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ABSTRACT. For quasihomogeneous polynomials with isolated sin-
gularity, V.I.Arnold introduced the notion of inner modality and
classified them with inner modality = 0,1 in [1]. After that,
E.Yoshinaga, M.Suzuki, J. Estrada Sarlabous, J. Arocha and A.
Fuentes classified them with inner modality <9 (see [18], [11], [7],
[15]). The author introduced a concept of arithmetic inner modal-
ity for quasihomogeneous polynomials with isolated singularity in
[15], and he observed that these two invariants match each other
for quasihomogeneous polynomials with inner modality < 9, and
also he found examples with inner modality = 10 for which two
invariants don’t match (see [14]). We are interested in how many
quasihomogeneous polynomials with the same inner modality as
arithmetic inner modality.

The purpose of this paper is to give the complete classification
of quasihomogeneous polynomials with the same inner modality as
arithmetic inner modality.

1. PRELIMINARIES

In this section, we explain the terms and the results used in this

article.
A local analytic function f : (C",0) — (C,0), that is f € 9 C
C{z1,--- ,x,}, has an isolated singularity if

ol == L w -0} =10
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locally, where 9t is the maximal ideal of the local ring C{xzq,- - ,x,}.
We denote the ideal (%, e 5%) of the ring C{xy,...,z,} by A(f)

and denote the quotient ring C{z1,...,z,}/A(f) by R¢. Note that by
Hilbert’s Nullstellensatz, if f has an isolated singularity at the origin
then P C A(f) € C{xy,...,x,} for some p € N, thus the dimen-
sion of Ry over C is finite. We call it the Milnor number of f at the
origin and it is denoted by the notation u(f). It is well known that a
local analytic function with isolated singularity is a polynomial up to
a suitable local coordinate transformation (see [5], [17]) and hence we
will study ”quasihomogeneous” polynomials with isolated singularity
at the origin.
For positive rational numbers rq,...,r, € QT, a monomial

m=2a 2 cClry,...,2z,] (ir,...,in € NU{0})

has generalized degree d if rii; + -+ + rpi, = d and we denote the
generalized degree of m by gdeg(m). A polynomial f € Clzy,...,z,]
is quasihomogeneous of type (d;ry,...,r,) if each monomial term of f
with non-zero coefficient has generalized degree d. Then we call the
number d the generalized degree of f and call r;’s the weights of f.

Also a polynomial f € Clxy,...,x,] is semi-quasihomogeneous of type
(d;ry,...,ry) if it is of the form f = fy + g, where fj is a quasihomo-
geneous polynomial of type (d;r,...,r,) with isolated singularity at

the origin and any term of ¢ has a generalized degree greater than d
for weights (r1,...,7,). Note that it is shown that u(f) = u(fo) (see
3.1 Theorem in [1]).

A local analytic function f : (C",0O) — (C,0) has a quasihomoge-
neous singularity at the origin if f becomes a quasihomogeneous poly-
nomial after a suitable local coordinate transformation.

Theorem 1.1 ([8], Satz 1.3). Suppose that f € M C C{xy,...,x,} has
a quasthomogeneous isolated singularity. Then there exist a coordinate
system (Y1, ..,Yn) in which f has the form

F=hi, . yp) +Yp -+ U2

with a quasihomogeneous polynomial h € Clys, ..., yx] of type
(L;s1,...,86) (0 < s; < 3,4 =1,...,k). The natural number k and
(S1,...,8k) are uniquely determined up to permutations of components.

We call the number k the corank of f and call the polynomial A the
residual part of f. We denote the corank of f by corank(f). In order
to classify them, it is sufficient to classify their residual parts.
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The following proposition and theorem are frequently used in this
article.

Proposition 1.2 ([8], Korollar 1.6). Let f be the residual part of a
quasithomogeneous polynomial with 1solated singularity at the origin.
Then for any i (i = 1,--- k), there are integers m; (> 2) and j;
(ji =1,...,k) such that f contains the monomial x}" z;, as a term.

1
2

Theorem 1.3 ([9], 2.12. Proposition). Let f be the residual part of a
quasthomogeneous polynomial with isolated singularity at the origin and
suppose that f have the type (1;ry,...,rp) (0 <1 < 2, i=1,...,k).

927
Then
k
D i<
i=1

The inequality in the above theorem is derived from Proposition 2.12
in K. Saito [9]. From this theorem it follows easily that the minimum
of r; is less than or equal to %

From now on let f be a quasihomogeneous polynomial of type
(L;7q,...,7,) with isolated singularity at the origin. Then the number
of basis monomials of R is the same for all (semi-)quasihomogeneous
polynomials f of the same type as follows.

Note that we have % <mur; <1lsince 5 <1—r; <1

w| F

Theorem 1.4 ([1], 4.5. Theorem). Let ry,...,r, be positive rational
numbers for whichr; = A;/N (i =1,...,n), where N and A;’s are pos-
itive natural numbers. If f is a (semi-)quasihomogeneous polynomial
of type (1;11,...,7y), then
N N_A,
, z i—1
J - -
> ==
7j=1
where p; is the number of basis monomials in Ry with generalized degree
i/N.

We denote the right side of the equality in the above theorem by
X7(2) and we call it the characteristic function of f, and when it be-
comes a polynomial, it is especially called the characteristic polynomaial
of f. The following result follows immediately from this theorem.

Corollary 1.5 ([1], 4.6. Corollary). The Milnor number u(f) is given

by the formula
u(f) = xy(1) = H (% - 1) :

J=1

—221—

(47)



Masahiko SUZUKI

By the above theorem we can define the following.

