multiple targets tracking problem is to view the set of 
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observations collectively, and to try to estimate the set of target states directly, where the 

correct report-to-track association is considered unobservable [86]. The disadvantage of 

this approach is that the continuity of the individual target tracks are not kept. One such 

method uses Finite Set Statistics for multiple target tracking [87], with an approach 

analogous to the recursion used in Bayesian filtering by constructing multiple targets 

posterior distributions. The time required for calculating joint multi-target likelihoods 

grows exponentially with the number of targets so is therefore not very practical for 

sequential target estimation as this may need to be undertaken in real time. A practical 

alternative to Bayesian multiple target tracking was proposed [23] for propagating the 

first-order statistical moment, or probability hypothesis density (PHD), instead of the 

multiple target posterior.  

An overview of this technique is given in the next section and the mathematical 

framework is described in Chapter 3. 

The mathematical foundation of the multiple target filtering methods used in this 

thesis are based on the theory of random finite set(RFS), which was first studied by 

Matheron [88] in the 1970s. Mahler constructed finite set statistics (FISST)[23][86] [89] 

from the mathematical theory of point processes [90] and RFS theory in the mid-1990s 

as a way of extending classical single-sensor, single-target statistics to a multi-sensor, 

multi-target statistics of finite-set variates. The multi-target states and observations are 

represented as Random Finite Sets (RFSs) from which a theoretically optimal Bayesian 

multi-sensor multi-target filter can be derived [87]. The multi-target Bayes filter is not 

tractable for real-time implementations due to the combinatorial complexity of the 

multiple target likelihoods and so the optimal filter must be approximated. A recursive 

approach was proposed to propagate the first-order statistical moment, or expectation, 

of the multi-target posterior distribution based on the Stein-Winter probability 

hypothesis density [91]. This was called the PHD filter [23]. The predictive density is 

approximated by a Poisson point process to track potentially many targets, including 

birth, death and spawning of targets automatically. 

Although the foundation was established in the form of FISST, its relationship to 

conventional probability was not entirely clear. Vo, Singh and Doucet established the 

relationship between FISST and conventional probability [92], which led to the 

development of a SMC multi-target filter. In addition, a SMC implementation of the 
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PHD filter is proposed in the form of a multi-target particle filter which operates on sets 

of observations to provide a multi-modal intensity function from which the multiple 

target states are determined.  

The advantage of the particle PHD filter is that it can track a variable number of 

targets, and estimates both the number of targets and their locations. It avoids the need 

for data association techniques as part of the multiple target frameworks, since the 

identities of the individual targets are not required. In addition to estimating the number 

of targets and their states at each point in time, it is also important in tracking scenarios 

to know the trajectories of the targets and to be able to distinguish among different 

targets. 

The Gaussian mixture probability hypothesis density (GM-PHD) filter was derived 

recently to provide a closed-form solution to the PHD filter [93]. It was shown that, 

under linear Gaussian assumptions, the posterior intensity at any point in time is a 

Gaussian mixture. The means and covariances of the Gaussians are determined from the 

Kalman filtering equations and the weights are calculated according to the PHD filter 

update equation. The multiple target states of the GM-PHD mixture are determined 

from the Gaussian components with the highest weights. It can be shown that Gaussians 

within the mixture track the evolution of individual target states which ensures the 

continuity of target identity. 

5.2. Data association method 

Nearest neighbor method 

The basic solution approach for the MTT problem is the nearest neighbor (NN) 

method [18]. This method allows only the measurement closest in statistical distance to 

the predicted track to be used to update the target state estimate. Nearest neighbor 

method, it easy to implement, less computation, but is only applicable to the 

environment of high signal-to-noise ratio and low target density. In high clutter density 

environment, the associated effect of NN method is often unsatisfactory. The global 

nearest neighbor (GNN) algorithm, is also known as the 2-D assignment algorithm [94] 

to a certain extent improved the tracking effect. In the GNN method, the closest 

measurement in statistical distance to the predicted track is used to update the target 
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state estimate. 

GNN method considers all measurement to clutter, existing track and new track 

association, and selects the best overall hypothesis. At each time step, an association 

matrix containing measurement-to-source likelihoods is formed, and the assignment 

problem is then solved as a convex optimization problem. While being global, GNN 

represents a hard decision for each measurement and only one data association 

hypothesis is thus considered. In some more complex scenarios, making a hard decision 

may be insufficient. 

PDA and JPDA 

The probabilistic data association (PDA) [19] method is based on computing the 

posterior probability of each candidate measurement found in a validation gate, and 

assumes that only one real target is present and all other measurements are Poisson 

distributed clutter. When calculating the equivalent echo, PDA method considers the 

associated gate of each target as a whole, but does not consider the impact of adjacent 

target echo, so it is only applicable to the single or isolated multiple targets environment, 

and has no track initiation and extinction mechanism. 

The joint probabilistic data association (JPDA) [20] method combines all of the 

potential candidates for association to a track in a single statistically most probable 

update, takes account of the statistical distribution of the track errors and clutter, and 

assumes that more than one of the candidates is a target, and the rest are false alarms. 

However, JPDA can only handle a fixed number of targets and its performance suffers 

when targets are closely spaced. 

Multiple hypothesis tracking 

Multiple hypothesis tracking (MHT)[21][22] is a data association method that 

considers association of sequences of measurements and evaluates the probabilities of 

all hypothesis. Quickly, the number of possible hypotheses grows very large, and 

therefore methods to reduce the number of hypotheses have been suggested. These 

include clustering to reduce combinatorial complexity, pruning of low probability 

hypotheses and merging of similar hypotheses. 

MHT exhaustively searches for all possible measurements to tracks associations over 

a number of time intervals so that measurements available at subsequent time intervals 
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can be used to resolve uncertainties in associational formed at present. At each time 

interval, it maintains a number of hypotheses that consider all possible ways of 

associating past measurements to targets. Since a measurement could be clutter, be 

generated by an existing target or be generated by a new born target, a hypothesis may 

discard a measurements as a clutter, and associate it with an existing track or use it to 

initialize a new track while ensuring a measurement is only assigned to one track at 

maximum. As the new set of measurements is available, a new set of hypotheses is 

formed for each existing hypothesis. The hypothesis with the highest posterior 

likelihood is returned. 

While the MHT method attempts to provide all possible hypotheses over a certain 

number of most recent frames and chooses the most likely one, its practicality and 

feasibility are hampered since it requires an enumeration of an exponentially increasing 

number of feasible joint association hypotheses to evaluate probabilities. Due to these 

combinatorial problems, the data association problem makes up the bulk of the 

computational load in multiple targets tracking methods.  

5.3. Random finite set approach to multiple target tracking 

The RFS approach to multi-target tracking provides a Bayesian framework for 

recursive update of the multi-target posterior density with the noisy measurement set 

received at the sensor. The PHD filter is a computationally efficient filter based on the 

RFS framework and can be used to jointly estimate the number of targets and their 

states from the noisy measurement sets available up to the current time interval.  

The main idea behind the RFS approach to multi-target tracking is to first treat the 

collection of targets as a set-valued state called multi-target state and the collection of 

measurements as a set-valued observation, called multi-observation and then to 

characterize uncertainties present in a multi-target tracking problem by modeling these 

set-valued entities as random finite sets. 

Rest of this section presents an overview of the RFS approach to multi-target 

tracking. 
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5.3.1. Random finite set 

In essence, a RFS 𝑋 is simply a finite set-valued random variable whose cardinality 

|𝑋| as well as the values of the individual elements in 𝑋  are also random. The 

randomness of |𝑋| is described by a discrete probability distribution and an appropriate 

density characterizes the joint distribution of the elements of 𝑋 for each |𝑋|. In the 

context of multi-target tracking, the cardinality of |𝑋| could represent the number of 

targets or the number of measurements, and the values of the elements of 𝑋 could 

represent the individual target states or the individual measurements received at the 

sensor. 

Let 𝑁𝑘  be the number of targets present with states, 𝑥𝑘,1, ⋯ , 𝑥𝑘,𝑁𝑘  each taking 

values in a state space 𝒳 ⊆ ℝ𝑛𝑥  at time 𝑘, and 𝑀𝑘  the number of observations 

received, 𝑧𝑘,1, ⋯ , 𝑧𝑘,𝑀𝑘 each taking values in an observation space 𝒵 ⊆ ℝ𝑛𝑧 at time 

𝑘. Let  

𝑋𝑘 = {𝑥𝑘,1, ⋯ , 𝑥𝑘,𝑁𝑘} ∈ ℱ(𝒳)                 (5.1) 

𝑍𝑘 = {𝑧𝑘,1, ⋯ , 𝑧𝑘,𝑀𝑘} ∈ ℱ(𝒵)                 (5.2) 

denote the set of targets and observations received at time 𝑘, where ℱ(𝒳) and ℱ(𝒵) 

denote the respective collections of all finite subsets of 𝒳 and 𝒵. By modeling the 

multi-target state and multi-target observation as RFSs, the multi-target filtering 

problem can be posed as a Bayesian filtering problem with state space ℱ(𝒳) and 

observation space ℱ(𝒵). Given a realization 𝑋𝑘−1 of the multi-target RFS at time 

𝑘 − 1, the behavior of each target with state 𝑥𝑘−1 ∈ 𝑋𝑘−1 is modeled by the RFS 

𝑆𝑘|𝑘−1(𝑥𝑘−1) that can either take on state {𝑥𝑘} with probability 𝑝𝑆,𝑘(𝑥𝑘−1) or ∅ 

with probability 1 − 𝑝𝑆,𝑘(𝑥𝑘−1) . The evolution of 𝑥𝑘  from 𝑥𝑘−1  is modeled by 

𝑓𝑘|𝑘−1(∙ |𝑥𝑘−1). A new target may appear in the horizon either due to spontaneous target 

birth independently of existing targets or by spawning from a target at time 𝑘 − 1. 

Hence at time 𝑘, the multi-target state modeled by the RFS 𝑋𝑘 is given by  

𝑋𝑘 = (⋃ 𝑆𝑘|𝑘−1(𝑥)𝑥∈𝑋𝑘− ) ∪ (⋃ 𝐵𝑘|𝑘−1(𝑥)𝑥∈𝑋𝑘− ) ∪ Γ𝑘,       (5.3) 

where 𝐵𝑘|𝑘−1(𝑥) denotes the RFS of targets spawned at time 𝑘 from the target with 
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state 𝑥 at time 𝑘 − 1 and Γ𝑘 denotes the RFS of spontaneous birth at time 𝑘. It is 

assumed that RFSs 𝑆𝑘|𝑘−1(∙), 𝐵𝑘|𝑘−1(∙) and Γ𝑘 are independent of each other. 

Similarly the RFS observation model incorporates the measurement likelihood, target 

detection uncertainty at the sensor and clutter. Assuming the set-valued observation at 

time 𝑘 is modeled by the RFS 𝑍𝑘, it is obtained as  

𝑍𝑘 = (⋃ Θ𝑘(𝑥)𝑥∈𝑋𝑘 ) ∪ 𝛫𝑘                       (5.4) 

where Θ𝑘(𝑥) denotes the RFS of measurements generated by the single-target state 𝑥 

at time 𝑘, and 𝛫𝑘 denotes the RFS of clutter measurements or false alarms at time 𝑘. 

For each 𝑥𝑘 ∈ 𝑋𝑘, Θ𝑘(𝑥𝑘) either contributes measurement {𝑧𝑘} with a probability of 

detection 𝑝𝐷,𝑘(𝑥𝑘) or ∅ with a probability of 1 − 𝑝𝐷,𝑘(𝑥𝑘). The generation of 𝑧𝑘 

from 𝑥𝑘 is modeled by 𝑔𝑘(∙ |𝑥𝑘). It is assumed that the RFSs Θ𝑘(𝑋𝑘) and 𝛫𝑘 are 

independent of each other. 

The uncertainties in the evolution of 𝑋𝑘 over time and the generation of 𝑍𝑘 can be 

respectively characterized by the multi-target transition density, 𝑓𝑘|𝑘−1(𝑋𝑘|𝑋𝑘−1) and 

the multi-target measurement likelihood, 𝑔𝑘(𝑍𝑘|𝑋𝑘). The multi-target transition density 

incorporates all aspects of the multi-target motion such as the random number of targets, 

individual target dynamics, target birth, target spawning, target death and target 

interactions. Similarly, the multi-target measurement likelihood incorporates all sensor 

characteristics such as the measurement likelihood, the target detection probability and 

clutter models. Given that the multi-target posterior density of the multi-target state 

𝑋𝑘−1 given 𝑍1:𝑘−1, 𝑝𝑘−1(∙ |𝑍1:𝑘−1) is known at time 𝑘 − 1, the multi-target posterior 

density 𝑝𝑘(∙ |𝑍1:𝑘) at time 𝑘 is given by multi-target Bayes filter. 

Traditionally, it is difficult to compute the multi-target transition density and 

measurement likelihood as a Radon-Nikodym derivatives of the appropriate probability 

measures. FISST provides a set of mathematical tools that can be used to construct the 

multi-target transition density and measurement likelihood from the underlying physical 

models of sensors, individual target dynamics, target birth and target death. 

The multi-target Bayes filter 

Given the multi-target posterior density 𝑝𝑘−1(∙ |𝑍1:𝑘−1)  at time 𝑘 − 1 , the 

multi-target density predicted to time 𝑘 is given as 
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𝑝𝑘−1(𝑋𝑘|𝑍1:𝑘−1) = ∫𝑓𝑘|𝑘−1(𝑋𝑘|𝑋𝑘−1) 𝑝𝑘−1(𝑋𝑘−1|𝑍1:𝑘−1)𝜇𝑠(𝑑𝑋𝑘−1)    (5.5) 

where 𝜇𝑠 is an appropriate reference measure on ℱ(𝒳). Detailed description on the 

multi-target Bayes recursion is presented in literature [95]. 

The updated multi-target posterior density (or the multi-target filtered density) 

𝑝𝑘(∙ |𝑍1:𝑘) is obtained from the predicted multi-target density using the measurement 

𝑍𝑘 set available at time 𝑘 as 

𝑝𝑘(𝑋𝑘|𝑍1:𝑘) =
𝑔𝑘(𝑍𝑘|𝑋𝑘)𝑝𝑘|𝑘− (𝑋𝑘|𝑍 :𝑘− )

∫𝑔𝑘(𝑍𝑘|𝑋)𝑝𝑘|𝑘− (𝑋|𝑍 :𝑘− )𝜇𝑠(𝑑𝑋)
              (5.6) 

While the full Bayes filters have been used in practice with success for a small 

number of targets, it is computationally intractable as the number of targets increases. 

Analogous to the Kalman filter that provides a computationally efficient approximation 

to the theoretically optimal single-target Bayes filter, an approximation to the 

multi-target Bayes filter, called the PHD filter has been proposed by Mahler in 

literatures [87][23]. The basic idea is to approximate the multi-target posterior density 

by its first order statistical moments and to propagate it with the PHD filter. 

5.3.2. Probability hypothesis density filter 

The optimal multi-target Bayesian recursions are computationally intractable. The 

FISST theory provides a powerful tool that allows the extension of the Bayesian 

inference to multi-target tracking cases directly. The probability hypothesis density 

(PHD) filter is a suboptimal alternative to the multi-target Bayes filter. Instead of 

propagating the multi-target posterior density in time, the PHD filter propagates the 

posterior intensity of the RFS of targets, a first-order statistical moment of the posterior 

multi-target state, and does not require any data association computations. 