Definition 1.1 ([1], 8.6. Definition). The number of basis monomials
of R with generalized degree > 1 is called the inner modality of f and
it is denoted by mq(f).

From Theorem 1.4 we see that the highest degree of generalized
degrees of basis monomials of Ry is n — 2> r; and it is denoted by
d¢. The coefficients of x(z) are symmetric because it is the product
of cyclotomic polynomials. Hence we have

m(f) =) m= ), W

Jj>N J<D-N
where D =nN -2 A; =N(n—2) r;) = Ndy.
For a (semi-)quasihomogeneous polynomial f of type (1;7q,...,7,),

we define the following invariant expressed in terms of their weights.

Definition 1.2. We call the number of monomials in Clxy,...,z,]
with generalized degree < dy — 1 the arithmetic inner modality of f
and it is denoted it by m,(f).

By the definition, we have mqg(f) < m,(f) in general. If the images
of monomials in Ry with gdeg< d; — 1 are linearly independent, we

have mo(f) = ma(f).
2. PREPARATIONS

In this section, we give a necessary and sufficient condition for mg(f) =
meq(f), and we show that corank(f) < 4 for f with mo(f) = m.(f) in
2.1. Further for each value of corank(f), we give a limit of values of
exponents of f in 2.2.

2.1. Corank limit. In this subsection, we consider a quasihomoge-

neous polynomial f of type (1;71,...,7%) (0 < r1,...,7% < 3) with
isolated singularity at the origin. First we prove the following proposi-
tion.

Proposition 2.1. We have mo(f) = mq(f) if and only if

of
gdeg <8xl> >dp—1

foranyi (i=1,...,k).

Proof. First we prove that the condition is sufficient. Let [ := m,(f)
and let {my,...,m;} be the set of monomials in Clzy,...,x;] with
gdeg < d;y — 1. Since mo(f) < m,(f) by the definition of m,(f), it is
enough to show that {my, ..., m;} is linearly independent over C in R ;.
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Let A, ..., \; be complex numbers such that Aym; +... 4+ \m; € A(f).
Suppose that there exist some ¢ (i = 1,..., k) such that A\; # 0. Then
we obtain

0
_mink gdeg (8_f) < gord(Aymy + ...+ Amy) < gdeg(my) < dj — 1,
T

7=1,...

J

where gord( ) means the generalized order of a polynomial which is
defined as the smallest generalized degree of each term of it. However
it contradicts the hypothesis and thus Ay = ... = X\, =0.

Next we prove that the condition is necessary. Suppose that there

gTi) < dy — 1. Then g—ai is quasihomo-

geneous of type (1 —r;; 7y, ..., 1) and by Proposition 1.2 it contains a
monomial 7"~ z;, with non-zero coefficient for some m; (m; = 2,3, ...)
and some j; (j; = 1,...k). On the other hand, 88_:{1' = 0 in Ry is obi-
ous and this means that there exists a linear dependent relation in
R among the images of monomials with gdeg < d;y — 1 and thus
mo(f) # mq(f). This completes the proof. O

exists some ¢ such that gdeg (

The condition of the above proposition can be rewritten as follows.

Corollary 2.2. Let 1y := max{ry,...,rx}. Then we have my(f) =
ma(f) if and only if
1 k

(2.1) T1+T2—|----+Tk_1—|—7“k—§?“max>5—1.

Proof. The inequality gdeg (%) >d;—1(i=1,...,k) means

l—r;>k—1-2(r1+---1) for Vie{l,... k}.
This condition is clearly equivalent to
L —7pae >k —1—=2(ry + -+ - 11).
Hence we have the conclusion. [l

In what follows, we denote the left hand side of the inequality (2.1)
by a(f).

The next proposition shows the upper limit of corank(f) necessary
for our classification.

Proposition 2.3. If my(f) = my(f), then corank(f) =k < 4.

Proof. Assume that r; < --- < r,. By Corollary 2.2, we have

Tk k
T1+T’2+'°‘+T’k_1+§>§—1.
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Hence
1 k k—2
kE—1 — ——1 .
(h=Dnotgre>g =L me>gr
On the other hand, by Saito’s inequality (see Theorem 1.3) we have
1k ! >yt + + ! > h 1 <2 i
3 2?“1<; 1 Tk—1 27“k 5 o Tk 3
From the above two inequality with r;, we have
k—2 k
or 1 <7“k<2—§, hence k£ < 5
This completes the proof. O

From the above proposition, wee see that it is enough to consider
the case of corank < 4 to classify quasihomogeneous polynomials with
meg = My.

2.2. Estimation of exponents. If f is quasihomogeneous of corank =
k with isolated singularity at the origin, then from Proposition 1.2 f
contains k£ monomials

et xgy, e xyF ey (may e me > 2051, gk €4{1,2, ..., k)

with non-zero coefficients. Conversely the weights of a quasihomoge-
neous polynomial containing such monomials is uniquely determined.
Hence in order to determine quasihomogeneous polynomials having
a certain property, it is sufficient to determine all quasihomogeneous
polynomials containing monomials z7"'x;,, ..., x, *x; (my,...,mg >
2) with the same property and isolated singularity at the origin. Hence
in order to determine quasihomogeneous polynomials with mg = m,,
we first need to determine bounds of exponent myq,...,m; of f that
satisfiies the condition mgy(f) = my(f). In what follow, we consider
a quasihomogeneous polynomial f of type (1;r,...,ry) with isolated
singularity at the origin and assume that it contains monomials 7" z;,
..., ;" x;, with non-zero coefficients.

Lemma 2.4. Assume that corank(f) = 1, 2. Then we have always

ma(f) = mo(f) for all f.