For a RFS 𝑋 on 𝒳 ⊆ ℝ𝑛𝑥 with a probability distribution 𝒫, its first order moment, 

is a non-negative function 𝑣 on 𝒳, called the intensity or the PHD function, with the 

property that for any closed subset 𝑆 ⊆ 𝒳  

∫ 𝑣(𝑥)𝑑𝑥
𝑆

= ∫|𝑋 ∩ 𝑆|𝒫(𝑑𝑋)                   (5.7) 
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where |𝑋| denotes the cardinality of 𝑋. Given the intensity function 𝑣, its integral 

over any region 𝑆 gives an estimate for the number of elements in 𝑋 that are present 

in 𝑆. The local maxima of the intensity function 𝑣 are points in 𝒳 with the highest 

local concentration of expected number of elements, and hence can be used to generate 

estimates for the elements of 𝑋. 

PHD recursion 

The PHD filter is a computationally cheaper alternative to propagating the 

multi-target posterior density recursively in time and propagates the posterior intensity 

function of the multi-target RFS as follows: Given the posterior intensity 𝑣𝑘−1 at time 

𝑘 − 1, the intensity function vk|k−1 to time 𝑘 is predicted as 

𝑣𝑘|𝑘−1(𝑥) = ∫[𝑝𝑆,𝑘(𝜉)𝑓𝑘|𝑘−1(𝑥|𝜉) + 𝛽𝑘|𝑘−1(𝑥|𝜉)] 𝑣𝑘−1(𝜉)𝑑𝜉 + 𝛾𝑘(𝑥)     (5.8) 

and the posterior intensity vk at time 𝑘 is updated as 

𝑣𝑘(𝑥) = [1 − 𝑝𝐷,𝑘(𝑥)]𝑣𝑘|𝑘−1(𝑥) + ∑
𝑝𝐷,𝑘(𝑥)𝑔𝑘(𝑧|𝑥)𝑣𝑘|𝑘− (𝑥)

𝜅𝑘(𝑧)+∫𝑝𝐷,𝑘(𝜉)𝑔𝑘(𝑧|𝜉)𝑣𝑘|𝑘− (𝜉)𝑑𝜉
𝑧∈𝑍𝑘     (5.9) 

where 𝜅𝑘(∙)  is the intensity of the clutter RFS and equals 𝜆𝑐𝑐𝑘(𝑧) ; 𝑍𝑘  is the 

multi-target measurement available at time 𝑘 ; 𝛾𝑘(∙)  denotes the intensity of 

spontaneous target birth; 𝛽𝑘|𝑘−1(∙ |𝜉) denotes the intensity of the target RFS spawned 

by a target of previous state 𝜉 at time 𝑘; and 𝑐𝑘(∙) denotes the clutter density that is 

often assumed to be uniform density in the literature.  

For the recursion given in formula (5.8) and (5.9), the following assumptions hold: 

1). Each target evolves and generates measurements independently of one 

another; 

2). The birth RFS and the surviving RFSs are independent of each other; 

3). The clutter RFS is Poisson and independent of the measurement RFSs; 

4). The predicted multi-target RFS is Poisson. 

First three assumptions are common in most multi-target applications. The fourth 

assumption is a simplification needed to derive the PHD update. A RFS 𝑋 is a Poisson 

with the mean 𝑁 = ∫𝑣(𝑥)𝑑𝑥  and given a cardinality, elements of 𝑋  are i.i.d. 

according to 𝑣 𝑁⁄ . Thus a Poisson RFS is completely characterized by its intensity. 
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5.3.3. Implementations of PHD filter 

Though the PHD recursion consists of equations that are considerable simpler than 

those of the multi-target Bayes filter, it still requires solving multi-dimensional integrals 

that does not have closed-form solutions in general.  

The PHD filter is a computationally efficient approximation of the RFS Bayes 

multi-target filter, which propagates the first moment or the intensity function of the 

multi-target RFS. Nevertheless, the PHD recursion requires solving multi-dimensional 

integrals that does not have closed-form solutions in general. SMC methods provide a 

way of solving such integrals and a generalized SMC implementation of PHD filter, 

called the SMC-PHD filter has been proposed in literatures [95] [96]. 

However, the existing SMC implementations of the PHD filter only provide the state 

estimates of individual targets. It keeps no record of the target identities and avoids the 

problem of associating the state estimates obtained at each time interval to individual 

targets. Recently, some attempts have been made to address the task of associating 

individual state estimates to their respective targets for the SMC-PHD filter [97][98]. 

Sequential Monte Carlo implementation 

For general multi-target models that include nonlinear and non-Gaussian target 

dynamical models, the SMC approximation of the PHD filter has been proposed as a 

general multi-target tracking algorithm. At each time step the posterior intensity 

function is approximated by a weighted set of particles, from which the state estimates 

of individual targets are generated via standard clustering techniques. The expected 

number of the targets is given by the sum of the particle weights. 

Given an initial intensity function 𝑣0  at time step 𝑘 =   and the sequence of 

measurement sets 𝑍1:𝑘 up to time step 𝑘, the posterior intensity function at time step 

𝑘 >   is given as follows. 

Initialization Step: At time step 𝑘 =  , the SMC-PHD filter is initialized with the 

particle representation of the initial intensity function 𝑣0, i.e., {𝑥0
(𝑖)
, 𝑤0

(𝑖)
}
𝑖=1

𝐿0
, such that  

𝑣0(𝑥) = ∑ 𝑤0
(𝑖)𝛿(𝑥 − 𝑥0

(𝑖)
)

𝐿0
𝑖=1                    (5.10) 

where 𝛿(𝑥) is the Dirac delta function, 𝐿0  is the number of particles at 𝑘 =  , 
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𝑤0
(𝑖)
= 𝑁0 𝐿0⁄  and 𝑁0 denotes the number of targets at 𝑘 =  .  

Prediction Step: For time step 𝑘 >  , given that the intensity function 𝑣𝑘−1 at time 

step 𝑘 − 1 is approximated by the set of particles and their weights, {𝑥𝑘−1
(𝑖)
, 𝑤𝑘−1

(𝑖)
}
𝑖=1

𝐿𝑘− 
 

as 

𝑣𝑘−1(𝑥) = ∑ 𝑤𝑘−1
(𝑖) 𝛿(𝑥 − 𝑥𝑘−1

(𝑖)
)

𝐿𝑘− 
𝑖=1                (5.11) 

The predicted intensity function 𝑣𝑘|𝑘−1 at time step 𝑘 is given by 

𝑣𝑘|𝑘−1(𝑥) = ∑ 𝑤̃𝑘|𝑘−1
(𝑖) 𝛿(𝑥 − 𝑥̃𝑘

(𝑖)
)

𝐿𝑘− +𝐽𝑘
𝑖=1            (5.12) 

where  

𝑥̃𝑘
(𝑖)
~{

𝑞𝑘(∙ |𝑥𝑘−1
(𝑖)
, 𝑍𝑘), 𝑖 = 1,⋯ , 𝐿𝑘−1

𝑝𝑘(∙ |𝑍𝑘), 𝑖 = 𝐿𝑘−1 + 1,⋯ , 𝐿𝑘−1 +  𝑘
       (5.13) 

and 

𝑤̃𝑘|𝑘−1
(𝑖) =

{
 
 

 
 
𝜙
𝑘|𝑘− (𝑥̃

𝑘
(𝑖)
,𝑥
𝑘− 
(𝑖)

)

𝑞𝑘(𝑥̃𝑘
(𝑖)
|𝑥𝑘− 
(𝑖)

,𝑍𝑘)
𝑤𝑘−1
(𝑖)
, 𝑖 = 1,⋯ , 𝐿𝑘−1

1

𝐽𝑘

𝛾𝑘(𝑥̃𝑘
(𝑖)
)

𝑝𝑘(𝑥̃𝑘
(𝑖)
|𝑍𝑘)

, 𝑖 = 𝐿𝑘−1 + 1,⋯ , 𝐿𝑘−1 +  𝑘

   (5.14) 

In the particle representation of 𝑣𝑘|𝑘−1, the 𝐿𝑘−1 particles are predicted forward 

from time step 𝑘 − 1 by the kernel 𝜙𝑘|𝑘−1 and the additional  𝑘 particles are drawn 

to detect the new born targets. The number of particles drawn at each time step can be 

function of time step 𝑘 to accommodate the time-varying number of the new born 

targets so long as the average number of the new born particles per target is maintained, 

i.e.,  𝑘 = 𝜌∫𝛾𝑘(𝑥)𝑑𝑥 and 𝜌 denotes the number of particles per target. 