Proof. The consequence is immediate from the inequality (2.1) in Corol-
lary 2.2. [l
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Lemma 2.5. Assume that corank(f) =3 andr; < ry <rs. Ifmo(f) =
ma(f), then we have

~
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In the case of (mg, m3) = (2,2), we have

- 27374 2.f(jlaj%jff») - (17171)a(27171)7(37171)7
my =
2,3,... otherwise.

In the case of (mo, m3) = (2,3), we have

2737"' Zf (j17j27j3) :(17173)7(1727 1)7(17371)7(27173)
(2a 2, 1)7 (27 3, 1)7 (37 L, 3)7 (37 2, 1)
(3,3, 1),

2,...,14  otheruise.

In the case of (ma, m3) = (3,2), we have

2,3,... if (J1,72,73) =(1,1,2),(1,1,3),(1,2,1),(2,1,2)
(2,1,3),(2,2,1),(3,1,2),(3,1,3)
e (3,2,1),
2,...,14  otherwise.

Proof. Since m(f) = mo(f) and r, < ry < r3, from Corollary 2.2, we
have

1 1
(22) T1+T’2+§T3> 5
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Using the previously introduced symbol «(f), the condition (2.2) can
be expressed as a(f) > 3. We try to find the bounds of my, ms,ms

under this condition. Since r; < ry < r3, it follows that

5 1 5) 1
2 > 573 > aff) > 30 Ms < 5, namely mgz = 2, 3, 4.

Since r; < ry, it follows that

1 11 1 1 1\
22— +—— >2 —ra > — 4(1—-— )
m2+2m3_ r2+2r3_oz(f)>2, my < ( m3)
Then
8 (m3 2)
my < {6 ) (ms = 3)
5+ — (m3 —4)
3
Hence we have
(m27m3) :(272)7 (372 7(472)7 (572)7 (672)7 (77 2)7
(2,3),(3,3),(4,3),(5,3),
(2,4),(3,4), (4,4),(5,4).
) 1.
Since r; < — (i =1,2,3),
m;
1 1 11 1
— N - > > —
my  me 2ms a(f) 2’
and
1 >1 1 11
mq 2 mo 2m3
Note that
1 1 11

Then we have
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whenever (mq, m3) # (2,2),(2,3),(2,4), (3,2),(3,3), (4,2), namely (mgy, m3) =
(5,2),(6,2),(7,2),(4,3),(5,3),(3,4), (4,4), (5,4). Hence we have
(2,...,19  if (mo,m3) = (5,2).
2,...,11 if (mg,m3) = (6,2),(4,3)
2,...,9 if (mq,ms3) = (7,2).
my = <
2,...,7 if (mq,ms3) = (5,3),(4,4)
2,...,23 if (mq,ms3) = (3,4).
\2, ,5 if (mz, m3) == (5, 4)

Next we consider the cases of (mq,m3) = (2,2),(2,3),(2,4), (3,2),
(3,3),(4,2). Since f has an isolated singularity at the origin, it follows
from Cororally 1.5 that for each case, the Milnor number must be a
natural number, namely

(2.3) u(f) = (% —1> (r—t _ 1) (% - 1) eN.

From here we try to find the bound of m; by adding the condition
(2.3) in addition to (2.2). To do this, for all permutations (ji, jo, j3)
of the set {1,2,3} with repetition, we try to calculate (rq1,r9,73), a(f)
and p(f) for the quasihomogeneous polynomial f(xi,x9,z3) contains
monomials z7"'z;,, x5%x;,, x5 °x;, with non-zero coeflicients, and try
to find the bound of m;. We show such a calculation by an example.

As an example, in the case of (mq,m3) = (3,2), if (j1,72,7J3) =
(1,2,3), then we have

: (L L1
r,T2,T3) = m1+17473 )

T"maz = T3
1 1 1
Oé(f) — 5 :T1+T2+T3— §Tmax—§
1 11 —my

e Y T T R + 1)

pu(f) =6my € N.

—227—
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Since «(f) — 3 > 0 by Corollary 2.2, hence we have m; < 11. If

(71,72, J3) = (1,1,1), then we have

( ) < 1 mq mi )
T,T,T - Y Y
b mi + 17 3(my +1)" 2(my + 1)
Tmazx = T3
1 1 1 mi+6
— == Ty = 5
a(f) 5 =TT ol 2(m; +1) ;
my + 2)? 6
M(f)=M=2m1+7+—-
maq my

Since p € N, we have my = 2,3,6. If (41, 72,73) = (1, 1,2), then

(T’ . T’)—< 1 mq 2m1+3)
PRy +173(my + 1) 6(my + 1)

T'maxz = T3

1 1 1 3

= S —
a(f) 5 =Mt tgrs— g o+ 1)

(): dm; +3 €N

Since a(f) — 35 > 0 and pu(f) € N for any my(my = 2,3,... ), my is

free. By doing same calculations for the other permutations (ji, js, j3),
it follows that for (mq, ms3) = (3,2)

2,3,... if (j1,72,73) =(1,1,2),(1,1,3),(1,2,1),(2,1,2)
(2,1,3),(2,2,1),(3,1,2),(3,1,3)
(3,2,1),

2,...,14  otherwise.

We performe this calculation by a computer (see a sample program in
Appendix A).

We perform similar calculations for the other values of (msg, m3) and
each purmutation (ji, j2, 73) of {1,2,3} with repetition by a computer.
As a result, if follows that for (mq, ms) = (2, 3)

2,3, ... if (j1,72,73) = (1,1,3),(1,2,1),(1,3,1),(2,1,3)
(2,2,1),(2,3,1),(3,1,3),(3,2,1)
(3,3,1),

2,...,14  otherwise,
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and for (ms, m3) = (2,2),

27374 if (j17j27j3) = (17171)7(27171)7(37171)7
my = .
2,3,... otherwise.