Update Step: Given that the particle representation of the predicted intensity function 

is available at time step 𝑘, i.e., {𝑥̃𝑘
(𝑖)
, 𝑤̃𝑘|𝑘−1

(𝑖)
}
𝑖=1

𝐿𝑘− +𝐽𝑘
, the updated intensity function 𝑣𝑘 

is given by 

𝑣𝑘(𝑥) = ∑ 𝑤̃𝑘
(𝑖)𝛿(𝑥 − 𝑥̃𝑘

(𝑖)
)

𝐿𝑘− +𝐽𝑘
𝑖=1                (5.15) 
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For 𝑖 = 1,⋯ , 𝐿𝑘−1 +  𝑘, the particle weight 𝑤̃𝑘
(𝑖)

 is updated as 

𝑤̃𝑘
(𝑖) = [1 − 𝑝𝐷,𝑘(𝑥̃𝑘

(𝑖)
) + ∑

𝑝𝐷,𝑘(𝑥̃𝑘
(𝑖)
)𝑔𝑘(𝑧|𝑥̃𝑘

(𝑖)
)

𝜅𝑘(𝑧)+𝐶𝑘(𝑧)
𝑧∈𝑍𝑘 ] 𝑤̃𝑘|𝑘−1

(𝑖)
     (5.16) 

where 𝐶𝑘(𝑧) = ∑ 𝑝𝐷,𝑘(𝑥̃𝑘
(𝑗)
)𝑔𝑘(𝑧|𝑥̃𝑘

(𝑗)
)

𝐿𝑘− +𝐽𝑘
𝑗=1 𝑤̃𝑘|𝑘−1

(𝑗)
. The update step of the 

SMC-PHD filter uses the measurement set Zk to update the particle weights at each 

time step. 

Resampling Step: Given a particle representation of the updated intensity function 𝑣𝑘, 

i.e., {𝑥̃𝑘
(𝑖)
, 𝑤̃𝑘

(𝑖)
}
𝑖=1

𝐿𝑘− +𝐽𝑘
, the new set of particles and their weights, i.e., 

{𝑥𝑘
(𝑖)
, 𝑤𝑘

(𝑖)
𝑁̃𝑘⁄ }

𝑖=1

𝐿𝑘
 are obtained by resampling from {𝑥̃𝑘

(𝑖)
, 𝑤̃𝑘

(𝑖)
𝑁̃𝑘⁄ }

𝑖=1

𝐿𝑘− +𝐽𝑘
, where 

𝑁̃𝑘 = ∑ 𝑤̃𝑘
(𝑖)𝐿𝑘− +𝐽𝑘

𝑖=1  denotes the estimate of the target number at time step 𝑘. The 

particle weights are scaled by 𝑁̃𝑘  so that the sum of the particle weights in the 

resampled particle set is the same as before. 

The resampling step is needed in the filter to avoid the problem of degeneracy as a 

number of the particle weights would otherwise become negligible after a few iterations. 

It should be noted that the resampling step given above maintains the number of 

particles per target constant so that the number of particle does not increase with time, 

i.e., 𝐿𝑘 = 𝜌𝑁̃𝑘. Otherwise, we have 𝐿𝑘 = 𝐿𝑘−1 +  𝑘 as the  𝑘 number of particles are 

added at each time step.  

Once the SMC-PHD filter is initialized at time step 𝑘 =  , the prediction, update and 

resampling steps are repeated at the subsequent time steps as the measurement set 𝑍𝑘 

becomes available. 

Multi-target state estimation 

From the particle representation of the posterior intensity {𝑥𝑘
(𝑖)
, 𝑤𝑘|𝑘−1

(𝑖)
}
𝑖=1

𝐿𝑘
at each 

time step, the state estimates of the individual targets are generated by extracting peaks 

of 𝑣𝑘 via clustering.  

This has been commonly achieved via the Expectation Maximization (EM) method in 

literature [99] and the k-means algorithm in literature [95]. 

Gaussian mixture implementation 
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The PHD recursion does not admit closed-form solutions in general. However, for a 

limited case of multi-target tracking problems, a closed-form solution exists and is 

given by the Gaussian mixture probability hypothesis density (GM-PHD) filter 

[93][100]. Under linear Gaussian assumptions on the target motion and the observation 

model, and Gaussian assumption on the target birth, the posterior intensity function is 

approximated by a sum of Gaussians whose means, covariances and weights are 

analytically propagated in time. 

The GM-PHD recursion forms the basis of a general multi-target tracking algorithm, 

the GM-PHD filter, which has been shown to track an unknown and time-varying 

number of targets. 

The GM-PHD recursion propagates the intensity function that is approximated with a 

Gaussian mixture by analytically propagating the weights, means and covariances of the 

Gaussian mixture terms. The updated intensity function is also a Gaussian mixture. 

Linear multi-target models 

The linear Gaussian multiple target model includes a number of assumptions on the 

birth, death and detection of targets as well as the linear Gaussian assumptions on the 

target dynamical model. The assumptions are summarized below. 

Each target follows a linear Gaussian dynamical model and the sensor has a linear 

Gaussian measurement model, i.e., 

𝑓𝑘|𝑘−1(𝑥|𝜁) = 𝒩(𝑥; 𝐹𝑘−1𝜁, 𝑄𝑘−1),               (5.17) 

𝑔𝑘(𝑧|𝑥) =  𝒩(𝑧;𝐻𝑘𝑥, 𝑅𝑘),                   (5.18) 

where 𝒩(∙;𝑚, 𝑃) denotes a Gaussian density with mean 𝑚 and covariance 𝑃, 𝐹𝑘−1 

is the state transition matrix, 𝑄𝑘−1  is the process noise covariance, 𝐻𝑘  is the 

observation matrix, and 𝑅𝑘 is the observation noise covariance. 

The survival and detection probabilities are both state independent, i.e., 

𝑝𝑆,𝑘(x) = 𝑝𝑆,𝑘,                           (5.19) 

𝑝𝐷,𝑘(𝑥) = 𝑝𝐷,𝑘.                           (5.20) 
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The intensities of the birth and spawn RFSs are Gaussian mixtures of the form 

𝛾𝑘(𝑥) = ∑ 𝑤𝛾,𝑘
(𝑖)𝐽𝛾,𝑘

𝑖=1
 𝒩(𝑥;𝑚𝛾,𝑘

(𝑖) , 𝑃𝛾,𝑘
(𝑖))               (5.21) 

𝛽𝑘|𝑘−1(𝑥|𝜁) = ∑ 𝑤𝛽,𝑘
(𝑗)𝐽𝛽,𝑘

𝑗=1
𝒩(𝑥; 𝐹𝛽,𝑘−1

(𝑗)
𝜁 + 𝑑𝛽,𝑘−1

(𝑗)
, 𝑄𝛽,𝑘−1

(𝑗)
)     (5.22) 

where  𝛾,𝑘 , 𝑤𝛾,𝑘
(𝑖)

, 𝑚𝛾,𝑘
(𝑖)

, 𝑃𝛾,𝑘
(𝑖)

, 𝑖 = 1,⋯ ,  𝛾,𝑘 , are given model parameters that 

determine the shape of the birth intensity;  similarly,  𝛽,𝑘, 𝑤𝛽,𝑘
(𝑗)

, 𝐹𝛽,𝑘−1
(𝑗)

, 𝑑𝛽,𝑘−1
(𝑗)

, and 

𝑄𝛽,𝑘−1
(𝑗)

, 𝑗 = 1,⋯ ,  𝛽,𝑘, determine the shape of the spawning intensity of a target with 

previous state 𝜁.  

The GM-PHD recursion consists of the following prediction and update steps. 