Similarly it follows that for (mq, ms) = (2,4), (3,3), (4,2)
S 2,...,13 if (ma,m3) = (2,4), (4,2),
FT)2,..0,9 if (ma,ms) = (3,3).

This completes the proof. O

Lemma 2.6. Assume that corank(f) =4 and ry < ry < r3 < ry. If
mo(f) = mq(f), then we have

(,2,2) i=2,3,4,5,6,T.
(,3,2) i=2,3,4.
(2, mg,ma) = (,2,3) i=2,3,4,5.
(,3,3) i=23
(2,...,8 if (ma,ms,my) =(2,2,2)
2. 12 if (ma,ma,ma) =(2,2,3),(2,3,2), (3,2,
2.3 if (ma,ms,ma) =(2,3,3),(3,2,3), (4,2,
2,...,19 if (mg,ms,my) =(5,2,2),
TUT N2 A i (e ma,ma) =(6,2,2),(3,3,2), (4,2, 3)
2,...,9 if (me, ms,my) =(7,2,2).
2. if (ma,ma,ma) =(4,3,2), (3,3,3).
(2,...,7 if (ma,ms3,my) =(5,2,3).

Proof. Since m(f) = mo(f) and r; < ry <r3 < ry, from Corollary 2.2,
we have

1
(24) L+ 19+ T3+ 57“4 > 1.

Using the previously introduced symbol a(f), the condition (2.2) can
be expressed as a(f) > 1. We try to find the bounds of my, my, ms, my
under this condition. Since r; < ry < r3 < ry, it follows that

71 7 7
3 > o >a(f)>1, my< 57 namely my = 2, 3.
Since r; < ry < rs, it follows that

1 11 1 1\ !
3—+=—2>3rs+ -y >a(f)>1, m3<3(1—— .
ms  2my 2
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Hence ms = 2,3, and we have
(m3, m4) = (27 2)7 (37 2)7 (27 3)7 (37 3)'
Since r; < ry, it follows that
1 1 11 1
2— + —+5—22rt+r3t+sra>a(f) >1
me M3 2My 2
Hence we have

8 lf (m37m4) — (27 2)7
-1 4 _
me < 2 (1_L_L> — 4+ 5 %f (mg,ma) = (3,2),
ms 2m4 6 1f (m3, m4) = (2’ 3)’
4 lf (m37m4) = (3’3)

7

and

< 11 1 >‘1
mi< (1- — - — — I
mo ms 2m4
whenever (mq, m3, my) # (2,2,2),(3,2,2), (4,2,2),(2,3,2),(2,2,3),
(2,3,3),(3,2,3), namely (msg, ms,my) = (5,2 2) (6,2,2) (3,3,2),

Y

(4,2,3),(7,2,2),(4,3,2),(3,3,3),(5,2,3). Hence we have
(2,...,19 if (mg, ms, my) =(5,2,2),
2,...,11 if (mg, ms,my) =(6,2,2),(3,3,2),(4,2,3)
mi=<2...,9 if (mao, mg,m4):(722)
2,...,5 if (mo, ms, my) =(4,3,2),(3,3,3).
(2,7 if (mg, ms, my) =(5,2,3).
Next we consider the cases of (mg,mg,m4) = (2,2,2),(3,2,2),

(4,2,2),(2,3,2),(2,2,3),(2,3,3),(3,2,3). Since f has an isolated sin-
gularity at the origin, it follows from Cororally 1.5 that for each case,
the Milnor number must be a natural number, namely

(2.5) u(f):<r—11—1) <r12—1) (%-1) (}4-1)61\1.

From here we try to find the bound of m; by considering the condi-
tion (2.5) in addition to the condition (2.4). To do this, for all per-
mutations (ji, jo, js, ja) of the set {1,2,3,4} with repetition, we calcu-
late (11,72, 73,74), a(f) and p(f) for the quasihomogeneous polynomial
f(x1, x2, x3, x4) contains monomials x7" x;,, 252 x,,, x5 2}, v} x;, with

—230—



CLASSIFICATION OF QUASIHOMOGENEOUS POLYNOMIALS WITH INNER MODALITY=ARITHMETIC INNER MODALITY

non-zero coefficients, and try to find the bound of m;. We show such
a calculation by an example.

As an example, we consider the case of (mq, mg,my) = (2,3,2). If
(71,72, 73, Ja) = (3,1,3,1), then we have

3 4m1 -3 1 4m1 -3
4my 7 8my T4’ 8my

(rla r2, T3, T4) -

r3 <1y =14 <T1 Tmaz =71 1m=2

T <1y <13 < Ty Tiep =74 fm>3

10m, — 3
ZL; > 0 for my =2
o) =t=q 8" \
>
16m1 > or my =~
(4mq + 3)? 36
== - 7 —4 94+ ——,
wf) =g T Am A9t

Since u(f) € N, we have m; = 3. If (ji1, jo2,J3) = (1,1,1,4), then we
have

( ) ( 1 mq mq 1)
ry,re,r3,T4) = ) ) ) o
bz s mi+1"2(my +1) 3(my +1)" 3
Tmaz = T2
4—m1
1= B
alf) 12(m; + 1)
2(my +2)(2mq + 3 12
u(f) = (i +2)2mi+3) _ gy 12
mq mq

Since a(f) — 1 > 0, we have m; = 2,3. Since p € N, we have m; =
2,3,4,6,12. Hence we have m; = 2,3. By doing same calculations
for the other permutations (ji, jo, j3,j4) by a computer (see a sample
program in Appendix B), we have

my <12 for (mg, mg,my) = (2,3,2).

Similarly we perform such a calculation for the other values of (mq, m3, my4)
and each permutaion (j1, J2, J3, 1) by a computer. As a result, we have
the bound of my as a necessary condition to satisfy a(f) —1 > 0 and
p(f) € N. The bound of m; is

2,...,8 if (mg, mg,my) =(2,2,2).
my=1<2,...,12 if (me,mg,my) =(2,2,3),(2,3,2),(3,2,2).
2,3 if (moq,ms,my) =(2,3,3),(3,2,3),(4,2,2)
This completes the proof. [l
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3. CLASSIFICATION

In this section, we give the complete classification of quasihomoge-
neous polynomials with isolated singularity and with my = m,. Let f
be a quasihomogeneous polynomial of corank= k£ with isolated singu-
larity that contains £ monomials

x{”lle,...,x?ka:jk (ml,...,mk > k, Ty Jk € {1,2,,]{3})

with non-zero coefficients. In the previous section, for each corank
k (k = 3,4), we have the limit value of my,...,m; and the val-
ues of (j1,...,7x) as neccessary conditions for mg(f) = mu(f) (see
Lemma 2.5, 2.6). Hence in order to classify quasihomogeneous polyno-
mials with mg(f) = m.(f), it is sufficient to select those which satisfy
both conditions

(a) mo(f) = mo(f), ie. a(f) > g — 1 (see Corollary 2.2),

(b) f has an isolated singularity at the origin,
from f with (mq,...,my) and (j1,...,Jx) in Lemma 2.5, 2.6.

Theorem 3.1.

(1) For all f of corank = 1,2, mo(f) = ma(f) is always established.

(2) For all f of corank = 3, f with mo(f) = ma(f) are ezhausted
by the list in Table A.

(3) For all f of corank = 4, f with mo(f) = m.(f) are ezhausted
by the list in Table B.

Proof.
(1) The result follows immediately from Lemm 2.4.
(2) According to (myq,...,mg), (j1,-..,Jk) in Lemma 2.5, we select all

quasihomogeneous polynomials with isolated singularity that satisfy
the both conditions

(a) a(f) — % =7ry+r9+1r3— %rmw — % >0,
) xs(e) = e e e Cl

where N, Als are the natural number defined in Theorem 1.4,

by a computer (see Appendix C as a sample program). As a result,
we have 215 types of quasihomogeneous polynomials, 17 of which are
infinite sequences (see Table A). In the computer program, in order
to determine whether f has an isolated singularity, we use the fact
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that xf(z) is a polynomial. However we should note that Theorem 1.4
doesn’t guarantee that x¢(z) is a polynomial “only if” f has an iso-
lated singularity at the origin. Fortunately in case of corank(f) = 3,
it is shown that there exists a quasihomogeneous polynomial of type
(1;r1, re, r3) with isolated singularity at the origin, if y ¢(z) is a polyno-
mial (see [10], Theorem 3 and also see [1], Remark in Page 22). Hence
for all the wights we get by calculation, we can determine quasihomo-
geneous polynomials with isolated singularity and we have the list in
Table A at the end of this section.

(3) According to (myq,...,mg), (j1,-..,Jjk) in Lemma 2.6, we select all
quasihomogeneous polynomials with isolated singularity that satisfy
the both conditions

1
(a)a(f)—l:T1+T2+T3+T4—§’I"mam—1>O,

(N4 (N (N (N )
b = C
where NV, A’s are the natural number defined in Theorem 1.4,

by a computer (see Appendix D as a sample program). As a result,
we have 25 types of quasihomogeneous polynomials (see Table B). As
with corank = 3, we should note that Theorem 1.4 doesn’t guaran-
tee that x¢(2) is a polynomial “only if” f has an isolated singularity
at the origin. In fact, in the case of corank = 4, there is a exam-
ple which says that there is no quasihomogeneous polynomial of type
(1; %, %, %, 25—685) with isolated singularity at the origin even though
X7(%) is a polynomial (see [1], Remark in Page 22). But we see that
all the quasihomogeneous polynomials which we get as the result of
calculations have an isolated singularity at the origin. Hence we have
all the weights of quasihomogeneous polynomials of corank = 4 with

mo = m, in the list in Table B at the end of this section.
This completes the proof. O
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Table A : The list of quasihomogeneous polynomials of

corank=3 with my = m,

The following table contains the list of 17 infinite sequences of weights
of quasihomogeneous polynomials of corank = 3 with my = m,.

(rla T2, T3)

(i 305)

% (l 1 l) ( 3 m+1 2m—1)
3m?’ 3’3 4m+17 4m+1’ 4m—+1
2 1 3m—2 1 m—1 1
* (3m73’ 6m ) (2m71’2m71’3)
% 1 1 m 1 2m+3 m
m+17 37 3(m+1) m—+1’ 6(m+1)’ 3(m+1)
N (Z,1, m=2) (L, 4m=s 1)
3m? 3?7 9m 4m’ 8m ' 4
% ( 2 m m—1 ) ( 4 2m—+1 2m—1)
3m—17 3m—1? 3m—1 6m+1’ 6m+1? 6m+1

)

(

1

m—1

(

1 11
m—+1? 2(m+1)’ 3
1 m 1
m+1? 2(m+1)’ 4
1 m—1 1
2m—17 2m—17 4
2 1 m-1
3m—17 37 3m—1

m
2m—1’ 2m—1’ 2(2m—

)

where m € N and m > 2.