Prediction Step: Given that the posterior intensity 𝑣𝑘−1 at time step 𝑘 − 1 is a 

Gaussian mixture of the form 

𝑣𝑘−1(𝑥) = ∑ 𝑤𝑘−1
(𝑖)𝐽𝑘− 

𝑖=1  𝒩(𝑥;𝑚𝑘−1
(𝑖) , 𝑃𝑘−1

(𝑖) )             (5.23) 

Then, the predicted intensity to time step 𝑘 is also a Gaussian mixture and is given 

by 

𝑣𝑘|𝑘−1(𝑥) = 𝑣S,k|k−1(𝑥) + 𝑣β,k|k−1(𝑥) + 𝛾𝑘(𝑥)         (5.24) 

where 𝛾𝑘(𝑥) is given in formula (5.21). 

𝑣𝑆,k|k−1(𝑥) = 𝑝𝑆,𝑘 ∑ 𝑤𝑘−1
(𝑗)𝐽𝑘− 

𝑗=1 𝒩(𝑥;𝑚𝑆,𝑘|𝑘−1
(𝑗)

, 𝑃𝑆,𝑘|𝑘−1
(𝑗)

)       (5.25) 

𝑚𝑆,𝑘|𝑘−1
(𝑗)

= 𝐹𝑘−1𝑚𝑘−1
(𝑗)
,                     (5.26) 

𝑃𝑆,𝑘|𝑘−1
(𝑗)

= 𝑄𝑘−1 + 𝐹𝑘−1𝑃𝑘−1
(𝑗) (𝐹𝑘−1)

𝑇,             (5.27) 

𝑣β,k|k−1(𝑥) = ∑ ∑ 𝑤𝑘−1
(𝑗)𝐽𝛽,𝑘

𝑙=1
𝐽𝑘− 
𝑗=1 𝑤𝛽,𝑘

(𝑙)𝒩(𝑥;𝑚𝛽,𝑘|𝑘−1
(𝑗,𝑙)

, 𝑃𝛽,𝑘|𝑘−1
(𝑗,𝑙)

),     (5.28) 
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𝑚𝛽,𝑘|𝑘−1
(𝑗,𝑙)

= 𝐹𝑘−1
(𝑙)
𝑚𝑘−1
(𝑗)

+ 𝑑𝛽,𝑘−1
(𝑙)

,                (5.29) 

𝑃𝛽,𝑘|𝑘−1
(𝑗,𝑙)

= 𝑄𝛽,𝑘−1
(𝑙)

+ 𝐹𝛽,𝑘−1
(𝑙)

𝑃𝛽,𝑘−1
(𝑗)

(𝐹𝛽,𝑘−1
(𝑙)

)
𝑇

.          (5.30) 

Update Step: Assuming that the predicted intensity 𝑣𝑘|𝑘−1 to time step 𝑘 is a 

Gaussian mixture of the form 

𝑣𝑘|𝑘−1(𝑥) = ∑ 𝑤𝑘|𝑘−1
(𝑖)𝐽𝑘|𝑘− 

𝑖=1
𝒩(𝑥;𝑚𝑘|𝑘−1

(𝑖)
, 𝑃𝑘|𝑘−1
(𝑖)

)         (5.31) 

The posterior intensity 𝑣𝑘 at time step 𝑘 is also a Gaussian mixture, and is given by  

𝑣𝑘(𝑥) = (1 − 𝑝𝐷,𝑘)𝑣𝑘|𝑘−1(𝑥) + ∑ 𝑣𝐷,𝑘(𝑥; 𝑧)𝑧∈𝑍𝑘         (5.32) 

where 

𝑣𝐷,𝑘(𝑥; 𝑧) = ∑ 𝑤𝑘
(𝑗)(𝑧)

𝐽𝑘|𝑘− 
𝑗=1

𝒩(𝑥;𝑚𝑘|𝑘
(𝑗) (𝑧), 𝑃𝑘|𝑘

(𝑗)
),       (5.33) 

𝑤𝑘
(𝑗)(𝑧) =

𝑝𝐷,𝑘𝑤𝑘|𝑘− 
(𝑗)

𝑞𝑘
(𝑗)
(𝑧)

𝜅𝑘(𝑧)+𝑝𝐷,𝑘∑ 𝑤𝑘|𝑘− 
(𝑙)

𝑞𝑘
(𝑙)
(𝑧)

𝐽𝑘|𝑘− 
𝑙= 

,            (5.34) 

𝑞𝑘
(𝑗)(𝑧) = 𝒩 (𝑧;𝐻𝑘𝑚𝑘|𝑘−1

(𝑗)
, 𝑅𝑘 +𝐻𝑘𝑃𝑘|𝑘−1

(𝑗) (𝐻𝑘)
𝑇),       (5.35) 

𝑚𝑘|𝑘
(𝑗) (𝑧) = 𝑚𝑘|𝑘−1

(𝑗)
+ 𝐾𝑘

(𝑗)
(𝑧 − 𝐻𝑘𝑚𝑘|𝑘−1

(𝑗)
),          (5.36) 

𝑃𝑘|𝑘
(𝑗)
= [𝐼 − 𝐾𝑘

(𝑗)
𝐻𝑘]𝑃𝑘|𝑘−1

(𝑗)
,                    (5.37) 

𝐾𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
(𝐻𝑘)

𝑇 (𝐻𝑘𝑃𝑘|𝑘−1
(𝑗) (𝐻𝑘)

𝑇 + 𝑅𝑘)
−1

.           (5.38) 

The prediction step and update step of the GM-PHD recursion forms the basis of a 

general multi-target tracking algorithm, called the GM-PHD filter. Given that an initial 

intensity function 𝑣0 at time step 𝑘 =   is a known Gaussian mixture, the posterior 

intensity function at time step 𝑘 >   is also a Gaussian mixture from which the 

estimates of individual target states need to be extracted via peak extractions. The 
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expected number of targets 𝑁̂𝑘|𝑘−1  and 𝑁̂𝑘  associated with 𝑣𝑘|𝑘−1  and 𝑣𝑘  are 

obtained by summing the appropriate mixture weights. The closed-form recursions for  

𝑁̂𝑘|𝑘−1 and 𝑁̂𝑘 are as follows: 

𝑁̂𝑘|𝑘−1 = 𝑁̂𝑘−1 (𝑝𝑆,𝑘 + ∑ 𝑤𝛽,𝑘
(𝑗)𝐽𝛽,𝑘

𝑗=1
) + ∑ 𝑤𝛾,𝑘

(𝑗)𝐽𝛾,𝑘
𝑗=1

,            (5.39) 

𝑁̂𝑘 = 𝑁̂𝑘|𝑘−1(1 − 𝑝𝐷,𝑘) + ∑ ∑ 𝑤𝑘
(𝑗)(𝑧)

𝐽𝑘|𝑘− 
𝑗=1𝑧∈𝑍𝑘 .            (5.40) 

The estimate of the target number given above suffers from the instability in the low 

probability of target detection. 

Given that the posterior intensity function at each time step is a mixture of weighted 

Gaussian terms, the means of all Gaussian terms give the local maxima of the intensity 

function. For the multi-target state estimation, given that a weight threshold is 𝑤𝑇ℎ, the 

state estimates of individual targets are obtained by selecting means of the Gaussian 

terms with weights greater than 𝑤𝑇ℎ,  

𝑋̂𝑘 = {𝑚𝑘
(𝑖)
: 𝑤𝑘

(𝑖)
> 𝑤𝑇ℎ}.                       (5.41) 

As a result, the GM-PHD filter avoids the need for standard clustering techniques that 

are needed in the SMC-PHD filter. 

5.4. Multiple target tracking based on PHD filter and feature 

measurement 

As pointed out in the previous section, the GM-PHD filter can track an unknown and 

time-varying number of targets. For tracking moving objects in the video sequences, 

how to apply GM-PHD filter and extract the feature measurement random set is a 

challenge. In this section, we are motivated by the work in literature [23], and propose a 

method for extracting the feature measurement random set.  

Let 𝑍𝑘 = {𝑧1, ⋯ , 𝑧𝑘} is the multi-target measurement set. The posterior intensity is 

defined as 

𝑣𝑘|𝑘−1(𝑥) = 𝑣𝑘|𝑘−1(𝑥|𝑍
(𝑘−1))                   (5.42) 
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𝑣𝑘(𝑥) = 𝑣𝑘(𝑥|𝑍
(𝑘))                       (5.43) 

𝑣𝑘|𝑘−1[ℎ] = ∫ℎ(𝑥)𝑣𝑘|𝑘−1(𝑥) 𝑑𝑥                   (5.44) 

Assume that 𝑓𝑘|𝑘−1(𝑋|𝑍
(𝑘−1)) is approximately Poisson, i.e., 

𝑓𝑘|𝑘−1(𝑋|𝑍
(𝑘−1)) ≅ 𝑒−𝜇𝜇𝑛𝑠(𝑥1)⋯𝑠(𝑥𝑛)             (5.45) 

The generating function of posterior density, 𝐺𝑘|𝑘−1[ℎ] at time 𝑘 − 1 has this form 

 𝐺𝑘|𝑘−1[ℎ] = 𝑒
𝜇𝑠[ℎ]−𝜇. For some 𝜇    and probability density 𝑠(𝑥), in which case 

𝑣𝑘|𝑘−1(𝑥|𝑍
(𝑘−1)) = 𝜇 ∙ 𝑠(𝑥) , where 𝑠[ℎ] = ∫ ℎ(𝑥)𝑠(𝑥)𝑑𝑥 ,  ℎ(𝑥) is a real-valued 

function. Then, the PHD approximate Bayes corrector equation is 

𝑣𝑘(𝑥) ≅ 𝐹𝑘(𝑍𝑘|𝑥)𝑣𝑘|𝑘−1(𝑥)                  (5.46) 

where 

𝐹𝑘(𝑍|𝑥) = ∑
𝑃𝐷,𝑘(𝑥)𝐿𝑧(𝑥)

𝜆𝑐(𝑧)+𝑣𝑘|𝑘− [𝑃𝐷𝐿𝑧]
𝑧∈𝑍𝑘 + 1 − 𝑝𝐷,𝑘(𝑥)        (5.47) 

For the detailed proof process, the reader is referred to the section VIK in literature 

[23].Where 𝐿𝑘,𝑧(𝑥) = 𝑓𝑘(𝑧|𝑥) is the sensor likelihood function, hereafter abbreviated 

as 𝐿𝑧(𝑥). And, we also suppose that the sensor has an infinite field of view, such as 

𝑃𝐷,𝑘(𝑥) = 𝑃𝐷 is a constant. We suppose no missed detections and no false alarms can 

occur in the update stage of PHD. Given that 𝑃𝐷,𝑘(𝑥) = 1, then, we can obtain the 

posterior intensity 𝑣𝑘(𝑥) at time 𝑘. 

𝑣𝑘(𝑥) ≅ ∑ 𝑣𝑘(𝑥|𝑧)𝑧∈𝑍𝑘                      (5.48) 

where 

𝑣𝑘(𝑥|𝑧) =
𝐿𝑧(𝑥)

𝑣𝑘|𝑘− [𝐿𝑧]
𝑣𝑘|𝑘−1(𝑥)                  (5.49) 

So, we can obtain the approximate posterior intensity 𝑣𝑘(𝑥) 

𝑣𝑘(𝑥) ≅ 𝑣𝑘(𝑥) = 𝐿𝑧(𝑥) 𝑣𝑘|𝑘−1(𝑥)                    (5.50) 
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where 𝐿𝑧(𝑥) is the sensor likelihood function. In visual tracking, we can adopt the 

feature histogram model of tracking object to evaluate this feature likelihood, and find 

the feature measure random set. 

5.4.1. State vector and dynamic model 

The state vector at time 𝑘 of a single object typically consists of kinematic and 

region parameters. In this paper, the moving object is modeled by a rectangular 

bounding box defined in terms of the dynamic state 

X = {𝑥, 𝑥̇, 𝑦, 𝑦̇, ℎ𝑥, ℎ𝑦}
T
                       (5.51) 

where x and y represent the center coordinates of the rectangular box for tracking an 

object, 𝑥̇ and 𝑦̇ represent the respective velocity components, ℎ𝑥, ℎ𝑦 denote the height 

and width of half axes, respectively. And, the state dynamic is typically described by 

Xk = 𝐴Xk−1 + 𝐵𝑤𝑘−1,                        (5.52) 

where A and B are the deterministic components of the model, and  𝑤𝑘−1 is a Gaussian 

distribution of zero mean with covariance matrix 𝑄 = 𝑑𝑖𝑎𝑔 { 𝜎𝑥
2, 𝜎𝑦

2, 𝜎ℎ𝑥
2 , 𝜎ℎ𝑦

2 } , 

describing the uncertainty in the state vector. 

𝐴 =

[
 
 
 
 
 
1   
 1  
  1

   
   
   

   
   
   

1   
 1  
  1]

 
 
 
 
 

                       (5.53) 

𝐵 =

[
 
 
 
 
 
 
  
2 2⁄  
  
  2 2⁄

          

         

          

         

         

        

  
 2 2⁄  

  2 2⁄ ]
 
 
 
 
 
 
 

                    (5.54) 
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5.4.2. Monte Carlo sampling 

In this step, we obtain the feature measurement random set by Monte Carlo sampling. 

For feature measurement, we adopt the color and texture features, which are described 

in detail in section 3.3.2 feature likelihood models in Chapter 3. 

At time 𝑘, we firstly compute the predicted intensity 𝑣𝑘|𝑘−1(𝑥), which is a Gaussian 

mixture. Next, we sample particles {𝑥𝑖 , 𝑙𝑖, 𝑤𝑖}
𝑖=1

𝑁
 from 𝑣𝑘|𝑘−1(𝑥) by the Monte Carlo 

method, where 𝑤𝑖  is the weight for particle 𝑥𝑖 , 𝑙𝑖 is the integer label of particle 

𝑥𝑖 .Then, the posterior intensity 𝑣𝑘(𝑥) will be approximated by {𝑥𝑖 , 𝑙𝑖, 𝜑𝑖}, where 

𝜑𝑖 = 𝐿(𝑥𝑖)𝑤𝑖. Next, the particles set will be re-sampled and clustered. To accurately 

express the appearance of tracking target, we adopt the color and texture feature to 

present the sampling particles. Lastly, by fusing the color and LBP texture measurement 

to obtain the feature measurement, we can obtain the measurement result set 𝑍𝑓,𝑘 at 

time 𝑘. 

𝑍𝑓,𝑘 = {𝑍𝑓,1, ⋯ , 𝑍𝑓,𝑛}                        (5.55) 

where 𝑍𝑓,𝑖 is the center state of 𝑖-th cluster, n is the number of tracking target, and 

𝑓 ∈ {𝐶,  }, 𝐶 and   denote the color and texture feature, respectively. Note that these 

associated cluster indices at time 𝑘 for each of the cluster created at time 𝑘, we adopt 

the cluster labels to associate each cluster. So we sum the weights associated with the 

particles in each group with the same label.  

5.4.3. Feature measurement fusion 

In the tracking process, there are complex conditions, such as illumination changes, 

partial occlusion, and similar backgrounds. Use of a single feature is inadequate for 

meeting the tracking needs, although the computational complexity of the weighted 

algorithm is low. Multiple-feature fusion can better utilize information provided by the 

features supplementing each other and can improve the robustness of the algorithm. 

Thus, according to the above description, we apply an adaptive weight to fuse the color 

and texture measurement. 

𝑍𝐹,𝑘 = α ∙ 𝑍𝐶,𝑘 + (1 − 𝛼) ∙ 𝑍𝑇,𝑘                     (5.56) 
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where, 𝑍𝐶,𝑘 denotes the color measurement set, 𝑍𝑇,𝑘 denotes the texture measurement, 

𝑍𝐹,𝑘 denotes the fusion feature measurement set at time 𝑘, α is the proportion to the 

number of color particle weight larger than a threshold  𝐻 in the color and texture 

feature. In the experiment, we set  𝐻=0.5. Note that the larger the value is, the more 

similar color feature distributions.  