The following table contains the list of 198 weights of quasihomoge-

neous polynomials of corank = 3 with my = m,.

mo (7"1,7"2,7“3)

LG el Ges) Gos Gen)
L Gss) (G53)

20 Gas) Gow) Gewn) Ges) G
2| o) Goaws) Govw) G

3 Giwn) Gos) Goen) God  God)
3 | Gosn) Grimw) Goos)  (Gos) (i)
41 Gws) @wew) Gz Go) Gon)
4 Gd) Gew) G337 Gesn) G
50 mws) Ges) Gass) Gas) Goias)
5| wies) i) (o) (Goossow)

6| (53 God) Giow) Gws) Gk
6 | Go1s) Gis) G53) (i)

T G Gawn) Gan) G G
T Ges) Ged) Gos) (Gaa) G
"1 Goa) Gona) Goee) Gosbs) (Gosos)
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mo (T17T27T3)

8 | () (57) (5335 (Gaeis) Gossos)
G353 Gosid) Giaxn) Gown) Gso
53 Gos) Gos) G (Gos)
(303 (s Goans) Gows) Ghsw)

0l Gai) Ges) Gesn) Giw) 6G59)

0] Gis)  Gis) (G

n e Gew) Gz GiE) (Ges)

I Gwa) Gein) Gen) Gow) G

nl Gai) Ged Gew) G G

W (1w Goaoa) Good) Grsw) (G5 6)

1 (3535 5) (5160 3)

20 G2 G353 Ges) Ges) G

12| (%51003) (50 5303)

Bl(wwwn) (o) Gwn) Goi) (G

Bl (mos) (Gosw) Gen) Giw) (&5

Bl 13 G Gew G (G

13| (533)

4l Gen) (wown) Gon) oo (555)

4| Gz 553E)  Gwon)

Bl Gros) Ges) Gen) God) God)

15| (593 (sn) Gowms) (i)

6] (5w Gws:) Goi) Gz Goi)

16 | (5505 710)  (5:5:3)

17 G5 Goww) Goid) Gis) Goi)

7] (5a1) Gosos) (o)

B8] (13 (wos) (o) Gos) (HE 6

9 i) Gerid) Gmn) Goai) (i)

9 G5 Gsi) Gesw) G (G

19 | (555 52)

20| Gro3) Goon) Giw)  (Goi)

21| ois)  (Has) Geois)

22| (3545)
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Table B : The list of 25 weights of quasihomogeneous
polynomials of corank=4 with my = m,

The following table contains the list of 25 weights of quasihomoge-
neous polynomials of corank = 4 with my = m,,.

[10]

[11]

myo (7’177’277“3,7“4)

51 Gepws)  (Gawss) Gesms)  (5333)

6 G333z Gmwxn) Gors) Goii)

6 | Gwsas) (53371

7| (Grigr2603)

8 Gowd)  Giew:) Goiewn) (Giss)

9 1 Gravmn) (wmen) Goei) (G

O @)  (5333)

0] ey Geee  Giss) (G55
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Appendix A : Example of a program code for corank=3

The following program is written in Mathematica.
Clear[“Global*”];
exp0 = {{m, 3,2} };
var0 = Permutations[{z, z, z,y, v, v, 2, 2, 2}, {3}];

datal = {};data2 = {};data3 = {};amax = {};

For[i = 1,1 < Length[exp0], i++,
{m1, m2, m3} = {expO[[i]][[1]], expO[[Z]][[2]], expO[[<]]([3]]};

For[k = 1, k < Length[var0], k++,
x1 = varO[[k]][[1]]; x2 = varO[[k]][[2]}; x3 = varO[[K]][[3]];
sol = Solve[{mlz + x1 == 1, m2y + x2 == 1, m3z + x3 == 1}, {z, y, 2}];
{r1,r2,r3} = Simplify[{z/.sol[[1]], y/.sol[[1]], z/.s0l[[1]] }];
rmax = Simplify[Max[{r1,r2,r3}],m > 3];
a[m_]:=Factor[rl + r2 4+ r3 — 1/2rmax — 1/2]; (*criteriaform0 = ma*)
mu[m_]:=Factor[(1/r1 — 1)(1/r2 — 1)(1/r3 — 1) ]; (* Milnor # *)
pmu[m_]:=Numerator[mu[m]]; gmu[m_]:=Denominator[mu[m]];
rmu[m_]:=PolynomialRemainder[pmu[m], qmu[m], m];
If[Exponent[Numerator[a[m]], m] == 1&&Coefficient[Numerator[a[m]], m] < 0,
datal = Append[datal, {{x1, x2,x3}, {m1, m2, m3}, {r1, r2, r3}, a[m], mu[m],
Flatten[Solve[a[m] == 0, m], 1]}];
asol = Solve[a[m] == 0, m];
amax = Append[amax, m/.asol[[1]][[1]]];

I;

If[Exponent[Numerator[a[m]], m] == 0,
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If[Reduce[rmu[m] — pmu[m] > 0&&m > 1, m],
data2 = Append[data2, {{x1, x2, x3}, {m1, m2, m3}, {rl1, r2,r3}, a[m], mu[m],
Flatten[Reduce[rmu[m] — pmu[m] > 0&&m > 1,m]]}],
data2 = Append[data2, {{x1, x2,x3}, {m1, m2, m3}, {r1, r2, r3}, a[m], mu[m]}];
l;
l;