Algorithm flow 

The flow of the proposed tracking algorithm is described as follows: 

Input: Video frames 𝐹1, 𝐹2, ⋯ , 𝐹𝑛. 

Output: Target regions according to target states in each frame. 

Algorithm: 

(1) Select the target objects in initializing frame manually, and calculate the 

appearance model with color and texture feature for the first frame. 

(2) Initialize the corresponding parameters of Gaussian mixture 

{𝑤𝑘−1
(𝑖)
, 𝑚𝑘−1

(𝑖)
, 𝑃𝑘−1
(𝑖)
}
𝑖=1

𝐽𝑘− 
, the measurement set 𝑍𝑐,𝑘  and 𝑍𝑡,𝑘  and form the 

posterior intensity corresponding to the formula (5.23). 

(3) Input a new frame and predict the birth targets {𝑤𝑘|𝑘−1
(𝑗)

, 𝑚𝑘|𝑘−1
(𝑗)

, 𝑃𝑘|𝑘−1
(𝑗)

}
𝑗=1

𝐽𝛾,𝑘
. 

(4) Predict the survival targets {𝑤𝑘|𝑘−1
(𝑖)

,𝑚𝑘|𝑘−1
(𝑖)

, 𝑃𝑘|𝑘−1
(𝑖)

}
𝑖=1

𝐽𝑘− 
 according to the 

formulas (5.25),(5.26) and (5.27). 

(5) Calculate the color and texture measurements 𝑍𝑐,𝑘, 𝑍𝑡,𝑘, and form feature 

measurement 𝑍𝑘 according to the formula (5.56). 

(6) Update the Gaussian mixture components of missing targets and existing 

targets {𝑤𝑘
(𝑖)
, 𝑚𝑘

(𝑖)
, 𝑃𝑘
(𝑖)
}
𝑖=1

𝐽𝑘− +𝐽𝛾,𝑘
. 

(7) Prune and merge the number of Gaussian components. 

(8) Estimate the number of targets, extract the target state and draw the tracking 

rectangle in current frame. 

(9) Update the reference model of color and texture feature of tracking targets and 

go to step 3. 
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5.5. Experiment results 

Test conditions 

The results presented in this section were obtained on a dataset of targets extracted 

from three different test sequences (Figure 5.2). First tracking sequence S1 was taken 

from an on-board camera on the highway. Second tracking sequences S2 was from a 

public dataset [39]. Third tacking sequences S3 was extracted from the PETS 2001 

dataset [38].The parameters of the tracker were set experimentally and were different for 

different datasets. Two hundred particles were used per frame. The results presented were 

obtained from a MATLAB implementation running under Windows on a PC with a Core 

3.40GHz CPU. 

 

   

 

 

 

 

Figure 5.2  Targets of the evaluation data sets S1, S2 and S3. 

Performance evaluation 

The performance evaluation was based on the optimal sub-pattern assignment (OSPA) 

metric[101][102]. The OSPA metric is a mathematically and intuitively consistent 

metric, which tries to capture the estimate quality both the cardinality and multi-target 

states. 

Let 𝑋 = {𝑥1, ⋯ , 𝑥𝑚} and 𝑌 = {𝑦1, ⋯ , 𝑦𝑛} represent the real multi-target state set 

and the estimated one with the cardinality m and n , where 𝑚, 𝑛 ∈ ℕ0 = { ,1,2,⋯ }, 

and Π𝑘  be the set of permutations on {1,2,⋯ , 𝑘} for any 𝑘 ∈ ℕ = {1,2,⋯ }. For 

1  𝑝  ∞, 𝑐 >  , the OSPA metric of order p with cut off at c is defined as  

𝑑𝑝
(𝑐)
(𝑋, 𝑌) = [

1

𝑛
(min𝜋𝜖Π𝑛 ∑ 𝑑(𝑐)(𝑥𝑖, 𝑦𝜋(𝑖))

𝑝 + 𝑐𝑝(𝑛 − 𝑚)𝑚
𝑖=1 )]

1 𝑝⁄

   (5.57) 

If 𝑚  𝑛, then 𝑑̅𝑝
(𝑐)(𝑋, 𝑌) = 𝑑̅𝑝

(𝑐)(𝑌, 𝑋), if 𝑚 > 𝑛; moreover, 
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𝑑̅∞
(𝑐)(𝑋, 𝑌) = {

min𝜋𝜖Π𝑛max1≤𝑖≤𝑛 𝑑
(𝑐)(𝑥𝑖 , 𝑦𝜋(𝑖)) , 𝑖𝑓 𝑚 = 𝑛

𝑐,                                                 𝑖𝑓 𝑚 ≠ 𝑛
       (5.58) 

is either case set the distance to zero if 𝑚 = 𝑛 =  . In this experiment, we set c=70 and 

p=2. To capture the average performance ,we run 100 Monte Carlo(MC) trials for each 

filter with the same target tracks but independently generated measurements. 

We implemented the comparison between our proposed method (referred to as 

FM-PHD) and the JPDA[20]. The JPDA is a method to estimate states of objects based 

on enumerating and computing probabilities of all possible associations between objects 

and observations. The S1 sequence undergoes large scale changes, illumination change 

and camera shake in a clutter environment. The tracking results are illustrated in Figure 

5.3, in which four representative frames (1000, 1041, 1055, and 1087) are shown, where 

rows 1 and 2 correspond to JPDA and our method. The tracking results clearly reflect 

the performance of the different methods. Specially, for the on-board camera, the 

camera shake caused a great impact on the tracking targets. We can see that our 

proposed tracker performed well throughout the sequence. 

 

 

 

 

 

 

 

  

  

 

 

 

  

Figure 5.3  Tracking results of S1 sequence. Rows 1 and 2 correspond to JPDA and 

FM-PHD, respectively (1000, 1041, 1055 and 1087). 

 

The second sequence, S2, undergoes large scale change and camera shake in a 

cluttered environment. Some tracking results are shown in Figure 5.4. The frame 

indexes are 115,120,123 and 130. The JPDA method could not provide accurate state 

information for the vehicles under these conditions. 

In the third experiment using the S3 sequence, the tracking targets are the two 
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moving vehicles undergoing translation, scale change. The tracking results are 

illustrated in Figure 5.5, in which four representative frames (2589, 2602, 2609, and 

2629) are shown, where rows 1 and 2 correspond to JPDA and our method, respectively. 

We can see that our proposed tracker performed well from beginning to the end. The 

OSPA distance curves 

 

 

 

 

 

   

 

 

 

 

   

Figure 5.4  Tracking results of S2 sequence. Rows 1 and 2 correspond to JPDA and 

FM-PHD, respectively (115, 120, 123 and 130). 

 

corresponding to test frames are shown in Figure 5.6. The results showed that our 

method is better than the JPDA tracker. 

 

 

 

   

 

 

 

 

 

   

 

 

 

Figure 5.5  Tracking results of S3 sequence. Rows 1 and 2 correspond to JPDA and 

FM-PHD, respectively (2589, 2602, 2609 and 2629). 

 

Lastly, we list the average OSPA distance of the comparing methods for three 
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sequences as shown in Table 5.1. From the results, it is easy to see that the proposed 

method is more accuracy than the JPDA method. 

5.6. Summary 

In this chapter, we firstly introduce the classical data association methods for MTT, 

and then analyze the characteristic of these ones. Secondly, we present the PHD filter 

based on RFS theories. And we apply the GM-PHD filter to track multiple vehicles. For  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1  The average OSPA distance of test sequences. 

Sequence JPDA(pixel ) FM-PHD (pixel) 

S1 4.04 2.50 

S2 4.59 3.17 

S3 3.68 2.48 

 

visual tracking problem, it is difficult to extract the random set of visual target. So we 

propose a method using the likelihood function and feature measurement to 

approximate the PHD. For the feature measurement, we adopt an adaptive weight to 

fuse color measurement and texture measurement, and extract feature measurement 

Figure 5.6  The OSPA distance of JPDA and FM-PHD for the S3 sequence. 