If[Exponent[Numerator[a[m]], m] == 1&&Coefficient[Numerator[a[m]], m] > 0,
If[Reduce[rmu[m] — pmu[m] > 0&&m > 1, m],
data2 = Append[data2, {{x1, x2, x3}, {m1, m2, m3}, {r1, r2,r3}, a[m], mu[m],
Flatten[Reduce[rmu[m] — pmu[m] > 0&&m > 1,m]]}],
data3 = Append[data3, {{x1,x2,x3}, {m1, m2, m3}, {r1, r2,r3}, a[m], mu[m]}];
l;
l;

I;
I;

Print[Max[amax]]; Print[“datal =", datal]; Print[“data2 =", data2]; Print[“data3 =”, data3]

Appendix B : Example of a program code for corank—=4

The following program is written in Mathematica.
Clear[“Global*”];
exp0 = {{m, 2,2,2}};
var0 = Permutations[{z, z, =, z,y,y,¥, ¥, 2, 2, 2, 2, w, w, w, w}, {4}];
datal = {};data2 = {};data3 = {};amax = {};
For[i = 1,4 < Length[exp0], i++,
expl = expO[[i]];
For[k = 1, k < Length[var0], k++,
m1 = expl[[1]]; m2 = expl[[2]]; m3 = exp1[[3]]; m4 = expl[[4]];
x1 = varO[[K]][[1]]; x2 = varO[[k]][[2]]; x3 = varO[[k]][[3]); x4 = varO[[k]][[4]];
sol = Solve[{mlz + x1 == 1, m2y + x2 == 1,m3z + x3 == 1, mdw + x4 == 1}, {z, y, 2, w}];
weights = {z/.sol[[1]], y/.sol[[1]], z/.s0l[[1]], w/.s0l[[1]] };
rl = Simplify[weights[[1]]]; r2 = Simplify[weights[[2]]]; r3 = Simplify[weights[[3]]];
r4 = Simplify[weights[[4]]];
rmax = Simplify[Max[{r1, r2,13,r4}], m > 3];
mu = Factor[(1/r1 — 1)(1/r2 — 1)(1/xr3 — 1)(1/r4 — 1)]; (* Milnor # *)
a = Factor[rl + r2 + r3 + r4 — (1/2)rmax — 1]; (*criteriaform0 = ma*)
If[Exponent[Numerator[a], m] == 1&&Coefficient[Numerator[a], m] < 0,
ClearAll[m];
datal = Append[datal, {{x1, x2,x3, x4}, {m1, m2, m3, m4},
Factor[{r1,r2,r3,r4}], a, mu,
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Flatten[Solve[rl + r2 + r3 + r4 — (1/2)rmax — 1 == 0, m], 1]}];
amax = Append[amax, m/.Flatten[Solve[rl 4+ r2 + r3 4+ r4 — (1/2)rmax — 1 == 0, m]]];
l;
If[Exponent[Numerator[a], m] == 0,
ClearAll[m];
data2 = Append[data2, {{x1, x2,x3, x4}, {m1, m2, m3, m4},
Factor[{r1,r2,r3,r4}], a, mu,
Reduce[{PolynomialRemainder[Numerator[mu],
Denominator[mu], m]>=Denominator[mu]&&m > 1}, m, Integers|};
l;
If[Exponent[Numerator[a], m] == 1&&Coefficient[Numerator[a], m] > 0,
ClearAll[m];
data3 = Append[data3, {{x1, x2, x3, x4}, {m1, m2, m3, m4},
Factor[{r1,r2,r3,r4}], a, mu,
Reduce[{PolynomialRemainder[Numerator[mu], Denominator[mu], m]

>=Denominator[mu]&&m > 1}, m, Integers]}];

Print[Max[amax]];

Print[“datal :”, datal, Max[amax]]; Print[“data2 :”, data2]; Print[“data3 :”, data3]//Timing

Appendix C : Example of a program code for corank=3

The following program is written in Mathematica.
exp0 = {{2, 4,13}, {4,2,13},
{3, 3,9},
{5,2,19},
{6,2,11}, {4, 3,11},
{7,2,9},
{5,3,7},{4,4,7},
{3,4,23},
{5,4,5}};
expl = {{2,2,4}};
exp2 = {{2,3,14}};
exp3 = {{3,2,14}};
varQ = Permutations[{z, z, z,y, 9, v, 2, 2, 2}, {3}];
varl = {{z, z, z}, {y, z, =}, {z, z, z}};
var2 = Complement|var0, {{z, z, 2}, {z, y, =}, {z, z, z}, {y, =, 2}, {v, v, =}, {v, 2, =}, {2, =, 2},
{z:y,2}, {2, 2,2}}];
var3 = Complement[var0, {{z, =, y}, {z, z, 2}, {z, v, =}, {v, z, v}, {v, =, 2}, {v, v, 2}, {2, =, ¥},

{z’ m’ z}? {z) y’ m}}];
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classify[exp-, var_]:=Module[{3, j, sol = {}, m, m1, m2, m3, wt = {},rl,r2,r3,d,ql, q2,

For[i =1

a3,p1,p2, p3, Q, A1, A2, A3, CPN, CPD, CP, a, CF, IM, AIM, EXP, wts = {}},
,i < Length[var], i++,

{x1,x2,x3} = {var[[s]][[1]], var[[s]][[2]], var[[Z]][[3]]};
For[k = 1, k < Length[exp], k++,

{m, m2, m3} = {exp([K]][[3]], expl[[~]][[1]], exp([k]][[2]]};

Dol

sol = Solve[{mlz + x1 == 1, m2y + x2 == 1,m3z + x3 == 1}, {z, y, z}];

wt = Sort[{z/.sol([1]], y/.sol[[1]], z/.sol[[1]]}];

{r1,r2,r3} = Sort[{rl = wt[[1]], r2 = wt[[2]], r3 = wt[[3]]}];
d=3-—2%(rl+r2+r3);

{al,q2, q3} = {Denominator[rl], Denominator[r2], Denominator[r3]};

{p1, p2, p3} = {Numerator[rl], Numerator[r2], Numerator[r3] };

Q = LCM[ql, g2, q3];

{A1, A2, A3} = {p1 * Quotient[Q, ql1], p2 * Quotient[Q, q2], p3 * Quotient[Q, q3]};

CPN = Expand [(z{Q_Al} — 1) (z{Q—A2} — 1) (z{Q_As} — 1)] H

CPD = Expand [(z{Al} - 1) (z{A2} - 1) (z{A3} — 1)] ;

CP = PolynomialQuotientRemainder[CPN[[1]], CPD[[1]], z];

a=rl4+r2+(1/2)r3 —1/2;

CF = Take[CoefficientList[CP[[1]], 2], (d — 1)Q + 1];

M = {27V CF[[a));

AIM = Length[{ToRules[Reduce[{(2 + z)Al + (2 + y)A2 + (2 + 2)A3 - 2Q <0,
z >0,y >0,z > 0}, {z,y, z}, Integers]] }];

If[(CP[[2]] == 0) &&(a > 0)&&(MemberQ[wts, {r1,r2,r3,IM, AIM}] == False),
wts = Append[wts, {r1,r2,r3,IM, AIM}];

wts = Sort[wts, #1[[4]] < #2[[4]]&];

Return[wts];

]

wts0 = classify[exp0, var0];

wtsl = classify[expl, varl];

wts2 = classify[exp2, var2];
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wts3 = classify[exp3, var3];
all = Sort[DeleteDuplicates[Join[wts0, wtsl, wts2, wts3]], #1[[4]] < #2[[4]1&];
Print[“count=", Length[all], “,”, “ Max of Inner modality=", Max[Table[all[[]][[4]],

{i, 1, Length[all] }]], “\n”, all];

Appendix D : Example of a program code for corank=4

The following program is written in Mathematica.
exp0 = {{2,2,2,8},
{2,2,3,12},{2,3,2,12}, {3,2,2,12},
{2,3,3,3},{3,2,3,3}, {4,2,2,3},
{5,2,2,19},
{6,2,2,11},{3,3,2,11}, {4,2, 3,11},
{7,2,2,9},
{4,3,2,5}, {3,3,3,5},
{5,2,3,7}};
var0 = Permutations[{z, z,z, z,¥,v,¥, ¥, 2, 2, 2, 2, w, w, w, w}, {4}];
classify[exp-, var_]:=Module[{3, j, sol = {}, m, m1, m2, m3, m4, wt = {},rl,r2,r3,r4,d,
ql,q2,q3,q94, pl, p2,p3,p4,Q, Al, A2, A3, A4,CPN, CPD, CP, a, CF, IM, AIM, EXP, wts = {}},
For[i = 1,4 < Length[var], i++,
{x1,x2,x3, x4} = {var([¢]][[1]], var[[z]][[2]], var[[z]][[3]], var([]][[4]]};
For[j = 1, < Lengthlexp], j++,
{m, m2, m3, m4} = {exp([5]][[4]], exp[[5]][[1]], exp([s]]([[2]], exp[[5]][[3]]};

Do[

sol = Solve[{mlz + x1 == 1, m2y + x2 == 1,m3z + x3 == 1, m4w + x4 == 1}, {z, y, 2, w}];

wt = Sort[{z/.sol[[1]], y/.sol[[1]], 2/.s0l[[1]], w/.s0l[[1]]}];

{r1,r2,r3,r4} = Sort[{wt[[1]], wt[[2]], wt[[3]], wt[[4]]}];

d=4—2x%(rl + 12+ r3 + r4);

{ql1, 92, q3, q4} = {Denominator[rl], Denominator[r2], Denominator[r3],

Denominator(r4] };

{p1, p2, p3, p4} = {Numerator[rl], Numerator[r2], Numerator[r3], Numerator(r4] };

Q = LCM[ql, q2, q3, q4];

{A1, A2, A3, A4} = {p1 * Quotient[Q, ql1], p2 * Quotient[Q, q2], p3 * Quotient[Q, q3],
p4 * Quotient[Q, q4]};

CPN = Expand [(z{Q_Al} — 1) (z{Q—A2} — 1) (z{Q_As} — 1) (z{Q—A4} — 1)] ;
CPD = Expand [(z{Al} - 1) (z{A2} - 1) (z{A3} — 1) (z{A4} - 1)] ;

CP = PolynomialQuotientRemainder[CPN[[1]], CPD[[1]], z];

a=rl4+r2+r3+ (1/2)r4 — 1;

CF = Take[CoeflicientList[CP[[1]], 2], (d — 1)Q + 1];
M = S{5 V9 OF[]);
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AIM = Length[{ToRules[Reduce[{(2 + )Al + (2 + y)A2+ (2 + 2)A3 + 2+ w)A4 -3Q L0,
x>0,y >0,z 20,w >0}, {,y, 2, w}, Integers]|};
If[(CP[[2]] == 0) &&(a > 0)&&(MemberQ[wts, {rl,r2,r3,r4,IM, AIM}] == False),

wts = Append[wts, {r1,r2,r3,r4,IM, AIM}];
I;

) {m11 2, m}

l;
l;
l;
wts = Sort[wts, #1[[5]] < #2[[5]]&];
Return[wts];
]
all = classify[exp0, var0];
Print[“count=", Length[all], ,”, “* Max of Inner modality=", Max[Table[all[[]][[5]],
{i, 1, Lengthl[all] }]], “\n”, all];
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