Research on Moving Target Detection and Tracking Methods for Intelligent Traffic Surveillance  

109 

based on Monte Carlo technique, and implement the PHD filter using the GM method. 

Lastly, contrasting the JPDA method, experimental results clearly demonstrated the 

effectiveness of our proposed method. 
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Chapter 6. Conclusions and future work 

In this thesis, the problem of moving target detection and tracking in the visual 

surveillance system has been studied. We proposed four methods for moving target 

detection, single target tracking based on particle filter, and multiple target tracking. We 

consider robustness and accuracy as the major design goals of our work. In this finial 

chapter, we will summarize our research and briefly describe some areas that merit 

future research.   

6.1. Research summary 

Due to the dynamic environmental conditions and interference factors such as 

illumination changes, shadows, stop-and-go vehicles and camera vibrations, we 

proposed a novel background subtraction for moving target detection. Firstly, the 

characteristics of each color space, such as RGB, HSV and YCbCr color space, are 

analyzed. For these characteristics, we propose the color statistical background model 

based on YCbCr color space. The contrastive analysis of mean and standard deviation 

of extracted background model show the validity of proposed background. In particular, 

this model can effectively reduce the influence of illumination changes, and 

dramatically adapt to environmental changes. Secondly, we propose a new multiple 

feature similarity fusion algorithm using the Choquet integral to class the foreground 

and background, and provide a new idea for high precision target detection under the 

complex conditions. The choice of classification features directly affects the result of 

moving target detection. Color feature is one of the most commonly used features, but it 

is difficult to accurately describe image information for the instability of natural 

background, and the individual classification feature is sensitive to the dynamic changes 

of scene. So, it will cause the inaccurate extraction of moving target. Therefore, to fuse 

the ULBP texture feature and color feature, a new method for moving target detection 

using fuzzy integral is presented. Due to the complex conditions, the background 

maintenance process is an important step. Thus, by analyzing of traditional blind and 

selective background maintenance process, we propose an adaptive background 
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maintenance method to adapt the complex condition. Comparing experiments show that 

the proposed method has good performance.  

In Chapter 3, a multiple feature fusion algorithm for single target tracking based on 

particle filter is proposed. We firstly introduce a review of particle filter techniques, 

including Bayesian estimation, Monte Carlo simulation, Bayesian importance sampling, 

sequential importance sampling, particle degeneracy and resampling, and analysis of the 

advantages and disadvantages of the corresponding methods. Next, we propose an 

adaptive mechanism to fuse color, edge, and texture features for moving target tracking 

using particle filter. The proposed mechanism not only fuses multiple features to 

improve the representation ability of tracking target, but dynamically balances the effect 

of feature similarity and feature discriminability among target object, candidate and 

adjacent background to obtain the adaptive feature weight. We adopt the Bhattacharyya 

coefficient to represent the similarity, and use the variance of the log-likelihood ratio to 

describe the discriminability. Moreover, we compare other state-of-the-art algorithms to 

demonstrate the effectiveness of our proposed method. 

In Chapter 4, for the tracking problem of complex conditions, such as fast moving, 

large scale change, rotation, and mutual occlusion, etc., we propose a robust vehicle 

tracking based on SURF feature in a particle filter framework. Combining the color and 

LBP feature, the proposed method improves the represent ability of tracking target. And, 

the dynamic update mechanism of target template is proposed to capture appearance 

changes, and the size of tracking window is also modified dynamically by balancing the 

weights of three feature distribution. The weights of each particle are allocated by an 

improved distance kernel function method. Specifically, the proposed method of 

adopting new feature points for target template can objectively reflect tracking target 

changes, and effectively overcome the disadvantage of random selection mechanism. 

Lastly, we use the different challenging sequences to test the efficient and robust 

performance of our approach. 

In Chapter 5, for the multiple target tracking, we firstly introduce the classical data 

association methods, such as NN, PDA, JPDA and MHT, and analyze the characteristic 

of these methods. Secondly, we introduce the PHD filter based on random finite set 

theories. The PHD filter is a promising approach for multi-target tracking which 

propagates the PHD or the first moment of the multi-target posterior density instead of 
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the full multi-target posterior density. Based on this idea, we propose a multiple vehicle 

tracking method FM-PHD using the feature measurement to approximate the posterior 

density. To improve the representation ability of tracking target, we adopt an adaptive 

weight to fuse the color and LBP features which are extracted by Monte Carlo method. 

Lastly, we use Gaussian mixture to implement the tracking method, and verify the 

effectiveness and accuracy through the different types test sequences.  

6.2. Future work 

The methods we presented for intelligence visual surveillance show promising results. 

However, some further studies should be done for moving target detection and tracking 

in a complex background. 

(1) Moving target occlusion problem: In complex background, if partial occlusion 

or mutual occlusion occurs at the long time in sequences, the moving target 

detection method cannot segment the multiple moving targets accurately. 

Therefore, how to solve the occlusion problem of moving targets is worth 

further study. 

(2) Multiple cameras surveillance problem: Surveillance systems based on 

multiple cameras can not only expand the monitoring scope, but obtain more 

image information in different directions. Therefore, moving target detection 

using multiple cameras can not only eliminate easily shadow effect, but 

improve the performance of moving target detection in complex background. 

However, with the introduction of multiple cameras, it brings other problems, 

such as multiple event scheduling, multiple image registration and so on. 

(3) Recognition and analysis of tracking results: Our methods can be improved 

and extended in the following ways, target recognition, target classification 

and activity analysis. Thus, these methods can provide more comprehensive 

and accurate information for the users of intelligent surveillance system. 
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APPENDIX A 

For the proposed second method, different type public datasets were adopted to 

evaluate the effectiveness of our method. A first head target (H1) was from a 

public dataset [70], and another head target (H2) was part of an in-house 

dataset [71]. The challenging factors include clutter, translation, rotation, 

partial occlusion, and scale changes. 

The H1 sequence underwent translation, rotation, and partial occlusion in the 

cluttered background. The final tracking result is illustrated in Figure A.1, in which four 

representative frames (29, 84, 103, and 130) are shown. Our algorithm performed well. 

The evaluation results of these algorithms are shown in Figure A.3 (a).  

 

 

 

 

 

   

Figure A.1 Tracking results of H1 sequence. 

 

In the second experiment, we used the H2 sequence to compare the performance of 

our tracker with the other trackers in handling translation, partial occlusion, and scale 

changes. The tracking results are illustrated in Figure A.2, in which four representative 

frames (400, 435, 466, and 480) are shown, where rows 1, 2, 3 and 4 correspond to 

Edge, FW, AMF-MS, and our tracker, respectively. We can see that our proposed tracker 

performed well throughout the sequence. The Edge tracker drifted from the target 

quickly, and the FW and AMF-MS trackers both had larger tracking errors under the 

partial occlusion. The evaluation results of these methods are shown in Figure A.3 (b). 

The evaluation curves accurately reflect the tracking performance in the case where 

partial occlusion occurs. 
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Figure A.2  Tracking results of H2 sequence. Rows 1, 2, 3 and 4 correspond to Edge, 

FW, AMF-MS, and our tracker, respectively (frames 400, 435, 466, and 480). 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure A.3  Evaluation results. (a) H1 (from frame 80 to frame 160); (b) H2 (from 

frame 400 to frame 480);  

 

In our proposed tracker, we used a multiplication rule to balance the effects of 

similarity and discriminability, and we calculated the optimization weights of the three 
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features. The weight curves of the three individual features are plotted in Figure A.4. In 

the H1 sequence, starting from frame 100 when the head turned to the right, the edge 

weight gradually increased, and from frame 128 when the head moved out of the 

cluttered background of the bookshelves, the edge weight gradually decreased. The 

texture feature was more reliable than the color feature.  

 

Table A.1  The average tracking errors (in pixels) of the compared methods. 

 Color-PF Edge-PF Texture-PF FW-PF AMF-MS Ours 

H1 11.1 9.1 14.1 10.3 8.1 4.3 

H2 8.0 17.6 8.3 8.2 7.0 3.7 

 

Figure A.4  The weight curves of our method for the H1 sequence.  
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